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Abstract

The prototypical network is a prototype classifier based on meta-learning and
is widely used for few-shot learning because it classifies unseen examples by
constructing class-specific prototypes without adjusting hyper-parameters during
meta-testing. Interestingly, recent research has attracted a lot of attention, showing
that training a new linear classifier, which does not use a meta-learning algorithm,
performs comparably with the prototypical network. However, the training of
a new linear classifier requires the retraining of the classifier every time a new
class appears. In this paper, we analyze how a prototype classifier works equally
well without training a new linear classifier or meta-learning. We experimentally
find that directly using the feature vectors, which is extracted by using standard
pre-trained models to construct a prototype classifier in meta-testing, does not
perform as well as the prototypical network and training new linear classifiers on
the feature vectors of pre-trained models. Thus, we derive a novel generalization
bound for a prototypical classifier and show that the transformation of a feature
vector can improve the performance of prototype classifiers. We experimentally
investigate several normalization methods for minimizing the derived bound and
find that the same performance can be obtained by using the L2 normalization and
minimizing the ratio of the within-class variance to the between-class variance
without training a new classifier or meta-learning.

1 Introduction

Few-shot learning is used to adapt quickly to new classes with low annotation cost. Meta-learning is
a standard training procedure to tackle the few-shot learning problem and the prototypical network
[1], a.k.a ProtoNet is a widely used meta-learning algorithm for few-shot learning. In ProtoNet, we
use a prototype classifier based on meta-learning to predict the classes of unobserved objects by
constructing class-specific prototypes without adjusting the hyper-parameters during meta-testing.

ProtoNet has two advantages. (1) Since the nearest neighbor method is applied on query data and
class prototypes during the meta-test phase, no hyper-parameters are required in the meta-test phase.
(2) The classifiers can quickly adapt to new environments because they do not have to be re-trained
for the support set in the meta-test phase when new classes appear. Moreover, the generalization
bound of ProtoNet in relation to the number of shots in a support set has been studied [2]. The bound
suggests that the performance of ProtoNet depends on the ratio of the within-class variance to the
between-class variance of the features extracted using the meta-trained model.

There have been studies on training a new linear classifier on the features extracted using a pre-trained
model without meta-learning, which can perform comparably with the meta-learned models [3, 4].
We call this approach the linear-evaluation-based approach. In these studies, the models are trained
with the standard classification problem, i.e., models are trained with cross-entropy loss after linear
projection from the embedding space to the class-probability space. The linear-evaluation-based
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approach has three advantages over meta-learning. (1) Training converges faster than meta-learning.
(2) Implementation is simpler. (3) Meta-learning decreases in performance if the number of shots
does not match between meta-training and meta-testing [2]; however, the linear-evaluation-based
approach does not need to take this into account. However, it requires retraining a linear classifier
every time a new class appears.

To avoid meta-learning during the training phase and the linear evaluation during the testing phase, we
focus on using a prototype classifier in the testing phase and training models in a standard classification
manner. As we discuss in section 4, we found that when we directly constructed prototypes from
the feature vectors extracted using pre-trained models and applied the nearest neighbor method as in
the testing phase in ProtoNet , this does not perform as well as the linear-evaluation-based approach.
We hypothesize that the reason is the difference between how the loss is calculated in ProtoNet
and pre-trained models. As described in section 3, if we consider a prototype as a pseudo sample
average of the features in each class, the loss function of ProtoNet can be considered as having a
regularizing effect that makes it closer to the sample average of a class. Since standard classification
training computes cross-entropy loss with dot-products to make the features linearly separable, the
loss function does not have such an effect and can cause large within-class variance. Figure 1 shows
a scatter plot of the features extracted using a neural network with two dimension output trained on
CIFAR-10 with ProtoNet(1(a)) and cross-entropy loss with a linear projection layer(1(b)). This figure
indicates that the features extracted using a model trained in a standard classification manner get
distributed away from the origin and cause large within-class variance along the direction of the class
mean vectors, while those of ProtoNet are more centered to its class means. This phenomenon is also
observed in face recognition literature [5–8].

We now focus on a theoretical analysis for a prototype classifier. A recent study [2] analyzed an
upper bound of risk by using a prototype classifier. The bound depends on the number of shots of
a support set, between-class variance, and within-class variance. However, it has two drawbacks.
The analysis requires the class-conditioned distribution of features to be Gaussian and to have the
same covariance matrix among classes. Moreover, since the bound does not depend on the norm of
the feature vectors, it is not clear from the bound what feature-transformation method can lead to
performance improvement. Thus, we need to derive a novel bound for a prototype classifier.

Our contributions are threefold.

1. We relax the existing assumption; specifically, the bound does not require that the features
be distributed in Gaussian distribution, and each covariance matrix does not have to be the
same among classes.

2. We show that our generalization bound consists of three terms: (1) the variance of the norm
of feature vectors, (2) the difference in the distribution shape constructed from each class
embedding, and (3) the ratio of the within-class variance to the between-class variance.

3. From our theoretical analysis and empirical investigation, we found that reducing two terms
is a critical factor to improve the performance of prototype classifiers: the variance of
the norm of feature vectors and the ratio of the within-class variance to the between-class
variance.

