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Abstract

This paper presents an ngram-based MT ap-001
proach that operates at character-level to gener-002
ate possible canonical forms for lexical variants003
in social media text. It utilizes a joint n-gram004
model to learn edit sequences of word pairs,005
thus overcomes the shortage of phrase-based006
approach that is unable to capture dependen-007
cies across phrases. We evaluate our approach008
on two English tweet datasets and observe that009
the ngram-based approach significantly outper-010
forms phrase-based approach in normalization011
task. Our simple model achieves a broad cover-012
age on diverse variants which is comparable to013
complex hybrid systems.014

1 Introduction015

As large volume of text data being produced daily016

on social media platforms, user-generated text has017

become the biggest source for text mining and Nat-018

ural Language Processing (NLP) tasks. It contains019

vast valuable information and reflects users’ di-020

versified habits of readings and writings, which021

had been known to be deviated from standard022

language usage (Eisenstein, 2013). Many words023

are written in non-standard forms, either being di-024

versely abbreviated, respelled, or mistyped. This025

can lead to explosive growth of vocabulary size026

for any NLP models, aggravated unknown token027

and data sparseness problems. Double-digit perfor-028

mance decreases had been widely observed in basic029

NLP tasks, such as part-of-speech tagging (Gimpel030

et al., 2011), named entity recognition (Ritter et al.,031

2011), and parsing (Foster et al., 2011). Addition-032

ally, it also causes communication gap between033

users that across diverse communities. Users who034

are not familiar with certain language habits, e.g.035

domain-specific abbreviations, or regional accents036

that are explicitly written, may find the text difficult037

to understand.038

Lexical normalization is a task that aims to es-039

tablish correlations between standard words and040

their diverse written forms in user-generated text, 041

so that text audiences (either users or machines) 042

can be informed of possible standard forms of un- 043

known tokens. Normalization models have either 044

served as preprocessing tools for downstream tasks 045

(Han et al., 2013), or necessary components in joint 046

decoding models (Li and Liu, 2015). It is an impor- 047

tant task for developing more robust NLP applica- 048

tions on social media. 049

The connections between standard words and 050

lexical variants have been generally represented 051

as a noisy channel model argmaxP (T |S) = 052

argmaxP (S|T )P (T ) that aims to find the most 053

probable target sequence T̂ for given source se- 054

quence S. One major challenge is that it is difficult 055

to estimate reliable P (S|T ) because the training 056

data is limited. Due to the productive and creative 057

natures of social media language, it is impracti- 058

cal to collect sufficient data to cover all spelling 059

variants for standard words. 060

Two kinds of solutions have been proposed to 061

approximate P (S|T ). The similarity-based ap- 062

proaches used Edit Distance (ED), Longest Com- 063

mon Subsequence (LCS) or any combination of the 064

two to measure lexical similarities between letter 065

and phone sequences, while incorporating differ- 066

ent context-based models to capture distributional 067

similarities in unlabeled corpora (Han and Bald- 068

win, 2011; Hassan and Menezes, 2013; Yang and 069

Eisenstein, 2013). The problem is that similarity- 070

based metrics are obviously restricted to specific 071

variants that are orthographically or phonetically 072

close to standard forms. Another solution views 073

P (S|T ) =
∏

i P (si|ti) as a string transduction 074

subtask at subword-level. The mapping from word 075

ti to si has been represented as edits of characters 076

or character-blocks, and the weights of edits were 077

estimated through diverse models, such as edit- 078

probability model (Cook and Stevenson, 2009), 079

weighted rewrite model (Beaufort et al., 2010), 080

character-level phrase-based Machine Translation 081
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(MT) model (Pennell and Liu, 2011) and sequence082

