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ABSTRACT

Contrastive learning is a cornerstone underlying recent progress in multi-view
and multimodal learning, e.g., in representation learning with image/caption pairs.
While its effectiveness is not yet fully understood, a line of recent work reveals that
contrastive learning can invert the data generating process and recover ground truth
latent factors shared between views. In this work, we present new identifiability
results for multimodal contrastive learning, showing that it is possible to recover
shared factors in a more general setup than the multi-view setting studied previously.
Specifically, we distinguish between the multi-view setting with one generative
mechanism (e.g., multiple cameras of the same type) and the multimodal setting
that is characterized by distinct mechanisms (e.g., cameras and microphones). Our
work generalizes previous identifiability results by redefining the generative process
in terms of distinct mechanisms with modality-specific latent variables. We prove
that contrastive learning can block-identify latent factors shared between modalities,
even when there are nontrivial dependencies between factors. We empirically verify
our identifiability results with numerical simulations and corroborate our findings
on a complex multimodal dataset of image/text pairs. Zooming out, our work
provides a theoretical basis for multimodal representation learning and explains in
which settings multimodal contrastive learning can be effective in practice.

1 INTRODUCTION

Multimodal representation learning is an emerging field whose growth is fueled by recent develop-
ments in weakly-supervised learning algorithms and by the collection of suitable multimodal datasets.
Multimodal data is characterized by the co-occurence of observations from two or more dependent
data sources, such as paired images and captions (e.g., Salakhutdinov and Hinton, 2009; Shi et al.,
2019; Radford et al., 2021), and more generally, multimodal observations are comprised of aligned
measurements from different types of sensors (Baltrušaitis et al., 2019). Co-occurrence is a form
of weak supervision (Shu et al., 2020; Locatello et al., 2020; Chen and Batmanghelich, 2020), in
that paired observations can be viewed as proxies (i.e., weak labels) for a shared but unobserved
ground truth factor. Among suitable representation learning methods for weakly supervised data,
contrastive learning (Gutmann and Hyvärinen, 2010; Oord et al., 2018) stands out because it is
designed to leverage co-occurring observations from different views. In practice, contrastive learning
achieves promising results for multi-view and multimodal learning—a prominent example is the
contribution of CLIP (Radford et al., 2021) to the groundbreaking advancements in text-to-image
generation (Ramesh et al., 2021; 2022; Rombach et al., 2022; Saharia et al., 2022).

Despite its empirical success, it is not sufficiently well understood what explains the effectiveness of
contrastive learning in practice. Recent works attribute its effectiveness to the recovery of shared latent
factors from the underlying causal graph (Gresele et al., 2019; Zimmermann et al., 2021; von Kügelgen
et al., 2021). From the perspective of multi-view independent component analysis, it was shown that
contrastive learning can invert a nonlinear mixing function (i.e., a nonlinear generative process) that is
applied to a latent variable with mutually independent components (Gresele et al., 2019; Zimmermann
et al., 2021). More recently, von Kügelgen et al. (2021) show that contrastive learning can recover
shared factors up to block-wise indeterminacies, even if there are nontrivial causal and statistical
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dependencies between latent components. Collectively, these results suggest that contrastive learning
can identify parts of an unknown data generating process from pairs of observations alone—even from
high-dimensional multi-view observations with nontrivial dependencies. In our work, we investigate
the identifiability of shared latent factors in the multimodal setting.

We consider a generative process with modality-specific mixing functions and modality-specific
latent variables. Our design is motivated by the inherent heterogeneity of multimodal data, which
follows naturally when observations are generated by different types of sensors (Baltrušaitis et al.,
2019). For example, an agent can perceive its environment through distinct sensory modalities, such
as cameras sensing light or microphones detecting sound waves. To model information that is shared
between modalities, we take inspiration from the multi-view setting (von Kügelgen et al., 2021) and
allow for nontrivial dependencies between latent variables. However, previous work only considers
observations of the same data type and assumes that the same input leads to the same output across
views. In this work, we introduce a model with distinct generative mechanisms, each of which can
exhibit a significant degree of modality-specific variation. This distinction renders the multimodal
setting more general compared to the multi-view setting considered by previous work.

In a nutshell, our work is concerned with identifiability for multimodal representation learning and
focuses on contrastive learning as a particular algorithm for which we derive identifiability results. In
Section 2, we cover relevant background on both topics, identifiability and contrastive learning. We
then formalize the multimodal generative process as a latent variable model (Section 3) and prove that
contrastive learning can block-identify latent factors shared between modalities (Section 4). We em-
pirically verify the identifiability results with fully controlled numerical simulations (Section 5.1) and
corroborate our findings on a complex multimodal dataset of image/text pairs (Section 5.2). Finally,
we contextualize related literature (Section 6) and discuss potential limitations and opportunities for
future work (Section 7).

2 PRELIMINARIES

2.1 IDENTIFIABILITY

Identifiability lies at the heart of many problems in the fields of independent component analysis (ICA),
causal discovery, and inverse problems, among others (Lehmann and Casella, 2006). From the
perspective of ICA, we consider the relation x = f(z), where an observation x is generated from a
mixing function f that is applied to a latent variable z. The goal of ICA is to invert the mixing function
in order to recover the latent variable from observations alone. In many settings, full identifiability
is impossible and certain ambiguities might be acceptable. For example, identifiability might hold
for a subset of components (i.e., partial identifiability). Typical ambiguities include permutation and
element-wise transformations (i.e., component-wise indeterminacy), or identifiability up to groups of
latent variables (i.e., block-wise indeterminacy). In the general case, when f is a nonlinear function,
a landmark negative result states that the recovery of the latent variable given i.i.d. observations is
fundamentally impossible (Hyvärinen and Pajunen, 1999). However, a recent line of pioneering
works provides identifiability results for the difficult nonlinear case under additional assumptions,
such as auxiliary variables (Hyvärinen and Morioka, 2017; Hyvärinen et al., 2019; Khemakhem et al.,
2020) or multiple views (Gresele et al., 2019; Locatello et al., 2020; Zimmermann et al., 2021).

Most relevant to our investigation are previous works related to multi-view nonlinear ICA (Gresele
et al., 2019; Lyu and Fu, 2020; Locatello et al., 2020; von Kügelgen et al., 2021; Lyu et al., 2022).
Generally, this line of work considers the following generative process:

z ∼ pz, x1 = f1(z), x2 = f2(z), (1)

where a latent variable, or a subset of its components, is shared between pairs of observations
(x1,x2) ∼ px1,x2

, where the two views x1 and x2 are generated by two nonlinear mixing functions,
f1 and f2 respectively. Intuitively, a second view can resolve ambiguity introduced by the nonlinear
mixing, if both views contain a shared signal but are otherwise sufficiently distinct (Gresele et al.,
2019). Previous works differ in their assumptions on the mixing functions and dependence relations
between latent components. The majority of previous work considers mutually independent latent
components (Song et al., 2014; Gresele et al., 2019; Locatello et al., 2020) or independent groups
of shared and view-specific components (Lyu and Fu, 2020; Lyu et al., 2022). Moreover, some of
these works (Song et al., 2014; Gresele et al., 2019; Lyu and Fu, 2020; Lyu et al., 2022) consider
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view-specific1 mixing functions. Venturing beyond the strict assumption of independent (groups of)
components, von Kügelgen et al. (2021) consider additional causal and statistical dependencies
between latents and show that the subset of shared components can be identified up to a block-wise
indeterminacy. Our work considers heterogeneous modalities with causal and statistical dependencies
between latents. We prove that shared factors can be block-identified in a novel setting with modality-
specific mixing functions and modality-specific latent variables.

