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Abstract
Orthogonal Frequency Division Multiplexing
(OFDM) is the workhorse of current 5G de-
ployments due to its robustness in quasi-static
channels and efficient spectrum use. However,
in high-mobility scenarios, OFDM suffers from
inter-carrier interference (ICI), and its reliance on
dense pilot patterns and cyclic prefixes reduces
spectral efficiency significantly. In this work,
we propose Deep-OFDM : a learnable modula-
tion framework that augments traditional OFDM
by incorporating neural parameterization. In-
stead of mapping each symbol to a fixed re-
source element, Deep-OFDM spreads informa-
tion across the OFDM grid using a convolu-
tional neural network modulator. This modu-
lator is jointly optimized with a neural receiver
through end-to-end training, enabling the sys-
tem to adapt to time-varying channels without
relying on explicit channel estimation. Deep-
OFDM outperforms conventional OFDM when
paired with neural receiver baselines, particularly
in pilot-sparse and pilotless regimes, achieving
substantial gains in BLER and goodput, partic-
ularly at high Doppler. In the pilotless setting,
the neural modulator learns a low-rank struc-
ture that resembles a superimposed pilot, effec-
tively enabling reliable communication without
explicit overhead. These results highlight the po-
tential of transmitter–receiver co-design for ro-
bust, resource-efficient communication in chal-
lenging channel conditions, paving the way for
AI-native PHY designs in next-generation wire-
less systems.

1. Introduction
Orthogonal frequency-division multiplexing (OFDM) is
the dominant waveform in 4G and 5G networks. It trans-
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forms a multipath fading channel into a set of parallel flat-
fading subchannels, enabling simple equalization and ef-
ficient use of the spectrum. As a result, OFDM delivers
strong average-case performance in quasi-static channels,
making it well-suited for current 5G deployments.

However, this performance degrades significantly in high-
mobility environments, where the wireless channel varies
rapidly in both time and frequency. In such settings (eg -
vehicular communications and high-speed rail scenarios),
Doppler spread destroys subcarrier orthogonality, causing
inter-carrier interference and rendering the standard one-
tap equalizer ineffective (Ai et al., 2014). Moreover, pilot-
aided channel estimation becomes unreliable as coherence
time shrinks, and pilot symbols must be injected more fre-
quently to track the channel.

To compensate for these effects, conventional systems re-
sort to increasing pilot density and extending the cyclic
prefix (CP). While these measures help maintain perfor-
mance, they reduce spectral efficiency: pilots consume
time-frequency resources that could otherwise carry data,
and the CP occupies a growing fraction of the OFDM sym-
bol; particularly at high carrier frequencies or with fewer
subcarriers, where the absolute delay spread remains fixed
but symbol durations shrink. These issues are particularly
severe in uplink scenarios, where transmit SNR is low and
efficient resource usage is crucial.

These limitations are expected to intensify with the de-
mands of next-generation systems. Proposed 6G standards
call for ultra-reliable, low-latency communication at data
rates up to 1 Tbps, and support for mobility up to 1000
km/h (Tong & Zhu, 2022; Chafii et al., 2023). Meeting
these goals will require methods that are fundamentally
more robust to rapid channel variation, and that can de-
liver high performance even under sparse pilot conditions.
While recent efforts have proposed new waveform designs,
such as OTFS (Hadani et al., 2017), to better handle chan-
nel dynamics, we take a complementary approach in this
work.

Designing new waveforms is challenging, as it requires bal-
ancing spectral efficiency, robustness, and implementation
feasibility. OFDM represents a carefully engineered trade-
off across these axes, and entirely replacing it risks losing
critical system-level advantages. Instead, we adopt a hy-
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brid approach known as neural augmentation—building on
the OFDM framework while addressing its limitations us-
ing learning-based techniques. This paradigm has shown
promising results in areas like source and channel cod-
ing (Kim et al., 2018; Hebbar et al., 2022; Ankireddy &
Kim, 2023; Li et al., 2023; Hebbar et al., 2024).

