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ABSTRACT

In this paper, we study adversarial training on datasets that obey the long-tailed
distribution, which is practical but rarely explored by previous works. Compared
with conventional adversarial training on the balanced dataset, this process falls into
the dilemma of generating uneven adversarial examples (AEs) and an unbalanced
feature embedding space, causing the resulting model to exhibit low robustness
and accuracy on tail data. To combat that, we propose a new adversarial training
framework – Re-balancing Adversarial Training (REAT). This framework consists
of two components: (1) a new training strategy inspired by the term effective
number to guide the model to generate more balanced and informative AEs; (2) a
carefully constructed penalty function to force a satisfactory feature space. Evalua-
tion results on different datasets and model structures prove that REAT can enhance
the model’s robustness and preserve the model’s clean accuracy.

1 INTRODUCTION

Adversarial training (Madry et al., 2018) has been widely used to improve the robustness of the
model against adversarial attacks (Tramèr et al., 2016). However, existing efforts mainly focus on
designing strategies on balanced datasets, while ignoring more realistic datasets obeying long-tailed
distributions (Lin et al., 2017; Cao et al., 2019; Cui et al., 2019). Informally, training data subject to
a long-tailed distribution has the property that the vast majority of the data belong to a minority of
total classes (i.e., “head” classes), while the remaining data belong to other classes (“body” and “tail”
classes) (Wang et al., 2017). This distinct nature yields new problems in adversarial training. First, it
is difficult to produce uniform AEs: AEs are always misclassified by the model into the head classes
with overwhelming probabilities regardless of the labels of their corresponding clean samples (See
Section 2.2). Second, the excessive dominance of head classes in the feature embedding space further
compresses the feature space of tail classes (See Section 2.2). The mutual entanglement of the above
two problems leads to the underfitting of tail classes in both robustness and accuracy, thus leading to
unsatisfactory training performance.

To address these challenges, Wu et al. (2021) proposed RoBal, the first work (and the only work,
to the best of our knowledge) towards designing adversarial training on datasets with long-tailed
distributions. RoBal is essentially a two-stage re-balancing adversarial training method. The first
stage lies in the training process, where a new class-aware margin loss function is designed to make
the model pay equal attention to data from head classes and tail classes. The second stage focuses
on the inference process, where a pre-defined bias is added to the predicted logits vectors, thereby
improving the prediction accuracy of samples from the tail classes. Moreover, RoBal constructs a
new normalized cosine classification layer, to further improve models’ accuracy and robustness.

While RoBal shows impressive results on a variety of datasets, it still has several limitations that need
to be addressed. First, the robustness of RoBal mainly benefits from gradient obfuscation (specifically,
gradient vanishing) (Athalye et al., 2018) in the proposed new scale-invariant classification layer.
This can be easily compromised by simply multiplying the logits by a constant, as the constant can
increase the absolute value of gradients against gradient vanishing and correct the sign of gradients
during AE generation. Second, the designed class-aware margin loss ignores samples from body
classes and exclusively focuses on head and tail classes, which inevitably reduces the overall model
accuracy. More detailed analysis of RoBal can be found in Sections 2.2 and 4.3.
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To advance the practicality of adversarial training on long-tailed datasets, we design a new framework:
Re-balancing adversarial training (REAT), which demonstrates higher clean accuracy and robustness
compared to RoBal. Our insights come from the revisit of two key components in adversarial training:
AE generation and feature embedding. Particularly, for AE generation, we force the generated AEs
to be misclassified into each class as uniformly as possible, so that the information of the tail classes
is sufficiently learned during the adversarial training to improve the robustness. Our implementation
is inspired by the term of effective number (Cui et al., 2019) in long-tailed recognition, which was
proposed to increase the marginal benefits from data of tail classes. We generalize the definition
of effective number to the AE generation process and propose a new Re-Balanced Loss (RBL)
function. RBL dynamically adjusts the weights assigned to each class, which significantly improves
the effectiveness of the original balanced loss based on effective number (Cui et al., 2019).

For feature embedding, it is challenging to balance the volume of each class’s feature space, especially
if the size of each class is different. To address this issue, we propose a Tail-sample-mining-based
feAture margIn reguLarization (TAIL) approach. TAIL treats the samples from tail classes as hard
samples and optimizes feature embedding distributions of tail classes and others. To better fit the
unbalanced data distribution, we propose a joint weight to increase the contribution of tail features in
the entire feature embedding space.

We conduct extensive experiments on CIFAR-10-LT and CIFAR-100-LT datasets to show the superior-
ity of REAT over existing methods. For instance, REAT achieves 67.33% clean accuracy and 32.08%
robust accuracy under AutoAttack, which are 1.25% and 0.94% higher than RoBal, respectively.

2 BACKGROUND AND MOTIVATION

2.1 LONG-TAILED RECOGNITION

Data in the wild usually obey a long-tailed distribution (Lin et al., 2017; Cao et al., 2019; Cui et al.,
2019), where most of the samples belong to a small part of classes. Formally, consider a dataset
containing C classes, and there are Ni samples in class i. We assume that the classes are sorted in
descending order based on the number of samples in each class, i.e., Ni ≥ Ni+1. The unbalanced
ratio is defined as UR = N1

NC
(Cao et al., 2019). Following previous works (Wang et al., 2017;

Cui et al., 2019), a long-tailed dataset can be divided into three parts: (1) i is a head class (HC) if
1 ≤ i ≤ ⌊C

3 ⌋, where ⌊x⌋ is a floor function; (2) i is a tail class (TC) if ⌈ 2C
3 ⌉ ≤ i ≤ C, where ⌈x⌉ is a

ceiling function; (3) The rest classes are considered as body classes (BC).

Models trained on long-tailed datasets usually give higher confidence to the samples from head classes,
which harms the generalizability for the samples from the body or tail classes. It is challenging to
solve such overconfidence issues under the long-tailed scenarios (Japkowicz & Stephen, 2002; He
& Garcia, 2009; Buda et al., 2018). Several approaches have been proposed to achieve long-tailed
recognition. For instance, (1) the re-sampling methods (Liu et al., 2009; Han et al., 2005; Ren
et al., 2020) generate balanced data distributions by sampling data with different frequencies in the
training set. (2) The cost-sensitive learning methods (Hong et al., 2021; Cui et al., 2019; Lin et al.,
2017) modify the training loss with additional weights to balance the gradients from each class.
(3) The training phase decoupling methods (Kang et al., 2020; 2021) first train a feature extractor
on re-sampled balanced data, and then train a classifier on the original dataset. (4) The classifier
designing methods (Kang et al., 2020; Wu et al., 2021) modify the classification layer with prior
knowledge to better fit the unbalanced data. Morel details about related works are in Appendix A.