While it is empirically known that the L2-normalization of a feature vector and minimize the ratio of
the within-class variance to the between-class variance can improve the performance of a prototype
classifier, our work is the first to theoretically show that these transformation can improve the
performance. The bound of Cao et al. [2] cannot explain the performance improvement of L2-
normalization because L2-normalization does not reduce the ratio of the within-class variance to the
between-class variance as shown in Section 4.

A prototype classifier can be applied to any trained feature extractor. It is simpler than linear-
evaluation methods such as logistic regression and support vector machine (SVM) for three reasons.
(1) A prototype classifier does not require training in the test phase. The training requires time
and memory consumption. (2) Since the nearest neighbor method is applied on query data and
class prototypes, the computation in the test phase does not depend on the number of classes while
linear-evaluation methods do. (3) A prototype classifier requires fewer hyperparameters than linear-
evaluation methods. Note that our goal is not to replace linear-evaluation methods with a prototype
classifier, but to show that a prototype classifier can be used as a counterpart of the linear-evaluation
methods and can be a practically useful first step in tackling few-shot learning problems.
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(a) ProtoNet (b) dot-product with cross-entropy loss

Figure 1: Distribution of features extracted using a neural network with two dimensional final layer
trained on CIFAR-10 with (a): ProtoNet loss and (b): dot-product with cross-entropy loss. The
ProtoNet features get distributed closer to its class center than the features extracted using the model
trained on cross-entropy loss with linear projection layer.

2 Related Work

We summarize related work by describing a prototype classifier with meta-learning, linear-evaluation-
based approach without meta-learning, a prototype classifier without meta-learning and theoretical
analysis related to the few-shot learning problem.

Prototype classifier with meta-learning On the basis of the hypothesis that features well distin-
guished in the training phase are also useful for classifying new classes, constructing one or multiple
prototypes for classifying unseen examples is a widely used approach [1, 9–15]. Certain algorithms
compute similarities between multiple prototypes and unseen examples by using their own modules,
such as an attention mechanism [9, 14], a relation network [12], reweighting mechanisms by taking
into account between-class and within-class interaction [11], and latent clusters [13]. Another line of
research is transforming the space of extracted features to a better distinguishable space [16–19] or
taking the variance of features into account [20] .

Update-based meta-learning In contrast to the prototype classifier with meta-learning, update-
based meta-learning adjusts the model parameters to adapt to new classes. Model-agnostic meta-
learning (MAML) and its variants [21–23] search for good initialization parameters that adapt to new
classes with a few labeled data and a few update steps. These approaches require additional learning
of hyper-parameters and training time; thus, they prevent quick adaptation to new classes.

Linear-evaluation-based approach without meta-learning Interestingly, recent studies have
shown that training a new linear classifier with features extracted using a model trained with cross-
entropy loss on base-dataset performs comparably with meta-learning based methods [3, 24]. A more
effective method for training a new classifier in few-shot settings has been proposed [25, 26], such as
calibrating distribution generated by a support set [25] , self-supervised learning [26], and distilling
knowledge to obtain better embeddings [4]. However, similar to update-based meta-learning, these
studies require additional hyper-parameters and training for application to new classes; thus if we
tackle these points, we would have an alternative method that is easier and more convenient to use.

A prototype classifier without meta-learing Recent studies have shown that using a prototype
classifier without meta-learning or a linear classifier can lead to comparable performance [24, 27].
Wang et al. [24] has empirically shown that Centering and normalizing the feature vectors can improve
the performance of a prototype classifier. Another study empirically shows that applying NCA loss in
the training phase can improve the performance of a prototype classifier [27]. However, their study
requires a model to be trained with NCA loss while our studies do not require a model to be trained
with any specific loss. These studies do not show any theoretical insights on the performance of a
prototype classifier and they do not compare with linear-evaluation-based methods.

Theoretical analysis of few-shot learning Even though much improvement has been empirically
made on few-shot learning, theoretical analysis is scarce. In the context of meta-learning, Du et al.
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[28] provided a risk bound on the meta-testing phase that is related to the number of meta-training
data and meta-testing data. Lucas et al. [29] derived information-theoretic lower-bounds on min-max
rates of convergence for algorithms that are trained on data from multiple sources and tested on novel
data. Cao et al. [2] derived a new bound on a prototype classifier and theoretically demonstrated that
the mismatch regarding the number of shots in a support set between meta-training and meta-testing
degrades the performance of prototypical networks, which has been only experimentally observed.
However, their bound depends on two assumptions: the class-conditional distributions of features are
Gaussian and have the same covariance matrix among classes. In contrast, we derive a novel bound
that does not depend on any specific distribution.

3 Theoretical Analysis of Prototype Classifier in Terms of Variance of Norm

of Feature Vectors

In this section, we first formulate our problem settings and explain the recent theoretical analysis on
a prototype classifier. Next we provide our novel bound for a prototype classifier with the bound
related to the variance of the norm of the feature vectors. Finally, we list several methods that can
improve the performance of a prototype classifier based on our bound.