Following this principle, we retain the OFDM structure but
learn a neural modulation scheme tailored to time-varying
channels. Recent work has shown that neural receivers can
replace traditional OFDM receivers, achieving competitive
performance without relying on explicit channel estima-
tion (Ye et al., 2017; Honkala et al., 2021; Wiesmayr et al.,
2024). These data-driven receivers are not restricted to
conventional constellations and can adapt to arbitrary mod-
ulation patterns, often with improved robustness in time-
varying conditions.

Previous work has indicated gains in transmitter co-design
with neural receivers, including learning better constella-
tions, and combining this with novel piloting schemes like
Superimposed pilots (SIP) (Stark et al., 2019; Aoudia &
Hoydis, 2021; Madadi et al., 2023). In our work, we
propose Deep-OFDM : a two-dimensional time-frequency
spreading scheme implemented via a learnable neural mod-
ulator. Unlike full joint coded modulation approaches,
which learn both coding and modulation end-to-end (Jiang
et al., 2019; Makkuva et al., 2021; Jamali et al., 2022; ?)
but face scalability issues, Deep-OFDM retains the practi-
cal modularity of standard systems by fixing LDPC cod-
ing and decoding. This hybrid strategy captures many
of the robustness benefits of joint optimization, while re-
maining scalable and easy to integrate into existing OFDM
pipelines. Our focus is on high-mobility channels where
conventional designs degrade, and we find that perfor-
mance gains from neural modulation are most pronounced
under sparse pilot configurations, where traditional re-
ceivers exhibit diminishing returns from further pilot in-
sertion.

Our main contributions are summarized as follows:

• We propose Deep-OFDM, a neural modulation
scheme that performs learnable time-frequency
spreading, explicitly optimized to align with the
inductive biases of CNN-based neural receivers.
This design yields substantial performance gains in
doubly-selective channels.

• We characterize the interplay between pilot density
and neural modulation. Our results show that Deep-
OFDM achieves its largest improvements under pilot-
sparse settings.

• We demonstrate that Deep-OFDM maintains high per-
formance even in the pilotless setting, with only mod-

est degradation relative to pilot-assisted configura-
tions; substantially improving spectral efficiency.

2. System Model and Problem Formulation
2.1. System Model

We consider a single-input single-output (SISO) communi-
cation system. At the transmitter, the message bit stream
b ∈ {0, 1}K , is encoded using a rate K

N LDPC code, pro-
ducing a codeword c ∈ {0, 1}N . The encoded sequence
is mapped to complex symbols using either a standard 2m-
QAM constellation or a learned constellation, resulting in
the modulated symbols s ∈ CN .

These symbols are transmitted over a 5G NR-compliant
OFDM system with nS subcarriers and nT = 14 OFDM
symbols per slot. The frequency-domain symbols are re-
shaped into a time-frequency grid X ∈ CnS×nT and trans-
formed to the time domain using an inverse FFT, followed
by cyclic prefix (CP) insertion.

We assume a time-varying multipath channel modeled us-
ing the clustered delay line (CDL) model (3GPP, 2022).
The UE moves at speed u m/s, inducing a maximum
Doppler frequency given by fd = ufc

c , where fc is the car-
rier frequency, and c is the speed of light. At the receiver,
after CP removal and FFT, the received time-frequency grid
Y ∈ CnS×nT can be modeled as:

Y = HX+W (1)

where X ∈ CnS×nT is the transmitted symbols in the time-
frequency grid, X ∈ CnS×nS is the efective channel ma-
trix, and W ∈ CnS×nT is AWGN noise.

In low-mobility settings, H is approximately diagonal, but
in high-mobility environments, the channel varies within
an OFDM symbol duration, breaking the orthogonality be-
tween subcarriers. This results in inter-carrier interference
(ICI), where H becomes a full matrix with non-zero off-
diagonal elements. The magnitude of these off-diagonal
elements increases with mobility, significantly degrading
the performance of conventional equalization techniques.

