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Abstract

This paper presents an ngram-based MT ap-
proach that operates at character-level to gener-
ate possible canonical forms for lexical variants
in social media text. It utilizes a joint n-gram
model to learn edit sequences of word pairs,
thus overcomes the shortage of phrase-based
approach that is unable to capture dependen-
cies across phrases. We evaluate our approach
on two English tweet datasets and observe that
the ngram-based approach significantly outper-
forms phrase-based approach in normalization
task. Our simple model achieves a broad cover-
age on diverse variants which is comparable to
complex hybrid systems.

1 Introduction

As large volume of text data being produced daily
on social media platforms, user-generated text has
become the biggest source for text mining and Nat-
ural Language Processing (NLP) tasks. It contains
vast valuable information and reflects users’ di-
versified habits of readings and writings, which
had been known to be deviated from standard
language usage (Eisenstein, 2013). Many words
are written in non-standard forms, either being di-
versely abbreviated, respelled, or mistyped. This
can lead to explosive growth of vocabulary size
for any NLP models, aggravated unknown token
and data sparseness problems. Double-digit perfor-
mance decreases had been widely observed in basic
NLP tasks, such as part-of-speech tagging (Gimpel
et al., 2011), named entity recognition (Ritter et al.,
2011), and parsing (Foster et al., 2011). Addition-
ally, it also causes communication gap between
users that across diverse communities. Users who
are not familiar with certain language habits, e.g.
domain-specific abbreviations, or regional accents
that are explicitly written, may find the text difficult
to understand.

Lexical normalization is a task that aims to es-
tablish correlations between standard words and

their diverse written forms in user-generated text,
so that text audiences (either users or machines)
can be informed of possible standard forms of un-
known tokens. Normalization models have either
served as preprocessing tools for downstream tasks
(Han et al., 2013), or necessary components in joint
decoding models (Li and Liu, 2015). It is an impor-
tant task for developing more robust NLP applica-
tions on social media.

The connections between standard words and
lexical variants have been generally represented
as a noisy channel model argmax P(T'|S) =
arg max P(S|T)P(T) that aims to find the most
probable target sequence T for given source se-
quence S. One major challenge is that it is difficult
to estimate reliable P(S|T") because the training
data is limited. Due to the productive and creative
natures of social media language, it is impracti-
cal to collect sufficient data to cover all spelling
variants for standard words.

Two kinds of solutions have been proposed to
approximate P(S|T'). The similarity-based ap-
proaches used Edit Distance (ED), Longest Com-
mon Subsequence (LCS) or any combination of the
two to measure lexical similarities between letter
and phone sequences, while incorporating differ-
ent context-based models to capture distributional
similarities in unlabeled corpora (Han and Bald-
win, 2011; Hassan and Menezes, 2013; Yang and
Eisenstein, 2013). The problem is that similarity-
based metrics are obviously restricted to specific
variants that are orthographically or phonetically
close to standard forms. Another solution views
P(S|T) = II; P(si|ti) as a string transduction
subtask at subword-level. The mapping from word
t; to s; has been represented as edits of characters
or character-blocks, and the weights of edits were
estimated through diverse models, such as edit-
probability model (Cook and Stevenson, 2009),
weighted rewrite model (Beaufort et al., 2010),
character-level phrase-based Machine Translation



(MT) model (Pennell and Liu, 2011) and sequence
labeling model, specifically Conditional Random
Field (CRF) (Liu et al., 2011; Chrupata, 2014).
The MT framework has the advantage that it is
very flexible to handle diversified and productive
variation types such as arbitrary letter transposi-
tions or repetitious typing. But the phrase-based
translation model can not capture the dependencies
across phrases, that makes it unable to deal with
cases like highly abbreviated words. In another
aspect, the sequence labeling framework is good at
capturing dependencies between edits. But it is less
flexible than MT framework because it operates in
monotonous manner and requires the length |¢;| to
be strictly equal to |s;].

In this paper, we propose a more general string
transduction model that learns edit sequences of
word pairs with a joint n-gram model under MT
framework. Our model overcomes the shortcom-
ings of both phrase-based translation model and se-
quence labeling framework, and can flexibly handle
words with small variations or highly abbreviated
words. Since recovering highly abbreviated words
requires to infer arbitrary long consecutive inser-
tions for input strings, we propose to transform
them into Finite State Automata (FSA) with loops
of insertion points between adjacent letters. The
whole inference process is efficiently implemented
through the standard operations of the Weighted
Finite-State Transducer (WFST) framework, Open-
FST (Allauzen et al., 2007).

The main contributions of our work are: (i) we
show that an ngram-based MT approach signifi-
cantly outperforms phrase-based approach in the
context of lexical normalization. Our simple model
can achieve a broad coverage on diverse variants
which is comparable to complex hybrid systems;
(ii) we investigate how string transduction models
perform in a more general normalization task that
includes phrasal abbreviations as targets.

