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ABSTRACT

In spite of delivering remarkable predictive accuracy across many domains, in-
cluding computer vision and medical imaging, Deep Neural Networks (DNNs)
are susceptible to making overconfident predictions. This could potentially limit
their utilization and adoption in many real-world applications, especially involv-
ing security-sensitive decision making. Among existing approaches to model cali-
bration, post-hoc based techniques are simple and effective, however, they require
a separate hold-out data. Lately, train-time calibration has emerged as an alternate
paradigm, in which the recent methods have shown state-of-the-art calibration re-
sults. Inspired by the train-time calibration direction, in this paper, we propose a
novel train-time calibration method at the core of which is an auxiliary loss for-
mulation, namely multiclass alignment of confidences with the gradually softened
ground truth occurrences (MACSO). It is developed on the intuition that, for a
class, the gradually softened ground truth occurrences distribution is a suitable
non-zero entropy signal whose better alignment with the predicted confidences
distribution is positively correlated with reducing the model calibration error. In
our train-time approach, besides simply aligning the two distributions, e.g., via
their means or KL divergence, we propose to quantify the linear correlation be-
tween the two distributions which preserves the relations among them, thereby
further improving the calibration performance. Extensive results on several chal-
lenging datasets, featuring in and out-of-domain scenarios, class imbalanced prob-
lem, and a medical image classification task, validate the efficacy of our method
against state-of-the-art train-time calibration methods.
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Figure 1: Compared to the negative log-likelihood (NLL) loss, NLL+MACSO (ours) has higher confidences
for correct predictions (Popsicle/Motorcycle) and lower confidences for incorrect predictions (Dog/Fly/Cup).

1 INTRODUCTION

Despite enabling remarkable predictive accuracy for several computer vision tasks, e.g., image clas-
sification (Simonyan & Zisserman, 2014; He et al., 2016; Krizhevsky et al., 2009; Dosovitskiy et al.,
2020), deep neural networks (DNNs) have the tendency to provide overconfident predictions (Guo
et al., 2017; Ovadia et al., 2019; Mukhoti et al., 2020). This renders them poorly calibrated owing
to the discrepancy between the predicted confidence of a class and its actual likelihood of occur-
rence. Due to the increasing deployment of DNN-based models, it is of paramount importance that
the model predictions should be well-calibrated for enhancing decision-making and risk assessment.
Beyond fostering an overall trust in AI systems, well-calibrated models would enable broader adop-
tion and more effective utilization across diverse domains, including healthcare (Dusenberry et al.,
2020; Sharma et al., 2017), autonomous vehicles (Grigorescu et al., 2020), finance (Bao et al., 2017;
Dixon et al., 2017), and climate science (Ham et al., 2019; Rasp et al., 2018).
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In this paper, we chose the train-time calibration route. We propose a new auxiliary loss formu-
lation, Multiclass Alignment of Confidences and Softened ground truth Occurrences (MACSO).
It is based on the intuition that, for a class, the gradually softened ground truth occurrences dis-
tribution provides a suitable non-zero entropy signal, and it is positively correlated with reducing
the model calibration error when the softened ground truth occurrences distribution for a class and
predicted confidence distribution for the same class are more aligned. Besides simply aligning the
two distributions using their means or KL divergence, which improves model calibration as shown
in our experiments, we propose to measure the linear correlation between them, which preserve the
relative order of preferences between the two, and as a result, allows further improving the model
calibration. In summary, we make the following contributions:

1. We propose a train-time calibration method with a novel auxiliary loss function, dubbed
MACSO, that performs multiclass alignment of confidences and the corresponding gradu-
ally softened target occurrences. MACSO can be used with any task-specific loss functions
(e.g., NLL), as it is differentiable and operates over minibatches (Fig. 1).

2. Beyond simply aligning the two distributions via their means or KL divergence, we propose
to measure the correlation between the two distributions which preserves the relations in
each distribution. Empirical evidence shows that this measure further improves calibration.

3. We show that MACSO has desirable theoretical properties. First, in the infinite data limit,
MACSO encourages the model to predict the true class probabilities conditional on the
features (proper scoring rule). Second, the gradients of the MACSO loss provide an implicit
regularization effect during training. These properties help explain MACSO’s performance.

4. Extensive experiments have been performed on three in-domain scenarios, CIFAR10/100
(Krizhevsky et al., 2009), and Tiny-ImangeNet (Deng et al., 2009), a class-imbalanced
scenario SVHN (Netzer et al., 2011), and three out-of-domain scenarios, CIFAR10/100-C
(OOD) (Hendrycks & Gimpel, 2016) and Tiny-ImangeNet-C (OOD) (Hendrycks & Gim-
pel, 2016). Results show that our approach consistently provides improved calibration
for both in-domain and out-of-domain predictions compared to the existing state-of-the-art
train-time methods. We also demonstrate the effectiveness and applicability of our method
on the medical image classification task (Mendeley V2 dataset (Kermany et al., 2018)).

2 RELATED WORK

Post-hoc calibration approaches: Among the simplest post-hoc calibration approaches, Tempera-
ture scaling (TS) is a well-known method that learns a single temperature parameter using a hold-out
validation set and then employs it to re-scale the logits values of a trained network (Guo et al., 2017).
As a result, the entropy of the logit distribution is increased which eventually helps in improving the
model calibration. An obvious limitation of this re-scaling by a single temperature parameter is the
reduced confidence for all predictions, including the correct one. A generalization of TS is a matrix
transformation which can also be learnt using a hold-out validation set. To scale the Beta-calibration
(Kull et al., 2017) to a multiclass setting, Dirichlet calibration (DC) employs Dirichlet distribution
(Kull et al., 2019). DC is realized as neural network layer on the log-transformed class probabili-
ties, and the parameters are learned using a hold-out validation set. TS has shown effectiveness in
calibrating in-domain predictions, but its performance suffers for out-of-domain predictions (Ovadia
et al., 2019). Towards improving out-of-domain calibration, Tomani et al. (2021) perturbed the hold-
out validation set prior to performing post-hoc rescaling and Yu et al. (2022) proposed multi-domain
temperature scaling approach that leverages heterogeneity from multiple domains. The work of Ma
& Blaschko (2021) introduced two constraints and a calibration framework comprised of a base
calibrator and a ranking model. To improve calibration of networks trained on distilled data, the
concurrent work of Zhu et al. (2023) proposed masked temperature scaling and masked distillation
training approaches. Despite being simple and effective, several post-hoc methods assume the avail-
ability of a hold-out validation data, which is a difficult requirement to meet in several real-world
applications. We approach calibration from train-time perspective, which tends to engage all model
parameters during training.