2.2 LONG-TAILED ADVERSARIAL TRAINING

Adversarial training has become a promising solution to enhance the model’s robustness against AEs.
Previous works mainly consider adversarial training on balanced datasets. When the training data
become unbalanced, training a robust model becomes more challenging. As mentioned in Section
2.1, in long-tailed recognition, most of the data come from the head classes and the data of the tail
classes are relatively scarce, which causes two consequences: unbalance in the output probability
space and unbalance in the feature embedding space, which are detailed as follows.

First, we need to generate AEs to train the model during adversarial training. The unbalanced
output probability space caused by long-tailed datasets can lead to unbalanced AEs, which cause
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(a) Balanced dataset (b) Unbalanced dataset

Figure 1: Virtualization of prediction distributions of AEs.
Clean label distributions are shown by gray bars.

(a) Balanced dataset (b) Unbalanced dataset

Figure 2: Virtualization of feature maps of AEs
from models.

the produced model to show unbalanced robustness across different classes. Figure 1 shows such
an example. We adopt PGD-based adversarial training to train a ResNet-18 model and measure the
distribution of the model’s predictions for the generated AEs during the training process. Figure 1a
shows the case of a balanced training set (CIFAR-10). We observe that the predictions of the AEs are
uniformly distributed among all the classes. In contrast, Figure 1b shows the case of an unbalanced
training set (CIFAR-10-LT). We can see that due to the long-tailed distribution, most AEs are labeled
as head classes. This indicates that the final model has lower accuracy and robustness for the tail
classes, making them more vulnerable to adversarial attacks, e.g., AutoAttack (Croce & Hein, 2020).

Second, in an unbalanced training set, the head classes can dominate the feature embedding space of
the model, which can reduce the area of tail features. As a result, the performance and generalizability
of the model for tail classes will be decreased. In contrast, a model trained on balanced data will give
even feature space for each class. Figure 2 compares the feature maps of AEs in these two scenarios,
where we train ResNet-18 models with PGD-based adversarial training on balanced and unbalanced
CIFAR-101. We observe that the long-tailed scenario has huge differences between head and tail
features, compared to the balanced scenario. We will further illustrate the feature embedding space in
Section 4.3 for various cases to prove our statement.

A straightforward way is to directly adopt existing solutions introduced in Section 2.1 (e.g., (Lin
et al., 2017; Cao et al., 2019; Cui et al., 2019; Ren et al., 2020)) for adversarial training, which can
produce more balanced AE prediction distributions and feature embedding space. However, they can
only partially address the overconfidence and underconfidence issues in model prediction, due to the
lack of tail samples and AEs predicted as tail classes (see Section 4.3 and Appendix F). Wu et al.
(2021) proposed RoBal, the first methodology specifically for adversarial training with long-tailed
datasets. It introduces a new loss function to promote the model to learn features from head classes
and tail classes equally. Furthermore, it replaces the traditional classification layer with a cosine
classifier, in which both weights and features are normalized and the outputs are multiplied by a
temperature factor. In the inference phase, RoBal adjusts the output logits with a prior distribution,
which is aligned with the label distribution. However, in our experiments, we find RoBal ignores the
features from the “body” classes, which can harm the clean accuracy and robustness. Furthermore,
RoBal can be easily defeated by a simple adaptive attack, which multiplies the output logits with
a factor when generating AEs (see Section 4.3). This motivates us to explore a better solution for
long-tailed recognition with adversarial training.

3 METHODOLOGY

We introduce REAT, a new framework for adversarial training on unbalanced datasets. REAT includes
two innovations to address the two root causes discussed in Section 2.2. Specifically, to balance
the AE distribution and make the model learn more information from the tail samples, we modify
the objective function in the AE generation process with weights calculated based on the effective
number (Cui et al., 2019). To balance the feature embedding space, we propose a regularization term
to increase the area of features from tail classes. Below, we describe the detailed mechanisms.

1For better readability, we only show four classes (two head classes “airplane” (blue) and “automobile”
(orange), and two tail classes “ship” (green) and “truck” (red).). The complete feature maps for 10 classes can be
found in Appendix B.
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3.1 RE-BALANCING AES

For adversarial training, it is desirable if the objective function could encourage AEs that are classified
into rarely-seen classes while punishing AEs that are classified into abundant classes. To realize
this in the long-tailed scenario, we borrow the idea of the effective number from (Cui et al., 2019)
and generalize it to adversarial training. The effective number is mainly used to measure the data
overlap of each class. For class i containing Ni data, its effective number is defined as ENi

= 1−βNi

1−β ,

where β =
∑

Ni−1∑
Ni

. Given the effective numbers ENi
and ENj

, Cui et al. (2019) demonstrated that
if ENi

> ENj
, the marginal benefit obtained from increasing the number of training samples in class

i is less than increasing the same number of training samples in class j. This implies that we can
adopt the effective number as a guide to balance the distribution of AEs generated during training.

At a high level, the generation of AEs can be viewed as a data sampling process, i.e., AEs are
essentially sampled from the neighbors of their corresponding clean samples. Therefore, we can
calculate the effective number between AEs generated by two consecutive epochs, and use it as a
basis to assign dynamic weights to each class in the loss function, inducing the model to produce as
many fewer overlapping AEs as possible in consecutive epochs. This implicitly generates more AEs
that are classified into tail classes and makes the model extract more marginal benefits from samples
of tail classes, thus achieving our purpose.

We now describe our technical design. For simplicity, assume that the predicted label distributions
(i.e., labels assigned by the model M for AEs) in two successive training epochs will not change
too much and stay stable. Then, in epoch k − 1, we count the number of AEs that are classified
into each class, denoted as n = [n1, n2, . . . , nC ].2. As a result, generating AEs in epoch k can
be approximated as sampling new AEs after sampling ni samples for each class i. Therefore, we
can compute the effective number of class i as Eni

=
1−β

ni
i

1−βi
, where βi =

Ni−1
Ni

. Note that our β
is class-related to assign finer convergence parameters for each class, which is different from the
calculation in (Cui et al., 2019). We will experimentally prove that this adaptive effective number can
better improve the robustness of models in Section 4.1.

Based on the property that the effective number of each class is inversely proportional to the marginal
benefit of the new samples of this class, we can construct a new indicator variable weight wi for the
marginal benefit, which is inversely proportional to Eni

. This weight can be used to correct the loss
in the AE generation process. Specifically, following the class-balanced softmax cross-entropy loss
proposed in (Cui et al., 2019), we compute the weight wi for class i as follows:

wi =
C

Eni

∑C
j=1

1
Enj

(1)

With the weight wi for each class i, we design a new Re-Balancing Loss (RBL) function as below:

RBL = −wi ∗ log
ezi∑
j e

zj
(2)

where log ezi∑
j ezj

is the original loss function adopted to generate AEs. Our goal is to maximize RBL
to generate AEs for adversarial training.

(a) w/o. RBL (b) w/. RBL

Figure 3: Distributions of Euclidean distances of AEs gener-
ated from the same clean data in consecutive training epochs.

