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Abstract

We focus on analyzing the classical stochastic
projected gradient methods under a general de-
pendent data sampling scheme for constrained
smooth nonconvex optimization. We show the
worst-case rate of convergence O(t~'/*) and
complexity 0(5_4) for achieving an e-near sta-
tionary point in terms of the norm of the gradi-
ent of Moreau envelope and gradient mapping.
While classical convergence guarantee requires
i.i.d. data sampling from the target distribution,
we only require a mild mixing condition of the
conditional distribution, which holds for a wide
class of Markov chain sampling algorithms. This
improves the existing complexity for the con-
strained smooth nonconvex optimization with de-
pendent data from O(~8) to O(e~*) with a sig-
nificantly simpler analysis. We illustrate the gen-
erality of our approach by deriving convergence
results with dependent data for stochastic proxi-
mal gradient methods, adaptive stochastic gradi-
ent algorithm AdaGrad and stochastic gradient
algorithm with heavy ball momentum. As an ap-
plication, we obtain first online nonnegative ma-
trix factorization algorithms for dependent data
based on stochastic projected gradient methods
with adaptive step sizes and optimal rate of con-
vergence.

1. Introduction

Consider the minimization of a function f : RP — R given
as an expectation:

0" € argmin {f(0) := Ex. [£(0,%)]}, (1
0cO

“Equal contribution 'Wisconsin Institute for Discovery, Univer-
sity of Wisconsin—Madison, WI, USA *Department of Mathemat-
ics, University of Wisconsin—-Madison, WI, USA. Correspondence
to: Hanbaek Lyu <hlyu@math.wisc.edu>.

Proceedings of the 40" International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

where 7 is a distribution on a sample space 0 C R? with
a density function; £: {2 x ® — R a per-sample loss func-
tion and ® C RP? a closed convex set with an efficiently
computable projection

1
proj(@) = argmin ~||@ — 0’| 2)
o'co 2

We assume that f is a smooth and possibly nonconvex func-
tion. Constrained nonconvex optimization with dependent
data arise in many situations such as decentralized con-
strained optimization over networked systems, where the
i.i.d. sampling requires significantly more communication
than the dependent sampling (Johansson et al., 2007; 2010;
Duchi et al., 2012). Other applications are policy evalua-
tion in reinforcement learning where the Markovian data is
naturally present since the underlying model is a Markov
Decision Process (Bhandari et al., 2018), and online non-
negative matrix factorization and network denoising (Lyu
et al., 2020).

1.1. Related Work and Summary of Contributions

It is well-known that obtaining optimal complexity
with single-sample projected stochastic gradient descent
(SGD) for constrained nonconvex problems is significantly
more challenging than unconstrained nonconvex optimiza-
tion (Ghadimi et al., 2016; Davis and Drusvyatskiy, 2019;
Alacaoglu et al., 2021). This challenge has been recently
overcome by (Davis and Drusvyatskiy, 2019) within the
framework of weakly convex optimization, which resulted
in optimal complexity results for projected/proximal SGD
(PSGD). Later, this result is extended for algorithms such
as SGD with heavy ball momentum (Mai and Johansson,
2020) or adaptive algorithms such as AMSGrad and Ada-
Grad (Alacaoglu et al., 2021). These guarantees require i.i.d.
sampling from the underlying distribution 7.

Optimization with non-i.i.d. data is studied in the convex
and nonconvex cases with gradient/mirror descent in (Sun
et al., 2018; Duchi et al., 2012; Nagaraj et al., 2020) and
block coordinate descent in (Sun et al., 2020). SGD is also
recently considered in (Wang et al., 2021) for convex prob-
lems. Another important work in this direction is (Karimi
et al., 2019) that focused on unconstrained nonconvex case
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with a different assumption on the dependent data com-
pared to previous works and relaxed the assumptions on
the variance. For constrained and nonconvex problems,
the work (Lyu et al., 2020) showed asymptotic guarantees
of stochastic majorization-minimization (SMM)-type algo-
rithms to stationary points of the expected loss function.

More recently, (Lyu, 2022) studied generalized SMM-type
algorithms with dependent data for constrained problems
and showed the complexity O (%) with standard assump-
tions (that we will clarify in the sequel) and O(¢~*) when
all the iterates of the algorithm lie in the interior of the con-
straint set, for obtaining e-stationarity. We also remark that
(Lyu, 2022) showed that for the ‘empirical loss functions’
(recursive average of sample losses), SMM-type algorithms
need only 0(5_4) iterations for making the stationarity gap
under €. Our present work does not consider empirical loss
functions but focus on expected loss functions. See (Lyu,
2022) for more details.

Since the complexity O(e~8) is suboptimal for nonconvex
expected loss minimization, the motivation of our work is
to understand if this complexity is improvable or if it is
inherent when we handle dependent data and constraints
jointly. Our results conclude that the complexity is indeed
improvable and show the near-optimal complexity 0(5_4)
for constrained nonconvex problems with dependent data.
Unlike our result, previous work (Lyu, 2022) needed an
additional assumption that the iterates lie in the interior of
the constraint (which is difficult to satisfy in general for
constrained problems) for the optimal complexity 0(5_4).
Moreover, to our knowledge, no convergence rate of pro-
Jjected SGD is known in the constrained nonconvex case
with non-i.i.d. sampling. We also show the first rates for
AdaGrad (Duchi et al., 2010) and SGD with heavy ball mo-
mentum (Mai and Johansson, 2020) for this setting. See
Table 1 for a summary of the discussion above.

After the completion of our manuscript, we became aware of
the recent concurrent work (Dorfman and Levy, 2022) that
analyzed AdaGrad with multi level Monte Carlo gradient
estimation for dependent data. This work focused on the
unconstrained nonconvex setting whereas our main focus is
the more general class of constrained nonconvex problems.
Hence we believe the two results complement each other.

We also note that slightly stronger versions of Assump-
tion 2.1 are required even for unconstrained nonconvex op-
timization with dependent data, see (Sun et al., 2018; Dorf-
man and Levy, 2022). It is well-known that this assumption
is difficult to satisfy in the unconstrained setting, but it is
more realistic with the presence of constraints. Because
of this reason, our results incorporating the constraints and
projections in the algorithm provides a more realistic prob-
lem setup. While our results would recover those in (Sun
et al., 2018) when specialized to the unconstrained case,

due to Assumption 2.1, this unconstrained setting would
be less realistic as argued above. Because of this, and for
other motivating applications, the main focus of this pa-
per is obtaining optimal complexity results for constrained
nonconvex problems.

1.2. Contribution

We consider convergence of stochastic first-order methods,
including proximal and projected stochastic gradient de-
scent (SGD), projected SGD with momentum, and stochas-
tic adaptive gradient descent (AdaGrad-norm). These are
all classical nonconvex optimization algorithms that have
been used extensively in various optimization and machine
learning tasks. Our main focus is to establish optimal con-
vergence rate for such stochastic first-order methods under
very general data sampling scheme, including functions of
Markov chains, state-dependent Markov chains, and more
general stochastic processes with fast enough mixing of
multi-step conditional distribution.

To summarize our results, consider the following simple
first-order method:

Step 1. Sample x;; from a distribution conditional on
X1, ...,X¢; (> possibly non-i.i.d. samples)

Step 2. Compute a stochastic gradient G(6;,x;41)
(see Assumption 2.1 for Def.) and 0441 <+
projg (01 — a;G(04,%,41)), where the step size
ay 1s chosen so that either (1) non-summable and
square-summable; or (2) according to AdaGrad-norm:

O[t_z = at_fl + |\G(0t,xt+1)\|2a72 for a > 0.

An important point here is that we do not require the new
training point x4 to be distributed according to the sta-
tionary distribution m, nor to be independent on all the
previous samples X1, ...,X;. For instance, we allow one
to sample x;11 according to an underlying Markov chain,
so that each step of sampling is computationally very effi-
cient but the distribution x;; conditional on x; could be far
from 7. This may induce bias in estimating the stochastic
gradient G(0,X¢41).

Suppose f is p-smooth; @ C RP? is convex, closed; and
the training samples x; are a function of some underlying
Markov chain mixing sufficiently fast (see Section 2). Under
some mild assumptions used in the literature (Sun et al.,
2018; Lyu, 2022; Bhandari et al., 2018), we establish the
following convergence results for a wide range of stochastic
first-order methods under non-i.i.d. data setting:

* We show that any convergent subsequence of (6):>0
converges to a stationary point of (1) almost surely.
The rate of convergence for finding stationary points is
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O(T*I/ 4) (measured using gradient mapping norm).
(Thm. 3.1, 3.9, 3.3)

* The same result as above holds when (6;),>¢ are gen-
erated by using stochastic heavy ball (see Alg. 3) and
projected SGD with state-dependent Markov chain (see
Thm. 3.8.

This is the same rate of convergence as in the i.i.d. case, up
to log-factors, which was obtained in (Davis and Drusvy-
atskiy, 2019) in terms of gradient mapping as shown in
Thm. 3.9. Hence our analysis shows that the convergence of
the algorithm and the order of the rate of convergence are
not affected by such statistical bias in sampling training data,
which was described earlier in this subsection. Furthermore,
our result improves the rate of convergence of stochastic
algorithms for constrained nonconvex expected loss mini-
mization with dependent data (Lyu, 2022), see Thm. 3.9 for
the details. Moreover, we extend our analysis to obtain sim-
ilar results for such projected SGD algorithms as adaptive
gradient algorithm AdaGrad (see Algorithm 2 and Theorem
3.3) and SGD with heavy ball momentum (see Algorithm 3
and Theorem 3.4).

1.3. Notations

We fix p € N to be the dimension of the ambient Euclidean
space RP equipped with the inner product (-, -) that also
induces the Euclidean norm ||-||. For each ¢ > 0, let
B. := {z € RP|||z| < e} denote the e-ball centered
at the origin. We also use the distance function defined
as dist(0,©) = mingce ||@ — 0’| and the o-algebra
Fi—k = 0(X1,...,X¢—k). We denote f: ©® — R to be
a generic objective function for which we introduce the
precise assumptions in Section 2, where ® C RP is closed
and convex. Let 1@ denote the indicator function of the set
©, where 1g(0) = 0if 0 € ©® and 1o (0) = +o0if 0 & O.
Note that

argmin f(0) = argmin {¢(0) := f(0) + te(0)}. (3)
6co 6eRP

1.4. Preliminaries on Stationarity Measures

Since we do not expect the first-order optimality conditions
to be satisfied exactly in a finite number of iterations in
practice, we wish to estimate the worst-case number of itera-
tions required to achieve an e-approximate solution and the
corresponding scaling with . To this end, we can relax the
first-order optimality conditions as follows: For each € > 0,
we say 0™ is an e-stationary point (or e-approximate station-
ary point) for f over @ if and only if dist(0, dp(0¥)) < e.
We say a point 0™ is approximately near stationary for f
over O if there exists some point 6 near 6 that is approxi-
mately stationary for f over ®. We will make this notion
precise through the following discussion.

One of the central notions in the recent influential work
by Davis and Drusvyatskiy (2019) in analyzing convergence
rates of first-order methods for constrained nonconvex prob-
lems is the Moreau envelope, which is a smooth approx-
imation of an objective function that is closely related to
proximal mapping. For a constant A > 0, we define the
Moreau envelope ) of  defined in (3) as

1

o N g a2
er(6):= g (410 + 5510~ 017) .

If f is p-weakly convex and if A\ < p~!, then the minimum
in the right hand side is uniquely achieved at a point 0,
which we call the proximal point of 6. Accordingly, we
define the proximal map

6 .= prox,,(0)
1

;= arg min o)+ —|6 — 0> 5
rg min (o(0') + 510" = 0]

Also in this case, the Moreau envelope ) is C! with gradi-
ent given by (see (Davis and Drusvyatskiy, 2019))

Vr(0) =210 — prox,,(6)). (6)

When 6 is a stationary point of ¢, then its proximal point
6 should agree with 6. Hence the gradient norm of the
Moreau envelope ¢, may provide an alternative measure of
stationarity. Indeed, as shown in (Davis and Drusvyatskiy,
2019), it provides a measure of near stationarity in the sense
that if ||V (0)]| is small, then since the proximal point
6 in (5) is within A||[V,(8)]|| from 6, @ approximately
stationary in terms of dist(0, 9y (8)):

16 =8Il < X[Ver(@),  (6) <(6), (D
dist(0, 9p(8)) < [Ve(0)].  (®)

Note that the first and the last inequality above follows from
the first-order optimality condition for 6 together with (6)
(see also Propositions B.2 and B.1 in Appendix B).

Hence, in the literature of weakly convex optimization, it is
common to state the results in terms of the norm of the gra-
dient of Moreau envelope (Davis and Drusvyatskiy, 2019;
Drusvyatskiy and Paquette, 2019) which we will also adopt.
When g is additionally smooth, a commonly adopted mea-
sure to state convergence results is gradient mapping which
is defined as (Nesterov, 2013)

1
1G1,5(60)]] = ﬁ‘ 6; — projo (eu - ﬁwwt)) H

=: p||6; — 04, 9)

for any A > 0, where we also defined ét. The results (Davis
and Drusvyatskiy, 2019) (Drusvyatskiy and Lewis, 2018)
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P Lo - omeoth_daa . Constined
SMM (Lyu, 2022) O(e™) O(e™®)f v v
SGD (Sun et al., 2018; Karimi et al., 2019)  O(e %) - v X
Proj. SGD (Davis and Drusvyatskiy, 2019)  O(e~%) O(e™) X v
Proj. SGD-Sec. 3.1 O™ O™ v v
AdaGrad-Sec. 3.2 O™ ol v v

Table 1. Complexity comparison for stochastic nonconvex optimization with non-i.i.d. data. Complexities in each column are the number
of stochastic gradients to obtain: E||V £(0)|| < e and I [dist(0, dp(8))] < &, respectively (where ¢ is defined in (3)). TThis work
showed the improved complexity 0(5’4) under the additional assumption that the iterates of the algorithm are in the interior of ®, which
does not necessarily hold in the constrained case. We do not make such an assumption in this paper.

showed how to translate the guarantees on the gradient of
the Moreau envelope to gradient mapping by proving that

3
1G1/2p(O) < 51V P1/5(O)]-

It is easy to show that a small gradient mapping implies
that 6 is close to projg (6 — (1/p)V f(6;)) which itself
is approximately stationary in view of Sec. 1.4 which can
be shown by using the definition of 6, and smoothness of
f. Even though such an approximately stationary point
can be computed in the deterministic case, computation of
V f(6:) is not tractable in the stochastic case. However, as
we show in Sec. 3.6, we can still output a point which is
approximately stationary, in a tractable manner, with the
claimed complexity results in our dependent data setting.