2.2 CONTRASTIVE LEARNING

Contrastive learning (Gutmann and Hyvärinen, 2010; Oord et al., 2018) is a self-supervised repre-
sentation learning method that leverages weak supervision in the form of paired observations. On
a high level, the method learns to distinguish “positive” pairs of encodings sampled from the joint
distribution, against “negative” pairs sampled from the product of marginals. The popular InfoNCE
objective (Oord et al., 2018) is defined as follows:

LInfoNCE(g1,g2) = E{xi
1,x

i
2}K

i=1∼px1,x2

[
−
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log
exp{sim(g1(x
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2))/τ}

]
, (2)

where g1 and g2 are encoders for the first and second view, x1 and x2 respectively. It is common to
use a single encoder g1 = g2 when x2 is an augmented version of x1 or when two augmentations
are sampled from the same distribution to transform x1 and x2 respectively (e.g., Chen et al.,
2020). The set of hyperparameters consists of the temperature τ , a similarity metric sim(·, ·),
and an integer K that controls the number of negative pairs (K − 1) used for contrasting. The
objective has an information-theoretic interpretation as a variational lower bound on the mutual
information I(g1(x1);g2(x2)) (Oord et al., 2018; Poole et al., 2019) and it can also be interpreted
as the alignment of positive pairs (numerator) with additional entropy regularization (denominator),
where the regularizer disincentivizes a degenerate solution in which both encoders map to a constant
(Wang and Isola, 2020). Formally, when instantiating the LInfoNCE objective with τ = 1 and
sim(a, b) = −(a− b)2, it asymptotically behaves like the objective

LAlignMaxEnt(g) = E(x1,x2)∼px1,x2
[∥g(x1)− g(x2)∥2]−H(g(x)) (3)

for a single encoder g, when K → ∞ (Wang and Isola, 2020; von Kügelgen et al., 2021).

In the setting with two heterogeneous modalities, it is natural to employ separate encoders g1 ̸= g2,
which can represent different architectures. Further, it is common to use a symmetrized version of the
objective (e.g., see Zhang et al., 2022; Radford et al., 2021), which can be obtained by computing the
mean of the loss in both directions:

LSymInfoNCE(g1,g2) = 1/2LInfoNCE(g1,g2) + 1/2LInfoNCE(g2,g1). (4)

Akin to Equation (3), we can approximate the symmetrized objective for τ = 1 and sim(a, b) =
−(a− b)2, with a large number of negative samples (K → ∞), as follows:

LSymAlignMaxEnt(g1,g2) = E(x1,x2)∼px1,x2
[∥g1(x1)− g2(x2)∥2]− 1/2 (H(g1(x1)) +H(g2(x2))) .

(5)
Since the similarity measure is symmetric, the approximation of the alignment term is identical for
both LInfoNCE(g1,g2) and LInfoNCE(g2,g1). Each entropy term is approximated via the denominator
of the respective loss term, which can be viewed as a nonparametric entropy estimator (Wang and
Isola, 2020). For our experiments, we employ the finite-sample estimators LInfoNCE and LSymInfoNCE,
while for our theoretical analysis we use the estimand LSymAlignMaxEnt to derive identifiability results.

3 GENERATIVE PROCESS

In the following, we formulate the multimodal generative process as a latent variable model (Sec-
tion 3.1) and then specify our technical assumptions on the relation between modalities (Section 3.2).

1Note that we define modality-specific functions similar to the way Gresele et al. (2019), Lyu and Fu
(2020), and Lyu et al. (2022) define view-specific functions. To clarify the distinction, we generally assume that
observations from different modalities are generated by distinct mechanisms f1 ̸= f2 with modality-specific
latent variables, and we treat the multi-view setting as a special case, where f1 = f2 without view-specific latents.
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Figure 1: Illustration of the multimodal generative process. Latent variables are denoted by clear
nodes and observations by shaded nodes. We partition the latent space into z1 = (c, s,m1) and
z2 = (c̃, s̃,m2), where c̃ = c almost everywhere (Assumption 1) and hence we consider only c.
Further, s̃ is a perturbed version of s (Assumption 2) and m1, m2 are modality-specific variables.
The observations x1 and x2 are generated by two distinct mixing functions f1 ̸= f2, which are
applied to the subsets of latent variables z1 and z2 respectively.

3.1 LATENT VARIABLE MODEL

On a high level, we assume that there exists a continuous random variable z that takes values in the
latent space Z ⊆ Rn, which contains all information to generate observations of both modalities.2
Moreover, we assume that z = (c, s,m1,m2) can be uniquely partitioned into four disjoint parts:

(i) an invariant part c which is always shared across modalities, and which we refer to as content;
(ii) a variable part s which may change across modalities, and which we refer to as style;

(iii) two modality-specific parts, m1 and m2, each of which is unique to the respective modality.

Let z1 = (c, s,m1) and z2 = (c̃, s̃,m2), where c̃ = c almost everywhere and s̃ is generated by
perturbations that are specified in Section 3.2. Akin to multi-view ICA (Equation 1), we define the
generative process for modalities x1 and x2 as follows:

z ∼ pz, x1 = f1(z1), x2 = f2(z2), (6)

where f1 : Z1 → X1 and f2 : Z2 → X2 are two smooth and invertible mixing functions with smooth
inverse (i.e., diffeomorphisms) that generate observations x1 and x2 taking values in X1 ⊆ Rd1

and X2 ⊆ Rd2 respectively. Generally, we assume that observations from different modalities are
generated by distinct mechanisms f1 ̸= f2 that take modality-specific latent variables as input. As for
the multi-view setting (von Kügelgen et al., 2021), the considered generative process goes beyond
the classical ICA setting by allowing for statistical dependencies within blocks of variables (e.g.,
between dimensions of c) and also for causal dependencies from content to style, as illustrated in
Figure 1. We assume that pz is a smooth density that factorizes as pz = pc ps|c pm1pm2 in the causal
setting, and as the product of all involved marginals when there is no causal dependence from c to s.

The outlined generative process is fairly general and it applies to a wide variety of practical settings.
The content invariance describes a shared phenomenon that is not directly observed but manifests
in the observations from both modalities. Style changes describe shared influences that are not
robust across modalities, e.g., non-invertible transformations such as data augmentations, or non-
deterministic effects of an unobserved confounder. Modality-specific factors can be viewed as
variables that describe the inherent heterogeneity of each modality (e.g., background noise).

3.2 RELATION BETWEEN MODALITIES

Next, we specify our assumptions on the relation between modalities by defining the conditional
distribution pz2|z1

, which describes the relation between latent variables z1 and z2, from which
observations x1 and x2 are generated via Equation (6). Similar to previous work in the multi-view
setting (von Kügelgen et al., 2021), we assume that content is invariant, i.e., c̃ = c almost everywhere
(Assumption 1), and that s̃ is a perturbed version of s (Assumption 2). To state our assumptions for
the multimodal setting, we also need to consider the modality-specific latent variables.

2Put differently, we assume that all observations lie on a continuous manifold, which can have much smaller
dimensionality than the observation space of the respective modality.
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Assumption 1 (Content-invariance). The conditional density pz2|z1
over Z2 ×Z1 takes the form

pz2|z1
(z2|z1) = δ(c̃− c)ps̃|s(̃s|s)pm2

(m2) (7)

for some continuous density ps̃|s on S × S , where δ(·) is the Dirac delta function, i.e., c̃ = c a.e.

To fully specify pz2|z1
, it remains to define the style changes, which are described by the conditional

distribution ps̃|s. There are several justifications for modeling such a stochastic relation between s
and s̃ (Zimmermann et al., 2021; von Kügelgen et al., 2021); one could either consider s̃ to be a noisy
version of s, or consider s̃ to be the result of an augmentation that induces a soft intervention on s.3

Assumption 2 (Style changes). Let A be the powerset of style variables {1, . . . , ns} and let pA be a
distribution on A. Then, the style conditional ps̃|s is obtained by conditioning on a set A:

ps̃|s(̃s|s) =
∑
A∈A

pA(A)
(
δ(̃sAc − sAc)ps̃A|sA (̃sA|sA)

)
(8)

where ps̃A|sA is a continuous density on SA × SA, SA ⊆ S denotes the subspace of changing style
variables specified by A, and Ac = {1, . . . , ns}\A denotes the complement of A.

Further, for any style variable l ∈ {1, . . . , ns}, there exists a set A ⊆ {1, . . . , ns} with l ∈ A, s.t.

(i) pA(A) > 0,

(ii) ps̃A|sA is smooth w.r.t. both sA and s̃A, and

(iii) for any sA, ps̃A|sA(·|sA) > 0, in some open non-empty subset containing sA.