Train-time calibration approaches: Brier score is among the earliest train-time calibration tech-
nique for verifying probabilistic forecasts (Brier et al., 1950). Decades later, Guo et al. (2017)
noticed that the models trained with negative log-likelihood (NLL) tend to become overconfident,
and so there is a detachment between NLL-based training and model calibration. A class of methods
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proposed auxiliary loss functions which can be employed with NLL to improve model calibration.
Pereyra et al. (2017) introduced a regularization term, based on entropy, to minimize the impact of
overconfident predictions. Likewise, Müller et al. (2019) demonstrated that Label Smoothing (LS)
is beneficial towards reducing miscalibration. Later, Mukhoti et al. (2020) showed that it is possible
to implicitly calibrate the model by using Focal Loss (FL). These methods explicitly or implicitly
maximise the entropy of the predictive distribution to improve model calibration, however, it could
lead to degenerate solutions. To this end, Liu et al. (2022) proposed to introduce a margin between
the logit distances to achieve balance between discriminative and calibration performance. Recently,
Liu et al. (2023) proposes class-adaptive label smoothing method by introducing class-wise multipli-
ers instead of single balancing weight with the penalty function. Inspired by knowledge distillation
framework, Yun et al. (2020) reduced the model overfitting by penalizing the predictive distribu-
tion between similar examples. In mixup technique, Thulasidasan et al. (2019) observed that the
label mixup is an important component to achieve model calibration. Lately, Wang et al. (2023)
found that mixup often yields less calibratable models compared to empirical risk minimization
and decoupled data transformation from random perturbation to avoid the calibration degradation in
mixup. The parallel work of Noh et al. (2023) leveraged ordinal ranking relationship between the
raw and mixup augmented examples which serves as another supervisory signal to improve calibra-
tion. Some methods attempt to formulate the trainable version of expected calibration error (ECE)
(Naeini et al., 2015). Liang et al. (2020) introduced an auxiliary loss term called the Difference
between Confidence and Accuracy (DCA) to be used with the cross-entropy loss. Similarly, Ku-
mar et al. (2018) developed an auxiliary loss term (MMCE) using a reproducing kernel in a Hilbert
space to calibrate model predictions. However, these methods only consider the maximum class con-
fidence for calibration. To address this limitation, Hebbalaguppe et al. (2022) proposed an auxiliary
loss term to calibrate both maximum and non-maximum class confidences. The concurrent work of
Park et al. (2023) unifies the pros of two existing classes of train-time calibration methods. We also
pursue the train-time calibration paradigm, and propose an auxiliary loss that aims to minimize, for
each class, the discrepancy between the distribution of confidence scores across the mini-batch and
the corresponding gradually softened ground truth occurrences distribution across the minibatch.

3 PROPOSED METHOD

Preliminaries: We consider a classification task where we are provided with a labelled dataset
D = ⟨(xn, y

∗
n)⟩Nn=1 comprising of N examples that are sampled from a joint distribution P(X ,Y),

where X is an input space, and Y is the label space. The tensor xn ∈ X ∈ RH×W×C is an input
image of height H , width W , and number of channels C. Each input image has a corresponding
ground truth class label y∗n ∈ Y = {1, 2, ...,K}. Given a classifier Fcls, that produces a confidence
vector sn ∈ RK , we regard each element of this vector sn as the (predicted) confidence score of the
corresponding class label. The predicted class label ŷn is then given by: ŷn = argmax

y∈Y
sn[y]. The

confidence score of the predicted class ŷn is obtained as: ŝn = max
y∈Y

sn[y].

Calibration: A perfect calibration is achieved if, for a given confidence score, the (classification)
accuracy is aligned with this confidence score for all possible confidence scores (Guo et al., 2017):
P(ŷ = y∗|ŝ = s) = s ∀s ∈ [0, 1], where P(ŷ = y∗|ŝ = s) is the accuracy for a given confidence
score ŝ. Note that, this relation only takes into account the calibration of the predicted label corre-
sponding to the maximum class confidence score ŝ. For completeness, the confidence score of all
classes should also be calibrated: P(y = y∗|s[y] = s) = s ∀s ∈ [0, 1].

3.1 MEASURING MISCALIBRATION

We now discuss commonly used evaluation metrics to quantify the miscalibration of a model,
namely expected calibration error (ECE), and static calibration error (SCE).

Expected calibration error (ECE): ECE is quantified as follows: first, for examples predicted
with a specific confidence score, we calculate the absolute difference between the average predicted
confidence and the average accuracy; then this difference is scaled with the fraction of examples
(out of total examples in the provided set) with this specific confidence score, and finally we repeat
the aforementioned steps for all possible confidence scores and take a sum (Naeini et al., 2015):
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ECE =
∑M

i=1
|Bi|
N

∣∣∣∣ 1
|Bi|

∑
j∈Bi

I(ŷj = y∗j )− 1
|Bi|

∑
j:ŝj∈Bi

ŝj

∣∣∣∣, where N denotes the total number

of examples in the provided set. As such, the confidence values have a continuous interval, so
the confidence range [0, 1] is partitioned into M bins. |Bi| is the number of examples falling in
ith confidence bin. 1

|Bi|
∑

j∈Bi
I(ŷj = y∗j ) denotes the average accuracy of examples falling in

the ith bin, and 1
|Bi|

∑
j:ŝj∈Bi

ŝj denotes the average prediction confidence of examples in the ith

confidence bin. The ECE metric is limited as it does not include the whole confidence vector, and it
is not differentiable due to the partitioning of the confidence range.