2.2. Baselines

With perfect channel state information (CSI), the Linear
Minimum Mean Square Error (LMMSE) equalizer is given
by:

WLMMSE,t = HH
t

(
HtH

H
t + σ2

wI
)−1

(2)

In practice, the channel Ht is unknown and must be esti-
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Figure 1: End-to-end optimization of transmitter and receiver.

mated from pilot symbols. The standard least-squares (LS)
estimate of the diagonal of Ht at pilot subcarriers is:

Ĥt,P = diag
(
Yt,P

Xt,P

)
(3)

where Pt ⊂ {1, . . . , nS} denotes the set of pilot subcarrier
indices in the t-th OFDM symbol, and Xt,P ,Yt,P ∈ C|Pt|

are the transmitted and received pilot symbols, respectively.

Channel estimates at non-pilot subcarriers are obtained
through interpolation over Ĥt,P .

This approach performs adequately in low-mobility scenar-
ios but suffers from several limitations in high-mobility en-
vironments: 1) Violation of the time-invariance assumption
within an OFDM symbol, 2) Inability to capture ICI (off-
diagonal terms of Ht), 3) Standard interpolation methods
cannot accurately capture rapid channel variations.

3. Deep-OFDM and end-to-end optimization
3.1. Neural modulation and receivers

Neural network-based receivers (NRx) have emerged as
promising alternatives to traditional signal processing
methods (Honkala et al., 2021; Balevi & Andrews, 2019;
Aoudia & Hoydis, 2021; Pihlajasalo et al., 2021). These
approaches unify channel estimation, interpolation, and
demapping into a single trainable model. The NRx takes
the received OFDM frame Y, possibly along with pilots,
and directly predicts the transmitted bits b̂. Such receivers
have demonstrated strong robustness in dynamic channels,
particularly in pilot-sparse scenarios. Moreover, recent
work has demonstrated the practical feasibility of such sys-
tems through the real-time deployment of a 5G standard-
compliant NRx, incorporating both hardware and model
optimizations (Wiesmayr et al., 2024).

The availability of such trainable receiver modules opens
the door for end-to-end system optimization. Specifically,
in this work, we focus on mitigating the effects of mobility
on OFDM systems by joint optimization of the transmitter
and neural receiver, as depicted in Figure 1. Prior work has
explored Tx-Rx co-design in this setting, including constel-
lation shaping and super-imposed pilot design (Stark et al.,
2019; Aoudia & Hoydis, 2021; Madadi et al., 2023).

These methods maintain a one-to-one mapping between
transmit symbols and resource elements (REs). In contrast,
our method leverages the inductive bias of CNN-based neu-
ral receivers (NRx), which process local neighborhoods of
subcarriers and time slots. To align with this structure,
we introduce Deep-OFDM - a modulation scheme that re-
laxes the symbol-to-RE mapping by spreading information
across the time-frequency grid using a CNN-based modu-
lator. This learned spreading introduces controlled redun-
dancy and enhances time-frequency diversity, significantly
improving robustness in high-mobility channels.

3.2. Deep-OFDM Architecture

In conventional OFDM, the nS×nT resource grid is popu-
lated with the modulated symbols with one symbol per RE.
In contrast, Deep-OFDM uses a CNN encoder to spread
the modulated symbols across time and frequency, enabling
learned redundancy. For simplicity, we assume all REs are
available for data/pilot (i.e., no DC/guard carriers), to iso-
late the effect of neural modulation. We impose an average
power constraint per OFDM frame to ensure parity with
conventional systems and restrict our study to the SISO set-
ting.