Intuitively, to generate a pair of observations (x1,x2), we independently flip a biased coin for each
style dimension to select a subset of style features A ⊆ {1, . . . , ns}, which are jointly perturbed to
obtain s̃. Condition (i) ensures that every style dimension has a positive probability to be perturbed,4
while (ii) and (iii) are technical smoothness conditions that will be used for the proof of Theorem 1.

Summarizing, in this section we have formalized the multimodal generative process as a latent
variable model (Section 3.1) and specified our assumptions on the relation between modalities via the
conditional distribution pz1|z2

(Section 3.2). Next, we segue into the topic of representation learning
and show that, for the specified generative process, multimodal contrastive learning can identify the
content factors up to a block-wise indeterminacy.

4 IDENTIFIABILITY RESULTS

First, we need to define block-identifiability (von Kügelgen et al., 2021) for the multimodal setting in
which we consider modality-specific mixing functions and encoders. In the following, nc denotes the
number of content variables and the subscript 1:nc denotes the subset of content dimensions (indexed
from 1 to nc w.l.o.g.).
Definition 1 (Block-identifiability). The true content partition c = f−1

1 (x1)1:nc
= f−1

2 (x2)1:nc
is

block-identified by a function gi : Xi → Zi, with i ∈ {1, 2}, if there exists an invertible function
hi : Rnc → Rnc , s.t. for the inferred content partition ĉi = gi(xi)1:nc it holds that ĉi = hi(c).

It is important to note that block-identifiability does not require the identification of individual
factors, which is the goal in multi-view nonlinear ICA (Gresele et al., 2019; Locatello et al., 2020;
Zimmermann et al., 2021; Klindt et al., 2021) and the basis for strict definitions of disentanglement
(Bengio et al., 2013; Higgins et al., 2018; Shu et al., 2020). Instead, our goal is to isolate the group of
invariant factors (i.e., the content partition) from the remaining factors of variation in the data.

Specifically, our goal is to show that contrastive learning can block-identify the content variables for
the multimodal setting described in Section 3. We formalize this in Theorem 1 and thereby relax
the assumptions from previous work by allowing for distinct generating mechanisms f1 ̸= f2 and
additional modality-specific latent variables.

3Note that the asymmetry between z1 and z2 (or between s and s̃) is not strictly required. We chose to write
z2 as a perturbation of z1 to simplify the notation and for consistency with previous work. Instead, we could
model both z1 and z2 via perturbations of z, as described in Appendix A.2.

4If a style variable would be perturbed with zero probability, it would be a content variable.
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Generative process R2 (nonlinear)

p(chg.) Stat. Cau. Content c Style s

1.0 ✗ ✗ 1.00 ± 0.00 0.00± 0.00
0.75 ✗ ✗ 0.99 ± 0.01 0.00± 0.00
0.75 ✓ ✗ 0.99 ± 0.00 0.52± 0.09
0.75 ✗ ✓ 1.00 ± 0.00 0.79 ± 0.04
0.75 ✓ ✓ 0.99 ± 0.01 0.81 ± 0.04

(a) Original setting

Generative process R2 (nonlinear)

p(chg.) Stat. Cau. Content c Style s Modality mi

1.0 ✗ ✗ 0.99 ± 0.00 0.00± 0.00 0.00± 0.00
0.75 ✗ ✗ 1.00 ± 0.00 0.00± 0.00 0.00± 0.00
0.75 ✓ ✗ 0.95 ± 0.01 0.56± 0.23 0.00± 0.00
0.75 ✗ ✓ 0.98 ± 0.00 0.87 ± 0.04 0.00± 0.00
0.75 ✓ ✓ 0.95 ± 0.03 0.89 ± 0.07 0.00± 0.00

(b) Multimodal setting

Table 1: Results of the numerical simulations. We compare the original setting (f1 = f2, left table)
with the multimodal setting (f1 ̸= f2, right table). Only the multimodal setting includes modality-
specific latent variables. Each row presents the results of a different setup with varying style-change
probability p(chg.) and possible statistical (Stat.) and/or causal (Caus.) dependencies. Each value
denotes the R2 coefficient of determination (averaged across 3 seeds) for a nonlinear regression
model that predicts the respective ground truth factor (c, s, or mi) from the learned representation.

Theorem 1. Assume the data generating process described in Sec. 3.1, i.e. data pairs (x1,x2)
generated from Equation (6) with pz1 = pz\{m2} and pz2|z1

as defined in Assumptions 1 and 2.
Further, assume that pz is a smooth and continuous density on Z with pz(z) > 0 almost everywhere.
Let g1 : X1 → (0, 1)nc and g2 : X2 → (0, 1)nc be smooth functions that minimize LSymAlignMaxEnt as
defined in Eq. (5). Then, g1 and g2 block-identify the true content variables in the sense of Def. 1.

A proof of Theorem 1 is provided in Appendix A.1. Intuitively, the result states that contrastive
learning can identify the content variables up to a block-wise indeterminacy. Similar to previous work,
the result is based on the optimization of the asymptotic form of the contrastive loss (Equation 5).
Moreover, Theorem 1 assumes that the number of content variables is known or that it can be
estimated (e.g., with a heuristic like the elbow method). We address the question of selecting the
encoding size with dimensionality ablations throughout our experiments. In Section 7, we will return
to the discussion of the assumptions in the context of the experimental results.

5 EXPERIMENTS

The goal of our experiments is to test whether contrastive learning can block-identify content in the
multimodal setting, as described by Theorem 1. First, we verify identifiability in a fully controlled
setting with numerical simulations (Section 5.1). Second, we corroborate our findings on a complex
multimodal dataset of image/text pairs (Section 5.2). The code is provided in our github repository.5

5.1 NUMERICAL SIMULATION

We extend the numerical simulation from von Kügelgen et al. (2021) and implement the multimodal
setting using modality-specific mixing functions (f1 ̸= f2) with modality-specific latent variables.
The numerical simulation allows us to measure identifiability with full control over the generative
process. The data generation is consistent with the generative process described in Section 3. We
sample c ∼ N (0,Σc), mi ∼ N (0,Σmi

), and s ∼ N (a + Bc,Σs). Statistical dependencies
within blocks (e.g., among components of c) are induced by non-zero off-diagonal entries in the
corresponding covariance matrix (e.g. in Σc). To induce a causal dependence from content to style,
we set ai, Bij ∼ N (0, 1); otherwise, we set ai, Bij = 0. For style changes, Gaussian noise is added
with probability π independently for each style dimension: s̃i = si + ϵ, where ϵ ∼ N (0,Σϵ) with
probability π. We generate the observations x1 = f1(c, s,m1) and x2 = f2(c, s̃,m2) using two
distinct nonlinear mixing functions, i.e, for each i ∈ {1, 2}, f i : Rd → Rd is a separate, invertible
3-layer MLP with LeakyReLU activations. We train the encoders for 300,000 iterations using the
symmetrized InfoNCE objective (Equation 4) and the hyperparameters listed in Appendix B.1. We
evaluate block-identifiability by predicting the ground truth factors from the learned representation
using kernel ridge regression and report the R2 coefficient of determination on holdout data.

5https://github.com/imantdaunhawer/multimodal-contrastive-learning.
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Results We compare the original setting (f1 = f2, Table 1a) with the multimodal setting (f1 ̸= f2,
Table 1b) and find that content can be block-identified in both settings, as the R2 score is close to
one for the prediction of content, and quasi-random for the prediction of style and modality-specific
information. Consistent with previous work, we observe that some style information can be predicted
when there are statistical and/or causal dependencies; this is expected because statistical dependencies
decrease the effective dimensionality of content, while the causal dependence c → s makes style
partially predictable from the encoded content information. Overall, the results of the numerical
simulation are consistent with our theoretical result from Theorem 1, showing that contrastive learning
can block-identify content in the multimodal setting.