2. Stochastic Gradient Estimation

Denote as A;_j ;) the worst-case total variation distance
between conditional distribution of x; given X1, ..., X, €
2 and the stationary distribution 7. Namely,

Ay pg= sup |[m([x1,...,Xe—x) — 7llrv, (10)
X1y Xt—k
where 7y, = m(-|X1,...,X¢_)) denotes the proba-

bility distribution of x; conditional on the past points
X1yeooy Xi—k-

Most of our theoretical results (except Theorem 3.8 for state-
dependent Markov chains, see Section 3.5) operate under
the following three assumptions.

Assumption 2.1. The function f is C' smooth and has
p-Lipschitz gradient and the set ® is closed and convex.
There exists an open set U containing ® and a mapping
G : UxQ — RPsuchthatforall @ € ©,Ex., [G(0,x)] =
Vf(0). Also 8 — G(0,x) is Ly-Lipschitz for all x for
some L > 0.

Assumption 2.2. We can sample a sequence of points
(X¢)¢>1 in 2 in a way that: (1) For each > 0, A ;4 v is

non-increasing in N > 0; and (2) limy 00 Ap s8] = 0
for all ¢ > 0; and (3) there exists a sequence k; € [0,¢],
t > 1suchthat Ap_y, ; — 0and > ;% oy Ap_y, 4 < 00,
where a; > 0 denotes the stepsize in the first-order method.

Assumption 2.3. Assume either of the two: (i) There
is L € (0,00) such that for each ¢ > 1 and 6 € O,
E[|G(0,xi+1)| | Ft] < L and the process (x;);>0 is a
function of some time-homogeneous Markov chain; or (ii)
There is L € (0, c0) such that ||G(0,x)|| < L for all 8, .

Assumption 2.1 is about smoothness of the objective and
stochastic gradient operator G. The former is standard in the
literature of stochastic constrained first-order methods and
the latter is also common when we additionally work with
dependent data(see, e.g., (Davis and Drusvyatskiy, 2019;
Sun et al., 2020; Lyu, 2022)).

Assumption 2.2 states that: (1) The N-step conditional
distribution 7¢ | can only be closer to the stationary dis-
tribution 7 when N increases; (2) the [N-step conditional
data distribution 7, |, converges to the stationary distribu-
tion 7 asymptotically; and (3) such convergence (mixing)
occurs at a sufficiently fast rate. The sequence k; plays a
critical role in controlling dependence in data samples. The
key idea is that, when analyzing quantities at time ¢ + 1,
one conditions on a ‘distant past’ ¢ — k; (instead of the
present ¢t) and approximates the multi-step conditional data
distribution 7, 1|, by the stationary distribution 7. The
error of such approximation in the total variation distance
is bounded by A;_y, . Assumption 2.2 requires that this
quantity should be summable after being multiplied by the
stepsize .

There are two notable special cases that satisfy Assump-
tion 2.2. First, Assumption 2.2 is trivially satisfied (with
ky = 0) in the i.i.d. case since then 7,; = m whenever
s> t.

Second, suppose x; is given by a function g of some un-
derlying time-homogeneous Markov chain X; with a sta-
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tionary distribution 7. In this case Assumption 2.2(1) holds
by Scheffé’s lemma (see, e.g., Lemma 2.1 in (Tsybakov,
2004)). (Here time-inhomogeneity is not necessary.) If
X, is irreducible and aperiodic on a finite state space, then
Assumption 2.2(2) holds with Ay_j = O(exp(—ck))
for some constant ¢ > 0 independent of ¢ (Levin and Peres,
2017). So Assumption 2.2(3) is verified for any k;, > C'logt
for C' > 0 large enough so that ), ; exp(—ck;) < oo and
for any oy = O(1). In the case when the underlying Markov
chain X; has countably infinite or uncountable state space,
then a more general condition for geometric ergodicity is
enough to imply Assumption 2.2 (see, e.g., (Levin and Peres,
2017; Meyn and Tweedie, 2012)). See (Lyu et al., 2020)
and (Sun et al., 2018) for concrete applications and sampling
methods that satisfy this assumption. This assumption is
common in the literature (Bhandari et al., 2018; Lyu, 2022;
Lyu et al., 2020; Sun et al., 2018; Nagaraj et al., 2020) and
i.i.d. sampling is another special case.

We emphasize that Assumption 2.2 does not necessarily
reduce to time-homogeneous and state-independent Markov
chains. Our main focus is using Assumption 2.2 which is the
main assumption on the data in most of the works we com-
pare with. However, we also discuss another popular setting
of modeling dependent data samples by state-dependent
Markov chain. See 3.6-3.7 and Thm. 3.8.

Next, we discuss Assumption 2.3 on boundedness of
stochastic gradients. In the i.i.d. case, it is standard to
assume uniform boundedness of Ex...[||G(0,x)||] for each
6 € © (Davis and Drusvyatskiy, 2019; Davis et al., 2020).
In the non-i.i.d. case, it has been customary to make stronger
assumption of uniform boundedness of G(0, x) even in the
unconstrained nonconvex case (Sun et al., 2018; Dorfman
and Levy, 2022), which does not properly generalize the
standard assumption in the i.i.d. case. This is mostly for
controlling the error of multi-step conditional expectation of
the stochastic gradient by its stationary expectation, which
is the crucial issue in the non-i.i.d. case that is non-existent
in the i.i.d. case.

In this work, we are able to analyze the non-i.i.d. setting
under a much weaker condition in Assumption 2.3(i) that
only assumes one-step conditional expectation of the norm
of the stochastic gradient is bounded. Although for a techni-
cal reason we will also need to assume that the data samples
(x¢)¢>0 are given as a function of some time-homogeneous
Markov chain, Assumption 2.3(i) properly generalizes the
standard assumptions in the i.i.d. case. In addition, We also
analyze non-i.i.d. setting under uniformly bounded stochas-
tic gradients but with more general data sampling setting
(Assumption 2.3(ii)), including time-inhomogeneious and
non-Markovian setting.

Now we state a key lemma that handles the bias due to
dependent data and is algorithm independent. In the sequel,

we will invoke this lemma for different algorithms such as
SGD, AdaGrad or SGD with heavy ball momentum.

Lemma 2.4 (Key lemma). Let Assumptions 2.1, 2.2, 2.3
hold and 6 be generated according to Algorithm I, 2 or 3.
Fix p > p and denote 0 = prox,, ,;(0) andfix 1 < k < t.
Then

‘E[@t — 0, G(01,%:41)) | Fii) (1n
~ 4L2
— (81— 01, Fxnr [G(O1,X)])| < === Aj_p
p—p
2L(Ly + p =1
1 2B D g | S 6(0, %) ’ft_k .
p=r s=t—k

This lemma borrows some ideas from (Lyu, 2022). The
important difference is that, the result of the lemma makes it
explicit the dependence on the step size and gradient norms
to be applicable with AdaGrad. This is needed because
the step size of AdaGrad does not have a specific decay
schedule. The proof is given in Section C.

3. Convergence Rate Analysis
3.1. Projected SGD with Dependent Data

Now we state our first main result in this work, which ex-
tends the convergence result of projected SGD with i.i.d.
samples in (Davis and Drusvyatskiy, 2019) to the general
dependent sample setting. This result improves the existing
complexity of stochastic algorithms from (Lyu, 2022) for
solving constrained nonconvex stochastic optimization un-
der dependent data, see Section 3.6 for details. We use the
notion of global convergence with respect to arbitrary ini-
tialization below. The proof of this result is in Appendix D.

Algorithm 1 Projected Stochastic Gradient Algorithm
(PSGD)
1: Input: Initialize 8, € @ C RP; T' > 0; Stepsizes (o )¢>1
2: Sample 7 from {1,..., 7T} independently of everything else
where P(7 = k) = ETQ’“ -.
t=1%

3: Fort=1,2,...,T do:

4: Sample x¢41 from me41 = w1 (- | X1, ..., Xe)

5: 0t+1 «— proj@ (Gt — OttG(Oz,Xt+1))

6: End for

7: Return: Or (Optionally, 69" as either 6, or

arg MiNge{o, ,...,67} ‘|v@1/ﬁ(9)“2~)

Theorem 3.1 (Projected stochastic gradient method). Let
Assumptions 2.1-2.3 hold and (0)¢>1 be a sequence gen-
erated by Algorithm 1. Fix p > p. Then the following
hold:
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(i) (Rate of convergence) For eachT' > 1,

1 K

T Qay
D k=1 Ok N i=h

T T
+ 3 Rawan, + > BBy, ])) (12)

t=1 t=1

E[IVe1,5(65")12] = O(

In particular, with oy % for some c¢ >

0 and under exponential mixing, we have that
E [|V1,,(07)[] < e with O (e=*) samples.

(i) (Global  convergence)  Further assume  that
Yoieo koo, < co. Then |[Vq,,(6¢)|| — 0 as
t — oo almost surely. Furthermore, 0; converges to
the set of all stationary points of f over ©.

If (x;):>1 is exponentially mixing, then Theorem 3.1(ii)
holds with c;; = t~/?(logt)~'~¢ for any fixed ¢ > 0 and
k: = O(logt).

3.2. AdaGrad with Dependent Data

We next establish the convergence of AdaGrad with depen-
dent data and constrained nonconvex optimization. We will
use AdaGrad with scalar step sizes (see Alg. 2), which is
also referred to as AdaGrad-norm (Ward et al., 2019; Levy,
2017; Streeter and McMahan, 2010).

Algorithm 2 AdaGrad-norm (Streeter and McMahan, 2010)

1: Input: Initialize 6, € ©@ C R?; T > 0; (at)e>15 vo > 0
a>0

2: Optionally, sample 7 from {1, ..., 7T} independently of ev-
erything else where P(7 = k) = 2

T

3: Fort=1,2,...,T do:

4: Sample Xt41 from Tt41 = 7I't+1(' | X1y... ,Xt)

5: vt = V-1 + (|G (01, xe41) |12

6: ot = \;Lv—t

7: 0:11 < projg (0 — a:G(0:,X¢41))

8: End for

9: Return: Or (Optionally, O%' as either 6, or

arg minge (o ,...,07} HV‘Pl/ﬁ(e)HZ-)

For this section, we introduce an additional assumption on
the boundedness of the objective values.

Assumption 3.2. (A4) There exists C, € (0, c0) such that
|f(8)] < C,forall @ € O.

Compared to projected SGD, the step size of AdaGrad does
not have a specific decay schedule, which makes it challeng-
ing to use the existing bias analyses for dependent data (for
example the idea from (Lyu, 2022)) since they critically rely
on knowing the precise decay rate of the step sizes.

To be able to apply such an analysis for adaptive algorithms,
we use a generalized result in Lem. 2.4 and use the partic-
ular form of AdaGrad step size in Thm. 3.3 to achieve the

optimal 0(5*4) complexity. Full proof of the result is given
in Appendix E.

Theorem 3.3 (AdaGrad-norm). Let Assumption 2.1-2.3 and
Assumption 3.2 hold and (Ot)t21 be a sequence generated
by Algorithm 2. Fix p > p and a nondecreasing, diverging
sequence (kt)tZI- Then, for eachT' > 1,

E [IIVe1/5(07)11%]

krlog(TL?) 1 &
—o( 2= L —NTEA, .
O< 0 +T; [Ar—r, 4]

(13)

We note that unlike Thm. 3.1, for AdaGrad we only prove
nonasymptotic complexity results and not asymptotic con-
vergence statements for the output sequence of the algo-
rithms. Even though asymptotic convergence of AdaGrad
with i.i.d. data is proven in (Li and Orabona, 2019), the
technique in that paper relies on using the inequality (128)
multiplied with «;. However, the specific form of (128) is
important in our development to use Lem. 2.4 to handle
the dependent data, since oy brings additional stochastic
dependencies. Even though we believe an appropriate modi-
fication of Lem. 2.4 can be possible, we do not pursue such
generalization in the present work.

Since the step size in this case is nonincreasing, Assump-
tion 2.2 reduces to Y.~ Ap_y, 4 < co. This, for example,
is satisfied for the exponential mixing case that is mentioned
in Theorem 3.1 and considered in the previous work (Lyu,
2022; Sun et al., 2018; Bhandari et al., 2018).

3.3. Stochastic Heavy Ball with Dependent Data

Because of space limitations, we defer the formal descrip-
tion of SGD with heavy ball momentum to the appendix
(Algorithm 3) and include a summary of the complexity
result here. The extended theorem for this case, including
the asymptotic convergence of the sequence and the proofs
are given in Appendix F.