3.1 Problem Setting

Let Y be a space of a class, ⌧ a probability distribution over Y , X a space of input data, D a
probability distribution over X , Dy a probability distribution over X given a class y. We define
D⌦nk and D⌦n

y by D⌦n
y = ⇧n

i=1Dy and D⌦nk ⌘ ⇧n
i=1D

⌦k
i , respectively. We sample N classes

from ⌧ to form the N -way classification problem. Denote by K the number of annotated data in
each class and x 2 X , y 2 Y as input data and its class respectively. We define a set of support
data of class c sampled from ⌧ as Sc = {xi | (xi, yi) 2 X ⇥ Y \ yi = c}Ki=1 and a set of support
data in the N -way K-shot classification problem as S =

SN
c=1 Sc. Suppose a feature extractor

computes a function � : X ! RD, where D is the number of the embedding dimensions. �(Sc)
is defined by �(Sc) = 1

K

P
x2Sc

�(x). Let � be a space of the extractor function �. Denote by
M : �⇥ X ⇥ (X ⇥ Y)NK ! RN a prototype classifier function that computes the probability of
input x belonging to class c as follows.

M(�,x, S)c = pM(y = c|x, S,�) =
exp

⇣
�k�(x)� �(Sc)k2

⌘

PN
l=1 exp

⇣
�k�(x)� �(Sl)k2

⌘ , (1)

where kvk2 =
PD

d=1

�
v(d)

�2
, and v(d) is the d-th dimension of vector v. The prediction of an input

x, denoted by ŷ 2 Y , is computed by taking argmax for M(�,x, S), i.e., ŷ = argmaxM(�,x, S).
We denote by Ez⇠q(z)[g(z)] an operation to take the expectation of g(z) over z distributed as q(z),
and we simply denote Ez⇠q(z)[g(z)] as Ez[g(z)] when z is obviously distributed on q(z). We define
Varz⇠q(z)[g(z)] as an operation to take the variance of g(z) over z distributed as q(z). With I
denoting the indicator function, we define the expected risk RM of a prototype classifier as

RM(�) = ES⇠D⌦nkEc⇠⌧Ex⇠Dc [I[argmaxM(�,x, S) 6= c]. (2)

We show a case of multi-class classification in Appendix A.5 due to lack of space. We obtain the
bound on multi-class case by Frechet’s inequality.

Let c1 and c2 denote any pair of classes sampled from ⌧ . We consider that a query data point x
belongs to class c1 and support sets S consist of class c1’s support set and c2’s support set. Then,
equation 2 is written as follows.

RM(�) = ES,c1,x[I[argmaxM(�,x, Sc1 [ Sc2) 6= c1]], (3)
where ES,c1,x = ES⇠D⌦2kEc1⇠⌧Ex⇠Dc1

.

3.2 What Feature-Transformation Method Is Expected to Be Effective?

The current theoretical analysis for a prototype classifier [2] has the following two drawbacks (see
Appendix A.2 for the details). The first is that the modeling assumption requires a class-conditioned
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distribution of the features to follow a Gaussian distribution with the same covariance matrix among
classes. For example, when we use the ReLU activation function in the last layer, it is not normally
distributed and the class-conditioned distribution does not have the same covariance matrix as shown
in Figure 1. The second drawback is that it is not clear what feature-transformation method can reduce
the upper bound. A feature-transformation method that maximizes the between-class variance and
minimizes the within-class variance such as linear discriminant analysis (LDA) [30] and Embedding
Space Transformation (EST) [2] can be expected to improve performance; however, it is not clear
how the second term of the denominator changes.

From Figure 1, the distribution of each class feature stretches in the direction of its class-mean feature
vector. This property is also observed in metric learning literatures [5, 6]. A model trained in the
cross-entropy loss after linear projection from the embedding space to the class-probability space
computes a probability of input x belonging to class c with a weight matrix W 2 RD⇥K given by

p(y = c|x,W,�) =
exp

�
�(x)>Wc

�
PN

j=1 exp (�(x)
>Wj)

. (4)

Comparing equation 4 with equation 1, we found that equation 4 does not have a regularization term
similar to the one appearing in equation 1 that forces the features to be close to its class-mean feature
vector. This implies that the features extracted using a model trained with the cross-entropy loss
using equation 4 are less close to its class-mean feature vector than the ProtoNet loss on equation 1.
Through this observation and the property mentioned above, we hypothesize that normalizing the
norm of the feature vectors can push the features to each class-mean feature vector and can boost the
performance of a prototype classifier trained with cross-entropy loss on equation 4.

3.3 Relating Variance of Norm to Upper Bound of Expected Risk

To understand what effect the variance of the norm of the feature vectors has on the performance of a
prototype classifier, we analyze how variance contributes to the expected risk when an embedding
function � is fixed. The following theorem provides a generalization bound for the expected risk of
a prototype classifier in terms of the variance of the norm of the feature vectors computed using a
feature extractor.
Theorem 1. Let M be an operation of a prototype classifier for binary classification defined by
equation 1. For µc = Ex⇠Dc [�(x)], ⌃c = Ex⇠Dc [(�(x)� µc)(�(x)� µc)>], µ = Ec⇠⌧ [µc],⌃ =
Ec⇠⌧ [(µc � µ)(µc � µ)>], and ⌃⌧ = Ec⇠⌧ [⌃c], if �(x) has the variance of its norm, then the
misclassification risk of the prototype classifier for binary classification RM satisfies