Analysis. We analyze why RBL can
help generate balanced AEs from un-
balanced data samples. First, we
show the effective number enjoys the
asymptotic properties: (1) when ni →
0, we have Eni → 0 and wi → C; (2)
when ni → ∞, we have Eni → 1

1−βi

and wi → 0, as there exists a Enj
→

0, i ̸= j. Based on the asymptotic
properties, if there are many AEs as-
signed to the label of class i in epoch

2For the first training epoch, we directly use the number of clean data Ni in each class as the prior distribution.
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k − 1, then in epoch k, the increased effective number Eni
results in a smaller wi. As a consequence,

RBL will induce AEs generated in this round with minimized data overlap compared to AEs of
the previous round, which implicitly generates more AEs that are classified into other classes. Our
experiments in Section 4.3 indicate that combining with long-tailed recognition losses, RBL can
better balance the AE generation process and increase the number of AEs predicted into tail classes
by 5×. Figure 3 compares the distances of AEs between two consecutive training epochs without and
with RBL. The models (ResNet-18) are trained on CIFAR-10-LT with the unbalanced ratio UR=50.
A smaller distance indicates a larger overlap of the two AEs and less marginal benefit the model
can obtain from the process. We observe that RBL is able to increase the distances of AEs from tail
classes, and generate more informative AEs to enhance the model’s robustness.

3.2 TAIL FEATURE ALIGNMENT

To balance the feature embedding space, we first define a probabilistic feature embedding space
as fp = [ ef1∑

j efj
, ef2∑

j efj
, . . . , efK∑

j efj
] = [fp

1 , f
p
2 , . . . , f

p
K ], where fi is the i-th feature before the

final classification layer, and K is the feature dimension. The motivation for using a probabilistic
feature embedding space is to overcome the scale changes in feature representations caused by the
unbalanced data distribution (Wu et al., 2021). For each class i, we assume the probabilistic feature
is sampled from a distribution Df

i . As a result, given any two classes i and j where i ∈ TC and
j ∈ HC ∪BC, our goal is to maximize the difference between Df

i and Df
j , thereby rebalancing the

distributions of different classes in the feature space.

Algorithm 1 TAIL
1: Input: probabilistic feature batch Fp, label y,

class weights Ω, tail classes TC, batch size B
2: R← 0, S ← 0
3: for i = 1→ B do
4: if yi ∈ TC then
5: S = S + 1
6: Update R following Equation 3
7: end if
8: end for
9: if S = 0 then

10: return 0
11: else
12: return R

S

13: end if

We design a Tail-sample-mining-based
feAture margIn reguLarization (TAIL) ap-
proach to achieve this goal. Algorithm 1
describes its detailed mechanism. Specif-
ically, let Fp = [fp1 , f

p
2 , . . . , f

p
B ] denote all

probabilistic features of a batch containing
B samples, and y = [y1, y2, . . . , yB ] de-
note the labels of the corresponding feature
representations. The class weights Ω =
[ω1, ω2, . . . , ωC ] are calculated based on the
smoothed inverse class frequency (Maha-
jan et al., 2018; Mikolov et al., 2013), i.e.,

ωi =

√∑
j Nj

Ni
, implying tail classes have

larger class weights than head classes. The
core component of TAIL is the computation
of the regularization term R, which is updated for each yi ∈ TC as the following equation:

R = R− 1

B

B∑
j=1

(−1)1(yi=yj)(ωi + ωj)

K∑
k=1

fp
j,k log

fp
j,k

fp
i,k

(3)

where 1(yi = yj) is the indicator function (outputting 1 if yi = yj , and 0 otherwise). In this equation,
we first compute the feature distribution differences using the Kullback–Leibler divergence (KLD):∑K

k=1 f
p
j,k log

fp
j,k

fp
i,k

, where fp
i,k represents the value of the k-th dimension in the probabilistic feature

fpi for the i-th sample. A larger KLD value means a larger difference between the distributions
of the feature embeddings of the i-th and j-th samples. Hence, with the property of R, for each
batch, we can maximize the distributional differences between Df

i , i ∈ TC and Df
j , j ̸= i, j ∈ [C],

and minimize the distributional gap for samples from the same tail class. To further enhance the
influence of the regularization term among tail classes, we assign a joint weight (ωi + ωj) to the
feature pair (fpi , f

p
j ). ωi for tail samples is bigger than that for head samples. To increase the

distinction between pairs of tail classes and non-tail classes and pairs of two tail classes, the joint
weight will further strengthen the effect of the regularization for pairs of two tail classes, thus
improving the performance. Finally, we adopt the average of the distance inside the batch, i.e., R

S .
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Note that our regularization term TAIL is general and can be used with any other long-tailed recogni-
tion loss function Llt in the following form:

L = Llt + TAIL

4 EXPERIMENTS

Datasets and Models. We evaluate our method on CIFAR-10-LT and CIFAR-100-LT, which are the
mainstream datasets for evaluating long-tailed recognition tasks (Cui et al., 2019; Cao et al., 2019;
Ren et al., 2020; Wu et al., 2021). To generate the unbalanced dataset, we follow the approach in (Cao
et al., 2019) to set the unbalanced ratio (UR) as {10, 20, 50, 100} for CIFAR-10-LT and {10, 20, 50}
for CIFAR-100-LT. We choose the ResNet-18 (ResNet) (He et al., 2016) and WideResNet-28-10
(WRN) (Zagoruyko & Komodakis, 2016) model architectures.

Baselines. We consider two baselines. The first one is to simply combine existing adversarial training
methods with various long-tailed recognition losses. Our experiments and analysis in Appendix B
show that some adversarial training methods cannot converge well with the long-tailed recognition
loss, such as TRADES (Zhang et al., 2019), AWP (Wu et al., 2021) and MART (Wang et al.,
2020b). So we choose the most effective one: PGD-AT (Madry et al., 2018). The second baseline is
RoBal (Wu et al., 2021).

Implementation. In our experiments, the number of training epochs is 80. The learning rate is
0.1 at the beginning and is decayed in epochs 60 and 75 with a factor of 0.1. The weight decay is
0.0005. We adopt SGD to optimize the model parameters with a batch size of 128. We save the model
with the highest robustness on the test set. For adversarial training, we adopt l∞-norm PGD (Madry
et al., 2018), with a maximum perturbation size of ϵ = 8/255 for 10 iterations, and step length of
α = 2/255 in each iteration. For each configuration, we report the mean and standard error under
three repetitive experiments with different random seeds. Training with REAT is efficient and does
not incur huge extra costs. We provide results and analysis in Appendix G.

Attacks. We mainly consider the l∞-norm attacks to evaluate the model’s robustness. The results
under the l2-norm attacks can be found in Appendix D. We choose four representative attacks:
PGD attack (Madry et al., 2018) with the cross-entropy loss under 20 and 100 steps (PGD-20 and
PGD-100), PGD attack with the C&W loss (Carlini & Wagner, 2017) under 100 steps (CW-100), and
AutoAttack (Croce & Hein, 2020) (AA).