Theorem 3.4. Let Assumption 2.1-2.3 hold and (0);>1 be
a sequence generated by Algorithm 3. Fix p > 2p. Then,
for any momentum parameter 5 € (0,1] and T > 1:

1 T
. aout 2] _ i
E{IVers(07)1] O(ﬁ?ZLak(;at

T T
+Zktatat,kt +Zat]E[A[t_kt7t]])>. (14)
t=1 t=1

Our analysis for the heavy ball method appears to be more
flexible compared to (Mai and Johansson, 2020) even when
restricted to the 1.i.d. case. In this case, we allow variable

step sizes ay = % whereas (Mai and Johansson, 2020)

requires constant step size a; = a = % We can also
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use any momentum parameter 5 € (0, 1] whereas (Mai and
Johansson, 2020) restricts to 5 = «. This point is important
since in practice /3 is used as a tuning parameter.

3.4. Proximal SGD with Dependent Data

In this section, we describe how our developments for
stochastic gradient method extends to the proximal case,
using the ideas from (Davis and Drusvyatskiy, 2019). In
particular, the problem we solve in this section is

0" € arg min (@(0) = f(0)+ 7”(0))7

OcRP

5)

where f is asin (1) and r: R? — R U {400} is a convex,
proper, closed function. In this case, in step 1 of Algo-
rithm 1, we use prox,,,,. instead of projg to define ;.
We include the following result combining the ideas from
Lem. 2.4, Thm. 3.1 and (Davis and Drusvyatskiy, 2019)
for proving convergence of proximal stochastic gradient
algorithm with dependent data. Full details are given in
Appendix G.

Theorem 3.5. Let Assumption 2.1-2.3 hold, r be convex,
proper, closed and (0;);>1 be a sequence generated by
Algorithm I where we use prox, ,. instead of projg in step I.
Fix p > p. ForeachT > 1,

T
ou ]‘
E [||V901/,3(9T t)HQ] = O<T<Zaf
Dokt Ok N

T T
+Zktatat—kt +Zat]E[A[t—kt,t+1]])>' (16)

t=1 t=1

3.5. Projected SGD with state-dependent Markovian
data

Next, we state an analogous result to Theorem 3.1 when
the data samples (x);>o form a state-dependent Markov
chain. It extends the corresponding results in (Karimi et al.,
2019; Tadi¢ and Doucet, 2017) to the constrained case. One
difference is that in the constrained case, we need a slightly
stronger assumption on the norms of the gradients, see 2.3.
The assumptions below were adapted from (Karimi et al.,
2019) and (Tadi¢ and Doucet, 2017).

Assumption 3.6. The sequence of data samples (x);>0
form a state-dependent Markov chain controlled by 6 € ©,
denoted as (X;):>o. That is, for each 8 € ©, there exists
a Markov kernel Py : €2 —  such that for any bounded
measurable function H,

E[H (X¢41)|Ft] = Po, H(X), (17)
where ]:t = O'(Xo, 00,)(1,917 . ,Xt,gt).

Assumption 3.7. There is a Lipschitz continuous solution
to the Poisson equation for (X;);>o. That is, there exists a

measurable function G such that for each 8 € 0,z c(,
G(0,2) — PoG(0.2) = G(0,2) —Vf(0),  (18)

where f denotes the objective function in (1) and G(0, x) is
as in Assumption 2.1. Furthermore, There exists C1, Ca, Cs
such that

IG(8,2)[| < C1, |PaG(8, )| < Cs, (19)
sup | PoG/(6,2) — PorG(6',2)|| < C5)10 — 6| (20)

Theorem 3.8 (Projected SGD with state-dependent MC
data). Let Assumptions 2.1, 2.3, 3.6, 3.7 hold and (0;);>1
be a sequence generated by Algorithm 1. A complexity
result as in Theorem 3.1 (i) still hold with possibly different
constants. See Theorem K.1 for details.

While Lemma 2.4 was the key to establish convergence of
PSGD (Theorem 3.1) under the mixing condition in As-
sumption 2.2, a similar role is played by the solution of
Poisson equation stated in Assumption 3.7 for the state-
dependent case. The proof of Theorem 3.8 follows the same
lines as Theorem 3.1 using a similar analysis as in (Karimi
et al., 2019) for the bias and properties of the sequences
6:,0,. See Appendix K.

3.6. Complexity for Constrained Smooth Optimization
with Dependent Data

We next compare our complexity with the one derived
in (Lyu, 2022) for constrained smooth nonconvex optimiza-
tion with dependent data which, to our knowledge, is the
only complexity result for this setting. First, we introduce
the next assumption to replace Assumption 2.1. We next
show how to translate our result to a direct stationarity mea-
sure in view of Sec. A.1 to compare with the O(e~®) com-
plexity result in (Lyu, 2022) for an equivalent stationarity
measure (see Sec. A.l for details). The proof of the result is
given in Appendix H.

Theorem 3.9 (Sample complexity). Let Assumption 2.1-2.3
hold and (8;),>1 be a sequence generated by any of the
Algorithms 1, 2, and 3. Fix p > p, assume A[t—kt,t-',-l] =
O(N¥t) for \ < 1 and that © is compact. Pick t randomly

Sfrom {1,. o , T} as in the respective theorems for the algo-
ritms, let N = O(e72), and define

N

2 . 1 i

0;11 =Proje <9£ N ng(efax( )))> (21
i=1

Then E {dist(O, o(f + L@)(éﬂl))} < & with O(e™*) sam-
ples.
The assumption on Aj;_y, ;1) and hence the dependent

sampling is consistent with the related works (Lyu, 2022;
Sun et al., 2018).
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Even though gradient of the Moreau envelope is a near ap-
proximate stationarity measure, in the specific case of this
section, we show that we can output a point that is approxi-
mately stationary with respect to the direct stationarity mea-
sure in Prop. B.1(i) (also mentioned in Section 1.4). This
permits a direct comparison with the previous result on con-
strained nonconvex optimization with dependent data (Lyu,
2022) and shows our improvement. Lemma H.1 in the ap-
pendix gives the necessary post-processing step for this,
which is used in Theorem 3.9.

4. Application: Online Dictionary Learning

Consider the online dictionary learning (ODL) problem,
which is stated as the stochastic program

minge@ngxr (f(G) = EX/\/TF [E(X7 0)} ) where

(X.0):= _nf  d(X,0H)+ R(H)

(22)

where d(-, ) : RP*™ x RP*™ — [0, 00) is a multi-convex
function that measures dissimilarity between two p X n
matrices (e.g., the squared frobenius norm, KL-divergence),
R : RP*™ — [0, 00) denotes a convex regularizer for the
code matrix H, and r is an integer parameter for the rank
of the intended compressed representation of data matrix
X. In words, we seek to learn a single dictionary matrix
0 € RP*" within the constraint set ® (e.g., nonnegative
matrices with bounded norm), which provides the best linear
reconstruction (w.r.t. the d-metric) of an unknown random
matrix X drawn from some distribution 7. Here, we may
put L;-regularization on H in order to promote dictionary
6 that enable sparse representation of observed data.

The most extensively investigated instance of the above
ODL problem is when d equals the squared Frobenius
distance. In this case, Mairal et al. (Mairal et al., 2010)
provided an online algorithm based on the framework of
stochastic majorization-minimization (Mairal, 2013). A
well-known result in (Mairal et al., 2010) states that the
above algorithm converges almost surely to the set of sta-
tionary points of the expected loss function f in (22), pro-
vided the data matrices (X;);>1 are i.i.d. according to the
stationary distribution 7. Later Lyu, Needell, and Balzano
(Lyu et al., 2020) generalized the analysis to the case where
(X;) are given by a function of some underlying Markov
chain. Recently, Lyu (2022) provided the first convergence
rate bound of the ODL algorithm in Mairal et al. (2010)
of order O((log t)'+¢ /t1/4) for the empirical loss function
and O((logt)'+¢/t/®) for the expected loss function for
arbitrary € > 0.

Suppose we are given a sequence of data matrices (X;);>1
that follows 7 in some asymptotic sense. Under some mild
assumptions, one can compute the subgradient of the loss
function 8 — ¢(X;,0) in two steps and can perform a

standard stochastic projected gradient descent:

H; < argming .o d(X, 0,1 H)+ A|H|1,
G(0:-1,X;) = Vod(Xy, 0,1 Hy), (23)
Bt — Proj® (0t71 — oztG(Ht,l, Xt)) .

For instance, consider the following standard assumption
on ‘uniqueness of sparse coding problem’:

Assumption 4.1. For each X and 0,
infyeorcrexn d(X,0H) + R(H) admits a unique
solution in ®' C RP*™,

Note that Assumption 4.1 is trivially satisfied if R(H) con-
tains a regularization k|| H||% for some g > 2. Under As-
sumption 4.1, Danskin’s theorem (Bertsekas, 1997) implies
that the function 8 — ¢(X, ) is differentiable and satisfies
Vol(X,0) = Ved(X, 0H*), where H* is the unique solu-
tion of inf yc@/crexn d(X,0H) + A||H||;. Hence we may
choose G(0:—1,X;) = Ved(X¢, 0H,) in (23).

Notice that (23) is a projected SGD algorithm for the ODL
problem (22), which is a constrained nonconvex problem.
Zhao et al. (Zhao et al., 2017) provided asymptotic analysis
of this algorithm (especially for online nonnegative matrix
factorization) for general dissimilarity metric d. For a wide
class of dissimilarity metrics such as Csizar f-divergence,
Bregman divergence, ¢; and ¢ metrics, and Huber loss,
this work showed that when the data matrices are i.i.d. and
the stepsizes y are non-summable (> ;- , oy = oc) and
square-summable ().~ a7 < oo), then the sequence of
dictionary matrices (6;);>1 obtained by (23), regardless of
initialization, converges almost surely to the set of station-
ary points of (22). The asymptotic analysis uses a rather
involved technique inspired from dynamical systems litera-
ture and does not provide a rate of convergence. Moreover,
such asymptotic guarantees has not been available to the
more general Markovian data setting.

When the function 8 — ¢(X, 0) for each X is p-weakly
convex for some p > 0, then the expected loss function
in (22) is also p-weakly convex, so in this case a direct ap-
plication of the main result in (Davis et al., 2020) would
yield a rate of convergence O((logt)/t'/*) for (23) with
ii.d. data matrices X;. Such hypothesis of weak convex-
ity of the loss function is implied under smoothness of d
(Assumption L.1). Then our main results extends the the-
oretical guarantees for (23) to more general setting when
(X;) are given as a function of some underlying Markov
chain with exponential mixing, and also extends to other
variants of PSGD such as the AdaGrad (Algorithm 2) and
the stochastic heavy ball (Algorithm 3). The full statement
of this result for ODL with stochastic first-order methods on
non-i.i.d. data is stated in Corollary L.2 in Appendix L. To
our best knowledge, this is the first time that projected SGD
with adaptive step sizes has been applied to ODL problems
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Figure 1. Plot of reconstruction error vs. elapsed time for four algorithms for online NMF: AdaGrad, PSGD-Heavy Ball, PSGD, and
SMM. Data stream is a sequence of 4-node subgraph adjacency matrices sampled by an MCMC motif-sampling algorithm in (Lyu et al.,
2023) from three college Facebook networks (Traud et al., 2012). Six consecutive Markovian samples of subgraphs are shown in each

plot. Shaded region represents one standard deviation from ten runs.

with optimal complexity bounds for the general Markovian
data case.

Numerical validation. We now illustrate the empirical
performance of Alg. 1, 2, 3 to verify our theoretical findings
for ODL with dependent data. However, we highlight that
the main contribution of our paper is theoretical: obtaining
the optimal complexity for constrained nonconvex problems
with dependent data. Moreover, the algorithms we analyze,
namely, projected SGD, SGD with momentum and AdaGrad
are the default solvers in most of the libraries for machine
learning/deep learning such as PyTorch/TensorFlow and
their empirical success is well-established. Hence, the re-
sults here are not meant to be complete benchmarks, but
rather empirical support for our theory.

For generating the samples, we used networks for 3 differ-
ent schools (Caltech36, UCLA26, Wisconsin87)
from the Facebook100 dataset (Traud et al., 2012), follow-
ing a similar setup to (Lyu et al., 2020). We then used the
Markov Chain Monte Carlo (MCMC) algorithm of (Lyu
et al., 2023) to generate 300 correlated subgraphs from the
networks. We then used the resulting matrix as a stream
of Markovian data and stopped the algorithms once all the
samples are used. For comparison, we used the stochastic
majorization-minimization (SMM) algorithm from (Mairal
et al., 2010; Lyu et al., 2020), which is the state-of-the-art
algorithm for ODL problems.

In Fig. 1, we see convergence of all the algorithms with
respect to the normalized reconstruction error, which is in
line with our theoretical results. Moreover, we observe that
AdaGrad converges significantly faster than other methods,
especially for the sequence of subgraphs from Caltech.
The difference in speed of convergence between all methods
is marginal for the UCLA and Wisconsin. We suspect that

this different behavior is realated to the fact that subgraphs
in Caltech induced on random paths of £ = 4 nodes are
more likely to contain more edges than those from the other
two (much sparser) networks.

5. Conclusion

In this paper, we have established convergence and complex-
ity results of a wide range of classcial stochastic first-order
methods (PSGD, AdaGrad, PSGD-Momentum) under gen-
eral non-i.i.d. data sampling assumption. Our results show
that if the dependence in data samples decays in the length
of conditioned steps via MC mixing or Poisson equation,
then standard rate of convergence in the i.i.d. case is ex-
tended to the more general non-i.i.d. case. Our analysis
shows that independence between data samples is not really
needed in analyzing stochastic first-order method. We also
numerically verified our results on the problem of online
dictionary learning from subgraph samples generated by an
MCMC algorithm.