Static calibration error (SCE): SCE generalizes ECE as it accounts for the whole confidence vec-
tor. As a result, it measures the calibration performance of non-maximum class confidences (Nixon

et al., 2019): SCE = 1
K

∑M
i=1

∑K
j=1

|Bi,j |
N

∣∣∣∣Ai,j −Ei,j

∣∣∣∣, where K represents the number of classes

and |Bi,j | is the number of examples from the jth class and the ith bin. Ai,j =
1

|Bi,j |
∑

k∈Bi,j
I(j =

yk) denotes the average accuracy and Ei,j = 1
|Bi,j |

∑
k:sk[j]∈Bi,j

sk[j] represents the average con-
fidence of the examples belonging to the jth class and the ith bin. Like ECE, SCE metric is non-
differentiable, and so it cannot be used as a loss function in gradient-based optimization methods.

3.2 PROPOSED AUXILIARY LOSS: MACSO

We propose a novel auxiliary loss for train-time multiclass calibration. The loss formulation is in-
spired by the intuition that as training goes, a model’s prediction becomes refined, and thus the pre-
dicted confidence scores can be gradually combined with the ground truth, to form a smoothed target
distribution which has an increased entropy compared to the the one-hot encoded hard targets, poten-
tially leading to a better calibrated model. We further argue that for a class, this gradually softened
ground truth occurrences distribution is a suitable non-zero entropy signal whose better alignment
with the predicted confidences distribution is positively correlated with reducing the model calibra-
tion error. In the following, we provide the detail of the proposed method, Multiclass Alignment of
Confidences and Softened ground truth Occurrences (MACSO).

Targets softening: Softening one-hot encoded target vectors (i.e., hard targets) can obtain more in-
formative labels. For example, Label Smoothing (LS) (Szegedy et al., 2016; Liu et al., 2022) results
in a softened target distribution that has an increased entropy and leads to a better calibrated model.
Unlike prior works whose softened targets remain unaltered throughout training, we gradually soften
the hard targets via a progressive self-knowledge distillation perspective (Kim et al., 2021). Our ap-
proach is based on the intuition that a model becomes a teacher itself as training progresses, and we
can progressively distill a model’s own knowledge to soften hard targets during training. Specifi-
cally, targets are softened adaptively by combining the one-hot ground-truth label y ∈ {0, 1}K and
the predicted confidence vector s from the model in the last epoch:

ỹt =

{
y if t = 1

(1− αt)y + αtst−1 otherwise
(1)

where the subscript t indexes the training epoch (1 ≤ t ≤ T ), T denotes the total number of training
epochs, αt = αmax

t
T , and αmax = 0.8 is a pre-defined hyper-parameter that controls the maximal

relative ratio of predictions to be linearly combined with ground truth. ỹt represents the softened
targets at epoch t. At epoch t, a model is trained using ỹt (instead of y) as the label for our auxiliary
calibration loss component. Eq. 1 shows targets are gradually softened by utilizing more information
from the predicted confidence vector over the ground truth hard targets as training progresses. This
target softening strategy better adapts to the progress of model training (see Fig. 8), which makes it
easier to positively impact model calibration compared to prior works (e.g., Liu et al. (2022)).

Multiclass alignment of confidences and softened targets: We aim at the calibration of all of the
K classes, which is measured by the SCE metric. As SCE encourages a class-wise conformity be-
tween the ground truth occurrences and predicted confidences, we propose a differentiable auxiliary
loss formulation LMACSO that encourages the alignment between the gradually softened distribution
of its ground truth occurrences and the distribution of its predicted confidences. Intuitively, this
alignment is positively correlated with reducing the model calibration error. Besides simply align-
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ing the two distributions, e.g., via their means or KL divergence, we propose to quantify the linear
correlation between the two distributions which preserves the relations among them, thereby fur-
ther improving the calibration performance. We verify empirically that correlation outperforms KL
divergence (see Sec. 4). Our novel auxiliary loss is given by Eq. 2:

LMACSO =
1

K

K∑
j=1

(1− r(s[j], ỹ[j])) (2)

where s[j] ∈ RNb denotes the confidence vector of the jth class in the mini-batch with Nb training
samples, ỹ[j] ∈ RNb is the softened target vector of the jth class in this mini-batch 1, and r(·, ·) ∈
[−1, 1] is the empirical Pearson correlation coefficient. A value of r(·, ·) = 1 is the desired case
which indicates a perfect alignment. The total loss Ltotal to train a model is described in Eq. 3:

Ltotal =

{
LC if t = 1

LC + βLMACSO otherwise
(3)

where LC is a classification loss, such as Cross Entropy (CE/NLL) or Focal Loss (FL) (Lin et al.,
2017), and β is a pre-defined weighting hyper-parameter to control the relative importance of our
novel auxiliary loss with respect to the task-specific classification loss.

The intuitive workings of MACSO: It is beneficial to soften hard targets for calibration because
it progressively distills model’s own knowledge and provides an increased entropy signal which
can lead to better calibration. Since MACSO is a train-time auxiliary loss, employing softened
target distribution for the calibration loss term only allows to preserve the original classification
task while optimizing the model for calibration. Additionally, in multiclass calibration, we care
about preserving the class relations. Pearson correlation based loss function allows the model to
be guided appropriately to distill those truly informative multiclass relations. Pearson correlation
underscores linear relationships between softened ground truth occurrence of class i and predicted
confidence score of class i. It captures the intrinsic inter-class relations, making it superior to KL
divergence for multi-class calibration by penalizing less when the two distributions differ only in
class absolute scores but multi-class relations remain preserved. We provide extended discussions
in the Appendix. We observe from our analysis (Fig. 2) that, compared to aligning the confidence
distribution with the hard target occurrences distribution (Hebbalaguppe et al., 2022), our proposal
of using gradually softened target occurrences coupled with measuring correlation-based distance
has a stronger correlation between the calibration loss and the calibration error.