Neural Receiver. We adopt a CNN-based architecture for
the neural receiver (NRx), closely following the design in-
troduced in (Aoudia & Hoydis, 2021). The core building
block is a ResidualBlock, which contains two con-
volutional layers. To enhance parameter efficiency with-
out compromising performance, we replace the standard
Conv2D layers with SeparableConv2D, as illustrated
in Fig. 2b. The overall architecture comprises an input
convolution layer, followed by five residual blocks, and an
output layer that directly predicts the log-likelihood ratios
(LLRs) of the transmitted bits, as shown in Fig. 3. The in-
put to the NRx consists of the received OFDM frame (i.e.,
the complex-valued time-frequency grid after FFT and CP
removal), along with the positions and values of any known
pilot symbols if present. This setup enables the receiver to
flexibly operate in pilot-rich, sparse-pilot, or fully pilotless
scenarios.

Neural Modulator. To introduce time-frequency diver-
sity at the transmitter, we design the neural modulator as
a CNN. While we use a similar architecture as the NRx
(Figure 2), we choose a smaller number of convolution
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Figure 2: Neural Modulation architecture

channels to minimize the computational burden on the UE
during transmission. The modulator takes as input a time-
frequency grid populated with complex-valued symbols,
where each symbol is generated from a learnable constel-
lation mapping applied to encoded bits. This constellation
is optimized jointly with the modulator and receiver as part
of the end-to-end training process. The modulator outputs
a full OFDM frame that spans all subcarriers and OFDM
symbols. The final architecture choices for the neural mod-
ulator and neural receiver are shown in Tab. 1. Empiri-
cally, we observed that reducing the number of parameters
in the neural modulator had a negligible impact on perfor-
mance, suggesting that the encoder’s role in introducing
time-frequency diversity can be fulfilled with a lightweight
architecture. We leave a more detailed analysis to future
work.
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Layer
Channels

(Modulator)
Channels
(Receiver)

Kernel
size

Dilation
rate

Input Conv2D 36 48 (3,3) (1,1)
ResNet block 1 72 96 (7,7) (7,2)
ResNet block 2 72 96 (7,5) (7,1)
ResNet block 3 72 96 (5,3) (1,2)
ResNet block 4 72 96 (3,3) (1,1)
ResNet block 5 72 96 (3,3) (1,1)
Output Conv2D 2 2m (1,1) (1,1)

Table 1: Architecture details for neural modulator and receiver.

Training. We simultaneously optimize the neural modula-

Parameter Symbol (if any) Value

Number of OFDM symbols nT 14 (1 slot)
Number of subcarriers nS 128
Carrier frequency – 2.6GHz
Subcarrier spacing – 15 kHz
Cyclic prefix duration nCP 6 symbols
Channel model – CDL-C
Learning rate – 10−3

Batch size for training S 128
Modulation order m 6
UE speed range (training) – 0m/s to 40m/s

Table 2: Training parameters

tor and neural receiver blocks by optimizing the end-to-end
binary cross entropy (BCE) loss, using the rate as

Lrate = −
(
1− LBCE

ln 2

)
=

LBCE

ln 2
− 1. (4)

As will be evident from results in Sec. 4, our approach is
particularly applicable in scenarios where pilot-based chan-
nel estimation is ineffective, such as in very high mobility.

4. Results
In this section, we evaluate the reliability and robustness of
the neural modulator scheme introduced in Section 3.

Evaluation setup. We conduct extensive experiments to
evaluate our proposed neural modulation approach against
multiple baselines. Our simulation environment follows the
system model introduced in Section 3. Key training param-
eters are outlined in Table 2. To reduce training complex-
ity, we omit LDPC encoding/decoding during training and
reintroduce a rate-1/2 LDPC code (blocklength equal to the
total number of resource elements in the OFDM grid) only
at inference. All models are trained on the CDL-C chan-
nel model, with user mobility uniformly sampled from 0 to
40 m/s, covering both stationary and vehicular scenarios.
Simulations are implemented using the GPU-accelerated
Sionna framework (Hoydis et al., 2022). To ensure a fair
comparison, we allocate an identical total parameter budget
to both our end-to-end neural link and the QAM + neural
receiver (NRx) baseline. In this way, any performance dif-
ferences arise from how complexity is apportioned between
transmitter and receiver, rather than from an overall param-
eter increase. We evaluate performance at three mobility
regimes - low speeds (10m/s = 22mph), medium speeds
(40m/s = 88mph), and high speeds (60m/s = 132mph). No-
tably, 60m/s lies outside the training distribution and is
used to assess the generalization capability of the proposed
scheme.
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Figure 4: NTF-OTFS exhibits gains in BLER compared to NRx with trainable constellations (GS). The gains are more pronounced in the single-pilot case than with two-pilots