Acknowledgements

The authors are grateful to Stephen Wright for valuable dis-
cussions. The work of A. Alacaoglu was supported by NSF
awards 2023239 and 2224213; and DOE ASCR Subcontract
8F-30039 from Argonne National Laboratory. The work
of H. Lyu was partially supported by NSF grants DMS-
2010035 and DMS-2206296.

References

Alacaoglu, A., Malitsky, Y., and Cevher, V. (2021). Con-
vergence of adaptive algorithms for constrained weakly
convex optimization. Advances in Neural Information
Processing Systems, 34.



Convergence of First-Order Methods with Dependent Data

Bauschke, H. H. and Combettes, P. L. (2011). Convex
analysis and monotone operator theory in Hilbert spaces,
volume 408. Springer.

Bertsekas, D. P. (1997). Nonlinear programming. Journal
of the Operational Research Society, 48(3):334-334.

Bhandari, J., Russo, D., and Singal, R. (2018). A finite time
analysis of temporal difference learning with linear func-
tion approximation. In Conference on learning theory,
pages 1691-1692. PMLR.

Davis, D. and Drusvyatskiy, D. (2019). Stochastic model-
based minimization of weakly convex functions. STAM
Journal on Optimization, 29(1):207-239.

Davis, D., Drusvyatskiy, D., Kakade, S., and Lee, J. D.
(2020). Stochastic subgradient method converges on tame
functions. Foundations of computational mathematics,
20(1):119-154.

Dorfman, R. and Levy, K. Y. (2022). Adapting to mixing
time in stochastic optimization with markovian data. In

International Conference on Machine Learning, pages
5429-5446. PMLR.

Drusvyatskiy, D. and Lewis, A. S. (2018). Error bounds,
quadratic growth, and linear convergence of proxi-
mal methods. Mathematics of Operations Research,
43(3):919-948.

Drusvyatskiy, D. and Paquette, C. (2019). Efficiency of
minimizing compositions of convex functions and smooth
maps. Mathematical Programming, 178(1):503-558.

Duchi, J., Hazan, E., and Singer, Y. (2010). Adaptive sub-
gradient methods for online learning and stochastic opti-
mization. Technical Report UCB/EECS-2010-24, EECS
Department, University of California, Berkeley.

Duchi, J. C., Agarwal, A., Johansson, M., and Jordan, M. 1.
(2012). Ergodic mirror descent. SIAM Journal on Opti-
mization, 22(4):1549-1578.

Ghadimi, E., Feyzmahdavian, H. R., and Johansson, M.
(2015). Global convergence of the heavy-ball method for
convex optimization. In 2015 European control confer-
ence (ECC), pages 310-315. IEEE.

Ghadimi, S., Lan, G., and Zhang, H. (2016). Mini-batch
stochastic approximation methods for nonconvex stochas-
tic composite optimization. Mathematical Programming,
155(1):267-305.

Johansson, B., Rabi, M., and Johansson, M. (2007). A
simple peer-to-peer algorithm for distributed optimization
in sensor networks. In 2007 46th IEEE Conference on
Decision and Control, pages 4705—4710. IEEE.

10

Johansson, B., Rabi, M., and Johansson, M. (2010). A ran-
domized incremental subgradient method for distributed
optimization in networked systems. SIAM Journal on
Optimization, 20(3):1157-1170.

Karimi, B., Miasojedow, B., Moulines, E., and Wai, H.-T.
(2019). Non-asymptotic analysis of biased stochastic ap-
proximation scheme. In Conference on Learning Theory,
pages 1944-1974. PMLR.

Levin, D. A. and Peres, Y. (2017). Markov chains and
mixing times, volume 107. American Mathematical Soc.

Levy, K. (2017). Online to offline conversions, universal-
ity and adaptive minibatch sizes. Advances in Neural
Information Processing Systems, 30.

Li, X. and Orabona, F. (2019). On the convergence of
stochastic gradient descent with adaptive stepsizes. In The
22nd International Conference on Artificial Intelligence
and Statistics, pages 983-992. PMLR.

Lyu, H. (2020). Convergence of block coordinate de-
scent with diminishing radius for nonconvex optimization.
arXiv preprint arXiv:2012.03503.

Lyu, H. (2022). Convergence and complexity of stochas-
tic block majorization-minimization. arXiv preprint
arXiv:2201.01652.

Lyu, H., Memoli, F., and Sivakoff, D. (2023). Sampling ran-
dom graph homomorphisms and applications to network
data analysis. Journal of Machine Learning Research,
24:1-79.

Lyu, H., Needell, D., and Balzano, L. (2020). Online matrix
factorization for markovian data and applications to net-
work dictionary learning. Journal of Machine Learning
Research, 21(251):1-49.

Mai, V. and Johansson, M. (2020). Convergence of a stochas-
tic gradient method with momentum for non-smooth non-
convex optimization. In International Conference on
Machine Learning, pages 6630-6639. PMLR.

Mairal, J. (2013). Stochastic majorization-minimization
algorithms for large-scale optimization. Advances in
Neural Information Processing Systems, 26.

Mairal, J., Bach, F., Ponce, J., and Sapiro, G. (2010). On-
line learning for matrix factorization and sparse coding.
Journal of Machine Learning Research, 11(Jan):19-60.

Meyn, S. P. and Tweedie, R. L. (2012). Markov chains and
stochastic stability. Springer Science & Business Media.

Nagaraj, D., Wu, X., Bresler, G., Jain, P., and Netrapalli, P.
(2020). Least squares regression with markovian data:
Fundamental limits and algorithms. Advances in Neural
Information Processing Systems, 33:16666—16676.



Convergence of First-Order Methods with Dependent Data

Nesterov, Y. (2013). Gradient methods for minimiz-
ing composite functions. Mathematical programming,
140(1):125-161.

Polyak, B. T. (1964). Some methods of speeding up the
convergence of iteration methods. Ussr computational
mathematics and mathematical physics, 4(5):1-17.

Rockafellar, R. T. and Wets, R. J.-B. (2009). Variational
analysis, volume 317. Springer Science & Business Me-
dia.

Sion, M. (1958). On general minimax theorems. Pacific
Journal of mathematics, 8(1):171-176.

Streeter, M. and McMahan, H. B. (2010). Less regret via
online conditioning. arXiv preprint arXiv:1002.4862.

Sun, T., Sun, Y., Xu, Y., and Yin, W. (2020). Markov chain
block coordinate descent. Computational Optimization
and Applications, 75(1):35-61.

Sun, T., Sun, Y., and Yin, W. (2018). On markov chain
gradient descent. In Advances in Neural Information
Processing Systems, pages 9896-9905.

Tadi¢, V. B. and Doucet, A. (2017). Asymptotic bias of
stochastic gradient search. The Annals of Applied Proba-
bility, 277(6):3255-3304.

Traud, A. L., Mucha, P. J., and Porter, M. A. (2012). Social
structure of facebook networks. Physica A: Statistical
Mechanics and its Applications, 391(16):4165-4180.

Tsybakov, A. B. (2004). Introduction to nonparametric
estimation, 2009. URL https://doi. org/10.1007/b13794.
Revised and extended from the, 9(10).

Wang, Y., Pan, B., Tu, W., Liu, P, Jiang, B., Gao, C., Lu,
W., Jui, S., and Kong, L. (2021). Sample average approx-
imation for stochastic optimization with dependent data:
Performance guarantees and tractability. arXiv preprint
arXiv:2112.05368.

Ward, R., Wu, X., and Bottou, L. (2019). Adagrad step-
sizes: Sharp convergence over nonconvex landscapes. In
International Conference on Machine Learning, pages
6677-6686. PMLR.

Zhao, R., Tan, V., and Xu, H. (2017). Online nonnegative
matrix factorization with general divergences. In Artificial
Intelligence and Statistics, pages 37-45.

11



Convergence of First-Order Methods with Dependent Data

A. Background on stationarity measures
A.1. Direct stationarity measures

In this subsection, we introduce some notions on stationarity conditions and related quantities. A first-order necessary
condition for 8% € O to be a first order stationary point of f over © is that there exists a subgradient v € 9f(6*)
such that —v belongs to the normal cone Ng(0*) = dve(0™), which is also equivalent to the variational inequality
infgece (v, @ — 0*) > 0 due to the definition of the normal cone. Hence we introduce the following notion of first-order
stationarity for constrained minimization problem:

def

0™ is a stationary point of f over ® <= 0 € v+ Ng(0*) forsomev € df(0) (24)
— 19in(fa (v, 8 —0%) >0 forsomewv e df(0%). (25)
€

Note that if ™ is in the interior of ©, then the above is equivalent to 0 € 9 f(0™). Furthermore, if f is differentiable at 8™,
this is equivalent to V f(6*) = 0, so 8™ is a critical point of f.

In view of the preceding discussion and (3), we can also say that @ is a stationary point of f over ® if and only if 0 € &p(@)).
Accordingly, we may use dist(0, 0p(0)) = 0 as an equivalent notion of stationarity.

We relax the above first-order optimality conditions as follow: For each € > 0,

0" is an e-stationary point for f over @ &L dist(0, 0p(0%)) < e. (26)

An alternative formulation of e-stationarity would be using the ‘stationarity gap’. Namely, we observe the following identity:

06— 0"

Ga ,0°):= inf |— inf v, ———— )| = dist(0, dp(0™)), 27
po(/.6") veaf(eﬂ{ ee@\{e*}< |0—0>] (0,0¢(6)) @7

which is justified in Proposition B.1 in Appendix B. We call the quantity Gapg (f, @) above the stationarity gap at 8™ for f
over ®. This measure of approximate stationarity was used in (Lyu, 2020; 2022), and it is also equivalent to a similar notion
in (Nesterov, 2013). When 0™ is in the interior of © and if f is differentiable at 8™, then (26) is equivalent to |V f(0")|| < e.
In Proposition B.1, we provide an equivalent definition of e-stationarity using the normal cone.

B. Preliminary Results

The next result illustrates the connection between the two stationarity measures given in (27) to compare with the existing
result in (Lyu, 2022). Recall that the normal cone Ng(0™) of ® at 8™ is defined as

Ne(0%) := {u e R | (u, 6 — %) < 0V6 c ©}. (28)

Note that the normal cone Ng (0™) agrees with the subdifferential e (6"). When © equals the whole space R?, then
Ne(6) = {0}.
Proposition B.1. For each 0™ € ©, v € 3f(0"), and € > 0, following conditions are equivalent:

(@) dist(0,v + Ne(0%)) <e;
0—0"
(ii) — inf <v, *> <e.
0co\ {67} 16 — 07|

In particular, it holds that

90— 0"
dist(0,0f(0* Ne(0*)) = inf - inf _ . 29
ist(0,0/(6°) + Ne(97)) veé?m[ sccnto) < ||0—e*||>} 29

Proof. The last statement follows from the equivalence of (i) and (ii). In order to show the equivalence, first suppose

(i) holds. Then there exists u € Ng(0") and w € B. where B. is the e-ball in {5 norm, such that v + u + w = 0. So
—v —w € Ng(0"), which is equivalent to

0—-0"
inf v+ w, 7 ) > 0. 30)
0cO\{6"} < |6 —6 ||>

12
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By Cauchy-Schwarz inequality, this implies

0—06"
— inf v, —— ) < |lw|| L e. 3D
6co\(6°} < 16 — 67| > vl
Conversely, suppose (ii) holds. We let D<; (6*) denote the set of all feasible directions at 8™ of norm bounded by 1, which
consists of vectors of form a(@ — 0*) for @ € © and a € (0,]|6 — 8||~]. Being the intersection of two convex sets,
D<1(6%) is convex. Then applying the minimax theorem (Sion, 1958) for the bilinear map (z, u) — (v + cu, z) defined on
the product of convex sets D<1(6") x By, observe that

su inf v+eu, x) =  inf sup (v +ecu, 32
HGBPl z€D<1(07) < ) z€D<1(0%) u€§1 < ) 32
= inf v, *) + sup (eu, T 33
x€D<1(6%) |:< > u6113)1< >} 53
= inf v, x) + €|z 34
ot [0, 2) + ] (34
= inf || Ku x> 4 s] > 0. (35)
2€D<,(60) ]
To see the last inequality, fix © € D<1(6"). By definition, there exists some 6,, € © such that z/||z|| = ngi:g:”. Then by
using (ii),
x 0,—0" 0—0"
v, — V+e={(v, —F Y +e> inf <v,*>—|—€>—€—|—5>0. (36)
< ||1‘|> < 10, — 6 > oco\{o°} \ ' [|6 — 67|

Attainment of the supremum at a u* in (32) is guaranteed by strong duality, see (Bauschke and Combettes, 2011).

The above implies

inf  (v+eu”, z) > 0. 37
xeDgl(O*)
Thus we conclude that —v — eu* € Ng(6™). Then (i) holds since ||u*| < 1. O

Proposition B.2. Suppose f is p-weakly convex and X < p~'. Then for each 6 € ©,

N .
sup |— inf <U(9), " < )\_1||0 -0| < )\_2||Vg0>\(0)|| (38)
veof(9) | 0'€O\{0} 6" — 8|

Proof. Recall that 6 is the solution of a constrained optimization problem since ¢ = f + 1@ (5). Therefore, it satisfies the
following first-order optimality condition: For some v(0) € 0f(8),

W@ +A"10—-6),0 -6)>0, VO cO. (39)
By rearranging and using Cauchy-Schwarz, this yields for all 8’ € ©,
(v(0),0-0) <A(0-0,6—6)<\'[|6-0|-[6' -], (40)

Now assume 0’ # 6. Dividing both sides by |0’ — 8|, we get

.. 0 —0 .
- <v(9)7 ,> <A = 6] = A2 V(o). (41)
16" -0
Since this holds for all v(8) € df(8) and 8’ € © \ {6}, the assertion follows. O

The next two results will be used in Lem. 2.4 to control the bias due to dependent data.