(a) (b) (c)

Figure 2: We plot relationship (via measuring correlation coefficient r) between class-wise ECE and class-
wise auxiliary calibration losses: (a) the MDCA loss (Hebbalaguppe et al., 2022), (b) MACSO without linear
correlation—where gradually softened target occurrences are used and the mean of distributions are aligned,
and (c) MACSO. Instead of hard targets occurrences (a), upon aligning the distributions and using gradually
softened target occurrences for the calibration loss term (b), the correlation to class-wise ECE improves. After
further leveraging linear correlation for alignment (c), this correlation between calibration loss and calibration
metric improves further and significantly. Refer to Appendix for implementation details of this figure.

3.3 THEORETICAL PROPERTIES OF MACSO

In this section, we show that MACSO has desirable theoretical properties. Proofs for our results can
be found in Appendix A. For simplicity of notation, we will consider a binary (rather than multi-

1Hereon and after, we omit the subscript t representing the current epoch for readability.
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class) classification task, but all of the results generalize to the multi-class setting. First, we show
that a population-level version of MACSO is (almost) a proper scoring rule. Define LMACSO−Pop

via the population (rather than empirical) correlation:

LMACSO−Pop = 1− E[(s− Es)(ỹ − Eỹ)]√
E[(s− Es)2]E[(ỹ − Eỹ)2]

= 1− corr(s, ỹ). (4)

Here we are overloading notation and use s to refer to the random variable s(x), i.e., the output of
our model when it is applied to a sample x drawn from the data distribution. Similarly, ỹ is the
random variable αs(x) + (1− α)y, where (x,y) are drawn from the data distribution.

By a proper scoring rule, we mean a loss function which is minimized by predicting E[y|x]. If
we consider optimization of the loss jointly over s and ỹ, then LMACSO−Pop cannot be a proper
scoring rule. This is because when α > 0, corr(s, αs + (1 − α)y) can be increased by having the
variability in the s term dominate the variability in y. (For instance, if there were no restrictions
placed on s, we could have s be highly variable in x with magnitude ≫ the magnitude of y; this
clearly improves the correlation between s(x) and ỹ.) Instead, we consider the following procedure.
Given some initialization for s, define the corresponding random variable ỹ. Treating this ỹ as fixed,
update s as the argmin of LMACSO−Pop, i.e. update s so that it minimizes 1− corr(s, ỹ) treating ỹ
as fixed. Using this new s, update the definition of the random variable ỹ and repeat the procedure.
We will say that LMACSO−Pop is a pseudo-proper scoring rule if s(x) = E[y|x] is a fixed point of
this procedure. Theorem 1 shows that this is indeed the case.
Theorem 1. LMACSO−Pop is a pseudo proper scoring rule. That is, s(x) = E[y|x] is a fixed point
of the procedure whereby we treat ỹ as fixed, optimize LMACSO−Pop with respect to the fixed ỹ,
recompute ỹ using the updated s, and repeat.

Next, we consider the learning dynamics induced by the loss in the finite data regime. We will
show that the gradient of the MACSO loss induces an implicit regularization effect during learning
which discourages overconfidence in the model predictions. We define ¯̃y = 1

Nb

∑
1≤i≤Nb

ỹi and
s̄ = 1

Nb

∑
1≤i≤Nb

si, and we let s̄ and ¯̃y be the vectors of length Nb whose entries are all s̄ or ¯̃y,
respectively. Let ∆s = s− s̄ and ∆ỹ = ỹ − ¯̃y. It can be shown that

−∇LMACSO ∝
Nb∑
i=1

∥∆s∥∥∆ỹ∥(ỹi − ¯̃y)︸ ︷︷ ︸
(I)

− (∆s ·∆ỹ)∥∆ỹ∥
∥∆s∥

(si − s̄)︸ ︷︷ ︸
(II)

∇si. (5)

That is, −∇LMACSO is a positive scalar times the expression in Eq. 5. In term (I), ∥∆s∥ and ∥∆ỹ∥
are always positive. Thus, this term will encourage increasing si if ỹi is large or decreasing si if
ỹi is small. This is similar to the effect of the cross-entropy loss, i.e., encouraging the model to
make predictions close to the specified labels. In term (II), we may assume that in the later stages of
training, the confidence scores and (pseudo-) labels are fairly well aligned. In this case, we should
have ∆s · ∆ỹ > 0. Since ∥∆ỹ∥ and ∥∆s∥ are always positive, term (II) will tend to decrease
si if si > s̄ and increase si if si < s̄. Thus, term (II) can be seen as providing a regularizing
effect, encouraging more uniform confidence predictions across samples. In particular, this should
discourage the model from making extremely confident predictions and improve calibration.

4 EXPERIMENTS

Datasets: We evaluate the in-domain calibration performance of our method rigourously with
four benchmark image classification datasets: CIFAR10 (Krizhevsky et al., 2009), CIFAR100
(Krizhevsky et al., 2009), Tiny-ImageNet (Deng et al., 2009) and Mendeley V2 (Kermany et al.,
2018). In addition, to validate out-of-domain calibration performance, we use three benchmark
datasets: CIFAR10-C, CIFAR100-C and Tiny-ImageNet-C. Moreover, we validate our method on
SVHN (Netzer et al., 2011) to report calibration performance under class imbalance.