labeling model, specifically Conditional Random083

Field (CRF) (Liu et al., 2011; Chrupała, 2014).084

The MT framework has the advantage that it is085

very flexible to handle diversified and productive086

variation types such as arbitrary letter transposi-087

tions or repetitious typing. But the phrase-based088

translation model can not capture the dependencies089

across phrases, that makes it unable to deal with090

cases like highly abbreviated words. In another091

aspect, the sequence labeling framework is good at092

capturing dependencies between edits. But it is less093

flexible than MT framework because it operates in094

monotonous manner and requires the length |ti| to095

be strictly equal to |si|.096

In this paper, we propose a more general string097

transduction model that learns edit sequences of098

word pairs with a joint n-gram model under MT099

framework. Our model overcomes the shortcom-100

ings of both phrase-based translation model and se-101

quence labeling framework, and can flexibly handle102

words with small variations or highly abbreviated103

words. Since recovering highly abbreviated words104

requires to infer arbitrary long consecutive inser-105

tions for input strings, we propose to transform106

them into Finite State Automata (FSA) with loops107

of insertion points between adjacent letters. The108

whole inference process is efficiently implemented109

through the standard operations of the Weighted110

Finite-State Transducer (WFST) framework, Open-111

FST (Allauzen et al., 2007).112

The main contributions of our work are: (i) we113

show that an ngram-based MT approach signifi-114

cantly outperforms phrase-based approach in the115

context of lexical normalization. Our simple model116

can achieve a broad coverage on diverse variants117

which is comparable to complex hybrid systems;118

(ii) we investigate how string transduction models119

perform in a more general normalization task that120

includes phrasal abbreviations as targets.121

2 Methods122

Given a source string S = (s1, s2...sn), the123

goal of normalization task is to find a target124

string T = (t1, t2...tn) that maximizes P (T |S).125

It can be factored as a noisy channel model:126

argmaxT P (T |S) = argmaxT P (S|T )P (T ). In127

the context of lexical normalization, P (S|T ) =128 ∏
i P (si|ti) is a lexicalized transformation model129

that generates possible standard words {ti} for130

each variant token si, and P (T ) is a Language131

Model (LM) that select the most probable sequence 132

T̂ . In this work, we focus on learning the lexical- 133

ized transformation model P (s|t). 134

2.1 Model 135

Due to the limited training pairs, it is difficult to 136

directly estimate reliable P (s|t). Pennell and Liu 137

(2011) has proposed to estimate the posterior prob- 138

ability argmaxt P (t|s) = argmaxt P (s|t)P (t) 139

that leverages a character LM P (t) to learn stan- 140

dard word formations from unlabeled data and 141

ensure that most generated candidates are reason- 142

able words. Based on this framework, we suggest 143

an alternative model to estimate P (s|t) instead of 144

phrase-based translation model. 145

The proposed model is based on a joint n-gram 146

model, which has long been used as an alternative 147

to phrase-based model in the context of machine 148

translation (Crego et al., 2005). Our model differs 149

in that it operates at character-level. A pair of letter 150

sequences (s, t) is represented as a sequence of 151

edit operations E = (e1, ...eJ), so that the joint 152

probability P (s, t) is estimated as: 153

P (s, t) ≈
J∏

j=1

P (ej |ej−n+1...ej−1) 154

The conditional probability is then computed as 155

follows: 156

P (s|t) = P (s,t)
Pmarg(t)

157

where Pmarg(t) =
∑

s P (s, t) is the marginal 158

probability of t in the joint n-gram model. 159

The lexicalized transformation model is defined 160

as: 161

t̂ = argmaxt
P (s,t)

Pmarg(t)
PLM (t)D(α)L(t)wl 162

where D(α) = α2 is a simplified distortion 163

model to handle transpositions of adjacent letters, 164

and L(t) = elength(t) is a length penalty to control 165

the length of target sequence, which is similar to 166

word penalty in MT. These two terms turn out to 167

be very useful in normalization task. 168

2.2 WFST-based Training and Decoding 169

We adopt the training scheme proposed by Novak 170

et al. (2012) to estimate the joint n-gram model1. 171

The pairs of letter sequences are first aligned into 172

edit sequences through a stochastic transducer 173

which is optimized by Expectation-Maximization 174

(EM) algorithm (Ristad and Yianilos, 1998). The 175

edit sequences are used to estimate a standard 176

n-gram model, which is then transformed into a 177

1http://code.google.com/p/phonetisaurus (BSD-3-Clause)
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WFST with source input and target output labels.178

Another training method can also be used to esti-179

mate joint n-gram model (Bisani and Ney, 2008),180

but it is slower than the method we used.181

Figure 1: An example FSA of input string hw. The
symbol _ denotes insertion points.