5.2 IMAGE/TEXT PAIRS

Next, we test whether block-identifiability holds in a more realistic setting with image/text pairs—two
complex modalities with distinct generating mechanisms. We extend the Causal3DIdent dataset
(von Kügelgen et al., 2021; Zimmermann et al., 2021), which allows us to measure and control the
ground truth latent factors used to generate complex observations. We use Blender (Blender Online
Community, 2018) to render high-dimensional images that depict a scene with a colored object
illuminated by a differently colored spotlight and positioned in front of a colored background. The
scene is defined by 11 latent factors: the shape of the object (7 classes), position of the object (x, y, z
coordinates), orientation of the object (α, β, γ angles), position of the spotlight (θ angle), as well as
the color of the object, background, and spotlight respectively (one numerical value for each).

Figure 2: Examples of image/text pairs.

Multimodal3DIdent We extend the Causal3DIdent
dataset to the multimodal setting as follows. We gener-
ate textual descriptions from the latent factors by adapt-
ing the text rendering from the CLEVR dataset (Johnson
et al., 2017). Each image/text pair shares information
about the shape of the object (cow, teapot, etc.) and
its position in the scene (e.g., bottom-right). For each
position factor, we use three clearly discernable values
(top/center/bottom; left/center/right), which can be de-
scribed in text more naturally than coordinates. While
shape and position are always shared (i.e., content) be-
tween the paired image and text, the color of the object is causally influenced by position and is
stochastically shared (i.e., style). For the object color, we use a continuous hue value, whereas for the
text we match the RGB value with the nearest value from a given palette (i.e., a list of named colors,
such as brown, beige, olive, etc.). The color palette is randomly sampled from a set of three palettes
to ensure the object color depicted in the image does not uniquely determine the color described
in the text. As modality-specific factors for the images, we have object rotation, spotlight position,
and background color, while for the textual descriptions, we follow Johnson et al. (2017) and use 5
different types of phrases to introduce modality-specific variation. Examples of image/text pairs are
shown in Figure 2. Further details about the dataset are provided in Appendix B.1.

We train the encoders for 100,000 iterations using the symmetrized InfoNCE objective (Equation 4)
and the hyperparameters listed in Appendix B.1. For the image encoder we use a ResNet-18
architecture (He et al., 2016) and for the text we use a convolutional network. As for the numerical
simulation, we evaluate block-identifiability by predicting the ground truth factors from the learned
representation. For continuous factors, we use kernel ridge regression and report the R2 score, whereas
for discrete factors we report the classification accuracy of an MLP with a single hidden layer.

Results Figure 3 presents the results on Multimodal3DIdent with a dimensionality ablation, where
we vary the size of the encoding of the model. Content factors (object position and shape) are always
encoded well, unless the encoding size is too small (i.e., smaller than 3-4 dimensions). When there is
sufficient capacity, style information (object color) is also encoded, partly because there is a causal
dependence from content to style and partly because of the excess capacity, as already observed in
previous work. Image-specific information (object rotation, spotlight position, background color) is
mostly discarded, independent of the encoding size. Text-specific information (phrasing) is encoded
to a moderate degree (48–80% accuracy), which we attribute to the fact that phrasing is a discrete
factor that violates the assumption of continuous latents. This hints at possible limitations in the
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Figure 3: Results on Multimodal3DIdent as a function of the encoding size of the model. We assess
the nonlinear prediction of ground truth image factors (left subplot) and text factors (right subplot)
to quantify how well the learned representation encodes the respective factors. Content factors are
denoted in bold and style factors in italic. Along the x-axis, we vary the encoding size, i.e., the output
dimensionality of the model. We measure the prediction performance in terms of the R2 coefficient
of determination for continuous factors and classification accuracy for discrete factors respectively.
Each point denotes the average across three seeds and bands show one standard deviation.

presence of discrete latent factors, which we further investigate in Appendix B.2 and discuss in
Section 7. Overall, our results suggest that contrastive learning can block-identify content factors in a
complex multimodal setting with image/text pairs.

6 RELATED WORK

Multi-view nonlinear ICA The goal of multi-view nonlinear ICA is to identify latent factors
shared between different views, as described in Section 2.1. There is a thread of works (Gresele et al.,
2019; Locatello et al., 2020) that recover the latent variable up to a component-wise indeterminacy
in a setting with mutually independent latent components, or up to block-wise inderterminacies in
the case of independent groups of shared and view-specific components (Lyu and Fu, 2020; Lyu
et al., 2022). Beyond the assumption of independent (groups of) components, there is a line of works
(von Kügelgen et al., 2021; Kong et al., 2022) that partition the latent space into blocks of invariant
and blocks of changing components and show that the invariant components can be identified up to a
block-wise indeterminacy, even when there are nontrivial dependencies between latent components.
Our work advances in this direction and considers heterogeneous modalities with nontrivial statistical
and causal dependencies between latents. We prove that shared factors can be block-identified in a
novel setting with modality-specific mixing functions and modality-specific latent variables.

Multimodal representation learning Multimodal representation learning seeks to integrate infor-
mation from heterogeneous sources into a joint representation (Baltrušaitis et al., 2019; Guo et al.,
2019). There is a myriad of methods designed to learn representations of multimodal data either
directly or indirectly. Among methods that learn representations indirectly, there are multimodal
autoencoders (Ngiam et al., 2011; Geng et al., 2022; Bachmann et al., 2022; Aghajanyan et al., 2022)
and a large variety of multimodal generative models (e.g., Suzuki et al., 2016; Wu and Goodman,
2018; Shi et al., 2019; Huang et al., 2018; Tsai et al., 2019; Ramesh et al., 2021) that learn repre-
sentations by backpropagation of different forms of reconstruction and/or masked prediction error.
A more direct approach is taken by decoder-free methods that maximize the similarity between the
encodings of different modalities. This class of methods includes nonlinear canonical correlation
analysis (Akaho, 2001; Bach and Jordan, 2002; Andrew et al., 2013; Wang et al., 2016; Tang et al.,
2017; Karami and Schuurmans, 2021) as well as multi-view and multimodal contrastive learning
(Tian et al., 2019; Bachman et al., 2019; Federici et al., 2020; Tsai et al., 2021; Radford et al., 2021;
Poklukar et al., 2022). While all of the named methods aim to integrate information across modalities,
they do not answer the underlying question of identifiability, which our work seeks to address.
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7 DISCUSSION

Implications and scope We have shown that contrastive learning can block-identify shared factors
in the multimodal setting. Numerical simulations (Section 5.1) verify our main theoretical result (The-
orem 1), showing that contrastive learning block-identifies content information (Definition 1), when
the size of the encoding matches the number of content factors. Experiments on a complex dataset of
image/text pairs corroborate that contrastive learning can isolate content in a more realistic setting
and even under some violations of the assumptions underlying Theorem 1. In Appendix B.2, we
include further experiments that test violations with discrete factors and dimensionality ablations that
examine the robustness and sample complexity. More generally, we observe that contrastive learning
encodes invariant information (i.e., content) very well across all settings. When there is sufficient
capacity, stochastically shared information (i.e., style) is encoded to a moderate degree, but without
affecting the prediction of invariant information. For practice, our results suggest that contrastive
learning without capacity constraints can encode any shared factor, irregardless of whether the factor
is truly invariant across modalities or if its effect on the observations is confounded by noise or other
factors. This is in line with the information-theoretic view (Oord et al., 2018; Poole et al., 2019), i.e.,
that contrastive learning maximizes the mutual information between representations—a measure of
mutual dependence that quantifies any information that is shared. Our results demonstrate that the
size of the encoding can be reduced to learn a representation that recovers invariant information, as
captured by the notion of block-identifiability. In practice, this can be leveraged for representation
learning in settings of content-preserving distribution shifts (Mitrovic et al., 2021; Federici et al.,
2021), where information relevant for a downstream task remains unchanged.