4.1 ABLATION STUDIES

Impact of Long-tailed Recognition Losses. Our framework is general and can be combined with
different long-tailed recognition losses. We select four state-of-the-art losses and add each one
with TAIL to evaluate REAT: focal loss (FL) (Lin et al., 2017), effective number loss (EN) (Cui
et al., 2019), label-distribution-aware margin loss (LDAM) (Cao et al., 2019), and balanced softmax
loss (BSL) (Ren et al., 2020). For comparisons, we also choose PDG-AT and replace the original
cross-entropy loss with the above long-tailed recognition loss for model parameter optimization.

Table 1 shows the comparison results with ResNet-18 and CIFAR-10-LT (UR=50). We obtain two
observations. (1) The BSL loss can significantly outperform other long-tailed recognition losses for
clean accuracy as well as robust accuracy against different attacks. So in the rest of our evaluation, we
will mainly adopt it for evaluations. (2) REAT achieves better robustness than PGD-AT for whatever
loss function is adopted to train the model. Furthermore, the clean accuracy is improved in most cases
when using REAT. Therefore, we conclude that REAT is a general long-tailed adversarial training
framework with strong applicability to different recognition losses.

Impact of AE Generation Re-balancing Losses. We then compare the effectiveness of our proposed
RBL with various rebalancing methods adopted in the AE generation process. We consider four
state-of-the-art rebalancing strategies to replace the cross-entropy loss in the AE generation process:
(1) ReWeight (RW) (Huang et al., 2016; Wang et al., 2017); (2) ReWeight Smooth (RWS) (Mahajan
et al., 2018; Mikolov et al., 2013); (3) Effective Number Reweight (RNR) (Cui et al., 2019); (4)
Balanced Softmax ReWeight (BRW) (Ren et al., 2020).

Table 2 shows the comparison results on CIFAR-10-LT (UR=50) with the ResNet-18 model structure.
We observe that those strategies can indeed increase the clean accuracy and robustness of the final
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Losses Method Clean Accuracy PGD-20 PGD-100 CW-100 AA

FL PGD-AT 53.58(0.81) 30.88(0.24) 30.85(0.25) 28.48(0.59) 27.00(0.60)
REAT 55.22(1.42) 31.14(0.34) 31.08(0.33) 28.71(0.53) 27.23(0.56)

EN PGD-AT 55.26(0.38) 31.82(0.36) 31.75(0.40) 29.91(0.27) 28.26(0.22)
REAT 55.25(0.87) 32.20(0.25) 32.14(0.23) 30.12(0.33) 28.69(0.48)

LDAM PGD-AT 52.74(0.71) 31.31(0.25) 31.24(0.23) 29.41(0.42) 28.03(0.37)
REAT 53.47(1.04) 31.52(0.27) 31.52(0.27) 29.63(0.25) 28.20(0.21)

BSL PGD-AT 66.99(0.17) 35.23(0.45) 35.01(0.43) 33.17(0.37) 31.15(0.49)
REAT 67.33(0.45) 36.20(0.06) 36.02(0.09) 33.98(0.23) 32.08(0.12)

Table 1: Results on CIFAR-10-LT (UR=50) with different long-tailed recognition losses. For this and
the following tables, standard errors are shown inside ().

models by re-balancing the generated AEs. Particularly, our RBL outperforms other approaches,
giving better robustness under different attacks. This is attributed to our adaptive effective number
based on the AE re-balancing generation, which allows the samples to equally learn features of both
head and tail classes, and makes the model obtain more marginal benefit from the AEs. Furthermore,
our REAT (i.e., combining RBL and TAIL) achieves the best results under various attacks, which
proves the effectiveness of the feature distribution alignment strategy.

Rebalancing Method Clean Accuracy PGD-20 PGD-100 CW-100 AA
–

PGD-AT

66.99(0.17) 35.23(0.45) 35.01(0.43) 33.17(0.37) 31.15(0.49)
RW 66.82(0.40) 35.80(0.05) 35.65(0.08) 33.29(0.32) 31.40(0.31)

RWS 67.28(0.63) 35.83(0.35) 35.70(0.37) 33.38(0.50) 31.50(0.67)
ENR 66.53(0.91) 35.26(0.14) 35.08(0.12) 32.95(0.27) 31.05(0.13)
BRW 67.98(0.09) 34.65(0.30) 34.47(0.32) 33.55(0.33) 31.36(0.40)
RBL PGD-AT 67.46(0.65) 35.59(0.18) 35.48(0.19) 33.51(0.39) 31.68(0.33)
RBL TAIL 67.33(0.45) 36.20(0.06) 36.02(0.09) 33.98(0.23) 32.08(0.12)

Table 2: Comparisons between different AE generation re-balancing strategies. BSL loss is adopted.

4.2 EVALUATION UNDER VARIOUS SETTINGS

Varying the Unbalanced Ratio. We first investigate the impact of the unbalanced ratio on training
performance. Table 3 shows the comparison results between PGD-AT and REAT on the CIFAR-10-LT
and ResNet-18 models. We have the following observations. (1) For both methods, increasing UR can
reduce the model’s clean accuracy and robustness. (2) REAT outperforms PGD-AT under different
values of UR and attacks, due to the re-balanced AE generation and feature embedding space.

UR Method Clean Accuracy PGD-20 PGD-100 CW-100 AA

10 PGD-AT 75.27(0.32) 42.66(0.20) 42.36(0.20) 41.18(0.21) 38.81(0.10)
REAT 75.20(0.03) 42.97(0.17) 42.76(0.19) 41.52(0.22) 39.25(0.21)

20 PGD-AT 72.31(0.24) 39.79(0.31) 39.61(0.30) 38.42(0.06) 36.18(0.03)
REAT 72.73(0.50) 40.57(0.15) 40.41(0.12) 38.55(0.29) 36.53(0.21)

50 PGD-AT 66.99(0.17) 35.23(0.45) 35.01(0.43) 33.17(0.37) 31.15(0.49)
REAT 67.33(0.45) 36.20(0.06) 36.02(0.09) 33.98(0.23) 32.08(0.12)

100 PGD-AT 62.70(0.52) 32.91(0.17) 32.73(0.19) 30.45(0.15) 28.60(0.21)
REAT 63.92(0.68) 32.84(0.07) 32.69(0.15) 30.73(0.38) 28.90(0.33)

Table 3: Results on CIFAR-10-LT with different values of UR. BSL loss is adopted.