RM(�) 1� 4(Tr(⌃))2

EV[hL2(�(x))] + VTr(⌃c1) + Vwit(⌃⌧ ,⌃,µ) + E dist2L2(µc1 ,µc2)
, (5)

where EV[hL2(�(x))] =
4

K
Ec⇠⌧

h
Varx⇠Dc

h
k�(x)k2

ii
, (6)

VTr(⌃ci) =

✓
4

K
+

2

K2

◆
Varc⇠⌧ [Tr (⌃ci)] , (7)

Vwit (⌃⌧ ,⌃,µ) =
8

K
(Tr(⌃⌧ ))

�
Tr(⌃) + µ>µ

�
+ 4

�
Tr(⌃) + µ>µ

�2

+ 4Ec1,c2⇠⌧

h
Tr (⌃c1)

�
µc2 � µc1

�> �
µc2 � µc1

�i
, (8)

E dist2L2(µc1 ,µc2) =Ec1,c2

⇣
(µc1 � µc2)

> (µc1 � µc2)
⌘2

�
. (9)

Remark. The term EV[hL2(�(x))] is the variance of the norm of the feature vectors. The term
VTr(⌃c1) is the variance of the summation with the diagonal element of the covariance matrix from
each class embedding; it can be interpreted as the difference in the distribution shape constructed
from each class embedding. The term Vwit(⌃⌧ ,⌃,µ) is related to the within-class variance. The last

term of equation 8 is approximately linear with
Tr(⌃c1)
Tr(⌃) because (µc2

�µc1)
>(µc2

�µc1)
Tr(⌃) is supposed

to be constant. Thus Vwit(⌃⌧ ,⌃,µ)
Tr(⌃) is a secondary expression for the ratio of the within-class variance

5



to the between-class variance. The term E dist2L2(µc1 ,µc2) is the expectation of the Euclidean
distance between the class-mean vectors .

This bound has the following properties.

1. Its derivation does not require the features to be distributed in Gaussian distribution and the
class-conditioned covariance matrix does not have to be the same among classes

2. The bound can decrease when any of four statistics decreases with fixed between-class
variance (⌃): (i) the variance of the norm of the feature vectors, as discussed in Section
3.2, (ii) the difference in the distribution shape constructed from each class embedding, (iii)
the ratio of the within-class variance (⌃⌧ ) to the between-class variance (⌃), and (iv) the
Euclidean distance between the class-mean vectors.

As a result, our bound loosens the modeling assumption of Theorem2 in Appendix A.2 and has its
property. We show the proof in Appendix A.4.

3.4 Feature-Transformation Methods

We hypothesize from Theorem 1 that in addition to a feature-transformation method related to
equation 6, lowering the ratio of between-class variance to within-class variance can improve the
performance of a prototype classifier. As shown in Figure 2 left in experimantal analysis, the value
of equation 7 is relatively small compared to equation 6 and equation 8. Regarding equation 9,
the ratio of the Euclidean distance between the class mean vectors and the between-class variance
is supposed to be constant. Thus, we focus on transformation methods related to equation 6 and
equation 8. We analyze four feature-transformation methods: L2-normalization (L2-norm), EST,LDA,
EST+L2-norm and LDA+L2-norm. We give the details on each method in Section A.1 due to lack of
space.

4 Experimental Evaluation

In this section, we experimentally analyzed the effectiveness of the feature-transformation methods
mentioned in Section3.4 under two scenarios: (1) standard object recognition and (2) cross-domain
adaptation. The center loss [5] and affinity loss [31] have been proposed to efficiently pull the
features of the same class to their centers in the training phase; however,our goal is not to achieve
SOTA but, through comparison with existing studies, show that we can achieve the same level
of performance without fine-tuning and thus we focus on a widely used pre-trained model in the
experiments following the line of studies Chen et al. [3] and Tian et al. [4].

4.1 Datasets and Evaluation Protocol

For standard object recognition, we use the miniImageNet dataset, tieredImageNet dataset, the
CIFARFS dataset, and the FC100 dataset. miniImageNet. The miniImageNet dataset [9] is a
standard bench-mark for few-shot learning algorithms in recent studies. It contains 100 classes
randomly sampled from ImageNet. Each class contains 600 images. We follow a widely used
splitting protocol [32] to split the dataset into 64/16/20 for training/validation/testing respectively.

tieredImageNet The tieredImageNet dataset [33] is another subset of ImageNet but has 608 classes.
These classes are grouped into 34 higher level categories in accordance with the ImageNet hierarchy
and these categories are split into 20 training (351 classes), 6 validation (97 classes), 8 testing
categories (160 classes). This splitting protocol ensures that the training set is distinctive enough
from the testing set and makes the problem more realistic than miniImageNet since we generally
cannot assume that test classes will be similar to those seen in training.

CIFAR-FS The CIFAR-FS dataset [34] is a recently proposed fewshot image classification bench-
mark, consisting of all 100 classes from CIFAR-100 [35]. The classes are randomly split into 64, 16,
and 20 for meta-training, meta-validation, and meta-testing respectively.