Limitations and outlook First, Theorem 1 suggests that only invariant factors can be block-
identified. However, in practice, there can be pairs of observations for which the invariance is
inadvertently violated, e.g., due to measurement errors, occlusions, or other mistakes in the data
collection. On the one hand, such a violation can be viewed as a mere artifact of the data collection
and could be managed via interventions on the generative process, e.g., actions in reinforcement
learning (Lippe et al., 2022; Brehmer et al., 2022; Ahuja et al., 2022; Lachapelle et al., 2022). On
the other hand, violations of the content-invariance blur the line between content and style factors
and it would be interesting to study identifiability in a more general setting with only stochastically
shared factors. Second, Theorem 1 assumes that the number of content factors is known or that it
can be estimated. In practice, this might not be a significant limitation, since the number of content
factors can be viewed as a single hyperparameter (e.g., Locatello et al., 2020), though the design
of suitable heuristics is an interesting research direction. We explore the idea of estimating the
number of content factors in Appendix B.2 Figure 7. Third, Theorem 1 assumes that all latent
factors are continuous. While this assumption prevails in related work (Hyvärinen and Pajunen,
1999; Hyvärinen and Morioka, 2016; Hyvärinen et al., 2019; Gresele et al., 2019; Locatello et al.,
2019; 2020; Zimmermann et al., 2021; von Kügelgen et al., 2021; Klindt et al., 2021), our results in
Figure 3b indicate that in the presence of discrete factors, some style or modality-specific information
can be encoded. In Appendix B.2 Figure 5, we provide numerical simulations that support these
findings. Finally, our model can be extended to more than two modalities—a setting for which there
are intriguing identifiability results (Gresele et al., 2019; Schölkopf et al., 2016) as well as suitable
learning objectives (Tian et al., 2019; Lyu et al., 2022). Summarizing, the described limitations mirror
the assumptions on the generative process (Section 3), which may be relaxed in future work.

8 CONCLUSION

We addressed the problem of identifiability for multimodal representation learning and showed that
contrastive learning can block-identify latent factors shared between heterogeneous modalities. We
formalize the multimodal generative process as a novel latent variable model with modality-specific
generative mechanisms and nontrivial statistical and causal dependencies between latents. We prove
that contrastive learning can identify shared latent factors up to a block-wise indeterminacy and
therefore isolate invariances between modalities from other changeable factors. Our theoretical results
are corroborated by numerical simulations and on a complex multimodal dataset of image/text pairs.
More generally, we believe that our work will help in shaping a theoretical foundation for multimodal
representation learning and that further relaxations of the presented generative process offer rich
opportunities for future work.
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REPRODUCIBILITY STATEMENT

For our theoretical statements, we provide detailed derivations and state the necessary assumptions.
The generative process is specified in Section 3 and the assumptions for block-identifiability are
referenced in Theorem 1. We test violations of the key assumptions with suitable experiments
(dimensionality ablations; discrete latent factors) and discuss the limitations of our work in Section 7.
Further, we empirically verify our theoretical results with numerical simulations and on complex
multimodal data. To ensure empirical reproducibility, the results of every experiment were averaged
over multiple seeds and are reported with standard deviations. Information about implementation
details, hyperparameter settings, and evaluation metrics are included in Appendix B.1. Additionally,
we publish the code to reproduce the experiments.
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A THEORY

A.1 PROOF OF THEOREM 1

Theorem 1. Assume the data generating process described in Sec. 3.1, i.e. data pairs (x1,x2)
generated from Equation (6) with pz1

= pz\{m2} and pz2|z1
as defined in Assumptions 1 and 2.

Further, assume that pz is a smooth and continuous density on Z with pz(z) > 0 almost everywhere.
Let g1 : X1 → (0, 1)nc and g2 : X2 → (0, 1)nc be smooth functions that minimize LSymAlignMaxEnt as
defined in Eq. (5). Then, g1 and g2 block-identify the true content variables in the sense of Def. 1.

Proof. To prove Theorem 1, we follow the proof structure from von Kügelgen et al. (2021, The-
orem 4.4) and divide the proof into three steps. First, we show that there exists a pair of smooth
functions g∗

1,g
∗
2 that attain the global minimum of LSymAlignMaxEnt (Eq. 5). Further, in Equations (13–

15), we derive invariance conditions that have to hold almost surely for any pair of smooth functions
g1,g2 attaining the global minimum of Eq. (5). In Step 2, we use the invariance conditions derived
in Step 1 to show by contradiction that any pair of smooth functions g1,g2 that attain the global
minimum in Eq. (5) can only depend on content and not on style or modality-specific information. In
the third and final step, for h1 := g1 ◦ f1 and h2 := g2 ◦ f2, we show that both functions must be
bijections and hence that c is block-identified by g1 and g2 respectively.

Step 1. Recall the asymptotic form of the objective, as defined in Equation (5):

LSymAlignMaxEnt(g1,g2) = E(x1,x2)∼px1,x2
[∥g1(x1)− g2(x2)∥2]− 1/2 (H(g1(x1)) +H(g2(x2))) . (5)

The global minimum of LSymAlignMaxEnt is reached when the first term is minimized and the second
term is maximized. The first term is minimized when the encoders g1 and g2 are perfectly aligned,
i.e., when g1(x1) = g2(x2) holds for all pairs (x1,x2) ∼ px1,x2 . The second term attains its
maximum when g1 and g2 map to a uniformly distributed random variable on (0, 1)nc respectively.6

To show that there exists a pair of functions that minimize LSymAlignMaxEnt, let g∗
1 := d1 ◦ f−1

1,1:nc
and

let g∗
2 := d2 ◦ f−1

2,1:nc
, where the subscript 1:nc indexes the subset of content dimensions w.l.o.g. and

where d1 and d2 will be defined using the Darmois construction (Darmois, 1951; Hyvärinen and
Pajunen, 1999). First, recall that f−1

1 (x1)1:nc
= c and that f−1

2 (x2)1:nc
= c̃ by definition. Second,

for i ∈ {1, 2}, let us define di : C 7→ (0, 1)nc using the Darmois construction, such that di maps c
and c̃ to a uniform random variable respectively. It follows that g∗

1,g
∗
2 are smooth functions, because

any function di obtained via the Darmois construction is smooth and f−1
1 , f−1

2 are smooth as well
(each being the inverse of a smooth function).

Next, we show that the pair of functions g∗
1,g

∗
2, as defined above, attains the global minimum of the

objective LSymAlignMaxEnt. We have that

LSymAlignMaxEnt(g
∗
1,g

∗
2) = E(x1,x2)∼px1,x2

[∥g∗
1(x1)− g∗

2(x2)∥2]− 1/2 (H(g∗
1(x1)) +H(g∗

2(x2))) (9)

= E(x1,x2)∼px1,x2
[∥d1(c)− d2(c̃)∥2]− 1/2 (H(d1(c)) +H(d2(c̃))) (10)

= 0 (11)

where by Assumption 1, c = c̃ almost surely, which implies that the first term is zero almost surely.
Further, di maps c, c̃ to uniformly distributed random variables on (0, 1)nc , which implies that the
differential entropy of d1(c) and d2(c̃) is zero, as well. Consequently, there exists a pair of functions
g∗
1,g

∗
2 that minimizes LSymAlignMaxEnt.

Next, let g1 : X1 7→ (0, 1)nc and g2 : X2 7→ (0, 1)nc be any pair of smooth functions that attains the
global minimum of Eq. (5), i.e.,

LSymAlignMaxEnt(g1,g2) = E(x1,x2)∼px1,x2
[∥g1(x1)− g2(x2)∥2]− 1/2 (H(g1(x1)) +H(g2(x2))) = 0 .

(12)
Let h1 := g1 ◦ f1 and h2 := g2 ◦ f2, and notice that both are smooth functions since all involved
functions are smooth by definition. Since Equation (12) is a global minimum, it implies the following

6Note that we restrict the range of g1 and g2 to (0, 1)nc by definition merely to simplify the notation.
Generally, the uniform distribution U(a, b) is the maximum entropy distribution on the interval [a, b].
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invariance conditions for the individual terms:

E(x1,x2)∼px1,x2
[∥h1(z1)− h2(z2)∥2] = 0 (13)

H(h1(z2)) = 0 (14)
H(h2(z2)) = 0 (15)

Hence, h1(z1) = h2(z2) must hold almost surely w.r.t. px1,x2
. Additionally, Equation (14) (resp.

Equation (15)) implies that ĉ1 = h1(z1) (resp. ĉ2 = h2(z2)) must be uniform on (0, 1)nc .

Step 2. Next, we show that any pair of functions that minimize LSymAlignMaxEnt depend only on
content information. Since style is independent of m1 and m2, we first show that h1(z1) does not
depend on m1, and that h2(z2) does not depend on m2. We then show that h1 and h2 also cannot
depend on style, based on a result from previous work.