4.1. Pilot-sparse: Deep-OFDM excels at high mobility.

Under high mobility, the wireless channel varies signifi-
cantly between consecutive symbols, necessitating a large
number of pilot symbols for reliable channel estimation.
However, increasing pilot density reduces spectral effi-
ciency, presenting a fundamental tradeoff. This motivates
the need for designs that perform reliably under limited pi-
lot overhead.

To study this regime, we evaluate system performance
when only a single pilot symbol is inserted at the third
OFDM symbol (1P). At high mobility, the LMMSE re-
ceiver with least-squares (LS) channel estimation performs
poorly due to channel aging, where the estimated channel
quickly becomes outdated. In contrast, the neural receiver
(NRx) substantially outperforms the LMMSE+LS baseline
by better accommodating the time-varying nature of the
channel. However, even the neural receiver alone begins
to degrade at higher Doppler frequencies. Prior work has
shown that geometric shaping (GS), i.e., learning the con-
stellation mapping, can yield performance gains in both
AWGN and fading channels (Stark et al., 2019; Aoudia &
Hoydis, 2021; Madadi et al., 2023). Consistent with this,
Figure 4 shows that training a learnable constellation pro-
vides gains over fixed QAM when used with NRx.

Beyond geometric shaping, Deep-OFDM introduces ad-
ditional degrees of freedom across both time and fre-
quency dimensions, enabling the system to better cope with
mobility-induced distortions. While the performance gains
at low Doppler shifts (e.g., 10 m/s) are modest, the ad-
vantages of neural modulation become increasingly pro-

nounced as Doppler frequencies rise. For instance, at
higher speeds (e.g., 60 m/s), neural modulation yields a
substantial improvement in both BLER and spectral effi-
ciency (Figure 4). Notably, the performance gains are more
significant in the single-pilot configuration compared to the
two-pilot case.

We quantify system performance using the achieved good-
put, defined as

Goodput = R · ρ · (1− BLER), (5)

where R denotes the transmission rate in bits per channel
use, and ρ is the fraction of symbols allocated to data (ex-
cluding pilots).

The difficulty of reliable channel estimation at high
Doppler is underscored by the observation that the stan-
dalone NRx achieves nearly the same goodput at 60 m/s
with one pilot (1P) as with two pilots (2P). This stagna-
tion indicates that simply increasing pilot density does not
sufficiently mitigate mobility impairments. In contrast, our
end-to-end neural link achieves significantly higher good-
put than both NRx-1P and NRx-2P, despite maintaining the
same pilot overhead as NRx-1P. These results highlight the
efficacy of transmitter-side adaptation in challenging chan-
nel conditions.

Finally, despite operating under the same parameter budget,
Deep-OFDM consistently outperforms the QAM + NRx
baseline across all mobility levels. This highlights a key
architectural insight: jointly optimizing transmitter and re-
ceiver yields better robustness than concentrating model
capacity entirely at the receiver. While prior work has
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Figure 5: Pilotless Deep-OFDM outperforms NRx baseline and explicit SIP; Gains attributed to both time-frequency mixing and implicitly learned SIP

shown that large neural receivers alone can achieve robust-
ness (Aoudia & Hoydis, 2021), our design achieves similar
or better performance with far fewer parameters.