Varying Datasets and Model Architectures. REAT can well generalize to different datasets and
models. Table 4 compares PGD-AT and REAT on CIFAR-100-LT with ResNet-18. Tables 5 and 6
compare two approaches on CIFAR-10-LT and CIFAR-100-LT with two model architectures. Similar
to the above results, REAT can bring additional performance improvement under various unbalance
degrees and attacks for different configurations. More results and analysis are in Appendix C.
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UR Method Clean Accuracy PGD-20 PGD-100 CW-100 AA

10 PGD-AT 45.96(0.49) 18.85(0.19) 18.73(0.17) 17.70(0.13) 16.21(0.13)
REAT 45.94(0.15) 19.26(0.18) 19.16(0.18) 17.99(0.09) 16.58(0.06)

20 PGD-AT 42.45(0.53) 16.36(0.13) 16.24(0.14) 15.47(0.17) 14.17(0.09)
REAT 41.98(0.21) 16.84(0.10) 16.72(0.12) 15.77(0.23) 14.45(0.20)

50 PGD-AT 37.70(0.12) 13.95(0.07) 13.86(0.05) 13.17(0.11) 12.10(0.02)
REAT 37.43(0.37) 14.25(0.22) 14.18(0.26) 13.38(0.15) 12.32(0.17)

Table 4: Results on CIFAR-100-LT with different values of UR. BSL loss is adopted.

Method Clean Accuracy PGD-20 PGD-100 CW-100 AA

ResNet PGD-AT 66.99(0.17) 35.23(0.45) 35.01(0.43) 33.17(0.37 31.15(0.49)
REAT 67.33(0.45) 36.20(0.06) 36.02(0.09) 33.98(0.23) 32.08(0.12)

WRN PGD-AT 72.38(0.30) 35.93(0.10) 35.64(0.04) 34.93(0.14) 32.84(0.19)
REAT 72.58(0.31) 36.53(0.31) 36.35(0.32) 35.30(0.37) 33.37(0.37)

Table 5: Results on CIFAR-10-LT (UR=50) with different model structures. BSL loss is adopted.

4.3 COMPARISONS WITH ROBAL

To the best of our knowledge, RoBal (Wu et al., 2021) is the only work specifically focusing on
adversarial training on unbalanced datasets. As analyzed in Section 2.2, there are several limitations
in RoBal. Besides, we find that the scale-invariant classification layer in RoBal can cause gradient
vanishing when generating AEs with the cross-entropy loss. It is because the normalized weights of
the classification layer and the normalized features greatly reduce the scale of the gradients, failing
to generate powerful AEs. We propose a simple adaptive attack to break the gradient vanishing and
invalidate RoBal. In our attack, we multiply the output logits with a factor (10 in all cases) when
generating AEs. And we use these AEs to attack the RoBal. This can significantly decrease the
robustness of the models trained with RoBal.

We perform experiments to compare RoBal and REAT from different perspectives, as shown in Table 7.
We adopt the CIFAR-10-LT and ResNet-18 settings. More results with different configurations can
be found in Appendix E. First, for PGD-based attacks, we show that the model robustness partially
originates from the gradient vanishing, and our adaptive attack can successfully break this effort. CW
attack and AA can easily break the gradient obfuscation in the classification layer, due to the different
loss functions in the AE generation process. Second, comparing the results of RoBal and REAT
under different values of UR, REAT can achieve better clean accuracy and robustness, especially with
higher UR. This indicates REAT is a better training strategy for highly unbalanced datasets.

(a) RoBal (b) REAT

Figure 4: Distributions of model predictions for AEs during
training. Clean label distributions are shown by gray bars.

Interpretation. We perform an in-
depth analysis of the comparisons of
RoBal and REAT. First, we show the
distributions of the predicted labels
of AEs during adversarial training for
these two approaches in Figure 4. We
choose the configurations of CIFAR-
10-LT (UR=50) and ResNet-18. Re-
sults under other configurations can
be found in Appendix F. For RoBal,
we observe that there are fewer AEs
classified into body classes and more
AEs classified into tail classes, indicating that RoBal makes the model pay more attention to head
and tail classes while overlooking the body classes. In contrast, REAT treats the body and tail classes
more equally, and this is one reason to achieve better performance.

Second, we plot the feature embedding space with the t-SNE tool for models trained with different
strategies in Figure 5. We first generate AEs with the PGD-20 attack on the test set and use t-SNE to
plot the feature distribution for AEs. ResNet-18 is adopted as the model architecture. Figure 5a is
the feature result for PGD-AT over the balanced dataset CIFAR-10. We observe that samples from
different classes are not quite overlapped with each other in the feature space, making them easier to
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Method Clean Accuracy PGD-20 PGD-100 CW-100 AA

ResNet PGD-AT 45.96(0.49) 18.85(0.19) 18.73(0.17) 17.70(0.13) 16.21(0.13)
REAT 45.94(0.15) 19.26(0.18) 19.16(0.18) 17.99(0.09) 16.58(0.06)

WRN PGD-AT 50.07(0.25) 20.79(0.39) 20.69(0.38) 20.17(0.27) 18.32(0.28)
REAT 49.99(0.18) 20.85(0.16) 20.71(0.20) 20.18(0.09) 18.35(0.17)

Table 6: Results on CIFAR-100-LT (UR=10) with different model structures. BSL loss is adopted.

UR Method Clean Accuracy PGD-20 PGD-100 CW-100 AA

10
RoBal 75.33(0.39)

45.98(0.39)
Adaptive: 41.25

45.97(0.39)
Adaptive: 41.13

41.02(0.02) 39.30(0.10)

REAT 75.20(0.03) 42.97(0.17) 42.76(0.19) 41.52(0.22) 39.25(0.21)

20
RoBal 71.92(0.62)

43.23(0.25)
Adaptive: 38.45

43.19(0.22)
Adaptive: 38.20

38.23(0.07) 36.17(0.28)

REAT 72.73(0.50) 40.57(0.15) 40.41(0.12) 38.55(0.29) 36.53(0.21)

50
RoBal 66.08(0.69)

38.46(0.18)
Adaptive: 33.54

38.44(0.11)
Adaptive: 33.20

33.90(1.72) 31.14(0.44)

REAT 67.33(0.45) 36.20(0.06) 36.02(0.09) 33.98(0.23) 32.08(0.12)

100
RoBal 60.11(0.62)

36.08(0.18)
Adaptive: 30.55

36.05(0.20)
Adaptive: 30.36

30.57(0.77) 28.64(0.28)

REAT 63.92(0.68) 32.84(0.07) 32.69(0.15) 30.73(0.38) 28.90(0.33)

Table 7: Results on CIFAR-10-LT with different values of UR. Red numbers represent the results
under our adaptive attack. BSL loss is adopted for REAT.

be classified. In contrast, Figures 5b and 5c show the results for PGD-AT (BSL loss) and RoBal over
the unbalanced dataset CIFAR-10. We observe that there are more samples from different classes
entangled together in their feature embeddings, which can harm the model’s robustness. Figure 5d
shows the results of our REAT under the same unbalanced setting. We can see the feature space is
more similar to the one obtained from the balanced dataset (Figure 5a). This explains the effectiveness
of REAT in enhancing the model robustness and clean accuracy from the feature perspective.

(a) PGD-AT: balanced (b) PGD-AT (BSL) (c) RoBal (d) REAT (BSL)

Figure 5: AE’s feature map results with different strategies. (a) is trained with the balanced dataset
(CIFAR-10) while the rest three are trained with the unbalanced dataset (CIFAR-10-LT, UR=50).