First note, that we can exclude all degenerate solutions where g1 maps a component of m1 to a
constant, since g1 would not be invertible anymore and such a solution would violate the invariance
in Eq. (14). To prove a contradiction, suppose that, w.l.o.g., h1(c, s,m1)1:nc

:= h1(z1)1:nc
depends

on some component in m1 in the sense that the partial derivative of h1(z1)1:nc w.r.t. some modality-
specific variable m1,l is non-zero for some point (c∗, s∗,m∗

1) ∈ Z1. Specifically, it implies that
the partial derivative ∂h1(z1)1:nc/∂m1,l is positive in a neighborhood around (c∗, s∗,m∗

1), which is
a non-empty open set, since h1 is smooth. On the other hand, due to the independence of z2 and
m1, the fact that h2(z2)1:nc

cannot not depend on m1, and that p(z) > 0 almost everywhere, we
come to a contradiction. That is, there exists an open set of points with positive measure, namely the
neighbourhood around (c∗, s∗,m∗

1), on which

|(h1(z1)1:nc − h2(z2)1:nc)| > 0 (16)

almost surely, which contradicts the invariance in Equation (13). The statement does not change, if we
add further dependencies of h1 on components of m1, or for h2 on components of m2, because m1

and z2 are independent, and m2 and z1 are independent as well. Hence, we show that any encoder
that minimizes the objective in Equation (5) cannot depend on modality-specific information.

Having established that neither h1(z1)1:nc , nor h2(z2)1:nc can depend on modality-specific informa-
tion, it remains to show that style information is not encoded, as well. Leveraging Assumption 2, we
can show that the strict inequality in Equation (13) has a positve density if h1(z1)1:nc

or h2(z2)1:nc

was dependent on a dimension in s respectively s̃, which would again lead to a violation of the
invariance derived in Equation (13), as shown in von Kügelgen et al. (2021, Proof of Theorem 4.2).

Step 3. It remains to show that h1,h2 are bijections. We know that C and (0, 1)nc are simply
connected and oriented C1 manifolds, and we have established in Step 1 that h1 and h2 are smooth
and hence differentiable functions. Since pc is a regular density, the uniform distributions w.r.t. the
pushthrough functions h1 and h2 are regular densities. Thus, h1 and h2 are bijections (Zimmermann
et al., 2021, Proposition 5)

Step 3 concludes the proof. We have shown that for any pair of smooth functions g1,g2 that attain
the global minimum of Eq. (5), we have that c is block-identified (Def. 1) by g1 and g2.

A.2 SYMMETRIC GENERATIVE PROCESS

Throughout the main body of the paper, we described an asymmetric generating mechanism, where
z2 is a perturbed version of z1. Here, we will briefly sketch out how our model and results can be
adapted to a symmetric setting, where both z1 and z2 are generated as perturbations of z.

Concretely, we would need to make small adjustments to Assumptions 1 and 2 as follows. We
start with the content invariance in Assumption 1, which specifies how z1 = (c̃1, s̃1, m̃1) and
z2 = (c̃2, s̃2, m̃2) are generated.

Let i ∈ {1, 2}. The conditional density pzi|z over Zi ×Z takes the form

pzi|z(zi|z) = δ(c̃i − c)δ(m̃i −mi)ps̃i|s(̃si|s) , (17)

where δ(·) is the Dirac delta function, i.e., c̃i = c almost everywhere, as well as m̃i = mi almost
everywhere. Note that since c̃1 = c a.e. and c = c̃2 a.e., it follows that c̃1 = c̃2 almost everywhere,
which is a property that is needed in Step 1 in the proof of Theorem 1. In addition, it still holds
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that m̃i ⊥⊥ zj , for i, j ∈ {1, 2} and i ̸= j, which is needed in Step 2 of the proof to show that
modality-specific information is not encoded.

Lastly, we need to revisit Assumption 2, for which both s̃1 and s̃2 would be generated through
perturbations of s via the conditional distribution ps̃i|s on S × S, as described in Assumption 2, for
each i individually. As a small technical nuance, we would need to specify the conditional generation
of the perturbed style variables s̃1 and s̃2 such that they are not perturbed in an identical manner
w.r.t. s. This can be ensured by, e.g., constraining pA appropriately to exclude the degenerate case
where dimensions in s̃1 and s̃2 are perfectly aligned—a case that needs to be excluded for Step 2 of
the proof of Theorem 1.

B EXPERIMENTS

B.1 EXPERIMENTAL DETAILS

Numerical simulation The generative process is described in Section 5.1. Here, we provide
additional information about the experiment. The invertible MLP is constructed similar to previous
work (Hyvärinen and Morioka, 2016; Hyvärinen and Morioka, 2017; Zimmermann et al., 2021;
von Kügelgen et al., 2021) by resampling square weight matrices until their condition number
surpasses a threshold value. For the original setting (f1 = f2), we use one encoder (g1 = g2), whereas
for the multimodal setting (f1 ̸= f2), we use distinct encoders (g1 ̸= g2) to mirror the assumption of
distinct mixing functions and because, in practice, the dimensionality of the observations can differ
across modalities. In Table 2a, we specify the main hyperparameters for the numerical simulation.

Multimodal3DIdent Our dataset of image/text pairs is based on the code used to generate the
Causal3DIdent (von Kügelgen et al., 2021; Zimmermann et al., 2021) and CLEVR (Johnson et al.,
2017) datasets. Images are generated using the Blender renderer (Blender Online Community, 2018).
The rendering serves as a complex mixing function that generates the images from 11 different
parameters (i.e., latent factors) that are listed in Table 3. To generate textual descriptions, we
adapt the text rendering from CLEVR (Johnson et al., 2017) and use 5 different phrases to induce
modality-specific variation. The latent factors used to generate the text are also listed in Table 3. The
dependence between the image and text modality is determined by three content factors (object shape,
x-position, and y-position) and one style factor (object color). For the object color in the image, we
use a continuous hue value, whereas for the text we match the RGB value with the nearest color
value from one of three different palettes7 that is sampled uniformly at random for each observation.
Further, we ensure that there are no overlapping color values across palettes by using a prefix for
the respective palette (e.g., “xkcd:black”) when necessary. In Section 5.2, we use a version of
the Multimodal3DIdent dataset with a causal dependence from content to style. Specifically, the
color of the object depends on its x-position. In particular, we split the range of hue values [0, 1]
into three equally sized intervals and associate each of these intervals with a fixed x-position of
the object. For instance, if x-position is “left”, we sample the hue value from the interval [0, 1/3].
Consequently, the color of the object can be predicted to some degree from the position of the object.
Samples of image/text pairs from the Multimodal3DIdent dataset are shown in Figures 2 and 4. The
hyperparameters for the experiment are listed in Table 2b. In Appendix B.2, we provide additional
results for a version of the dataset with mutually independent factors.

High-dimensional image pairs In Appendix B.2, we provide additional results using a dataset
of high-dimensional pairs of images of size 224x224x3. Similar to Multimodal3DIdent, images
are generated using Blender (Blender Online Community, 2018) and code adapted from previous
work (Zimmermann et al., 2021; von Kügelgen et al., 2021). Each image depicts a scene with one
type of object (a teapot, like in Zimmermann et al., 2021) in front of a colored background and
illuminated by a colored spotlight (for examples, see Figure 9). The scene is defined by 9 continuous
latent variables each of which is sampled from a uniform distribution. Object positions (x-, y- and
z-coordinates) are content factors that are always shared between modalities, while object-, spotlight-
and background-colors are style factors that are stochastically shared. Modality-specific factors are
object rotation (α and β angles) for one modality and spotlight position for the other. To simulate
modality-specific mixing functions, we render the objects using distinct textures (i.e., rubber and
metallic) for each modality. Further, we generate two versions of this dataset, with and without
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causal dependencies. For the dataset with causal dependencies we sample the latent factors according
to a causal model, where background-color depends on z-position and spotlight-color depends on
object-color. We use ResNet-18 encoders and similar hyperparameter values to those used for the
image/text experiment (Table 2b).