13
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Lemma B.3 ((Rockafellar and Wets, 2009)). For any p > p and p-weakly convex function o, it follows that 6 — prox,,, ﬁ(O)

is pf p-Lipschitz.

Lemma B.4 ((Alacaoglu et al., 2021)). Let p > p. Then for any v € 9f(0),
2Hvll

—p

16— 6| <

b

The following lemma is used in converting various finite total variation results into rate of convergence or asymptotic
convergence results.

Lemma B.5 (Lem. A.5 in (Mairal, 2013)). Let (ay)n>0 and (by,)n>0 be sequences of nonnegative real numbers such that
Yoo o anbn < 0. Then the following hold.

, -1
Zzooakbk -
@) mln by < =>——=0 a
1Sksn ¢ 1 Ok ; *

(ii) Further assume >~ an, = 00 and |by41 — by| = O(ay,). Then lim,_, b, = 0.

Proof. (i) follows from noting that

< <
(Z ak> gnn b Z aby, Zakbk < 00. 42)
The proof of (ii) is omitted and can be found in (Mairal, 2013). O]

The next lemma is commonly used for adaptive gradient algorithms. For example, Lem. A.1 in (Levy, 2017) or Lem. 12 in
(Duchi et al., 2010).

Lemma B.6 (Lem. 12 in (Duchi et al., 2010), Lem. A.1 in (Levy, 2017)). For nonnegative real numbers a; for i > 1, we
have for any vy > 0

n

S <14
Vo +Zj:1 aj

i=1

Z;L:I a;
vy

The following uniform concentration lemma for vector-valued parameterized observables is due to (Lyu, 2022).

Lemma B.7 (Lem 7.1 in (Lyu, 2022)). Fix compact subsets X C R%, @ C RP and a bounded Borel measurable function
P : X X O — R". Let (x,,)n>1 denote a sequence of points in X such that x, = ¢(X,,) for n > 1, where (X,,),>1 is a
Markov chain on a state space ) and p : Q0 — X is a measurable function. Assume the following:

(al) The Markov chain (Xn)nZl mixes exponentially fast to its unique stationary distribution and the stochastic process
(Xn)n>1 0n X has a unique stationary distribution .

Suppose w,, € (0, ll, n > 1 are non-increasing and satisfy wy b — w;il < 1 foralln > 1. Define functions ¥(-) :=
Ex~r [¥(%, )] and ¢, : ® — R” recursively as g = 0 and

U () = (1= wa)¥n-1() + wath(Xn, ). (43)
Then fthere exists a constant C' > 0 such that for all n > 1,
sup [|¢(8) — E[$n(0)]|| < Cwn, E |sup [[1(8) — ¢n(8)]|| < Cwnv/n. (44)
6co 6cO
Furthermore, if wy\/n = O(1/(log n)'*€) for some € > 0, then supgcg ||1(0) — 1n(0)|| — 0 as t — oo almost surely.
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C. Proof for Sections 2

In this section, we prove the key lemma (Lemma 2.4) we stated in the main text. For the reader’s convenience, we restate the
key lemma here:

Lemma C.1 (Lemma 2.4 in the main text). Let Assumptions 2.1, 2.2, 2.3 hold and 0, be generated according to

Algorithm I, 2 or 3. Fixt > 0, k = k, € [0,t] as in Assumption 2.2, p > p and denote 6 = prox,, (). Then
B[00~ 61, G601, x011)) | Furs] = (B0 = 81, e [G(01,%)])| 45)
AL OL(Ly +p) . |
< M Ny D g S 160, %00 ]ft_k | (46)
pP—p p—p ek

For the proofs in this section, we use the following notations. Let 1} = T41)¢—k (- | Ft—x) denote the distribution of
X¢+1 conditional on the information F;_ = o(X1,...,X¢—x). Also, Ex.,, will denote the expectation only with respect to
the random variable x distributed as p, leaving out any other random variable fixed.

The following proposition is an important ingredient for the proof of Lemma 2.4. It allows us to compare a multi-step
conditional expectation of the stochastic gradient to its stationary expectation.

Proposition C.2. Let Assumptions 2.1, 2.2, 2.3 hold and 0 be generated according to Algorithm 1, 2 or 3. Suppose
limy s ool|Tenpe — 7|y = 0 forallt > 0. Fixt > 0and k € [0,t]. Then

2LA[ 41 if Assumption 2.3(i) holds;

47
2LA[ 1y if Assumption 2.3(ii) holds. “7)

IE[G(Ot—k: Xt41) | Fiot] = Exar [G(Or—k, X)][| < {

Proof. Recall that by Scheffé’s lemma, if two probability measures i and v on the same probability space have densities
o and 8 with respect to a reference measure dm, then || — v||7v = 3 [ | — B dm (see, e.g., Lemma 2.1 in (Tsybakov,
2004)). For each integer m > 0, let 7, Stk denote the density functions of 7, ;s with respect to the Lebesgue
measure, which we denote by d€.

We first prove the statement under Assumption 2.3(ii). In this case, ||G(0,x)|| is assumed to be uniformly bounded by
L < oo but we do not impose any additional assumption on the data samples (x;);>o besides the asymptotic mixing
condition limy o0 || 744 Nt — 7||7v = 0 for all £ > 0.

Fix an integer N > 1. Noting that 8;_j is deterministic with respect to F;_j, we have

IE[G (01—, Xt41) [ Fi—k] = Exmompy i [G(Or—k, X)] || (48)
= |E[G (O, %Xt+1) | Feoi] — E[G(Or 1, Xty N) | Fe—i] |l (49)
= HExwﬂt‘t,k [G(et—ka X)] - ExwrrtJrN,ut,k, [G(et—ka X)] || (50)
< [ IGO1k10) = ) 51)
< 2L||7Tt+1|t7k - 7rt+N|t7k||TV7 52)

where we have used Scheffé’s lemma for the last equality. By a similar argument,
B [G (01— X)] = B,y [G(Or ks X)]]| < /QHG(OFmX)HIW’(X) = Ty nje—k(X)] € (53)
<2L||m — Ty Npe—kllTV- (54)
By triangle inequality, it then follows
[Exar[G(Or—k,x)] = E[G(O1 1, Xe11) | Fri]l| < 2L ([|7 — my nje—sllov + Imes1ji—k — Tenje—illov) . (55)

Now by the hypothesis that lim oo || Tt n|¢— — 7||7v = 0, the last expression above converges to 2L || 41— — 7|7V
as N — oo. Since the left hand side above does not depend on N, this shows the claim (47).
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Next, we prove the statement under Assumption 2.3(i). In this case, we only assume the one-step conditional expectation of
the norm of the stochastic gradient is bounded:

E[|G(6, %1 || | Fs] < L forallt >0, (56)

which is much weaker than the uniform boundedness of ||G|| in Assumption 2.3(ii). In order to handle a technical difficulty
in this general setting, we will need to assume that the data samples (x;);>o is a function of some time-homogeneous
Markov chain. That is, there exists a time-homogeneous Markov chain (X;);>¢ on some state space X and a function
w : X — Q such that x;, = w(X;) for all ¢ > 0. By the time-homogeneity of the chain (X;);>¢, there exists a Markov
transition kernel P such that

P(Xi11 =0 Xy =a) = P(a,b) forallt > 0anda,b € X. (57)

We will proceed similarly as before. The key technical detail to avoid using uniform boundedness of G is to rewrite
expectations of G by the expectation of a one-step conditional expectation of G. Then a similar argument as before will work
only with the assumption that the one-step conditional expectation of GG is bounded. We give the details of this sketched
approach below.

Fix an integer N > 1. Since the conditional expectation E[G(0;_, Xt ) | Fi—k] is deterministic with respect to F;_, we
can write

ElG(O1—k, xi11) | Fii] = E[E[G(01—k, Xt41) | o] | Fr—i]- (58)
Similarly, write
BlG(0:—k, xt4-n) | Fi—i] = E[E[G(O1—k, Xt4n) | Fran—1] | Fioi]- (59
Now for given s > 0, 8 € ©, and x € (2, define
G(0,x) := E[G(60,x11) | xs = x]. (60)

The only randomness being integrated out in the expectation in the above definition is the random data sample x,1
conditional on the data sample x, a step before being x. The measure used in the integral is the one-step conditional
distribution 7, 1|5. By the time-homogeneity assumption, the distribution 7, 1|, does not depend on s. It follows that the

function G above does not depend on s. Therefore, we will omit the subscript s in G. Note that by Jensen’s inequality and
(56),

IG(8. %)l < E[|G(6,xs+1)|| | x5 = x] < L. (61)

Using (58) and (59), we have
|E[G(01—ks Xt41) | Frt] = Exmryy o [G(Or—k; X)]] (62)
= ||E[G (011, Xt+1) | Fe—k] — E[G(O1—k, Xt ) [ Fr—i]ll (63)
= HIExNﬂ-Ht—k [ét(etfkv X)] - ExNWt+N—1\t—k [GtJrN*l(etfkv X)] ” (64)

= HEX’VTMt,—k, [G(etflmx)] -E [G(etflmx)] || (65)

XTG4 N—1|t—k

=[] @0t 0 = w0 (66)
< [ 1Okl = sy (] ()
< 2L|| Tt — Mg N—1)t—k TV (68)

where we have used Scheffé’s lemma and the fact that G does not depend on s. By a similar argument and noting that
Ewa[G(Ot—ka X)} = Ext,kNﬂ[G(at—k, Xt—k+1)] = Ext,kNW[E [G(et—k, Xt—k+1)] ‘Xt—k]’

[Ex~r[G(0r—k,%)] = Exmrmyy oy i [G(Or—1, X)] || (69)
= ||EXNTI' [é(et—ka X)} - ExNTrt+N—1‘t—k [G(Ot—ka X)} H (70)
<2L||7m — 7y N—1pe—rllTV- (71)
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By triangle inequality, it then follows
||Ex~w[G(9t7k7X)] - E[G(etfmxwl) |]:t7k]|| <2L (||7T - 7Tt+N71|t7k||TV + ||7Tt|t7k - 7Tt+N71\t7kHTV) . (72

Now by the hypothesis limy oo || 744 N —1t— — 7[|7v = 0, so the last expression above converges to 2L ||my;—, — 7| 7v
as N — oo. Since the left hand side above does not depend on N, this shows (47).

We now prove Lemma 2.4.

Proof of Lemma 2.4. Denote V (x,80) := (0 — 0, G(0,x)). Note that By [V (x,0,)] = (0, — 0, Exr [G(6;,%)]).
Observe that by triangle inequality

B[V (xt41,00) | Fror] = Exer [V(x, 04)]| (73)
< [E[V(xt41,60:) = V(Xe41, 0—k) | Fe—i]| (74)

+ |Exmr [V(%,0:-1) — V(x,0,)]| 75

FHIE [V (Xt41,0t 1) | Fi—r] = Exnr [VI(%,0:1)]] . (76)

We will bound the three terms in the right in order.

In order to bound the first term in the right hand side above, we first write

V(%41,0:) — V(Xt11,0—1) = (0: — 01, G(01,%111)) — (Or—1 — 011, G011, X1 41))
= <ét - 9t7 G(at,XtH) - G(0t7k7Xt+1)> + <ét - étfka G(at—kaxtﬂ»
+ (01— — 04, G(O1_j, x111)).

By applying iterated expectation twice, we get

E [<0t—k — 04, G(Ot—k,xt+1)> |]:t—k]
= Ko, [E [<0t—k — 0y, G(Gt—k7xt+1)> |0t7 ft—k] |]:t—k]
= Eq, [<0t7k -0, E [G(0t7k7xt+1) \ 0, ft#c]} |-7:t7k]
=E [<0t7k -0 E [G(atfk, Xt+1) | 0, ]:tfk]> |ft7k] . 77

We can rewrite the conditional expectation E[(@t_ w— 0., G (0:—k,Xt11)) | Ft—k] similarly as above.

Next, we will observe that

. 2 2L
16: = 64| < ———[|Exr [G(0r, X)][| < —. (78)
p—p pP=p
The first inequality above is due to Lemma B.4. Under Assumption 2.3(ii), where since ||G|| < L, the second inequality
follows by using Jensen’s inequality. In case of Assumption 2.3(i), we need a bit more careful argument. For each NV > 1,

A 2
160 — 6] < EHEXW[G(%X)]H (79)
2
S (B [G (01, X + [Exnr [G(O, %) = o, 1, [G(O X)) (30)
2
=< 5= (ENG O xeen) 1 Fe] + [Exr[G(Oe,%) = Exeor,, ), [G(Or, %)]]]) - )

Note that E[||G(0y, x¢+n)|| | F¢] < L by Assumption 2.3(ii) and iterated expectation. Furthermore, the second term in the
last expression above vanishes as N — oo by Proposition C.2 and Assumption 2.2. Therefore we can conclude (78) under
Assumption 2.1(ii) as well.
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Now by using Cauchy-Schwarz inequality, L-Lipschitz continuity of 8 — G(x, 8) (see Assumption 2.1), Lemma B.3
and Assumption 2.3, we obtain

2LLy + 2L
[E[V (X41,0:) = V(xeq1,01k) [ Fioi]| < %pp (10c—k — O:l| Fis] (82)
2LLy +25L _ |
< %E > as||G(es,xs+1)||’ft_k,], (83)
s=t—k

where for the last inequality we have used ||@; — 0s_1|| < ||as—1G(0s_1,%)]| for s > 1 along with triangle inequality.

A similar argument shows

B [V x,00) = Vi 01 0)] | < 222 E l S a6l ftk] (84
s=t—k
We continue by estimating the last term on the RHS of (76).