FC100 The FC100 dataset [36] is another dataset derived from CIFAR-100 [35], containing 100
classes which are grouped into 20 categories. These categories are split into 12 categories for training
(60 classes), from 4 categories for validation (20 classes), 4 categories for testing (20 classes). This
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Table 1: Classification accuracies with ResNet12 on miniImageNet, tieredImageNet, CIFARFS, and
FC100 of ProtoNet, linear-evaluation-based methods [3], centering with L2-norm [24], and ours. The
Baseline without linear-evaluation methods with accuracy greater than the lower 95% confidence
margin of the accuracy of ProtoNet and Baseline are in bold. Regarding to Baseline++, Baseline++
without linear-evaluation methods with accuracy greater than the lower 95% confidence margin of
the accuracy of ProtoNet and Baseline++ are in bold. All the methods are our reimplementation .

miniImageNet tieredImageNet CIFAR-FS FC100
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

methods with meta-learning or linear-evaluation

ProtoNet[1] 53.48± 0.62 73.56± 0.65 55.40± 0.98 77.67± 0.70 63.26± 0.99 79.91± 0.72 35.56± 0.77 51.12± 0.71
Baseline [3] 54.54± 0.80 76.50± 0.62 61.67± 0.92 81.62± 0.64 60.62± 0.85 79.79± 0.70 39.72± 0.68 56.04± 0.76

A prototype classifier with feature-transformation methods

Baseline-w/o-linear , centering+L2-norm[24] 58.96 ± 0.83 75.98 ± 0.62 64.88 ± 0.86 80.42± 0.64 62.51 ± 0.86 79.35 ± 0.66 41.58 ± 0.74 55.82 ± 0.76

Baseline-w/o-linear 46.36± 0.58 73.97± 0.62 50.60± 0.87 78.10± 0.67 45.91± 0.89 75.81± 0.79 31.60± 0.61 52.50± 0.74
Baseline-w/o-linear , L2-norm 59.60 ± 1.12 77.12 ± 0.44 64.24 ± 0.89 81.93 ± 0.66 63.78 ± 0.87 80.14 ± 0.75 40.34 ± 0.71 56.61 ± 0.71

Baseline-w/o-linear , EST 51.40± 0.83 73.47± 0.62 50.94± 0.93 78.47± 0.68 56.08± 0.94 76.64± 0.76 45.90 ± 0.85 64.32 ± 0.78

Baseline-w/o-linear , EST+L2-norm 57.34 ± 0.84 76.90 ± 0.62 64.14 ± 0.91 81.30 ± 0.64 65.19 ± 0.93 81.13 ± 0.69 49.54 ± 0.91 64.12 ± 0.69

Baseline-w/o-linear , LDA 51.40± 0.83 73.47± 0.62 50.94± 0.93 78.47± 0.68 56.08± 0.94 76.80± 0.76 45.90 ± 0.85 64.32 ± 0.78

Baseline-w/o-linear , LDA+L2-norm 60.29 ± 0.80 75.99 ± 0.66 64.16 ± 0.90 81.96 ± 0.65 65.57 ± 0.89 80.80 ± 0.68 50.97 ± 0.81 64.91 ± 0.76

methods with meta-learning or linear-evaluation

Baseline++ [3] 56.33± 0.81 74.62± 0.60 63.02± 0.91 81.07± 0.69 65.43± 0.95 80.18± 0.75 36.01± 0.64 50.73± 0.72

A prototype classifier with feature-transformation methods

Baseline++-w/o-linear , centering+L2-norm[24] 57.50 ± 0.81 74.00± 0.60 63.31 ± 0.91 79.19± 0.68 65.76 ± 0.90 79.95 ± 0.73 37.51 ± 0.71 50.38± 0.72

Baseline++-w/o-linear 41.18± 0.76 69.48± 0.66 46.52± 0.87 73.85± 0.70 48.28± 0.89 72.79± 0.74 29.72± 0.57 46.85± 0.67
Baseline++-w/o-linear , L2-norm 57.96 ± 0.80 75.38 ± 0.61 65.36 ± 0.90 81.08 ± 0.69 66.52 ± 0.92 80.23 ± 0.70 37.16 ± 0.67 51.10 ± 0.71

Baseline++-w/o-linear , EST 47.11± 0.81 69.01± 0.63 52.01± 0.90 68.36± 0.82 52.72± 0.95 72.10± 0.74 37.66 ± 0.68 53.34 ± 0.72

Baseline++-w/o-linear , EST+L2-norm 58.32 ± 0.81 75.19 ± 0.63 64.51 ± 0.96 80.38 ± 0.70 66.01 ± 0.90 78.78± 0.71 42.98 ± 0.80 58.13 ± 0.72

Baseline++-w/o-linear , LDA 47.42± 0.80 68.43± 0.69 47.76± 0.90 74.41± 0.75 52.19± 0.97 70.91± 0.76 40.40 ± 0.75 57.23 ± 0.75

Baseline++-w/o-linear , LDA+L2-norm 58.26 ± 0.87 75.13 ± 0.66 65.10 ± 0.92 80.39 ± 0.69 67.31 ± 0.96 79.69 ± 0.72 44.83 ± 0.83 58.67 ± 0.74