Parameter Value

Generating function 3-layer MLP
Encoder 7-layer MLP
Optimizer Adam
Cond. threshold ratio 1e-3
Dimensionality d 15
Batch size 6144
Learning rate 1e-4
Temperature τ 1.0
# Seeds 3
# Iterations 300,000
Similarity metric Euclidian
Gradient clipping 2-norm; max value 2

(a) Parameters used for the numerical simulation.

Parameter Value

Generating function Image and text rendering
Image encoder ResNet-18
Text encoder 4-layer ConvNet
Optimizer Adam
Batch size 256
Learning rate 1e-5
Temperature τ 1.0
# Seeds 3
# Iterations 100,000
# Samples (train / val / test) 125,000 / 10,000 / 10,000
Similarity metric Cosine similarity
Gradient clipping 2-norm; max value 2

(b) Parameters used for Multimodal3DIdent.

Table 2: Experimental parameters and hyperparameters used for the two experiments in the main text.

Latent factor Distribution Details

Object shape Categorical 7 unique values
Object x-position Categorical 3 unique values
Object y-position Categorical 3 unique values
Object color Uniform hue value in [0, 1]
Object rotation α Uniform angle value in [0, 1]
Object rotation β Uniform angle value in [0, 1]
Object rotation γ Uniform angle value in [0, 1]
Spotlight position Uniform angle value in [0, 1]
Spotlight color Uniform hue value in [0, 1]
Background color Uniform hue value in [0, 1]

Object shape Categorical 7 unique values
Object x-position Categorical 3 unique values
Object y-position Categorical 3 unique values
Object color Categorical color names (3 palettes)7

Text phrasing Categorical 5 unique values

Table 3: Description of the latent factors used to generate Multimodal3DIdent. The first 10 factors
are used to generate the images and the remaining 5 factors are used to generate the text. Object z-
position is kept constant for all images, which is why we do not list it among the generative factors.
Independent factors are drawn uniformly from the respective distribution. Content factors are denoted
in bold and style factors in italic; the remaining factors are modality-specific.

7 We use the following three palettes from the matplotlib.colors API: Tableau colors (10 values),
CSS4 colors (148 values), and XKCD colors (949 values).
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Figure 4: Examples of image/text pairs from the Multimodal3DIdent dataset. Each sample shows one
of the seven shapes or classes of objects included in the dataset.

Generative process R2 (nonlinear)

p(chg.) Stat. Cau. Content c Style s

1.0 ✗ ✗ 1.00 ± 0.00 0.00± 0.00
0.75 ✗ ✗ 0.99 ± 0.01 0.00± 0.00
0.75 ✓ ✗ 0.99 ± 0.00 0.52± 0.09
0.75 ✗ ✓ 1.00 ± 0.00 0.79 ± 0.04
0.75 ✓ ✓ 0.99 ± 0.01 0.81 ± 0.04

(a) Original setting

Generative process R2 (nonlinear)

p(chg.) Stat. Cau. Content c Style s

1.0 ✗ ✗ 1.00 ± 0.00 0.00± 0.00
0.75 ✗ ✗ 1.00 ± 0.00 0.00± 0.00
0.75 ✓ ✗ 0.99 ± 0.01 0.36± 0.10
0.75 ✗ ✓ 1.00 ± 0.00 0.81 ± 0.03
0.75 ✓ ✓ 0.99 ± 0.01 0.83 ± 0.05

(b) Multimodal setting

Table 4: Results of the numerical simulations without modality-specific latent variables. We compare
the original setting (f1 = f2, left table) with the multimodal setting (f1 ̸= f2, right table). Each row
presents the results of a different setup with varying style-change probability p(chg.) and possible
statistical (Stat.) and/or causal (Caus.) dependencies. Each value denotes the R2 coefficient of
determination (averaged across 3 seeds) for a nonlinear regression model that predicts the respective
ground truth factor (c, s, or mi) from the learned representation.

B.2 ADDITIONAL EXPERIMENTAL RESULTS

Numerical simulation without modality-specific latents Recall that the considered generative
process (Section 3) has two sources of modality-specific variation: modality-specific mixing functions
and modality-specific latent variables. To decouple the effect of these two sources of variation, we
conduct an ablation study without modality-specific latent variables. Table 4 presents the results,
showing that content is block-identified in both the original setting (f1 = f2, Table 4a) and the
multimodal setting (f1 ̸= f2, Table 4b). Compared to Table 1, we observe that the content prediction
is improved slightly in the case without modality-specific latent variables. Hence, our results suggest
that contrastive learning can block-identify content factors in the multimodal setting with and without
modality-specific latent variables.

Numerical simulation with discrete latent factors Extending the numerical simulation from
Section 5.1, we test block-identifiability of content information when observations are generated
from a mixture of continuous and discrete latent variables, thus violating one of the assumptions from
Theorem 1. In this setting, content, style and modality-specific information are random variables
with 5 components sampled from either a continuous normal distribution or a discrete multinomial
distribution with k classes, for which we experiment with different k ∈ {3, 4, . . . , 10}. For all settings,
we train an encoder with the InfoNCE objective and set the encoding size to 5 dimensions. The other
hyperparameters used in this set of experiments are detailed in Table 2a. To ensure convergence of
the models, we extended the number of training iterations to 600,000 and 3,000,000 for experiments
with discrete style/modality-specific and discrete content variables respectively. With discrete style
or modality-specific variables and continuous content (Figures 5a and 5b), the results suggest that
content is block-identified, since the prediction of style and modality-specific information is at chance
level (i.e., accuracy = 1/k) while content is consistently fully recovered (R2 ≥ 0.99). In the opposite
setting, with continuous style and modality-specific variables and discrete content (Figure 5c), the
number of content classes appears to be a critical factor for block-identifiability of content: while
content is always encoded well, style information is also encoded to a significant extent when the
number of content classes is small, but significantly less style can be recovered when the number
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(b) Only m1,m2 are discrete
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(c) Only c is discrete

Figure 5: Numerical simulations with discrete latent factors. The results show three settings in each of
which one group of latent variables is discrete while the remaining groups are continuous. Continuous
variables are normally distributed, whereas discrete variables are sampled from a multinomial
distribution with k distinct classes. We measure the prediction performance with a nonlinear model
in terms of the R2 coefficient of determination for continuous factors and classification accuracy for
discrete factors respectively. Each point denotes the average across three seeds and error bars show
the standard deviation, which is relatively small.

of content classes increases. Through this set of experiments, we challenge the assumption that all
generative factors should be continuous (c.f., Section 3) and show that block-identifiability of content
can still be satisfied when content is continuous while style or modality-specific variables are discrete.
On the other hand, style is encoded to a significant extent when content is discrete, which might
explain our observation for the image/text experiment, where we saw that, in the presence of discrete
content factors, some style information can be encoded.

Dimensionality ablations for the numerical simulation To test the effect of latent dimensionality
on identifiability, Figure 6 presents dimensionality ablations where we keep the number of content
dimensions fixed and only vary the number of style or modality-specific dimensions, ns and nm

respectively. Figures 6a and 6c confirm that block-identifiability of content still holds when we
significantly increase the number of style or modality-specific dimensions, as the representation
consistently encodes only content and no style or modality-specific information. In Figures 6b and 6d,
we can observe that the training loss decreases more slowly when we increase the dimensionality of
nc and ns respectively, which provides an intuition that the sample complexity might increase with
the number of style and modality-specific dimensions.