Decoding process takes a cyclic FSA as input,182

as shown in Figure 1. We first compose the input183

FSA I with the joint N-gram model M to produce184

a mapping from input string to all possible can-185

didates. Since it is a cyclic WFST that encodes186

unbounded candidate strings, we need to prune it187

into acyclic WFST with ShortestPath operation,188

that preserves global K-shortest paths. The process189

is described as follows:190

C = Det(Projo(ShortestPath(I ◦M)))191

where Projo projects output labels of the WFST192

into a FSA that encodes only candidate strings, and193

Det determinizes the candidate FSA.194

To compute the marginal probabilities of can-195

didates, we take the unweighted candidate lattice196

Cuw as input. It is composed with M to generate197

all possible variant strings for the candidates. The198

weights of all the paths that generate the same can-199

didate are added together through Det operation,200

as described below:201

Cmarg = Det(Projo(M ◦ Cuw))202

Hence, we get the final top-m candidate list Clist203

through the following computation:204

Clist = ShortestPath(C ◦ [Cmarg]
−1 ◦LMch)205

3 Experiments206

We concentrate on evaluating the proposed model207

in word-level normalization, which only generate208

candidates for given tokens but does not rerank209

them according to surrounding contexts. We do210

not consider sentence-level normalization in this211

work because it requires to collect an extra corpus212

to estimate word-level LM in target domain. One213

issue is that there is no consensus on what kind214

of data represents the target domain, as argued by215

Chrupała (2014). As a variety of corpora have been216

used to estimate LM (Liu et al., 2012; Xu et al.,217

2015; van der Goot and van Noord, 2017), what218

data constitutes the target domain is still unknown.219

Experimental settings 220

The proposed model is evaluated under two dif- 221

ferent settings on English tweet datasets, which 222

have been anonymized and potentially contain of- 223

fensive words. Offensive words are usually actively 224

respelled in tweets to avoid detection, thus they are 225

main targets in normalization task. 226

(1) A traditional setting is to normalize only 227

single-token words, that excludes phrasal abbre- 228

viations like (imo, in my opinion). To make 229

the results comparable to previous work, we fol- 230

low the experimental setup in Li and Liu (2014), 231

that used 2,333 unique word pairs in the annotated 232

data (Pennell and Liu, 2011) (GPL-3.0) for training, 233

and 569 unique word pairs in the Lexnorm dataset 234

(Han and Baldwin, 2011) (CC-BY 3.0) for testing. 235

Under this setting, we use the CMU dictionary2 236

to define the scope of target words, and collect 237

about one million English tweets as background 238

corpus in which each tweet contains at least three 239

in-vocabulary (IV) words. All IV words in the 240

corpus are extracted to estimate the character LM. 241

(2) A more general setting has been proposed by 242

the shared task of the 2015 Workshop on Noisy 243

User-generated Text (W-NUT) (Baldwin et al., 244

2015), that includes phrasal abbreviations as tar- 245

gets of normalization. It has suggested the systems 246

to be evaluated under two modes: the constrained 247

mode asks the systems to use training data as the 248

only information source, while the unconstrained 249

mode allow the systems to utilize any accessible 250

textual resource. In the W-NUT dataset, there are 251

1,183 unique word pairs in training data and 907 252

unique word pairs in testing data. 253

Under this setting, we only evaluate the pro- 254

posed model under constrained mode because it 255

is difficult to capture phrasal abbreviations in open 256

background corpus. The dictionary that defines 257

target words or phrases is compiled from training 258

data that contains 2,950 annotated tweets. All IV 259

words/phrases in training data are used to estimate 260

the character LM, in which the spaces in phrases 261

are replaced with <space> symbol. 262

Baselines 263

We compare our Ngram-Based MT approach 264

(NBMT) with three baselines, including a sim- 265

ple dictionary-based approach that generates candi- 266

dates directly from training word pairs (Dict), an 267

ngram-based approach that generates candidates 268

base on the joint probability P (s, t) (Joint), and 269

2http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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Accuracy %
Method Top1 Top3 Top10 Top20 Cover
Dict 36.4
Joint 42.0 55.4 66.8 72.2 84.9
PBMT 67.3 76.4 79.3 79.8 81.0
NBMT 69.6 81.0 89.6 91.6 93.8
Sys1 73 81.9 86.7 89.2 94.2
Sys2 77.1 87.0 93.0 94.8 95.9