Evaluation metrics and baselines: We report the calibration performance with metrics SCE (Nixon
et al., 2019), ECE (Naeini et al., 2015) and classification performance with the top-1 accuracy. We
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report the mean and standard deviation of all metrics over 10 trials. We set the number of bins (M ) =
15. To visualize the calibration performance, we plot reliability diagrams and confidence histograms.
We compare our method against models trained with NLL, FL (Lin et al., 2017), LS (Müller et al.,
2019), BS (Brier et al., 1950) and FLSD (Mukhoti et al., 2020). In addition, we draw comparisons
with existing auxiliary loss functions for calibration such as MMCE (Kumar et al., 2018), MbLS
(Liu et al., 2022) and MDCA (Hebbalaguppe et al., 2022). All hyper-parameters for the baselines
are set according to the values reported in the original works. We use ResNet (Wu et al., 2019) as
the backbone in all our experiments. Please refer to Appendix for more implementation details.

Experiments with task-specific loss functions: MACSO is designed to be used with different
task-specific losses. We use NLL or FL as the task-specific loss and report results with and without
MACSO. Table 1 shows that our MACSO delivers consistent gains over the two task-specific losses
across all five datasets in both of the SCE and ECE metrics. FL tends to be a strong task-specific loss
in calibration performance, except in SVHN. Therefore, in all subsequent experiments, we report
performance with FL+MACSO on all datasets, except SVHN (for which we use NLL loss).

Dataset NLL NLL+MACSO (ours) FL(Lin et al., 2017) FL+MACSO (ours)
SCE ↓ ECE ↓ SCE ↓ ECE ↓ SCE ↓ ECE ↓ SCE ↓ ECE ↓

CIFAR10 7.04± 0.30 3.19± 0.18 6.52± 0.46 2.86± 0.26 3.98± 0.30 1.06± 0.26 3.88± 0.21 1.06± 0.22
CIFAR100 2.61± 0.04 9.17± 0.31 1.80± 0.04 1.36± 0.25 1.96± 0.07 1.73± 0.78 1.82± 0.05 1.43± 0.20
Tiny-ImageNet 2.09± 0.08 14.24± 1.04 1.87± 0.03 11.57± 0.31 1.50± 0.02 3.32± 0.45 1.44± 0.02 1.65± 0.27
SVHN 2.39± 0.56 0.61± 0.42 2.17± 0.22 0.53± 0.15 6.05± 2.44 2.69± 1.43 5.77± 0.54 2.62± 0.30
Mendeley 236± 17.9 18.69± 2.09 225± 21.7 16.82± 2.55 222± 14.3 15.18± 2.03 205± 23.0 13.71± 2.56
CIFAR10 (soft)* 4.49± 0.39 1.37± 0.24 4.45± 0.51 1.28± 0.24 63.9± 6.30 32.53± 3.35 60.5± 8.35 29.98± 4.04

Table 1: Calibration performance in SCE (10−3) and ECE (%) of our MACSO loss when added to two task-
specific losses: NLL and FL. Best results of each dataset are in bold, and the second best are underlined.
MACSO consistently delivers gains over the task-specific loss and achieves the best results across all cases.
Refer to Appendix for classification accuracies.

We additionally report the results when the gradually softened targets (i.e., Eq 1) are utilized as a
mere replacement for hard targets within a conventional task-specific classification loss, in the last
row of Table 1. In this case, NLL/FL is instead termed as NLLsoft/FLsoft. Although NLLsoft

has improved performance over NLL, same is not observed with FL. This confirms the calibration
efficacy of gradually softened targets employed within the calibration loss component. Notably,
MACSO (i.e., NLLsoft/FLsoft+MACSO) provides gains over both NLLsoft and FLsoft as well.

Comparison with the state-of-the-art (SOTA) methods: Table 2 show the calibration performance
of our method against previous SOTA train-time calibration methods. See Appendix for detailed jus-
tifications on the choices made for selecting task-specific losses for MDCA, MbLS and our MACSO.
Our method consistently shows lower calibration errors than the competitors across all five datasets.

Dataset BS (Brier et al., 1950) MMCE (Kumar et al., 2018) FLSD (Mukhoti et al., 2020) LS (Müller et al., 2019)
SCE ↓ ECE ↓ SCE ↓ ECE ↓ SCE ↓ ECE ↓ SCE ↓ ECE ↓

CIFAR10 5.79± 0.41 2.33± 0.21 7.94± 0.82 3.13± 0.39 9.66± 1.03 4.42± 0.55 6.33± 0.30 1.96± 0.22
CIFAR100 2.21± 0.10 5.47± 0.67 2.30± 0.12 6.32± 1.09 2.00± 0.03 1.97± 0.27 1.97± 0.06 2.86± 0.56
Tiny-ImageNet - - - - 1.49± 0.02 3.48± 0.59 1.50± 0.06 2.56± 0.62
SVHN 2.94± 0.34 0.88± 0.22 12.9± 0.85 6.39± 0.43 24.2± 3.46 12.15± 1.81 10.8± 0.76 4.79± 0.34
Mendeley 229± 29.4 17.76± 3.62 229± 16.4 15.49± 2.53 229± 17.5 16.35± 2.44 217± 13.3 15.97± 1.75

Dataset NLL/FL+MDCA (Hebbalaguppe et al., 2022) NLL+MbLS (Liu et al., 2022) NLL/FL+MACSO (ours)
SCE ↓ ECE ↓ Acc. ↑ SCE ↓ ECE ↓ Acc. ↑ SCE ↓ ECE ↓ Acc. ↑