Table 2: Classification accuracies with ResNet12 on miniImageNet, tieredImageNet, CIFARFS, and
FC100 of methods in current studies and ours. The best performing methods and any other runs
within 95% confidence margin are in bold. Methods with † show the results of our reimplementation
following Section 4.2

miniImageNet tieredImageNet CIFAR-FS FC100
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

methods with meta-learning or linear-evaluation

MetaOptNet [36]† 59.65± 0.60 75.53± 0.62 63.01± 0.72 80.01± 0.64 66.03± 0.77 79.80± 0.54 40.1± 0.63 53.3± 0.62
TapNet [17] 61.65 ± 0.15 76.36± 0.10 63.08± 0.15 80.26± 0.12 - - - -

A prototype classifier with feature-transformation methods

Baseline-w/o-linear , L2-norm 59.60± 1.12 77.12 ± 0.44 64.24± 0.89 81.93 ± 0.66 63.78± 0.87 80.14± 0.75 40.34± 0.71 56.61± 0.71
Baseline-w/o-linear , EST+L2-norm 57.34± 0.84 76.90 ± 0.62 64.14± 0.91 81.30± 0.64 65.19± 0.93 81.13 ± 0.69 49.54± 0.91 64.12 ± 0.69

Baseline-w/o-linear , LDA+L2-norm 60.29± 0.80 75.99± 0.66 64.16± 0.90 81.96 ± 0.65 65.57± 0.89 80.80 ± 0.68 50.97 ± 0.81 64.91 ± 0.76

Baseline++-w/o-linear , L2-norm 57.96± 0.80 75.38± 0.61 65.36 ± 0.90 81.08± 0.69 66.52± 0.92 80.23± 0.70 37.16± 0.67 51.10± 0.71
Baseline++-w/o-linear , EST+L2-norm 58.32± 0.81 75.19± 0.63 64.51± 0.96 80.38± 0.70 66.01± 0.90 78.78± 0.71 42.98± 0.80 58.13± 0.72
Baseline++-w/o-linear , LDA+L2-norm 58.26± 0.87 75.13± 0.66 65.10 ± 0.92 80.39± 0.69 67.31 ± 0.96 79.69± 0.72 44.83± 0.83 58.67± 0.74

splitting protocol is similar to the protocol used in tieredImageNet so that the training set is distinctive
enough from the testing set and makes the problem more realistic than CIFAR-FS.

For cross-domain scenario, we use the miniImageNet dataset during pre-training stage and we use the
CUB-200-2011 dataset [37], a.k.a CUB during testing stage.

CUB The CUB dataset contains 200 classes and 11,788 images in total. Following the evalua-
tion protocol of Chen et al. [3], we split the dataset into 64/16/20 for training/validation/testing
respectively.

4.2 Implementation Details

We compared the feature-transformation methods against ProtoNet [1], Baseline, and Baseline++ [3].
For Baseline and Baseline++, we trained the linear projection layer on a support set. The difference
between Baseline and Baseline++ is that the norm of the linear projection layer and features in
Baseline++ are normalized to be constant. We call Baseline and Baseline++ as “linear evaluation”
methods. We also compared with the feature-transformation method proposed in a previous study
[24]. In that study they transformed the features so that the mean of all features was the origin before
L2-normalization and then used a prototype classifier without training a new linear classifier. We
call this operation centering+L2-norm. We re-implemented these methods following the training
procedure in a previous study [3]. In the pre-training stage, where the cross-entropy loss was used
and meta-learning was not used, we trained 400 epochs with a batch size of 16. In the meta-training
stage for ProtoNet, we trained 60, 000 episodes for 1-shot and 40, 000 episodes for 5-shot tasks. We
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used the validation set to select the training episodes with the best accuracy. We evaluated the model
every 5 epochs, not every epoch as experimented in Chen et al. [3] , and we performed early stopping
when the validation score does not improve for 50 epochs. In each episode, we sampled N classes
to form N -way classification (in meta-training N=20 and meta-testing N=5 following the original
study for ProtoNet [1]). For each class, we selected K labeled instances as our support set and 16
instances for the query set for a K-shot task.

In the linear evaluation or meta-testing stage for all methods, we averaged the results over 600 trials.
In each trial, we randomly sampled 5 classes from novel classes, and in each class, we also selected
K instances for the support set and 16 for the query set. For Baseline and Baseline++, we used the
entire support set to train a new classifier for 100 iterations with a batch size of 4. With ProtoNet, we
used the models trained in the same shots as meta-testing stage since a mismatch in the number of
shots between meta-training and meta-testing degrades performance [2]. All methods were trained
from scratch, and the Adam optimizer with an initial learning rate of 10�3 was used. We applied
standard data augmentation including random crop, horizontal-flip, and color jitter in both the training
stages. We used a ResNet12 network and ResNet18 network following the previous study [3, 17].

For LDA we set � = 0.0001 for equation 11 in Appendix A.1 and for EST we set the dimensions of
the projected space to 60 following the settings of the original study [2]. Following the procedure of
EST, we calculate the transformation matrix of LDA based on the features of the training dataset.

4.3 Results

We present the experimental results of standard object recognition in Table 1 on the basis of backbones
with ResNet12 for a comprehensive comparison. We show the result of backbones with ResNet18 in
Table 5. We present the discussion on cross-dataset scenario and the result of the scenario in 4.5.