Estimating the number of content factors The estimation of the number of content factors is an
important puzzle piece, since Theorem 1 assumes that the number of content factors is known or that it
can be estimated. In practice, the number of content factors can be viewed as a single hyperparameter
(e.g., Locatello et al., 2020) that can be tuned with respect to a suitable model selection metric. For
instance, one could use the validation loss for model selection, which would be convenient since the
validation loss only requires a holdout dataset and no additional supervision. In Figure 7, we plot
the validation loss (averaged over 2,000 validation samples) as a function of the encoding size for
both experiments used in our paper. Results for the numerical simulation are shown in Figure 7a and
for the image/text experiment in Figure 7b. For both datasets, we observe that the validation loss
increases most significantly in the range around the true number of content factors. For the numerical
simulation, the results look promising as they show a clear “elbow” (James et al., 2013) at the correct
value of 5, which corresponds to the true number of content factors. The results are less clear for the
image/text experiment, where the elbow method might suggest the range of 2-4 content factors, while
the true value is 3. While these initial results look promising, we believe that more work is required
to investigate the estimation of the number of content factors and the design of suitable heuristics,
which are interesting directions for future research.
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(c) Prediction performance as a function of ns
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Figure 6: Dimensionality ablation for the numerical simulation. We consider the multimodal setting
with mutually independent factors and test the effect of latent dimensionality on identifiability by
keeping the number of content dimensions fixed and only varying the number of style or modality-
specific dimensions (ns and nm respectively). In Figures 6a and 6c we measure the nonlinear
prediction performance in terms of the R2 coefficient of determination of a nonlinear regression
model that predicts the respective ground truth factor (c, s, or mi) from the learned representation.
In Figures 6b and 6d, we plot the learning curves (i.e., the training loss) of the respective models to
compare how fast they converge.
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(a) Validation loss for the numerical simulation
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Figure 7: An attempt at estimating of the number of content factors using the validation loss.
The validation loss corresponds to the value of the LSymInfoNCE objective computed on a holdout
dataset. Since we are interested in estimating the true number of content factors to select the
encoding size appropriately, we plot the validation loss as a function of the encoding size. We show
the validation loss for the numerical simulation with independent factors (Figure 7a) and for the
image/text experiment (Figure 7b) respectively.
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x′
1

m1 s c c′

x′
2

s̃ m2

⇝⇝⇝ Generative process R2 (nonlinear)

p(chg.) Stat. Cau. Content c Content c′ Style s Modality mi

1.0 ✗ ✗ 0.00± 0.00 1.00 ± 0.00 0.00± 0.00 0.00± 0.00
0.75 ✗ ✗ 0.00± 0.00 1.00 ± 0.00 0.00± 0.00 0.00± 0.00
0.75 ✓ ✗ 0.00± 0.00 1.00 ± 0.00 0.50± 0.19 0.00± 0.00
0.75 ✗ ✓ 0.01± 0.00 0.98 ± 0.00 0.03± 0.01 0.00± 0.00
0.75 ✓ ✓ 0.28± 0.14 0.91 ± 0.03 0.39± 0.20 0.00± 0.00

Figure 8: Evaluation with test-time interventions. We use the interventional setup that is illustrated
on the left, i.e., perturbed samples x′

1,x
′
2 that are generated from the intervened content c′, which is

a copy of the original content c with an intervention, i.e., a batch-wise permutation (⇝) that makes
c′ independent of s. Each row presents the results of a different setup with varying style-change
probability p(chg.) and possible statistical (Stat.) and/or causal (Caus.) dependencies. Each value
denotes the R2 coefficient of determination (averaged across 3 seeds) for a nonlinear regression
model that predicts the respective ground truth factor (c, c′, s, or mi) from the learned representation.

Evaluation with test-time interventions Previously, we observed that style can be predicted to
some degree when there are causal dependencies from content to style (Table 1), which can be
attributed to style information being partially predictable from the encoded content information in
the causal setup. To verify that the encoders only depend on content information (i.e., that content is
block-identified), we assess the trained models using a novel, more rigorous empirical evaluation
for the numerical simulation. We test the effect of interventions c → c′, which perturb the content
information at test time via batch-wise permutations of content, before generating x′

1 = f1(c
′, s,m1)

and x′
2 = f1(c

′, s̃,m1). Hence, we break the causal dependence between content and style (see
illustration in Figure 8), which allows us to better assess whether the trained encoders depend
on content or style information. Specifically, we train the encoders for 3,000,000 iterations to
ensure convergence and then train nonlinear regression models to predict both the original and the
intervened content variables from the learned representations. Figure 8 presents our results using
the interventional setup, showing that in most cases only content information can be recovered. We
observe an exception (underlined values) in the two cases with statistical dependencies, where some
style information can be recovered, which is expected because statistical dependencies reduce the
effective dimensionality of content (cp. von Kügelgen et al., 2021). Analogously, in the case of
statistical and causal dependencies, some of the original content information can be recovered via the
encoded style information. In summary, the evaluation with interventions provides a more rigorous
assessment of block-identifiability in the causal setup, showing that neither style nor modality-specific
information can be recovered when the encoding size matches the true number of content dimensions.

Figure 9: Examples of high-
dimensional image pairs.

High-dimensional image pairs with continuous latents To bridge
the gap between continuous and discrete data, we provide an additional
experiment that offers a realistic setup but uses only continuous latent
variables to satisfy the assumptions of Theorem 1. Previously, in
Section 5.2, we used a complex multimodal dataset of image/text pairs,
which were generated from a combination of continuous and discrete
latent factors. Now, we consider a different dataset that consists of
pairs high-dimensional images generated from a set of continuous
latents, which is more in line with our theoretical assumptions. Note
that datasets with pairs of images are common in practice, for example,
in medical imaging where patients are assessed using multiple views
(e.g., images from different angles) or multiple modalities (e.g., as in PET-CT imaging). To generate
the data, we adapt the code from 3DIdent (Zimmermann et al., 2021) to render pairs of images, for
which the object position is always shared (i.e., content), the object-, spotlight- and background-color
is stochastically shared (i.e., style), and modality-specific factors are object rotation for one modality
and spotlight position for the other. Additionally, we render the objects using different textures to
simulate a modality-specific mixing process. Samples of image pairs are shown in Figure 9 and
further details about the dataset can be found in Appendix B.1. We train the encoders with the
InfoNCE objective for 60,000 iterations using the same architectures and hyperparameters as for
Multimodal3DIdent (Table 2b), and again evaluate the R2 coefficient of determination using a kernel
ridge regression that predicts the respective ground truth factor from the learned representations.
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Figure 10: Result with pairs of high-dimensional images. As a function of the encoding size of the
model, we assess the nonlinear prediction of ground truth factors to quantify how well the learned
representation encodes the respective factors. Content factors are denoted in bold, style factors in
italic, and modality-specific factors in regular font. Each point denotes the average R2 score across
three seeds and bands show one standard deviation.

Figure 10 present our results for the dataset of image pairs, showing the prediction performance
as a function of the encoding size for the setting with causal dependencies (Figure 10b) and the
setting with mutually independent latent variables (Figure 10a) respectively. In both settings, content
information (i.e. object position) is recovered when sufficient encoding capacity is available. Style
and modality-specific information, on the other hand, are discarded independent of the encoding
size. In Figure 10b we observe the recovery of some style information, which is expected because
style can be predicted to some degree from the encoded content information when there is a causal
dependence of style on content. Overall, these findings lend further support to our theoretical result
from Theorem 1, as we investigate a realistic setting with only continuous latent factors, which is
more in line with our assumptions. Notably, the results appear more consistent with our theory, e.g.,
showing that less style and modality-specific information is encoded, compared to our results for the
image/text experiment, where we used a combination of continuous and discrete latent factors.

Multimodal3DIdent with mutually independent factors For the results of the image/text experi-
ment in the main text (Section 5.2) we used the Multimodal3DIdent dataset, which we designed such
that object color is causally dependent on the x-position of the object to impose a causal dependence
of style on content. In Figure 11, we provide a similar analysis using a version of the dataset without
the causal dependence, i.e., with mutually independent factors. For both modalities, we observe that
object color is only encoded when the encoding size is larger than four, i.e., when there is excess
capacity beyond the capacity needed to encode all content factors. Hence, these results corroborate
that contrastive learning can block-identify content factors in a complex multimodal setting with
heterogeneous image/text pairs.
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Figure 11: Result on Multimodal3DIdent with mutually independent factors. As a function of the
encoding size of the model, we assess the nonlinear prediction of ground truth image factors (left
subplot) and text factors (right subplot) to quantify how well the learned representation encodes the
respective factors. Content factors are denoted in bold and style factors in italic. Along the x-axis,
we vary the encoding size, i.e., the output dimensionality of the model. We measure the prediction
performance in terms of the R2 coefficient of determination for continuous factors and classification
accuracy for discrete factors respectively. Each point denotes the average across three seeds and
bands show one standard deviation.
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