CIFAR10 4.34± 0.58 1.38± 0.38 92.97± 0.20 5.32± 0.08 1.93± 0.19 93.39± 0.15 3.88± 0.21 1.06± 0.22 93.07± 0.31
CIFAR100 1.98± 0.04 2.04± 0.42 72.02± 0.25 1.95± 0.06 1.87± 0.58 72.94± 0.55 1.82± 0.05 1.43± 0.20 73.37± 0.65
Tiny-ImageNet 1.49± 0.02 3.62± 0.44 61.49± 0.51 1.47± 0.03 2.49± 0.30 61.22± 1.06 1.44± 0.02 1.65± 0.27 61.05± 0.27
SVHN 2.25± 0.68 0.59± 0.43 96.53± 0.12 2.48± 0.38 0.77± 0.16 96.75± 0.16 2.17± 0.22 0.53± 0.15 96.71± 0.16
Mendeley 227± 19.9 18.37± 2.24 76.28± 2.22 244± 14.4 19.66± 1.98 74.23± 1.58 205± 23.0 13.71± 2.56 75.82± 1.51

Table 2: Performance comparison with SOTA train-time calibration methods. Our method consistently demon-
strates superior calibration performance compared to competitors

Class-wise calibration performance: The complete definition of calibration requires that the whole
confidence vector should be calibrated and not just the predicted class confidence. Fig. 3 reports
class-wise ECE scores of our MACSO method and the competing auxiliary-loss-based calibration
approaches (i.e., MDCA and MbLS). We chose to report results based on the task-specific loss
(NLL/FL) that yielded superior performance. In SVHN, NLL+MACSO (ours) achieves the lowest
ECE in seven (out of ten) classes while demonstrating the second best score in the rest. In CIFAR10,
FL+MACSO (ours) provides the best ECE scores in nine classes out of ten.
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Calibration performance under class imbalance: Real-world datasets are often dominated by few
classes over the rest. For benchmarking calibration performance under class imbalance, we utilize
SVHN dataset, which has a class imbalance factor of 2.7 (Hebbalaguppe et al., 2022). Tables 1, 2
and Fig. 3 reveal that, in comparison to other train-time auxiliary losses, ours delivers the best ECE
and SCE scores over both of the whole dataset and seven classes (out of ten) in the SVHN dataset.

Figure 3: Class-wise calibration performance in ECE (↓) on SVHN and CIFAR10 benchmarks with ResNet56.

Out-of-domain performance: We report out-of-domain calibration performance on CIFAR10-C,
CIFAR100-C and Tiny-ImageNet-C (Table 3). In ECE metric, our method outperforms all compet-
ing approaches in all three datasets. In SCE metric, it displays the best performance in CIFAR100-C
and the second best performance in Tiny-ImageNet-C and CIFAR10-C. For more results on out-of-
domain performance, refer to Fig. 12 in the Appendix.

Dataset FL+MDCA (Hebbalaguppe et al., 2022) NLL+MbLS (Liu et al., 2022) FL+MACSO
SCE (10−3) ↓ ECE (%) ↓ Acc. (%) ↑ SCE (10−3) ↓ ECE (%) ↓ Acc. (%) ↑ SCE (10−3) ↓ ECE (%) ↓ Acc. (%) ↑

CIFAR10-C 29.41± 2.62 12.12± 1.44 72.24± 0.93 28.92± 2.23 13.05± 1.17 73.55± 0.75 28.97± 1.62 11.72± 0.81 72.00± 0.81
CIFAR100-C 4.81± 0.21 16.52± 1.08 44.57± 0.50 4.28± 0.18 14.81± 1.07 45.79± 0.52 4.16± 0.09 12.64± 0.63 46.33± 0.25
Tiny-ImageNet-C 3.75± 0.08 21.41± 0.50 21.85± 0.56 3.27± 0.16 19.00± 1.19 22.12± 1.01 3.49± 0.05 16.19± 0.59 21.69± 1.03

Table 3: Out-of-domain calibration performance across CIFAR10-C, CIFAR100-C and Tiny-ImageNet-C.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4: Reliability diagrams (a,b,c,d) and confidence histograms (e,f,g,h) of (ResNet) models trained with
NLL and NLL+MACSO. Diagrams (a,b,e,f) and (c,d,g,h) reveal that MACSO can reduce over-confidence.

Reliability diagrams and confidence histograms: We plot reliability diagrams to visualize the
calibration performance (Fig. 4 (top)). Compared to NLL, our method is capable of reducing the
gap between accuracy and confidence at all levels in CIFAR100 and Tiny-ImageNet datasets. Fur-
thermore, we plot confidence histograms to visualize the deviation between the overall confidence
(dotted line) and accuracy (solid line) of the predictions (Fig. 4 (bottom)). Contrary to NLL, our
method is better at reducing the gap between the overall confidence and accuracy, thereby effec-
tively tackling the overconfident behavior. Fig. 5 further depicts the histogram of confidence values
for the incorrect predictions from CIFAR100 and SVHN datasets. We note that, compared to NLL,
for NLL+MACSO the confidence values of the incorrect predictions are smaller. These experi-
mental findings (demonstrated in Fig. 4 (bottom) and Fig. 5) are in accordance with our theoretical
results, i.e., the gradient of the MACSO loss induces an regularization effect during learning which
discourages overconfidence in the model prediction.
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(a) (b) (c) (d)

Figure 5: Histogram of confidence values for incorrect predictions from CIFAR100 and SVHN. Compared to
NLL, for NLL+MACSO the confidence values of the incorrect predictions are smaller. Our proposed MACSO
auxiliary loss excels in mitigating overconfidence in mis-predictions.

Impact of different components in MACSO: We show the performance contribution of two differ-
ent components in our auxiliary loss: gradually softened target occurrences and linear correlation,
in Table 4. Upon including gradually softened target occurrences (i.e., FL+MACSO (Mean)) in
place of hard target occurrences (i.e., FL+MDCA), we see a significant improvement in both cali-
bration metrics. Moreover, after employing linear correlation with softened target occurrences (i.e.,
FL+MACSO (Linear Corr.)), there is a notable and consistent gain over FL+MACSO (Mean). In
short, both components are vital towards realizing the full potential of our method MACSO.