5 CONCLUSION

In this paper, we propose REAT, a new long-tailed adversarial training framework to improve the
training performance on unbalanced datasets. We present two novel components, RBL for promoting
the model to generate balanced AEs, and a regularization term TAIL for forcing the model to assign
larger feature space for tail classes. With these techniques, REAT helps models achieve state-of-the-art
results and outperforms existing solutions on different datasets and model structures.

There still exists a robustness gap between the ideal result obtained in the balanced setting and our
approach. In the future, we aim to keep reducing this gap with more advanced solutions, e.g., new
robust network structures or training loss functions.
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A RELATED WORKS

A.1 LONG-TAILED RECOGNITION

Long-tailed learning means training a machine learning model on a dataset that follows a long-tailed
distribution. It has been applied to various scenarios including classification tasks (Ren et al., 2020),
object detection tasks (Lin et al., 2017) and segmentation tasks (Wang et al., 2020a). To alleviate
the uneven distribution of data in the dataset, i.e., the majority of the data belong to the head classes,
while the data belonging to the tail classes are insufficient, many methods have been proposed,
which can be roughly divided into four categories:re-sampling, cost-sensitive learning, training phase
decoupling and classifier designing.

The re-sampling methods can be divided into four classes, i.e., random under-sampling head
classes (Liu et al., 2009), random over-sampling tail classes (Han et al., 2005), class-balanced
re-sampling (Ren et al., 2020) and scheme-oriented sampling (Huang et al., 2016). These methods
solve the unbalance problem by using sampling strategies to generate desired balanced distributions.

The cost-sensitive learning methods have two types of applications, i.e., class-level re-
weighting (Hong et al., 2021; Cui et al., 2019; Lin et al., 2017) and class-level re-margining (Cao
et al., 2019; Khan et al., 2019; Wu et al., 2021). It assigns different weights to each class or adjust the
minimal margin between the features and the classifier to balance the learning difficulties, achieving
better performance under unbalanced data distributions.

The training phase decoupling is used to improve both the feature extractor and classifier. Kang
et al. (2020) find that training the feature extractor with instance-balanced re-sampling strategy and
re-adjusting the classifier can significantly improve the accuracy in long-tailed recognition. Kang
et al. (2021) further observe that a balanced feature space benefits the long-tailed recognition.

The classifier designing aims to address the biases that the weight norms for head classes are larger
than them of tail classes (Yin et al., 2019) in the traditional layers under long-tailed datasets. Kang
et al. (2020) propose a normalized classification layer to re-balance the weight norms for all classes.
Wu et al. (2021) also adopt a normalized classifier to defend against adversarial attacks. Wu et al.
(2020b) propose a hierarchical classifier mapping the images into a class taxonomic tree structure.
Tang et al. (2020) propose a classifier with causal inference to better stabilize the gradients. Note that
modifying classifier can indeed improve the performance of models on unbalanced data. However,
we argue that it may introduce gradient obfuscation resulting in adaptive adversarial attacks. For
more details, please refer to Section 4.3.

A.2 ADVERSARIAL TRAINING

Adversarial training (Madry et al., 2018; Zhang et al., 2019; Wang et al., 2020b; Rice et al., 2020)
is widely studied to defend against adversarial attacks. Its basic idea is to generate on-the-fly AEs
to augment the training set. It can be formulated as the following min-max problem (Madry et al.,
2018):

min
θ

max
x∗

ℓ(x∗, y; θ)

where x∗ is the training sample generated from a clean one x to maximize the loss function ℓ(·), y is
the ground-truth label, θ is the model parameters. The first phase (maximization optimization) is to
generate samples maximizing the loss function. The second stage (minimization optimization) is to
optimize the model parameter θ to minimize the loss function under samples generated in phase one.

In previous works, there are three main research topics in adversarial training, i.e., improving the
model robustness (Madry et al., 2018; Wang et al., 2020b), reducing the gap between clean accuracy
and robustness (Zhang et al., 2019; Wu et al., 2020a) and addressing overfitting challenges (Rice
et al., 2020; Huang et al., 2020). In this paper, we focus on adversarial training on datasets with
long-tailed distributions. To our best knowledge, Wu et al. (2021) present the first work dedicated to
improving the accuracy as well as robustness to tail class during adversarial training. They design a
new loss function and cosine classifier to achieve this. However, we experimentally demonstrate the
unsatisfactory security and performance of this work in the Section 4.3, which motivates us to design
more secure and satisfactory adversarial training methods tailored to datasets that obey long-tailed
distributions.
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Method Clean Accuracy PGD-20 PGD-100 CW-100 AA
PGD-AT 51.28(1.34) 29.57(0.17) 29.47(0.15) 29.05(0.07) 27.71(0.15)
TRADES 45.55(0.89) 28.24(0.21) 28.21(0.20) 27.29(0.17) 26.78(0.10)

PGD-AWP 36.45(3.40) 26.52(1.64) 26.47(1.62) 26.04(1.54) 25.23(1.47)
TRADES-AWP 41.30(0.47) 27.04(0.08) 27.00(0.07) 25.65(0.08) 25.37(0.07)

MART 41.76(0.63) 29.18(0.12) 29.14(0.13) 27.04(0.06) 26.06(0.03)

Table 1: Results on CIFAR-10-LT (UR=50) with different training strategies.

B ADVERSARIAL TRAINING ON UNBALANCED DATASET

To explore the effectiveness of adversarial training strategies proposed on balanced datasets, we
compare recent adversarial training methods in Table 1. The results indicate that improving robustness
on a balanced dataset is non-trivial, but these improvements cannot be expressed under an unbalanced
dataset. Furthermore, we find that the simplest and the most straightforward method, PGD-AT,
obtains the best results. On the other hand, methods adopting clean samples to train models, like
TRADES and MART, will achieve lower clean accuracy, as the unbalanced data will harm the model’s
accuracy on the balanced test set.

In Figure 6, the t-SNE results prove that each class is assigned an area of a similar size in the feature
space when the model is trained on balanced data. But, if the model is trained on unbalanced data,
the areas for head classes expand and encroach areas that should belong to tail classes, causing the
area of tail features to shrink, which represents the unbalanced feature embedding space. As a
result, the performance and generalizability for tail classes decrease.

To alleviate the unbalance problem, we replace the cross-entropy loss in TRADES and MART
with Balanced Softmax Loss (BSL). However, in our experiments, we find that BSL will make the
model not converge. The reason can be that the gradient directions of BSL and KL divergence are
contradicted. So, in our paper, we mainly consider enhancing the PGD-AT method to better fit the
unbalanced datasets.

(a) Balanced dataset (b) Unbalanced dataset

Figure 6: AE’s feature t-SNE results for ResNet-18 trained with PGD-AT on balanced and unbalanced
CIFAR-10.