2 Methods

Given a source string S = (s1,$2...8,), the
goal of normalization task is to find a target
string T' = (t1,t2...t,,) that maximizes P(T|S).
It can be factored as a noisy channel model:
argmaxy P(T']S) = argmaxy P(S|T)P(T). In
the context of lexical normalization, P(S|T) =
L, P(s;lti) is a lexicalized transformation model
that generates possible standard words {¢;} for
each variant token s;, and P(7') is a Language

Model (LM) that select the most probable sequence
T'. In this work, we focus on learning the lexical-
ized transformation model P(s|t).

2.1 Model

Due to the limited training pairs, it is difficult to
directly estimate reliable P(s|t). Pennell and Liu
(2011) has proposed to estimate the posterior prob-
ability arg max, P(t|s) = argmax, P(s|t)P(t)
that leverages a character LM P(¢) to learn stan-
dard word formations from unlabeled data and
ensure that most generated candidates are reason-
able words. Based on this framework, we suggest
an alternative model to estimate P(s|t) instead of
phrase-based translation model.

The proposed model is based on a joint n-gram
model, which has long been used as an alternative
to phrase-based model in the context of machine
translation (Crego et al., 2005). Our model differs
in that it operates at character-level. A pair of letter
sequences (s,t) is represented as a sequence of
edit operations £ = (eq,...es), so that the joint
probability P(s,t) is estimated as:

J
P(S, t) =~ H P(€j|€j—n+1~-'€j—1)
j=1
The conditjional probability is then computed as
follows:
Pslt) = 7,205
where Prqrg(t) = >, P(s,t) is the marginal
probability of ¢ in the joint n-gram model.
The lexicalized transformation model is defined
as:
£ = argmax, 505 P (£) D(e) L(t)™
where D(a) = a? is a simplified distortion
model to handle transpositions of adjacent letters,
and L(t) = el"9th(®) is a length penalty to control
the length of target sequence, which is similar to
word penalty in MT. These two terms turn out to
be very useful in normalization task.

2.2 WFST-based Training and Decoding

We adopt the training scheme proposed by Novak
et al. (2012) to estimate the joint n-gram model'.
The pairs of letter sequences are first aligned into
edit sequences through a stochastic transducer
which is optimized by Expectation-Maximization
(EM) algorithm (Ristad and Yianilos, 1998). The
edit sequences are used to estimate a standard
n-gram model, which is then transformed into a
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WEST with source input and target output labels.
Another training method can also be used to esti-
mate joint n-gram model (Bisani and Ney, 2008),
but it is slower than the method we used.

Figure 1: An example FSA of input string hw. The
symbol __ denotes insertion points.

Decoding process takes a cyclic FSA as input,
as shown in Figure 1. We first compose the input
FSA I with the joint N-gram model M to produce
a mapping from input string to all possible can-
didates. Since it is a cyclic WFST that encodes
unbounded candidate strings, we need to prune it
into acyclic WFST with Shortest Path operation,
that preserves global K-shortest paths. The process
is described as follows:

C = Det(Projo,(ShortestPath(I o M)))

where Proj, projects output labels of the WFST
into a FSA that encodes only candidate strings, and
Det determinizes the candidate FSA.

To compute the marginal probabilities of can-
didates, we take the unweighted candidate lattice
Cuw as input. It is composed with M to generate
all possible variant strings for the candidates. The
weights of all the paths that generate the same can-
didate are added together through Det operation,
as described below:

Crarg = Det(Projo(M o Cyw))

Hence, we get the final top-m candidate list Cy;5¢
through the following computation:

Clist = ShortestPath(C o [C’marg]_l o LM_p,)

3 Experiments

We concentrate on evaluating the proposed model
in word-level normalization, which only generate
candidates for given tokens but does not rerank
them according to surrounding contexts. We do
not consider sentence-level normalization in this
work because it requires to collect an extra corpus
to estimate word-level LM in target domain. One
issue is that there is no consensus on what kind
of data represents the target domain, as argued by
Chrupata (2014). As a variety of corpora have been
used to estimate LM (Liu et al., 2012; Xu et al.,
2015; van der Goot and van Noord, 2017), what
data constitutes the target domain is still unknown.

Experimental settings

The proposed model is evaluated under two dif-
ferent settings on English tweet datasets, which
have been anonymized and potentially contain of-
fensive words. Offensive words are usually actively
respelled in tweets to avoid detection, thus they are
main targets in normalization task.

(1) A traditional setting is to normalize only
single-token words, that excludes phrasal abbre-
viations like (imo, in my opinion). To make
the results comparable to previous work, we fol-
low the experimental setup in Li and Liu (2014),
that used 2,333 unique word pairs in the annotated
data (Pennell and Liu, 2011) (GPL-3.0) for training,
and 569 unique word pairs in the Lexnorm dataset
(Han and Baldwin, 2011) (CC-BY 3.0) for testing.

Under this setting, we use the CMU dictionary?
to define the scope of target words, and collect
about one million English tweets as background
corpus in which each tweet contains at least three
in-vocabulary (IV) words. All IV words in the
corpus are extracted to estimate the character LM.