Linear correlation vs. KL divergence: Table 4 also compares the calibration performance when
using KL divergence (FL+MACSO (KL)) to measure the discrepancy instead of linear correlation.
We see that linear correlation provides better gains compared to KL divergence in the majority of
the datasets (CIFAR100 and Tiny-ImageNet). Compared to CIFAR10, both CIFAR100 and Tiny-
ImageNet are relatively challenging and large-scale.

Dataset FL+MDCA (Hebbalaguppe et al., 2022) FL+MACSO (Mean) FL+MACSO (Linear Corr.) FL+MACSO (KL)

SCE (10−3) ↓ ECE (%) ↓ Acc. (%) ↑ SCE (10−3)↓ ECE (%) ↓ Acc. (%) ↑ SCE (10−3) ↓ ECE (%) ↓ Acc. (%) ↑ SCE (10−3) ↓ ECE (%) ↓ Acc. (%) ↑
CIFAR10 4.3± 0.6 1.4± 0.4 93.0± 0.2 4.0± 0.3 1.2± 0.2 93.0± 0.3 3.9± 0.2 1.1± 0.2 93.0± 0.3 3.8± 0.4 0.9± 0.2 93.0± 0.3
CIFAR100 2.0± 0.0 2.0± 0.4 72.0± 0.3 2.0± 0.0 1.9± 0.4 71.9± 0.5 1.8± 0.1 1.4± 0.2 73.4± 0.7 1.9± 0.0 1.8± 0.4 72.3± 0.4
Tiny-ImageNet 1.5± 0.0 3.6± 0.4 61.5± 0.5 1.5± 0.0 3.2± 0.3 61.1± 0.3 1.4± 0.0 1.7± 0.3 61.1± 0.3 1.5± 0.0 2.8± 0.4 61.3± 0.7

Table 4: Impact of different components and linear correlation vs KL divergence in our method (MACSO).
Although merely aligning softened targets and ground truth occurrences distributions using methods such as
mean alignment or KL divergence offers improved model calibration compared to prior methods, our final
method takes it a step further. We delve into the measurement of their linear correlation, preserving the relative
importance and order, which, as our results indicate, offers superior calibration improvement.

Relationship between MACSO and SCE: Figure 6 illustrates a significant correlation between
SCE and both our auxiliary loss (left) and gradients propagated with our auxiliary loss (right).

Figure 6: There exists strong corre-
lation between the multiclass calibra-
tion metric and our multiclass aux-
iliary loss (left) and the magnitude
of gradients (at fully connected (FC)
layer) backpropagating with our aux-
iliary loss (right). For results in this
figure, ResNet56 is trained on CI-
FAR10 with FL+MACSO.

5 CONCLUSION

We present a new train-time calibration method, MACSO, featuring an auxiliary loss formulation
that achieves multiclass alignment of confidence distribution and the corresponding distribution of
gradually softened target occurrences. Besides aligning the two distributions, we propose to mea-
sure the linear correlation between them. Empirical results shows that our loss is strongly correlated
to the calibration metrics. Extensive experiments on challenging benchmarks, exhibiting in-domain,
out-of-domain, and class-imbalance scenarios alongside medical imaging classification task, corrob-
orate the efficacy of our method against the established train-time calibration methods. Moreover,
MACSO has desirable theoretical properties, which help explain MACSO’s performance.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Wei Bao, Jun Yue, and Yulei Rao. A deep learning framework for financial time series using stacked
autoencoders and long-short term memory. PloS one, 12(7):e0180944, 2017.

Glenn W Brier et al. Verification of forecasts expressed in terms of probability. Monthly Weather
Review, 78(1):1–3, 1950.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 248–255, 2009.

Matthew Dixon, Diego Klabjan, and Jin Hoon Bang. Classification-based financial markets predic-
tion using deep neural networks. Algorithmic Finance, 6(3-4):67–77, 2017.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Michael W Dusenberry, Dustin Tran, Edward Choi, Jonas Kemp, Jeremy Nixon, Ghassen Jerfel,
Katherine Heller, and Andrew M Dai. Analyzing the role of model uncertainty for electronic
health records. In Proceedings of the ACM Conference on Health, Inference, and Learning, pp.
204–213, 2020.

Sorin Grigorescu, Bogdan Trasnea, Tiberiu Cocias, and Gigel Macesanu. A survey of deep learning
techniques for autonomous driving. Journal of Field Robotics, 37(3):362–386, 2020.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
networks. In International Conference on Machine Learning, pp. 1321–1330, 2017.

Yoo-Geun Ham, Jeong-Hwan Kim, and Jing-Jia Luo. Deep learning for multi-year enso forecasts.
Nature, 573(7775):568–572, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 770–778, 2016.

Ramya Hebbalaguppe, Jatin Prakash, Neelabh Madan, and Chetan Arora. A stitch in time saves
nine: A train-time regularizing loss for improved neural network calibration. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16081–16090, 2022.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common cor-
ruptions and perturbations. Proceedings of the International Conference on Learning Represen-
tations, 2019.

Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution
examples in neural networks. arXiv preprint arXiv:1610.02136, 2016.

Daniel Kermany, Kang Zhang, Michael Goldbaum, et al. Labeled optical coherence tomography
(oct) and chest x-ray images for classification. Mendeley data, 2(2):651, 2018.

Kyungyul Kim, ByeongMoon Ji, Doyoung Yoon, and Sangheum Hwang. Self-knowledge distil-
lation with progressive refinement of targets. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 6567–6576, 2021.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Master Thesis, 2009.

Meelis Kull, Telmo Silva Filho, and Peter Flach. Beta calibration: a well-founded and easily imple-
mented improvement on logistic calibration for binary classifiers. In Artificial Intelligence and
Statistics, pp. 623–631, 2017.