Comparison of feature-transformation methods with ProtoNet, linear evaluation methods, and

centering+L2-norm From Table 1, we can observe that the prototype classifier with L2-norm,
EST+L2-norm, LDA+L2-norm performs comparably with ProtoNet and the linear-evaluation-based
approach in all settings. Comparing the feature-transformation methods described in Section 3.4
with centering+L2-norm, centering+L2-norm can slightly improve the performance of the prototype
classifier in several 1-shot settings . However, in 5-shot settings, the boost decreases and even
performs worse than linear-evaluation methods, e.g. miniImageNet and tieredImageNet.

Comparison among feature-transformation methods In the 1-shot setting, although EST falls
short of ProtoNet and the linear-evaluation-based approach, it also improves the performance of a
prototype classifier. The performance gain of both L2-norm, EST, LDA, EST+L2-norm and LDA +
L2-norm decrease when the number of shots increases. This phenomenon can be explained through
Theorem 1. The term relating to the variance of the norm and the ratio of the within-class variance to
the between-class variance depends on K. Since the term diminishes as K increases, the performance
gain of the feature-transformation methods decreases.

Comparison of feature-transformation methods with current studies Table 2 shows the perfor-
mance of MetaOptNet [36], TapNet [17] and feature-transformation methods that performs compara-
ble with ProtoNet or linear-evaluation-based methods in Table 1. We can observe that a prototype
classifier can achieve comparable performance with current studies in most of the settings with the
feature transformations. Moreover, we can further boost the performance of a prototype classifier
by combining L2-norm and the methods to reduce the ratio of the within-class variance to the
between-class variance, e.g. CIFAR-FS and FC100.

Discussion on feature-transformation methods LDA and EST in the 5-shot setting do not improve
the performance so much compared with L2-norm variants while in the 1-shot settings, LDA and EST
improve the performance. This is because, in the 5-shot settings, the values computed from equation 8
get smaller with larger K, and the effect of equation 8 on the risk of a prototype classifier in the
1-shot settings is larger. Especially, EST and LDA outperform L2-norm in FC100. We found from
Figure 2 that the features of FC100 show the largest ratio of the within-class to between-class variance
among all datasets. Thus the method of reducing the ratio works better with FC100 features than with
any other dataset’s features. As discussed in Section 4.3, the combination of feature-transformation
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Figure 2: Left: We plotted the values shown in equations 6,7,8 divided by Tr(⌃)2. The values are computed from
test-split of each dataset with ResNet12 and ResNet18. We scaled the values so that each dataset’s Vwit(⌃⌧ ,⌃,µ)

Tr(⌃)2

to be 1 for simplicity. Right: We plotted the ratio of the within-class variance to the between-class variance
(Tr(⌃⌧ )

Tr(⌃) ) before and after applying L2-norm, EST, LDA, EST + L2-norm and LDA+L2-norm of each dataset.

methods that reduce the variance of the norm and the ratio of the within-class variance to the between-
class variance can further boost the performance of a prototype classifier. This indicates that reducing
the term equation 6 and equation 8 is an important factor for the performance of a prototype classifier.

4.4 The comparison of the ratio of the within-class variance to the between-class variance

before and after applying L2norm, EST and LDA

We show the ratio of the within-class variance to the between-class variance before and after applying
L2-norm, EST, LDA, EST + L2-norm, LDA + L2-norm in Figure 2 right. We calculated the ratio
of the between-class variance to each class’s variance of each dataset. This figure shows that L2-
normalization slightly changes the ratio while EST and LDA can reduce the ratio. The combination
of EST and L2-norm or LDA and L2-norm can reduce the ratio while decreasing the variance of
the norm of feature vectors to 0. Therefore, EST + L2-norm and LDA + L2-norm performs better
than L2-norm. Moreover, L2-norm does not affect the bound of Cao et al. [2] because their bound
depends on the ratio of the between-class variance to each class’s variance as shown in 2. Thus the
bound of Cao et al. [2] cannot explain the performance improvement of a prototype classifier with
L2-norm while our bound can.

4.5 Performance results of cross dataset

We show in Table 3 the performance results of cross-dataset scenario in this section with 95%
confidence margin. From the table, we can observe that the prototype classifier with L2-norm,
EST+L2-norm and LDA+L2-norm performs comparably with linear-evaluation-based methods.
Therefore, our analysis results still hold on the cross-domain scenario.

We also found that ProtoNet performs worse than linear-evaluation-based methods and a prototype
classifier with feature-transformation methods. In this scenario, we should focus on improving the
performance of a prototype classifier with features extracted from a model trained without meta-
learning, e.g, Baseline and Baseline++. Since there is no guarantee that the features of a model
trained with cross-entropy loss will be distributed in Gaussian distribution, Cao et al. [2]’s bound
cannot explain the performance improvement of the prototype classifier while our analysis can.

4.6 The gap between the performance of a linear classifier and a prototype classifier

Since we hypothesize that the performance gap between protototype classifiers and ProtoNet is related
to the difference of how the loss function is calculated, we experimentally analyzed that how the gap
changes when cosince distance or innerproduct is used in ProtoNet instead of Euclidean distance. We
show in Table 4 the performance of ProtoNet with cosine similarities and innerproduct.