C STUDYING DATA HUNGER AND DATA UNBALANCE

In this part, we further examine the effects of the data hunger and the data unbalance on the model
robustness, which is explored to construct an experimental upper bound on the robustness of the
long-tailed adversarial training methods. To be specific, the data hunger raises from the insufficient
data from the body classes and tail classes, which is one of the impacts of the long-tailed datasets.
And another one is the data unbalance. To exclusively study the data hunger in a balanced dataset, for
a given unbalanced ratio, we sample the same number of samples as the long-tail dataset but form
them into balanced small (BS) datasets. We then train models on this dataset with PGD-AT to learn
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UR Method Clean Accuracy PGD-20 PGD-100 CW-100 AA

10
PGD-AT (BS) 77.12(0.73) 44.73(0.20) 44.49(0.20) 43.81(0.26) 41.50(0.19)

PGD-AT 75.27(0.32) 42.66(0.20) 42.36(0.20) 41.18(0.21) 38.81(0.10)
REAT 75.20(0.03) 42.97(0.17) 42.76(0.19) 41.52(0.22) 39.25(0.21)

20
PGD-AT (BS) 75.61(0.10) 43.37(0.15) 43.22(0.17) 42.12(0.12) 40.01(0.03)

PGD-AT 72.31(0.24) 39.79(0.31) 39.61(0.30) 38.42(0.06) 36.18(0.03)
REAT 72.73(0.50) 40.57(0.15) 40.41(0.12) 38.55(0.29) 36.53(0.21)

50
PGD-AT (BS) 72.98(0.74) 41.14(0.26) 40.89(0.30) 39.92(0.49) 37.75(0.40)

PGD-AT 66.99(0.17) 35.23(0.45) 35.01(0.43) 33.17(0.37) 31.15(0.49)
REAT 67.33(0.45) 36.20(0.06) 36.02(0.09) 33.98(0.23) 32.08(0.12)

100
PGD-AT (BS) 72.83(0.53) 40.25(0.35) 40.10(0.45) 39.29(0.19) 37.24(0.18)

PGD-AT 62.70(0.52) 32.91(0.17) 32.73(0.19) 30.45(0.15) 28.60(0.21)
REAT 63.92(0.68) 32.84(0.07) 32.69(0.15) 30.73(0.38) 28.90(0.33)

Table 2: Results on CIFAR-10 and CIFAR-10-LT with different URs. BSL loss is adopted for
PGD-AT and REAT.

UR Method Clean Accuracy PGD-20 PGD-100 CW-100 AA

10
PGD-AT (BS) 48.32(0.50) 20.08(0.24) 19.95(0.25) 18.88(0.28) 17.44(0.21)

PGD-AT 45.96(0.49) 18.85(0.19) 18.73(0.17) 17.70(0.13) 16.21(0.13)
REAT 45.94(0.15) 19.26(0.18) 19.16(0.18) 17.99(0.09) 16.58(0.06)

20
PGD-AT (BS) 45.14(0.28) 17.95(0.19) 17.82(0.17) 17.15(0.19) 15.80(0.23)

PGD-AT 42.45(0.53) 16.36(0.13) 16.24(0.14) 15.47(0.17) 14.17(0.09)
REAT 41.98(0.21) 16.84(0.10) 16.72(0.12) 15.77(0.23) 14.45(0.20)

50
PGD-AT (BS) 42.86(0.37) 16.52(0.26) 16.38(0.24) 15.86(0.14) 14.54(0.05)

PGD-AT 37.70(0.12) 13.95(0.07) 13.86(0.05) 13.17(0.11) 12.10(0.02)
REAT 37.43(0.37) 14.25(0.22) 14.18(0.26) 13.38(0.15) 12.32(0.17)

Table 3: Results on CIFAR-100 and CIFAR-100-LT with different URs. BSL loss is adopted for
PGD-AT and REAT.

an experimental upper bound, which is represented as “PGD-AT (BS)” in our experiments. When
we train models with PGD-AT (BS) the loss function used to optimize models is Cross-Entropy loss.
On the other hand, when we train models on unbalanced datasets, the basic loss function used to
optimize models is BSL.

Comparing the results of models trained under balanced datasets and unbalanced datasets in Tables 2–
5, it is clear that the models train on unbalanced datasets suffer from a bigger reduction when the
number of training samples decreases, which means that the data unbalance harms the model’s
robustness in a larger degree than the data hunger. Training models on unbalanced data is more
challenging than training models on small but balanced data under adversarial scenarios for different
model structures and datasets. On the other hand, the experimental results of PGD-AT (BS) can be
seen as upper bounds for the models trained on same-size unbalanced datasets.

D RESULTS UNDER l2-NORM ATTACKS

In Table 6, we show the results of models under l2-norm attacks. For the PGD attacks, the max
perturbation size is ϵ = 1.0, and the step length is α = 0.2. We consider the 20-step attack, PGD-20,
and the 100-step attack, PGD-100. For the C&W attack, we follow its official implementation. The
results confirm that our REAT can improve the model’s robustness under different threat models. On
the other hand, the gradient obfuscation is more serious under l2-norm attacks, so our adaptive attacks
achieve better results.
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Method Clean Accuracy PGD-20 PGD-100 CW-100 AA

ResNet
PGD-AT (BS) 72.98(0.74) 41.14(0.26) 40.89(0.30) 39.92(0.49) 37.75(0.40)

PGD-AT 66.99(0.17) 35.23(0.45) 35.01(0.43) 33.17(0.37 31.15(0.49)
REAT 67.33(0.45) 36.20(0.06) 36.02(0.09) 33.98(0.23) 32.08(0.12)

WRN
PGD-AT (BS) 78.65(0.15) 42.42(0.33) 42.05(0.32) 42.21(0.08) 39.86(0.37)

PGD-AT 72.38(0.30) 35.93(0.10) 35.64(0.04) 34.93(0.14) 32.84(0.19)
REAT 72.58(0.31) 36.53(0.31) 36.35(0.32) 35.30(0.37) 33.37(0.37)

Table 4: Results on CIFAR-10 and CIFAR-10-LT (UR=50) with different model structures. BSL loss
is adopted for PGD-AT and REAT.

Method Clean Accuracy PGD-20 PGD-100 CW-100 AA

ResNet
PGD-AT (BS) 48.32(0.50) 20.08(0.24) 19.95(0.25) 18.88(0.28) 17.44(0.21)

PGD-AT 45.96(0.49) 18.85(0.19) 18.73(0.17) 17.70(0.13) 16.21(0.13)
REAT 45.94(0.15) 19.26(0.18) 19.16(0.18) 17.99(0.09) 16.58(0.06)

WRN
PGD-AT (BS) 52.33(0.42) 21.95(0.10) 21.77(0.14) 21.41(0.20) 19.58(0.17)

PGD-AT 50.07(0.25) 20.79(0.39) 20.69(0.38) 20.17(0.27) 18.32(0.28)
REAT 49.99(0.18) 20.85(0.16) 20.71(0.20) 20.18(0.09) 18.35(0.17)

Table 5: Results on CIFAR-100 and CIFAR-100-LT (UR=10) with different model structures. BSL
loss is adopted for PGD-AT and REAT.