(2) A more general setting has been proposed by
the shared task of the 2015 Workshop on Noisy
User-generated Text (W-NUT) (Baldwin et al.,
2015), that includes phrasal abbreviations as tar-
gets of normalization. It has suggested the systems
to be evaluated under two modes: the constrained
mode asks the systems to use training data as the
only information source, while the unconstrained
mode allow the systems to utilize any accessible
textual resource. In the W-NUT dataset, there are
1,183 unique word pairs in training data and 907
unique word pairs in testing data.

Under this setting, we only evaluate the pro-
posed model under constrained mode because it
is difficult to capture phrasal abbreviations in open
background corpus. The dictionary that defines
target words or phrases is compiled from training
data that contains 2,950 annotated tweets. All IV
words/phrases in training data are used to estimate
the character LM, in which the spaces in phrases
are replaced with <space> symbol.

Baselines

We compare our Ngram-Based MT approach
(NBMT) with three baselines, including a sim-
ple dictionary-based approach that generates candi-
dates directly from training word pairs (Dict), an
ngram-based approach that generates candidates
base on the joint probability P(s,t) (Joint), and

Zhttp://www.speech.cs.cmu.edu/cgi-bin/cmudict



Table 1: N-best accuracy on Lexnorm dataset. Sys|1 is
a hybrid system which contains 4 subsystems, includ-
ing a spell checker, two MT systems and one sequence
labeling system (Li and Liu, 2012); Sys2 reranks the
candidates generated from 5 subsystems with a maxi-
mum entropy model (Li and Liu, 2014).

LD <=2 (479 pairs) | LD >2 (90 pairs)
Method | Top3 Cover Top3 | Cover
PBMT | 82.0 87.1 46.7 48.8
NBMT | 854 97.3 57.8 75.6

Table 2: Performances comparison on grouped pairs
in Lexnorm dataset. LD denotes the length differences
between source and target strings.

the character-level Phrase-Based MT approach im-
plemented by Moses (Koehn et al., 2007) (PBMT).
A 5-gram character LM is used in both PBMT and
NBMT. The order of joint n-gram model is set to 3.
All approaches generate at most 200 candidates for
each token in test set.

3.1 Evaluation on Lexnorm Dataset

Table 1 shows the results of our experiment on the
Lexnorm dataset. The result of dictionary-based
method tells how many pairs in test set are cov-
ered by training pairs. The simple Joint approach
achieves better coverage than PBMT, which indi-
cates the superiority of joint ngram model over
phrase-based model in normalization task. Our
proposed model NBMT significantly outperforms
PBMT, and achieves the coverage that is close to
the complex hybrid systems.

Table 2 shows the performance comparison be-
tween NBMT and PBMT on pairs grouped by
length difference. In the test set, most pairs (84 %)
have length differences that are less or equal to 2,
and they are handled well by both approaches. The
pairs with LD >2 (16%) are the difficult part in
normalization task. Our NBMT approach performs
much better than PBMT on these pairs.

Accuracy % Accuracy %
Method | Topl | Top3 | Topl0 | Top20 | Cover || Method | Topl | Top3 | Topl0 | Top20 | Cover
Dict 36.4 Dict 42.1
Joint 420 | 554 | 66.8 72.2 84.9 Joint 332 | 47.1 | 57.7 63.1 75.9
PBMT | 673 | 764 | 79.3 79.8 81.0 PBMT | 52.7 | 62.8 | 66.4 67.4 70.3
NBMT | 69.6 | 81.0 | 89.6 91.6 93.8 NBMT | 52.7 | 67.1 | 74.6 77.6 83.0
Sysl 3 819 | 867 89.2 94.2 Table 3: N-best accuracy on W-NUT dataset.
Sys2 77.1 | 87.0 | 93.0 94.8 95.9

LD <=2 (666 pairs) | LD >2 (241 pairs)
Method | Top3 Cover Top3 Cover
PBMT | 71.9 81.4 37.8 39.8
NBMT | 75.7 93.1 43.6 55.2

Table 4: Performances comparison on grouped pairs
in W-NUT dataset. LD denotes the length differences
between source and target strings.

3.2 Evaluation on W-NUT Dataset

Table 3 shows the results of our experiment on the
W-NUT dataset. Significant performance drops
of all approaches are observed due to two factors:
first, the inclusion of phrasal abbreviations intro-
duces extra ambiguities when normalizing given
tokens; second, the character LM used in PBMT
and NBMT is estimated by limited training corpus.
Overall, the NBMT approach consistently outper-
forms PBMT, except that they achieve equal top-1
accuracy.

In Table 4, we can see that the pairs with LD
>2 account for over 26% of total pairs in test set.
This indicates that normalization task on W-NUT
dataset is more difficult than on Lexnorm dataset.
The NBMT approach still outperforms PBMT on
pairs (LD >2) but the gap is smaller than Table 2.

4 Conclusion

MT framework is more suitable for normalization
task than sequence labeling framework because it
possesses the flexibility to handle arbitrary vari-
ation types. Our ngram-based MT approach ef-
fectively overcomes the shortage of phrase-based
approach and achieves result that is comparable
to complex hybrid systems in word-to-word nor-
malization. However, there is still a lot of room
for improvement when considering word-to-phrase
normalization. We are planning to tackle this prob-
lem in the future.
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