Proceeding by Cauchy-Schwarz inequality, and using that 0;_, 9t_k are deterministic with respect to F;_j, we get
|E [V (xt41, 01—k) | Fer] = Exrr [V (%, 01—4)]] (85)
= [E[(Be-k = 01 G(O1-byx041)) | Fi] = B [V (. 614)] (86)
- ]@_k — 0k, E[G(0r—k,Xe41) | Foor]) = (Br—1 — Ot Exr [G(04—1,X)]) (87)
< 21|60k — 01—y Ap—ra} (88)
< :‘fsz[t_k,ﬂ, (89)
where the last step follows from Proposition C.2. Combining (83), (84), (89) with (76) then shows the assertion. O]

D. Proof for Section 3.1

Theorem D.1 (Theorem 3.1 in the main text). Let Assumptions 2.1-2.3 hold and (0;),>1 be a sequence generated by
Algorithm 1. Fix p > p. Then the following hold:

(i) (Rate of convergence) For each T > 1,

E [|IVe1/(07)]7] (90)
~2712 . T
p*L 1 901/,3(91)71nfs01/p 1 L1+p 4
< — E E k D E E[A 1
T h-p Z£=1 ag pL? 2 o —p tt ik, + p— p = B [t—kt, t]} oD

In particular, with o, = 7 for some ¢ > 0 and under exponential mixing, we have that E [IVe1, H(0F)]] < e with

0 (674) samples.

(ii) (Global convergence) Further assume that )~ o kyoyoy i, < oo. Then HVgpl/ﬁ(ét)H — 0 as t — oo almost surely.
Furthermore, 0; converges to the set of all stationary points of f over ©.

Proof. Recall the definition of ¢;,, from (4). We start as in (Davis and Drusvyatskiy, 2019) with the difference of
conditoning on JF;_j instead of the latest iterate, and use Lemma 2.4 to handle the additional bias due to dependent sampling.
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Denote 6, = prox,,;(0¢) fort > 1 and fix k € {0,...,¢}. Observe that

]E{<P1/ﬁ(9t+1) ft—k} <E {f( t)+ *H9t+1 0,/ ‘ft k} (92)
[ N A ~ 2
—F ﬂm)Ja%}+§E{bmewt—%Gwh&+gy—mq@ng‘f@% (93)
. N A N 2
S E f(Bt) ]:t]g:| + g]E |: )(075 — 075) — atG(Ht,XHl)H — :| (94)

7 p o112 . 0 ajpL?
<E|f(0:) + §||0t — 047 | Feei| + palE | (0: — 01, G(Os, %4 41)) | Frr | + 5 95)
: . aipL?
SE |@1/5(0¢) | Fiok | + pai(0; — 01, Exor [G(0:,X)]) + 9 (96)
[ a2 2L(Ly + p —
b | B A ] + 2D S B(IGO, k) 1 Fi] | - ©7)
pP—P p—pP ik

Namely, the first and the last inequalities use the definition of Moreau envelope ¢, and 6, € O, the second inequality
uses 1-Lipschitzness of the projection operator, and the last inequality uses Lemma 2.4 and that «s is non-increasing in
s. Note that using iterated expectation, Assumption 2.3, and the fact that 8 is deterministic with respect to F;, for each
t—k<s<t-—1,weget

EGOs, xsr2) [l Fier] = E[E[|G(Os, xs12)[[| Fs] | Fii] < L. (98)

Hence the summation in the last term above is bounded above by kL. Then by using Assumption 2.1 and the weak convexity
of g, we have

(B: = 61, Ener [G(01,%)]) < F(8) — £(8:) + L6 — 6. (99)

By using this estimate in (97) and then integrating out JF;_j, we get

R A p P a?pL?
E [01/5(811)] — E [1/(81)] < pouE [£(8:) — £(8:) + 2110, — 0] + “H0= (100)
. 412 2L2(Ly +p
+ pa < - E[A[—,g] + kwat_k> . (101)
p—p p—p
Now we chose k = k; — oo ast — co. Summing overt = 1,...,T results in
T L2 T
Z [ — f(6,) - *Het — 6, } < (p1/5(01) —inf @1/5) + 5 Zaf (102)
P t=1
L 4L 2Ly 4 d
p Zozt]E [t—ke,t] KMZthtO{t_kt. (103)
t=1

Next, we use the fact that the function 8 — f(6) + §||0 — 6,]|? is strongly convex with parameter (p — p)/2 that is
minimized at 9t to get

60~ 160~ §160: - 8.2 = (160 + 516~ 0112 ~ (160 + 516~ 012 ) + L5 L 1os ~ 6112 04
> (p—p))|6: — O] (105)
= 2P IV 1500 . (106)
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where the second to the last equality uses (6). Combining with (103), this implies

A T E T
p
Z [1IVe1/5(00)]17] < (¢1/5(01) —infepy,5) + Zat (107)
4PL2 & 2Lp@1+p
Z%E A[1t kt,t] ﬁzkt%at ky- (108)
t=1

out 0 out

This shows the assertion when T € argmingegg, ... 0.} [IV1/5(0)

and Lemma B.5 in Appendix B.

|2, the assertion follows from (108)

For the second part of (i), we plug in the value of oy and k¢ = O(logt), Ap_y, 1 = O(A*) for A € (0,1) under the
exponential mixing assumption.

Next, we show (ii). We will first show that ||V, ,5(8;)|| — 0 almost surely as ¢ — oo. Under the hypothesis, by (108), we
have

> R [|[Ver)5(0:)]%] < 0. (109)
t=1
By Fubini’s theorem, this implies
Z at||[Vep1,5(04)]|* < oo almost surely. (110)

t=1

We will then use Lemma B.5 (ii) to deduce that [[V;;(8;)|| — 0 almost surely as ¢ — oc. To this end, it suffices to verify

V@150 ) IIP=1IVe1,5(00) 17| = O(a). (111)

Indeed, by using (6) and Lemma B.3 in Appendix B,

1
;Hv‘Pl/ﬁ(gt-&-l) = V1,5(00)|| < 10141 — 6] + [[prox,, 5(0¢+1) — prox,, 5 (64| (112)
2
<7 2)6,4, -6y (113)
p—p
2% — . .
= S Iproie (0 — a1 G(B1,x141)) — proje(61)] (114)
Saf?::L, (115)

where the last inequality uses Assumption 2.3. This estimate and Lemma B.4 imply

|||V‘P1/ﬁ(0t+1)||2 - ||V<P1/ﬁ(9t)||2| (116)
<NVe1/5(0041) = V1,500 ([IVe15(0:1) 1+ V01/5(00)1]) (117)

. 2
<P i (118)

p—pp—p

Hence (111) follows, as desired.

Finally, assume f is continuously differentiable. Choose a subsequence t; such that 0, converges to some limit point
0. We will argue that 6; — 900 almost surely as ¢ — oo and O is a stationary point of f over ®. By (7) and
the first part of (ii), it holds that 16, — 6] + dlst(O 8@(0t)) — 0 almost surely as ¢ — oo. By triangle inequality
000 — 0:]| < 050 — 0] + |6 — ;| this implies 6; — O,
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Next, fix arbitrary 8 € © \ {éoo} Since 8; — 0., = 0, it holds that 8 # 6, for all sufficiently large ¢. Note that

|<Vf<9oo>, "“’°°> - <Vf<ét>, 9“’>’ < |V f(Ba) — V(6]

16 — 6.
. 0—6. 0—6,
+[( Vf(0x), = — - >‘ (119)
< 10 — O [0 — 0

The last term tends to zero since 8; — O and the function 6 — ”g%g;” is continuous whenever 8’ # 6. Also, since V f

is continuous and ét — éoo, the first term also tends to zero as ¢ — oo. Then by using the relation (27), we get

. 0—
Vilx), ————
< /(6) 6 — 0|

D

= > > <Vf(ét), ”Z:ZZ”> —o(1) > —dist(0, dp(8)) — o(1) (120)

for all sufficiently large ¢ > 1. by the first part of (ii) and (7), we have dist(0, dp(8;)) — 0 as t — co. But since the left
hand side does not depend on ¢, it implies that the left hand side above is nonnegative. As @ € © \ {0} is arbitrary, we
conclude that 8, is a stationary point of f over ©. O

E. Proof for Section 3.2

Theorem E.1 (Theorem 3.3 in the main text). Let Assumption 2.1-2.3 and Assumption 3.2 hold and (0);>1 be a sequence
generated by Algorithm 2. Fix p > p and a nondecreasing, diverging sequence (k;);>1. Then, for each T > 1,

(121)

ou p2L Covvo + TL?
E [IVe1/5(07)]1%] < b < AR +VT

T(p—p) apL
N (i1_+p) (VThr + fkToc log(1 + vy 'TL?)) + 5o ZE[At . H”]) (122)
krlog(TL?) 1 «—
=0 (L8 ) L~ NTEA, . 123
( JT +T; [Ate—kse11] (123)

Proof of Theorem 3.3. We proceed as the proof of Thm. 3.1, but with the difference that a; is random and depends on the
history of observed stochastic gradients, with G (6, x;+1) being the last stochastic gradient that «; depends on.

We estimate as in the first chain of inequalities in the proof of Thm. 3.1 with «; dividing both sides and by omitting the
expectation because of the randomness of ;. In particular, we have

a%‘p””(ot“) = ait :f(ét) * g”at“ - 9t”2} (124)
= O% :f(ét) + g Hproje(et — ,G(0y,%141)) — proje (6:) 1 (125)
< O% :f(ét) + g H(et —0,) - atG(et,xm)m (126)
<o :f(?)t) + Lo, - étnﬂ b 0(80 = 01 GO + WO O )
= O%‘ﬁl/ﬁ(@t) +p(0: — 01, G(01,x141)) + atm'G(at’xtH)”Q. (128)

2
Proceeding as in the proof of Theorem 3.1, namely, by taking expectation conditional on F;_y, using Lemma 2.4, using (99),
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and then integrating F;_j out, we obtain

E [;%/ﬁ(em)} -k [;tcm/,a(et)} < /E [f(ét) — [(6:) + gnat - étﬂ

atpAG(Ht,xtH)lIT
2

+E|

412 oOL(Ly + t—1
P DY asnG(e&st)u.]. (129)

s=t—k

+ PR

The only difference from before is that while bounding ||@; — O5_1|| in Lem. 2.4 we did not use the worst case bound for
IG(8s,z5+1)] as in Assumption 2.1.

We use (106) on this inequality with k = k; where k; is nondecreasing, sum for ¢t € {1,2,...,7T} and rearrange to get
. T T T 9
pP—_P ©1/5(0¢) — ©1/5(0141) ] [%PHG 0, x11)|| ]
- [V (6,)
S E(IVeusl00l] < 3E | - >
2L(Ly + )
+ E PE A[t—m] + Tlp > asG(9s,$s+1)] - (130)
t=1 s=t—k¢

We continue to upper bound the terms on the RHS of this inequality. We use Lem. B.6 to bound

T T T
@
ZatHG(BtuXtJrl)HQ = Z - 1G(01, x¢11)|I* < 2 Z GO, xt+1) 1% (131)
= = oo+ S, 1605, %551) 12 =
where we also used that vy > 0. By taking expectation, and using Jensen’s inequality, we get
T T
lz || G( et,xt+1)||2] <SE 2, D NIGOnx1)l2| <24 D E[IG(6:,x141)]?] < 2VTL. (132)
t=1 t=1 t=1

We next use Assumption 3.2 to obtain

T T T
11 1 Vo ¥ TL?
E — = (6:) E 0:)| <C E <C,——. 133
vt (at 1 )@1/;} t : at 1 |(p1/p( t)| > £ ( o 1) > Uy a ( )
i Xj4+1 2 . . . .
since —- — Voot lLG(e” ARDLAE monotonically nondecreasing in .

It remains to estimate the last term on (130) which is the main additional error term that is due to dependent data. For
convenience, let us define a5||G(05,x%s+1)|| = 0 for s < 0. Then we have

T t—1 T t—1
Z Z O‘S||G(08axs+1)”§2 Z as||G(0s, ws541) ],

t=1 s=t—ky t=1 s=t—kr

where o = and the inequality used that k; is nondecreasing.

(07
Voo +325 1G(8;5,%541)]2

By Young’s inequality, we can upper bound this term as

/2 1/4 -1
T T ac Oq,xq+1)||—z<(k;34 ><(;T)1/2 > ase(es,x3+1>> (134)

t=1 s=t—kr s=t—kr
T t—1 2
k +1 Vit
<Z 5 Zk< > aslG(Hs,st)II) (135)
t=1 s=t—kr
T \[ t—1 2
< VTkr + Zk< > ozs||G(08,xs+1)||> , (136)
t=1 s=t—kr
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We continue estimating the last term on RHS. Using the inequality (}_;", a;)> < m .~ a? that follows from Cauchy-
Schwarz, we get

T 2 T t—1
Vit Vi
> o S al6xnl) <X %S 60,50l
t=1 s=t—krp t=1 s=t—kr
\/T T t—1
< TZ Z O‘?HG(Gvas-&-l)HQ
t=1 s=t—kr
\/T kr T—s
=52 > ailGOnx)I, (137)

s=1 t=1

since for any (cs), we have ZZ;I Zi;i_kT cs = (Clogp+Copr+-4co)+(Comkg +C3—kr+--+c1)+ -+ (Cr—kr+

or— kT+1+ ter—1) = (Cl—kg +HC2—pr + T —kp ) +(C2— kT3 kT+ +CT k:T+1)+ +(CO+C1+"'+CT71):
Z Zt 1, ¢t Since in our case ¢; = 0 for t < 1, we have also that ZS 1275 et = ZS 1Zt 1 Ct

We now have that the rightmost summation in (137) is of the form in the first inequality in Lem. B.6. We continue from
(137) by using the definition of ay

T \/E -1 k)T T—s
o ( X adce.xal) < VS S G x) P
t=1

s=t—kr s=1 t=1
kT

S~

—S 2

1 Vot Zz 1 ||G(0wxz+1)||2

w\%
\gE

IG (B, %441

s=1

k
Zlog (1 +og Z |G (64, x¢41))| )

VTkra? _ d
g%log 1+UOIZ||G(9t,Xt+1)||2 .

t=1

q &~
Il

2

where the third line applies the second inequality in Lem. B.6. Using this estimation on (136) gives us

T

f .
> Z 0GB, zas)l| < VThr + YT 1og 1+v012||e 01, x111)]|? (138)
t=1

t=1 s=t—kr

Collecting (131), (133) and (138) on (130) results in the bound

T
b Voo ¥ TI2C, AL
£ Z [IV1/5(00)17] < 0— L\F+Z [p Ap- kt]]
Ly +
+2Lp pl p <fkT f T log <1 + vy 12 1G( 0t7xt+1)|2>> . (139)
t=1
We divide both sides by 7" to conclude. .