The performance gap between a prototype classifier based on the features of Baseline and ProtoNet
with cosine distance or inner product is decreased compared to the gap between a prototype classifier
based on the features of Baseline and a ProtoNet with Euclidean distance.
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Table 3: Classification accuracies with ResNet12 and ResNet18 on cross-domain scenario
(miniImageNet ! CUB) of ProtoNet, linear-evaluation-based methods [3], centering with L2-norm
[24], and ours. The notation is same as Table 1.

miniImageNet ! CUB ResNet12 miniImageNet ! CUB ResNet18
1-shot 5-shot 1-shot 5-shot

methods with meta-learning or linear-evaluation

ProtoNet[1] 38.47± 0.69 61.47± 0.68 44.01± 0.79 61.79± 0.75
Baseline [3] 46.91± 0.81 66.55± 0.72 46.36± 0.78 66.97± 0.73

A prototype classifier with feature-transformation methods

Baseline-w/o-linear , centering+L2-norm[24] 46.70 ± 0.79 65.36± 0.70 46.56 ± 0.77 65.96± 0.72

Baseline-w/o-linear 43.05± 0.72 63.47± 0.67 42.11± 0.74 64.31± 0.73
Baseline-w/o-linear , L2-norm 47.64 ± 0.79 66.31 ± 0.73 46.55 ± 0.83 67.21 ± 0.73

Baseline-w/o-linear , EST 43.27± 0.77 61.59± 0.70 43.90± 0.77 63.50± 0.72
Baseline-w/o-linear , EST+L2-norm 46.33 ± 0.78 66.28 ± 0.71 47.10 ± 0.83 66.33 ± 0.74

Baseline-w/o-linear , LDA 43.22± 0.74 62.47± 0.71 44.02± 0.74 65.34± 0.75
Baseline-w/o-linear , LDA+L2-norm 47.65 ± 0.80 66.94 ± 0.72 48.47 ± 0.82 67.21 ± 0.69

methods with meta-learning or linear-evaluation

Baseline++ [3] 45.56± 0.82 66.00± 0.74 46.26± 0.87 63.53± 0.71

A prototype classifier with feature-transformation methods

Baseline++-w/o-linear , centering+L2-norm[24] 47.36 ± 0.82 64.44± 0.75 46.55 ± 0.79 64.52 ± 0.71

Baseline++-w/o-linear 40.68± 0.71 61.02± 0.71 39.72± 0.70 60.00± 0.74
Baseline++-w/o-linear , L2-norm 47.03 ± 0.83 65.86 ± 0.75 46.87 ± 0.82 65.39 ± 0.71

Baseline++-w/o-linear , EST 40.28± 0.73 56.79± 0.72 40.11± 0.74 54.95± 0.73
Baseline++-w/o-linear , EST+L2-norm 46.64 ± 0.84 65.39 ± 0.74 45.96 ± 0.78 64.23 ± 0.77

Baseline++-w/o-linear , LDA 40.44± 0.75 57.55± 0.69 39.54± 0.72 56.51± 0.78
Baseline++-w/o-linear , LDA+L2-norm 46.32 ± 0.81 65.35 ± 0.76 45.60 ± 0.81 64.17 ± 0.73

Table 4: Classification accuracies with ResNet12 on miniImageNet and tieredImageNet of ProtoNet
with feature-transformation-methods.

miniImageNet tieredImageNet
1-shot 5-shot 1-shot 5-shot

ProtoNet[1] 54.42± 0.86 73.56± 0.68 56.96± 0.98 78.38± 0.71
ProtoNet-w-cosine similarity 53.98± 0.83 72.38± 0.66 53.17± 0.91 73.61± 0.77
ProtoNet-w-innerproduct 53.87± 0.83 71.86± 0.69 49.10± 1.00 70.11± 0.84

Baseline-w/o-linear 46.36± 0.58 73.97± 0.62 50.60± 0.87 78.10± 0.67

5 Conclusion

We theoretically and experimentally analyzed how the variance of the norm of feature vectors affects
the performance of a prototype classifier. We derived a generalization bound that does not require
the features to be distributed in Gaussian distribution and the class-conditioned covariance matrix
does not have to be the same among classes. We found that using EST+L2-norm makes the classifier
comparable with ProtoNet and the linear-evaluation-based approach. Our experiments show that when
the number of shots in a support set increases, the performance gain from a feature-transformation
method decreases, which is consistent with the results of theoretical analysis.

One limitation of this paper is that, in the first place, the prototype classifier works well under the
assumption that the data distribution for each class is unimodal and isotropic modeling. However,
we consider that this assumption may be sound in practice because the multimodality of the data
distribution in a class is typically caused by the way the data is annotated. Since the number of a
support set is small in few-shot settings (for example, in 5-way 5-shot, the number of labeled data is
25), we can easily check the labels and re-label them so that they don’t become multi-modal.

Broader impact. We believe that our work shows that a prototypical classifier is expected to
be a practically useful first step in tackling few-shot learning problems because of its simplicity.
The progress in few-shot learning can impact importnant problems such as medical images and
re-identification problems. We also recognize our work might constitute a threat that authoritarian
entities deploy few-shot learning algorithms for surveillance.
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