10



Under review as a conference paper at ICLR 2024

Meelis Kull, Miquel Perello Nieto, Markus Kängsepp, Telmo Silva Filho, Hao Song, and Peter
Flach. Beyond temperature scaling: Obtaining well-calibrated multi-class probabilities with
dirichlet calibration. In Advances in Neural Information Processing Systems, volume 32, 2019.

Aviral Kumar, Sunita Sarawagi, and Ujjwal Jain. Trainable calibration measures for neural networks
from kernel mean embeddings. In International Conference on Machine Learning, pp. 2805–
2814, 2018.

Ken Lang. Newsweeder: Learning to filter netnews. In Machine learning proceedings 1995, pp.
331–339. Elsevier, 1995.

Gongbo Liang, Yu Zhang, Xiaoqin Wang, and Nathan Jacobs. Improved trainable calibration method
for neural networks on medical imaging classification. arXiv preprint arXiv:2009.04057, 2020.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
object detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 2980–2988, 2017.

Bingyuan Liu, Ismail Ben Ayed, Adrian Galdran, and Jose Dolz. The devil is in the margin: Margin-
based label smoothing for network calibration. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 80–88, 2022.

Bingyuan Liu, Jérôme Rony, Adrian Galdran, Jose Dolz, and Ismail Ben Ayed. Class adaptive
network calibration. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 16070–16079, 2023.

Xingchen Ma and Matthew B Blaschko. Meta-cal: Well-controlled post-hoc calibration by ranking.
In International Conference on Machine Learning, pp. 7235–7245, 2021.

Jishnu Mukhoti, Viveka Kulharia, Amartya Sanyal, Stuart Golodetz, Philip Torr, and Puneet Doka-
nia. Calibrating deep neural networks using focal loss. In Advances in Neural Information Pro-
cessing Systems, volume 33, pp. 15288–15299, 2020.

Rafael Müller, Simon Kornblith, and Geoffrey E Hinton. When does label smoothing help? In
Advances in Neural Information Processing Systems, volume 32, 2019.

Mahdi Pakdaman Naeini, Gregory Cooper, and Milos Hauskrecht. Obtaining well calibrated prob-
abilities using bayesian binning. In Twenty-Ninth AAAI Conference on Artificial Intelligence,
2015.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. In Advances in Neural Information
Processing Systems Workshop on Deep Learning and Unsupervised Feature Learning, 2011.

Jeremy Nixon, Michael W Dusenberry, Linchuan Zhang, Ghassen Jerfel, and Dustin Tran. Mea-
suring calibration in deep learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops, volume 2, 2019.

Jongyoun Noh, Hyekang Park, Junghyup Lee, and Bumsub Ham. Rankmixup: Ranking-based
mixup training for network calibration. arXiv preprint arXiv:2308.11990, 2023.

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David Sculley, Sebastian Nowozin, Joshua
Dillon, Balaji Lakshminarayanan, and Jasper Snoek. Can you trust your model’s uncertainty?
evaluating predictive uncertainty under dataset shift. In Advances in Neural Information Process-
ing Systems, volume 32, 2019.

Hyekang Park, Jongyoun Noh, Youngmin Oh, Donghyeon Baek, and Bumsub Ham. Acls: Adaptive
and conditional label smoothing for network calibration. arXiv preprint arXiv:2308.11911, 2023.

Gabriel Pereyra, George Tucker, Jan Chorowski, Łukasz Kaiser, and Geoffrey Hinton. Regularizing
neural networks by penalizing confident output distributions. arXiv preprint arXiv:1701.06548,
2017.

11



Under review as a conference paper at ICLR 2024

Stephan Rasp, Michael S Pritchard, and Pierre Gentine. Deep learning to represent subgrid processes
in climate models. Proceedings of the National Academy of Sciences, 115(39):9684–9689, 2018.

Monika Sharma, Oindrila Saha, Anand Sriraman, Ramya Hebbalaguppe, Lovekesh Vig, and Shirish
Karande. Crowdsourcing for chromosome segmentation and deep classification. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 34–41,
2017.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking
the inception architecture for computer vision. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 2818–2826, 2016.

Sunil Thulasidasan, Gopinath Chennupati, Jeff A Bilmes, Tanmoy Bhattacharya, and Sarah Micha-
lak. On mixup training: Improved calibration and predictive uncertainty for deep neural networks.
In Advances in Neural Information Processing Systems, volume 32, 2019.

Christian Tomani, Sebastian Gruber, Muhammed Ebrar Erdem, Daniel Cremers, and Florian Buet-
tner. Post-hoc uncertainty calibration for domain drift scenarios. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 10124–10132, 2021.

Deng-Bao Wang, Lanqing Li, Peilin Zhao, Pheng-Ann Heng, and Min-Ling Zhang. On the pitfall
of mixup for uncertainty calibration. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 7609–7618, 2023.

Zifeng Wu, Chunhua Shen, and Anton Van Den Hengel. Wider or deeper: Revisiting the resnet
model for visual recognition. Pattern Recognition, 90:119–133, 2019.

Yaodong Yu, Stephen Bates, Yi Ma, and Michael Jordan. Robust calibration with multi-domain tem-
perature scaling. Advances in Neural Information Processing Systems, 35:27510–27523, 2022.

Sukmin Yun, Jongjin Park, Kimin Lee, and Jinwoo Shin. Regularizing class-wise predictions via
self-knowledge distillation. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 13876–13885, 2020.

Dongyao Zhu, Bowen Lei, Jie Zhang, Yanbo Fang, Ruqi Zhang, Yiqun Xie, and Dongkuan Xu.
Rethinking data distillation: Do not overlook calibration. arXiv preprint arXiv:2307.12463, 2023.

12


	Introduction
	Related Work
	Proposed Method
	Measuring Miscalibration
	Proposed Auxiliary Loss: MACSO
	Theoretical Properties of MACSO

	Experiments
	Conclusion