F. Stochastic Heavy Ball with Dependent Data

In this section, we focus on stochastic heavy ball method (Algorithm 3), a popular SGD method with momentum, which
dates back to (Polyak, 1964). This method is analyzed for convex optimization in (Ghadimi et al., 2015) and for constrained
and stochastic nonconvex optimization with i.i.d. data in (Mai and Johansson, 2020). Some features of our analysis simplify
and relax some conditions from the analysis in (Mai and Johansson, 2020) even with i.i.d. data, see Lem. F.1 and Remark F.3
for the details.
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Algorithm 3 Stochastic heavy ball (momentum SGD)
1: Input: Initialize g € @ CRP; T > 0; (a¢)e>1; B> 0; 21 >0
2: Optionally, sample 7 from {1, ..., 7} independently of everything else where P(7 = k) = =~ o
t=1
3: Fort=1,2,...,T do:
4 Sample x¢11 from the conditional distribution 7m¢11 = 71 (- | X1, ..., X¢)
5 0:11 < projg (0¢ — arzt)
6: Zep1 = BG(Ort1, Xe41) + 22 (0 — O111)
7
8

Qagy]
: End for
: Return: 61 (Optionally, return 6)

We start with a lemma showing a bound on the norm of the sequence (zj). We use this lemma to simplify some of the
estimations in (Mai and Johansson, 2020) that analyzed the algorithm in the i.i.d. case.

Lemma F.1. Let (2;) be defined as Alg. 3 and let Assumption 2.3 hold. Then, we have
llzes1l? < BL 4 (1 — B)(as/csi1)?||2e]|* forallt > 1 (140)

and

T T
Y Bailzl® < aillzl® + ALY ol

t=1 t=1
Proof. By the definition of z; and convexity of || - ||?, we have
2 2 1-8 2
llze41)” < BIG(Ory1,xe41)l|° + —5—110: — 0111 (141)
Qi

1—pB)a?

< BIG @, x4+ L 2, (142
A1

where the second inequality used that 8, € © and that projg is nonexpansive. Using Assumption 2.3 and dividing both
sides by o? 1 gives the first inequality in the assertion. Also, by multiplying both sides of the inequality by o? 1, we have

ai |z ]1? < Bai GO, i) 1P + (1= B)ai |z (143)

By using Assumption 2.3 in (143), then rearranging, multiplying both sides by ¢°, and summing (143) give

T T
> BtaF||zl® < ~T°aF ylleral® + af |z |® + BL? Y #af, .
t=1 t=1
Removing the nonpositive term on the RHS gives the result. O

Theorem F.2 (extended version of Theorem 3.4 in the main text). Let Assumption 2.1-Assumption 2.3 hold. Let (0;)¢>1 be
a sequence generated by Algorithm 3. Fix p > 2p. Then, for any 8 € (0, 1],

(i) ForeachT > 1:

E [IVe1/5(05)]%] < + (@1//3(90) —inf ;5 +

t=1 Xt

14 B(1 — B))L? &
WAL 5
t=1
T 2 ~ T
Zat]E[A[tfkt,t]] + Wi+ p) ng_l:p) Zktatatk>. (144)
t=1

t=1

1-5 o AL?
+W041||21H +15_

(ii) (Global convergence) Further assume that oy /o y1 — last — coand Yoo | krapay—y, < 0o. Then \|Vg01/ﬁ(ét)H —
0 as t — oo almost surely. Furthermore, 8; converges to the set of all stationary points of f over ©.
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Remark E3. Our analysis is more flexible compared to (Mai and Johansson, 2020) even when restricted to the i.i.d. case. In
this case, we allow variable step sizes ay = % whereas (Mai and Johansson, 2020) requires constant step size a; = o = %

We can also use any 8 € (0, 1] whereas (Mai and Johansson, 2020) restricts to 8 = «. This point is important since in
practice (3 is used as a tuning parameter.

Proof. We proceed as the proof of Thm. 3.1. However, following the existing analyses for SHB (Ghadimi et al., 2015; Mai
and Johansson, 2020) we use the following iterate 6; = 6; + % (6 — 0;-1) and also 6; = prox,, / 5(6¢). The useful

property of 6, exploited in (Mai and Johansson, 2020) with constant step sizes (and also in (Ghadimi et al., 2015) in the
unconstrained setting), is that

2

- P 1-— A 1 .
[Bes1 = B1lP = || Bus + =7 (Ores — 00 = b1 = 516121~ [(1 - 981 + 58] (145)
1 R
< @Hot — vz — [(1— B)0: + 564]|? (146)
= [0 — 60 — 1, G(B:, %)%, (147)

where the inequality used that 64, 0,1, 6, and their convex combinations are feasible points and the projection is nonexpan-
sive. The last step is by simple rearrangement and using the definition of z;.

On the first chain of inequalities in Thm. 3.1, we evaluate @y /; at 0,1 instead of @, and then use the inequality in (147)
to deduce

E [‘Pl/ﬁ(etﬂ) ftk} <E [f(ét) + g”ét+1 — 0, ’ftk} (148)
S E |:f(ét) + g”ét — atG(Ht,xt) — étHz ‘ftk:| . (149)
We expand the square to obtain
_ L 12 . .
H"f — a,G(6,,x;) — ”tH — 18, — 0,2 — 20,(8, — 8,,G(8:,%,)) + a2||G (81, x,)||2. (150)

By using the last estimate on (149) and using the definition of ¢y /5, 0, along with Assumption 2.3 gives

E [‘Pl/ﬁ(ét+1)

ft—k] < E[@l/ﬁ(ét) — pag(0; — 0,,G(0,,%,))

~ _ haiL?
_ w<0t —0:1,G(6:,%x¢)) + poi L

ft_k] . (151)

We estimate the third term on RHS by Young’s inequality, the nonexpansiveness of the projection and Assumption 2.3

—w<9t — 01, G(0t7xt)> < [3(12;36) (H@t — 0,5,1”2 + a?HG(@t,Xt)HQ) (152)
< ‘3(127;6) (af_[lze—1]* + a7 L?) . (153)
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We insert this estimate back to (151) and use Lem. 2.4 as in the proof of Thm. 3.1 to obtain

_ _ ) R H(1l —
| e1/s@u) | Fooi| < E[i1s(On) - pauls — 00,60 x) + Dot alp asy
H(2 — B)a? L2
+ p( 26’3 t ]:tk::|
N (2 — 2L2
<E [@1/ﬁ(0t) ]:t—k:| - ﬁat<9t — 0, Exr [G(Oux)]) + p(fﬁ)at
2172 2L2L, + pL2
+ oy (p Ak +kﬁl_p'°at_k) (155)
e
+ p(Qﬂﬁ)afllE [||z“||2 ’ftk} . (156)
‘We now estimate the second term on the RHS
(0; — 01, By [G (01, 2)]) > £(8) — f(By) — guet — 0,2 (157)
— p 0.2 0 Pig 0.112 p 0.112
= (1000 + 510~ 0.1%) ~ (160 + §10.~ 0417 - Slo. - 01 (158)
+ 2160~ 817 — £116. — 6, (159)
b - 5 _ ho. (1 — p)2a?_
> 210 — 0.7 - 16, - 8417 > D10, - 0P - L (160)

where the first inequality is due to p-weak convexity of f, and the second inequality is by p — p-strong convexity of
f()+2 21| - —6;|* with the optimizer 6 and p > 2p. The third inequality is by nonexpansiveness of the projection and the
deﬁnltlon of ;.

We use (160) on (156), insert k = k;, integrate out F;_ and sum to get

. A i T .5 2712
> P [0 — 0,7 < ~E[p1/5(0r1)] +0175(00) + 3 W
. t=1

T - 2 2 T 9 )
p(l—ﬁ) Qg 2 . 4L 2,2 Ly +pL
+;TEH%_1H +z_:pat ﬁ_p]E[A[t kt,t]]+ktﬁat_kt

T A 1—
+Zp<2ﬂﬁ)a§11€[|zt_1u2]- (161)
t=1

Using Lem. F.1 for the terms involving ||z||? and using || V1,,(8;)|| = p/|6; — 8, | finishes the proof of (i) after simple
arrangements.

Next, we show (ii). The argument for the second part is identical to that of Theorem 3.4 (ii). The argument for the first part
is also similar to that of Theorem 3.1 (ii) with a minor modification. Namely, from (161) and the hypothesis,

T
> Pk (6 - 6,)2] < . (162)
t=1
Using Fubini’s theorem and (6), this implies
T
Z o ||[Ve1,5(0)]|> < oo almost surely. (163)

t=1

Hence by Lemma B.5, it suffices to show that

[IVe1/5(Bes1) 1> — Vo1/5(0)]1%] = O(ow). (164)
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Proceeding as in the proof of Theorem 3.1 (ii), the above follows if ||z;|| is uniformly bounded.

It remains to show that ||z|| is uniformly bounded. For this, it suffices to show that ||z||? < 2L for all sufficiently large
t > 1. We deduce this from Lemma F.1. If 3 = 1, the lemma implies ||z||* < L for all ¢ > 1, so we may assume 3 < 1.
Proceeding by an induction on ¢, suppose this bound holds for z;. Then by Lemma F.1, we have

lze4al* < BL +2(1 = B) (e /as41)? L. (165)

Since 8 < 1 and ay/asq1 — 1 ast — oo, there exists to > 0 such that for all t > tg, (1 — 8)(a;/a41)? < 1 — B/2.
Therefore, for all ¢ > t,

lzeal” < BL + (1 = B/2)(2L) = 2L. (166)

This shows the assertion. O

G. Proximal SGD with Dependent Data

In this section, we describe how our developments for stochastic gradient method extends to the proximal case, using the
ideas from (Davis and Drusvyatskiy, 2019). In particular, the problem we solve in this section is

0" € arggeflg)in (@(0) = f(e) + 7’(0)) ’ f(e) = Ex~r [Z(O, X)} ) (167)

where 7: R? — R U {400} is a convex, proper, closed function. In this case, in step 1 of Algorithm 1, we use prox,,,
instead of projg, to define 0.
Recall also that

0 = prox,,,;(6:).

In the projected case, when () is the indicator function of the set ®, we had that 9t € O. This was used, for example,
in (93) to use nonexpansiveness for bounding ||0;+1 — 6;||? since ;1 = projg(0; — cg;). In this case, for the same step,
one needs an intermediate result derived by (Davis and Drusvyatskiy, 2019).

Lemma G.1. (Davis and Drusvyatskiy, 2019) Given the definition of 6., we have fort >0
ét = proxatr(atﬁet — Oét’lA)t + (]. — Oétﬁ)ét)7
where 0, € Of (6,).

We include the following result combining the ideas from Lem. 2.4, Thm. 3.1 and (Davis and Drusvyatskiy, 2019) for
proving convergence of proximal stochastic gradient algorithm with dependent data.