Table 1: N-best accuracy on Lexnorm dataset. Sys1 is
a hybrid system which contains 4 subsystems, includ-
ing a spell checker, two MT systems and one sequence
labeling system (Li and Liu, 2012); Sys2 reranks the
candidates generated from 5 subsystems with a maxi-
mum entropy model (Li and Liu, 2014).

LD <= 2 (479 pairs) LD >2 (90 pairs)
Method Top3 Cover Top3 Cover
PBMT 82.0 87.1 46.7 48.8
NBMT 85.4 97.3 57.8 75.6

Table 2: Performances comparison on grouped pairs
in Lexnorm dataset. LD denotes the length differences
between source and target strings.

the character-level Phrase-Based MT approach im-270

plemented by Moses (Koehn et al., 2007) (PBMT).271

A 5-gram character LM is used in both PBMT and272

NBMT. The order of joint n-gram model is set to 3.273

All approaches generate at most 200 candidates for274

each token in test set.275

3.1 Evaluation on Lexnorm Dataset276

Table 1 shows the results of our experiment on the277

Lexnorm dataset. The result of dictionary-based278

method tells how many pairs in test set are cov-279

ered by training pairs. The simple Joint approach280

achieves better coverage than PBMT, which indi-281

cates the superiority of joint ngram model over282

phrase-based model in normalization task. Our283

proposed model NBMT significantly outperforms284

PBMT, and achieves the coverage that is close to285

the complex hybrid systems.286

Table 2 shows the performance comparison be-287

tween NBMT and PBMT on pairs grouped by288

length difference. In the test set, most pairs (84%)289

have length differences that are less or equal to 2,290

and they are handled well by both approaches. The291

pairs with LD >2 (16%) are the difficult part in292

normalization task. Our NBMT approach performs293

much better than PBMT on these pairs.294

Accuracy %
Method Top1 Top3 Top10 Top20 Cover
Dict 42.1
Joint 33.2 47.1 57.7 63.1 75.9
PBMT 52.7 62.8 66.4 67.4 70.3
NBMT 52.7 67.1 74.6 77.6 83.0

Table 3: N-best accuracy on W-NUT dataset.

LD <= 2 (666 pairs) LD >2 (241 pairs)
Method Top3 Cover Top3 Cover
PBMT 71.9 81.4 37.8 39.8
NBMT 75.7 93.1 43.6 55.2

Table 4: Performances comparison on grouped pairs
in W-NUT dataset. LD denotes the length differences
between source and target strings.

3.2 Evaluation on W-NUT Dataset 295

Table 3 shows the results of our experiment on the 296

W-NUT dataset. Significant performance drops 297

of all approaches are observed due to two factors: 298

first, the inclusion of phrasal abbreviations intro- 299

duces extra ambiguities when normalizing given 300

tokens; second, the character LM used in PBMT 301

and NBMT is estimated by limited training corpus. 302

Overall, the NBMT approach consistently outper- 303

forms PBMT, except that they achieve equal top-1 304

accuracy. 305

In Table 4, we can see that the pairs with LD 306

>2 account for over 26% of total pairs in test set. 307

This indicates that normalization task on W-NUT 308

dataset is more difficult than on Lexnorm dataset. 309

The NBMT approach still outperforms PBMT on 310

pairs (LD >2) but the gap is smaller than Table 2. 311

4 Conclusion 312

MT framework is more suitable for normalization 313

task than sequence labeling framework because it 314

possesses the flexibility to handle arbitrary vari- 315

ation types. Our ngram-based MT approach ef- 316

fectively overcomes the shortage of phrase-based 317

approach and achieves result that is comparable 318

to complex hybrid systems in word-to-word nor- 319

malization. However, there is still a lot of room 320

for improvement when considering word-to-phrase 321

normalization. We are planning to tackle this prob- 322

lem in the future. 323
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