E COMPARING WITH ROBAL

Varying Datasets. To prove that REAT outperforms RoBal on different datasets, we com-
pare the results of RoBal and REAT on CIFAR-100-LT with ResNet-18 in Table 7. Compar-
ing the clean accuracy, models trained with REAT are significantly higher than models trained
with RoBal. As for the robustness, because RoBal can cause gradient obfuscation, we com-
pare the results under adaptive attacks. The results indicate that REAT can better improve
the model’s robustness under large URs. So, REAT beats RoBal on various datasets.

Varying Model Structures. To show the superiority of REAT on different model structures, we
compare the results of RoBal and REAT on ResNet-18 and WideResNet-28-10, respectively. The
results in Tables 8 and 9 prove that models trained with REAT lead models trained with RoBal on
both clean accuracy and robustness, which means REAT is a better training strategy for different
model structures.

F AE PREDICTION DISTRIBUTION

In Figure 7, the distributions of the model’s predictions for generated AEs in different epochs are
illustrated. From the plot, we can obtain the same conclusion as the one in our main paper that the
RoBal will make the model pay more attention to head and tail classes and ignore the body classes.
On the contrary, our REAT will help the model value the body and tail classes equally, which can
further improve the model’s robustness.

In Figure 8, we compare the AE distribution on CIFAR-100-LT (UR=10), when training models with
RoBal and REAT, respectively. The results prove that RoBal will cause unbalanced AE distribution
when the number of classes increases. There are more samples predicted as tail classes by the model.
However, our REAT can keep the balanced AE distribution and obtain better results.

G TRAINING COST OVERHEAD OF REAT

We compare the training time overhead of REAT compared with PGD-AT (BSL is adopted) method
on one single V100 GPU card. When we train a ResNet-18 on CIFAR-10-LT (UR=50), the training
time overhead for one epoch is about 5 seconds. When we train a ResNet-18 on CIFAR-10-LT
(UR=20), the training time overhead for one epoch is about 10 seconds. So, our REAT is efficient
and does not increase too much training time.
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UR Method Clean Accuracy PGD-20 PGD-100 CW

10
PGD-AT 75.27(0.32) 30.92(0.47) 28.82(0.63) 70.76(0.20)
RoBal 75.33(0.39) 33.15/28.26(0.62) 31.43/26.18(0.80) 71.36(0.39)
REAT 75.20(0.03) 30.82(0.60) 28.71(0.74) 71.02(0.18)

20
PGD-AT 72.31(0.24) 29.23(0.50) 27.24(0.55) 67.87(0.26)
RoBal 71.92(0.62) 31.79/27.13(0.37) 30.34/25.38(0.44) 67.95(0.58)
REAT 72.73(0.50) 29.27(0.58) 27.44(0.59) 68.13(0.43)

50
PGD-AT 66.99(0.17) 26.75(0.31) 25.20(0.31) 62.54(0.14)
RoBal 66.08(0.69) 29.22/24.17(0.68) 27.97/22.83(0.60) 62.03(0.65)
REAT 67.33(0.45) 27.45(0.30) 25.91(0.40) 63.08(0.23)

100
PGD-AT 62.70(0.52) 24.91(0.46) 23.49(0.42) 58.06(0.40)
RoBal 60.11(0.62) 27.77/23.33(0.46) 26.48/21.91(0.43) 56.34(0.28)
REAT 63.92(0.68) 24.63(0.21) 23.24(0.21) 59.17(0.49)

Table 6: Results on CIFAR-10-LT with different URs under l2-norm attacks. Red numbers represent
the results under our adaptive attack. BSL loss is adopted for PGD-AT and REAT.

UR Method Clean Accuracy PGD-20 PGD-100 CW-100 AA

10
RoBal 43.47(0.31)

20.55(0.20)
Adaptive: 18.49

20.49(0.20)
Adaptive: 18.31

18.12(0.23) 16.86(0.10)

REAT 45.94(0.15) 19.26(0.18) 19.16(0.18) 17.99(0.09) 16.58(0.06)

20
RoBal 39.58(0.40)

17.73(0.11)
Adaptive: 16.00

17.71(0.08)
Adaptive: 15.93

15.58(0.11) 14.55(0.10)

REAT 41.98(0.21) 16.84(0.10) 16.72(0.12) 15.77(0.23) 14.45(0.20)

50
RoBal 34.24(0.54)

14.77(0.09)
Adaptive: 13.22

14.77(0.10)
Adaptive: 13.18

12.77(0.10) 12.02(0.08)

REAT 37.43(0.37) 14.25(0.22) 14.18(0.26) 13.38(0.15) 12.32(0.17)

Table 7: Results on CIFAR-100-LT with different URs. Red numbers represent the results under our
adaptive attack. BSL loss is adopted for REAT.

Method Clean Accuracy PGD-20 PGD-100 CW-100 AA

ResNet
RoBal 66.08(0.69)

38.46(0.18)
Adaptive: 33.54

38.44(0.11)
Adaptive: 33.20

33.90(1.72) 31.14(0.44)

REAT 67.33(0.45) 36.20(0.06) 36.02(0.09) 33.98(0.23) 32.08(0.12)

WRN
RoBal 69.33(0.11)

39.97(0.30)
Adaptive: 34.58

39.98(0.32)
Adaptive: 34.26

34.83(0.21) 33.09(0.41)

REAT 72.58(0.31) 36.53(0.31) 36.35(0.32) 35.30(0.37) 33.37(0.37)

Table 8: Results on CIFAR-10-LT (UR=50) with different model structures. Red numbers represent
the results under our adaptive attack. BSL loss is adopted for REAT.

Method Clean Accuracy PGD-20 PGD-100 CW-100 AA

ResNet
RoBal 43.47(0.31)

20.55(0.20)
Adaptive: 18.49

20.49(0.20)
Adaptive: 18.31

18.12(0.23) 16.86(0.10)

REAT 45.94(0.15) 19.26(0.18) 19.16(0.18) 17.99(0.09) 16.58(0.06)

WRN
RoBal 48.84(0.24)

21.45(0.18)
Adaptive: 19.29

21.44(0.21)
Adaptive: 19.19

19.71(0.09) 18.21(0.02)

REAT 49.99(0.18) 20.85(0.16) 20.71(0.20) 20.18(0.09) 18.35(0.17)

Table 9: Results on CIFAR-100-LT (UR=10) with different model structures. Red numbers represent
the results under our adaptive attack. BSL loss is adopted for REAT.
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(a) RoBal (b) REAT

Figure 7: The distribution of model predictions for AEs in Epoch {10, 30, 60} on CIFAR-10-LT
(UR=50).

(a) RoBal (b) REAT

Figure 8: The distribution of model predictions for AEs during the training process on CIFAR-100-LT
(UR=10). Clean label distributions are shown by gray bars.
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