Theorem G.2. [Theorem 3.5 in the main text] Let Assumption 2.1-2.3 hold, r be convex, proper, closed and (0¢)>1 be a
sequence generated by Algorithm 1 where we use prox,,,,. instead of projg in step 1. Fix p > p. For eachT' > 1,

E [[[Ver/,(07")]7] (168)
p2 2 1 (00) —inf @y, T 2L + 5) -
<P _ {@1/p( o)A 21n P1/p 4 220%2 i w Zktat%_kt (169)
P=P s Ok pL t=1 pP=P =
T
+ ﬁ_p;atE[A[tkt,t]]]' (170)

Proof. We start the same as Thm. 3.1 and note by the definition of 9t+1
21/5(0r01) < 9(80) + E]16res — B0l a7
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We next estimate §||0t+1 — 6,]|? similar to (Davis and Drusvyatskiy, 2019) by using 1-Lipschitzness of prox,,,. Let
0 =1 — ayp and estimate

10¢1 — 0:]1* = || prox,,,.(0: — crgs) — prox,,,,.(ep0y — aydy + 66,)||? (172)
< 82|10y — 6,2 — 2600, (8; — 0, G(0;,%;) — 0;) + a2||G(0y,x;) — 02, (173)

where we skipped some intermediate steps, which are already in (Davis and Drusvyatskiy, 2019). We note that by Lem. 2.4,
we have

- 25atIE |:<0t — ét, G(Bt,xt» ‘ ]:tk::| = —26at<0t - ét7Exwﬂ[G(0t7Xt)]>+

2L2 2L%(L1 + p
+ 280y ( Ay + kwatk) . (174)
p—p p—p

We take the conditional expectation of (171) and use (173) with (174) to derive

E [901//3(015+1)

ft—k] <E Lﬁ(ét)

ft_k] 520, — b,

— 25at<0t — éhExwﬂ[G(Oh Xt)D — 260@]1‘: |:<0t — éta _ﬁt>

ft—k]

. 412 2L2(Lq + p
+aE |:|G(0taxt+1) — b7 ‘ft—k} + 20y (p — pA[t—k,t] + k(_lpp)at—k> (175)
We integrate out JF;_j, to obtain

E [p1/5(0141)] < E Mét)} 4826, — 0,]% — 25c4E {<0t 0, B [G(0,x)] — 1)

. 412 2L%L4 + pL?
+ OthE [||G(0t7xt+1) — ’UtHQ] + 20¢; (ﬁ — pE[A[tfk,t]} + 4kﬁlppatk) . (176)

Next, we use that the subdifferential of p-weakly convex g is p-hypomonotone (see (Davis and Drusvyatskiy, 2019)) and
Ex~=[G(0:,%x)] € Of(6;) and 0, € Of(0;) to derive

(0 — éhExwﬂ[G(ahxtﬂ — ) > —p||0: — étHz- (177)

We combine (177) with ||6]|> < L? (see (Davis and Drusvyatskiy, 2019)) on (176) to derive

E [01/p(01+1)] < E[01/5(01)] = p(p — p)ouEl|0; — 0:]* + doF L (178)
AL? 2L%(Ly + p
+ 250[t ( = ]E[A[t—k,t]] + kglp)atk) . (179)
p—=p pP=p
We sum the inequality and argue similarly as in the proof of Theorem 3.1 to finish the proof. O

H. Proofs for Section 3.6

Lemma H.1. Let Assumptions 2.1, 2.2, 2.3 hold, © be compact, and Ay_y, 1 = O(N¥) for X\ < 1. Let an algorithm
output 0, (for example, a randomly selected iterate) such that E||0; — projg (8; — Vf(0,))|| < € with O(e=*) queries to

VU(8,x). Then, for ,,1 = projg (0,5 - @f(@t))) with V f(8;) = % Zil VU0, xD) with N = O(~2) samples, we
have that y ~

E [dist(O,a(f—l— L@)(0t+1)):| <e with O(e™) samples.
Proof of Lemma H.1. By the definition of ét+1, we have that

0,5 - 6]“(01‘/) - ét+1 € 8L@(ét+1).
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As a result, we have

min ~ [[Vf(Bes1) + 0|

€N (Bri1)

E [dist(O, af + L@)(ém))} —E

<E[Vf(Bis1) — i1 + 0, — VF(6,)].

For convenience, let 8,1 = proje (6 — Vf(6;)). We continue estimating the last inequality by using this definition,
triangle inequality, nonexpansiveness of projg, and p-smoothness of f

E[dist(0, 0(/ + t0)(8111))|
<E[16: = 81l + VS (Bi11) = VO + IV (6 — V£(8)]]
<E[(1+p)l10: — 0ol + [V F(8) — VF(80)]]
<E[(1+ ) (180 = Buiall + 18041 — Buiall) + V76 — V(6]

<E[(1+ )80 = 81l + 2+ ) [VF(8:) = V(O]

By the assumption in the lemma, recall that we have ||0; — ét—H | < e, therefore we have to estimate the last term in the last

inequality. We use Lem. 7.1 in (Lyu, 2022) (see also Lemma B.7) with ) = V/ to get E|[Vf(8;) — V(0| = O(N~1/?)
with NV samples and finish the proof. O

Proof of Theorem 3.9. When g is smooth, we can use the results in Sec. 2.2 in (Davis and Drusvyatskiy, 2019) to show that
for any 0,

3
1G1/26(0)I1 = 51IVeer/5(O)]]-

This establishes that the upper bound of Thm. 3.1 also upper bounds the norm of the gradient mapping [|G /25(6)||. By
invoking Thm. 3.1 with a randomly selected iterate, this establishes the bound required for Lem. H.1 and then applying
Lem. H.1 gives the result. O

I. Proof and discussions for Section 4

Proof of Corollary L.2. Follows immediately from Theorems 3.1, 3.3, 3.4 and 3.9. For the last statement for squared
Frobenius loss, see (Mairal et al., 2010) for verifying Assumption 4.1 and Assumption L.1 and recall that Assumption L.1
implies Assumption 2.1. O

J. Details about the experimental setup

For our experimental setup, we implemented the SGD based algorithms we have in this paper. The implementation of SMM
uses one step of dictionary learning update given in (Mairal et al., 2010) with the special step size therein. We did not tune
SMM further since the algorithm is well-established and specialized for ODL tasks, since the work of (Mairal et al., 2010).

For projected SGD and projected SGD with momentum, we used a step size of the form

c
oy = ,
CT Vil
and tuned ¢ € [0.01, 1]. In (Mairal et al., 2010) and (Zhao et al., 2017), the authors noted that using a step size oy = —+

cot+cs
and tuning c;, ¢z, c3 for SGD seemed to work well. We did not choose this rule in order not to tune three different parameters

and since, as we show with our analysis, the best complexity is attained with a scaling of % for the step size. Consistent
with (Mairal et al., 2010; Zhao et al., 2017), we also observed further tuning with such a rule enhances the empirical
performance of SGD-based methods. However we refrain from such a specialized tuning, since our goal is not to provide an
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exhaustive practical benchmark, but to enhance the theoretical understanding of algorithms whose practical merit is already
well-established in a wide variety of tasks (SGD, SGD with momentum and AdaGrad).

For AdaGrad, we picked the step size
c

ay = 9
VI IGO0 x| +

withe = 107% and ¢ € [0.1, 1] is tuned.

K. Convergence of PSGD in the state-dependent case

Theorem K.1 (extended version of Theorem 3.8 in the main text). Let Assumptions 2.1, 3.6, 3.7, and 2.3 hold. Let (Ht)t21
be a sequence generated by Algorithm 1. Fix p > p. Then we have for each T' > 1 that

A272 ; T
ou p°L 1 ©1/5(01) —inf oy 1 5
E Vo105 < = [ - +-) « (180)
V61603 < 7= o o 3 2
T
) A 4LC 2L2C _
= [al (61 — 612 + c3) + L2 4 30 223t (181)
Sk L2 2 p-p = p—p
T T
b 2LC.
+ ZCQO[t (CttlL-l- = p O[tlL> + Z |Oét,1 - O[t| = 2 . (182)
— p—p — p—p

In particular, with o,y = % for some ¢ > 0, we have that

E [|Ve1,,(07)]]] < e with 0 (e7*) samples.

Remark K.2. Even though our main focus is operating under Assumption 2.1 which is the main assumption on the data
used in most of the other works we compare with (Lyu, 2022), we also give this theorem for completeness. This theorem
operates under another assumption depending on the solution of Poisson equation and is used in (Karimi et al., 2019; Tadié
and Doucet, 2017). By using these techniques, we show that we can extend the guarantees in these papers to the constrained
case. One difference is that in the constrained case, we need a slightly stronger assumption on the norms of the gradients,
see Assumption 2.3.

Proof. We will follow the proof of Theorem 3.1 until (95) which is where the main error term due to non-i.d.d. data appears.
We rewrite this inequality for convenience, after taking total expectation and summing the inequality for ¢ > 1

T

T T T 5.
N A (6%

D B [p15(0041)] <D B [01/5(00)I1°] + ) pouE(0; — 61, G(B1,x411)) + ) %E”G(Ot’xtﬂ)\\z

=1 1 =1 =1

o~
Il

[
B

T
E [01/5(00)[1°] + > pou(B; — 01, G(B1,x141) — V(6y))
t=1

o~
Il

1

E

T 2 A
+3 " hauE(D, — 0, V(0 + Y %EHG(GU 1) (183)

t t=1

I
—

We have to then bound for the second term on the right-hand side:

T
EﬁZat<ét - 0t, Vf(@t) - G(@t,le)) . (184)

t=1
We can then simply follow the same strategy as (Karimi et al., 2019) to obtain the result. For clarity, we write down these
steps explicitly in the rest of this proof.

In particular, by (18), we have

T

T
ﬁZ%(ét — 6y, Vf(et) - G(9t7$t+1)> = —ﬁzat<ét -0, G(0t7Xt+1) - PBtG(0t7Xt+1)>'
t=1

t=1
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Separating the inner product on the right-hand side to two parts and shifting indices give us

T T
=) 0By — 0;,G(01,%111) — Po,G(61,%141)) = —n1 (01 — 01,G(01,%2)) — > _ s (0; — 0y, G(04,%¢11))
t=1 =2

T
—ar(0r — 07, —Po, G(O1,x111)) — Zatq@tq — 8 1,—Ps, ,G(8;1,%x1)).

t=2

To bound the two sums in the right-hand side, we add and subtract ZtT=2 (8, — 0, Pg,G(0;,%,)) to get

T T
- Z%@t — 0y, G(at,XtJrl)) - Zat71<ét71 -0, _PGt_lé(Otfl»Xt»
t=2 t=2
T R T A
= - Zat<0t — 04, G(Otaxt-H) - PBtG(OhXt» - Zat<0t - OtypﬂtG(etaxt»
t=2 t=2
T A
- Zat—1<0t—1 —0i_1,—Po, ,G(0:-1,%y))
t=2
T T
Z -0,,G 0t7Xt+1) Pe,,G(BnXt)) - Zat<9t - Ht,Pth(Bt,xt) - Pe,,,lG(et—l,Xt»
t=2 t=2
T T
- Zat«et—l —0; 1) — (8;—8,),—Ps, ,G(0;_1,%:)) Z ar 1 —ap){0;1 —0;_1,—Pg, ,G(0;1,%1)).
t=2 t=2
Plugging back to (184), we get
T R R
]EZOMQt =0, Vf(0:) — G(01,%x141)) <E {—061<91 —01,G(01,%2)) — ar(6r — 07, _PGTG(0T7XT+1)>}
t=1
T
— EZatwt — gt; G(0t7Xt+1) — Pth(Ot,Xt»
t=2

—-E at<ét —Gt,Pth(0t7xt) —Pot,lé(gt—hxt))

t=2
T A A~ A
—EY (61— 0:1) — (6: — 6:),—Po,_,G(6:1,%1))
t=2
T A~ A
- EZ(O%A —)(04—1 — 011, —Py, G(0:_1,%4)). (185)
t=2

We bound the right-hand side in order. First

R . R . a1 2a7 LC
E [~a1(8 — 01, G(01,%2)) — ar(Or — 01, Po, GOr.xr1))| < 5 (60— 87+ CF) + =2,
by Assumption 2.3, Assumption 3.7 and Lemma B .4.
Second, we use the tower rule and F; measurability of 8; — 9t where F; := o(Xo, 00, X1,01, ..., X¢, 0;), with Assump-

tion 3.6 (used with H(X;) = G(6:,x:)) to get
T R R R T R ) R
]EZO%(O,: — 0t, G(et,xt+1) — Pth(Ht,xt» = EZO@(Ot — 015,E[G(0t7xt+1) | .Ft] — Pth(et,Xt)> = 0
t=2 t=2
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Third,

T T
_Ezat<ét - 9t7P9tG(0t7Xt) - POt,lé(etfhxt» < EZ CBCYtHét - GtHHet - 91571”

t=2 t=2

T
S ]EZ 2L2(i'3atat,17
P pP—p

where the first step used Assumption 3.7 and the last step used the definition of 8;, nonexpansiveness of projection, Assump-
tion 2.3 and Lemma B .4.

Fourth, we have

T T
“EY " ai{(@r-1 — 0i1) — (B — 0.), ~Po,_,G(0:-1,%)) EY_ Coar ([0 — 0-1]| + 6 — 0,1 )

t=2 t=2

p

T .
< Zczat <0¢t—1L + ﬁf at—lL) .
=2

where the first step used Assumption 3.7, and triangle inequality, and the last step used the definition of 8, nonexpansiveness
of projection, Assumption 2.3 and Lemma B.3.

Fifth, by using Lemma B.4 and Assumption 3.7, we have

T

T 2LC
—EZ(Oét—l — )01 — 0,1, —Po, ,G(B;_1,%x;)) Z Qo1 — o= . ;
=2 =2

Plugging these five estimations to (185) bounds the error term in (184). Then plugging this to (183), we finish the proof
after following the same steps as Theorem 3.1. O

L. Convergence of Online Dictionary Learning with first-order methods

Assumption L.1. For each X and 0, the function 6 — ¢(X,0) = infyce’ (d(X,0H) + R(H)) is L-smooth for some
L>0.

In (Mairal et al., 2010), it was shown that both Assumption 4.1 and Assumption L.1 are verified when d satisfies
d(X,0H) = | X — 0H|[3 + rol H|[7 + A H]|1, (186)
where k2 > 0 and A > 0. Then the following result is a direct consequence of our main results, Theorems 3.1, 3.9, 3.3, and

3.8.

Corollary L.2. Consider (22) and assume Assumption 4.1. Suppose we have a sequence of data matrices (X,);>o and let
(6:)>1 be the sequence of dictionary matrices in ®@ C RP*" obtained by either of the three algorithms: Projected SGD
(Algorithm 1), AdaGrad (Algorithm 2), and stochastic heavy ball (Algorithm 3). Suppose

(al) O is compact and the sequence of data matrices (X¢)¢>o satisfy the assumption Assumption 2.2 and has a compact
support;

(a2) For each X, the function @ — (X, 0) is p-smooth for some p > 0 over ©.

t € {1,...,T} and compute éf—H as in Theorem 3.9 and have the complexity
E [dist (0, o(f + L@)(ét+1)>:| < e with T = O(¢~*) samples. Furthermore, Projected SGD and SHB converges

almost surely to the set of stationary point of the objective function for (22). In particular, the above results hold under
Assumption 2.2 and when d is as in (186).

Then in all cases, we sample
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