4.2. Deep-OFDM enables pilotless communication.

We now evaluate the performance of neural modulation in
the absence of any pilot signalling. In this challenging set-
ting, traditional methods for coherent communication fail,
as they require reference signals for channel estimation.
Similarly, conventional OFDM with neural receiver per-
forms poorly across all mobility conditions due to the lack
of explicit channel information.

A prior approach to this problem uses superimposed pilots
(SIP) (Aoudia & Hoydis, 2021), which overlays pilot sig-
nals onto data-carrying symbols. Here, a BPSK-modulated
pilot matrix P ∈ ±1N×M is defined; and an energy allo-
cation matrix A is learned.

√
1−A ·X +

√
A · P is trans-

mitted. Unlike orthogonal pilots, which reserve dedicated
REs for pilots, SIP overlays pilot and data within every RE,
forcing the receiver to jointly separate and decode them.

We compare pilotless Deep-OFDM against SIP and
LMMSE with perfect CSI. Within the training range (0–40
m/s), SIP and pilotless modulation deliver similar reliabil-
ity and goodput. However, it is more robust to unseen chan-
nel conditions - when the relative speed between UE and
the base station is 60m/s plot, neural modulation outper-
forms SIP. When SIP is combined with Deep-OFDM, we

observe further performance enhancements, highlighting
the complementary benefits of time-frequency diversity.

Remarkably, despite using no pilots, pilotless Deep-OFDM
matches the performance of a GS+NRx system with two pi-
lots: gaining 14% in goodput. In addition to performance,
Deep-OFDM also offers architectural flexibility. Owing to
its convolutional structure, a model trained on one OFDM
frame size naturally generalizes to configurations with dif-
ferent numbers of subcarriers. In contrast, SIP requires a
separately trained pilot pattern for each OFDM frame con-
figuration

Figure 6: SVD of the neural modulator’s output mean reveals
a strong rank-one component, suggesting the emergence of a
learned implicit pilot.

Pilotless neural modulation learns implicit pilots. To
gain insight into the structure that the neural modulator
learns, we analyze the statistics of its transmitted vec-
tors X. First, we compute the empirical mean µ ≜ E[X],
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Figure 7: Implicitly learned pilot pattern

and perform a Singular Value Decomposition (SVD)

µ = UΣVH.

Figure 6 shows that the mean has dominant rank–one struc-
ture (σ1 ≫ σ2), suggesting the presence of a determinstic
reference. Reconstructing only the first singular component
p ≜ σ1u1v

H
1 into the time–frequency grid (Fig. 7) reveals a

deterministic, constant-phase pattern that is superimposed
on every transmit block.

Consequently we can decompose the modulator output :

X = P︸︷︷︸
learned “pilot”

+ X̃︸︷︷︸
data

(zero mean)

, E[X̃] = 0. (6)

Equation (6) is formally identical to the super-imposed pi-
lot (SIP) architecture studied in (Cui & Tellambura, 2005).
Unlike that work, where the pilot vector P is predetermined
and only the data symbols X̃ vary, our model learns both P
and X̃ jointly via gradient descent, without imposing any
explicit pilot constraint. The implicitly learned pilots P are
visualized in Figure 7.

5. Conclusion and Remarks
In this work, we introduced Deep-OFDM, a learnable mod-
ulation scheme that augments OFDM by spreading trans-
mit symbols across time and frequency, tailored to the
inductive biases of neural receivers. By jointly optimiz-
ing a low-complexity neural modulator and a CNN-based
receiver, the system achieves strong robustness to high-
mobility fading, particularly in sparse or even zero-pilot
regimes. Beyond performance improvements, our analy-
sis shows that Deep-OFDM learns to embed implicit pi-
lot structures, enabling reliable pilotless communication
through end-to-end training. Future work includes inter-
preting the learned time–frequency mixing patterns, ana-
lyzing the kernels of the neural modulator, and developing
analytical approximations to better understand the learned
behavior. Further reducing transmitter-side complexity, ex-
tending the approach to MIMO settings, and studying gen-
eralization across diverse channel distributions are promis-
ing directions toward practical deployment.
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