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Abstract
High-content phenotypic screening, including
high-content imaging (HCI), has gained popular-
ity in the last few years for its ability to charac-
terize novel therapeutics without prior knowledge
of the protein target. This work focuses on the
novel task of HCI-guided molecular design. We
consider an approach in which we leverage an un-
supervised multimodal joint embedding to define
a latent similarity as a reward for GFlowNets. The
proposed model learns to generate new molecules
that could produce phenotypic effects similar to
those of the given image target, without relying on
pre-annotated phenotypic labels. We demonstrate
that our method generates molecules with high
morphological and structural similarity to the tar-
get, increasing the likelihood of similar biological
activity.

1. Introduction
Phenotypic screening allows assessing drug efficacy based
on observed biological effects, without detailed knowledge
of the underlying mode of action. High-content phenotypic
screening, especially through high-content imaging (HCI)
(Bray et al., 2016), provides rich data such as morphological
changes in cell shape and structure. This can potentially
elucidate broad biological effects, targets, and mechanisms
of action (Moffat et al., 2017). Despite its potential to guide
the drug discovery process, challenges persist in effectively
utilizing this data.

One common approach to utilize this information is training
a supervised classification model to recognize the pheno-
type of interest, and then use it to virtually screen existing
libraries (Krentzel et al., 2023). However, this can require
a substantial amount of labeled data and prior knowledge
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of the phenotype of interest, often unavailable for poorly
understood diseases. A preferred scenario would be to have
a method capable of designing new compounds based on
only a few, or even a single, target morphological readout.
Another challenge lies in the screening process itself. Vir-
tual screening limits the search space to existing screening
libraries, which are significantly smaller than the whole
drug-like space, often estimated to contain more than 1060

(Lipinski et al., 1997) molecules. This limitation can be-
come particularly important when structurally and function-
ally novel molecules are desirable, for example, to improve
the potency and diversity of the leads or to overcome un-
wanted secondary effects (Jain et al., 2022; Gao et al., 2024;
Song & Li, 2023; Ghari et al., 2023).

In this paper, we address both of these challenges by propos-
ing a generative method guided by the target cell morphol-
ogy. Specifically, we propose a reward function that utilizes
the latent similarity between the generated molecule and
the target morphology. For this, we utilize a multi-modal
contrastive learning model that aligns small molecules to
morphological readouts. Then, we use this reward to train
a Generative Flow Network (GFlowNet), as recently pro-
posed by Bengio et al. (2023), to generate molecules capable
of inducing similar morphological outcomes. We demon-
strate that our approach is capable of generating diverse
molecules with high latent similarity to the provided mor-
phology, which translates into a higher likelihood of obtain-
ing similar predicted biological activity. We also show that
the generation process can be structurally conditioned by
using joint latent embeddings, which combine both target
readout and molecule, further improving the performance.
Practical use cases of the proposed method include gen-
erating molecules that induce a desired cell morphology
obtained through gene perturbations (Rohban et al., 2022),
scaffold hopping, where novel molecular structures with
similar effects to a target one are desired (Hu et al., 2017),
and, more generally, molecular design guided by phenotypic
readouts (Krentzel et al., 2023).

2. Related work
Generative models for drug discovery. There is a plethora
of methods for molecular generation in the literature (Mey-
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ers et al., 2021; Bilodeau et al., 2022). They can be broadly
categorized based on the molecular representation used: tex-
tual representation such as SMILES (Kang & Cho, 2018;
Arús-Pous et al., 2020; Kotsias et al., 2020), molecular
graphs (Jin et al., 2018; Maziarka et al., 2020; Pedawi et al.,
2022; Diamant et al., 2023) or 3D atom coordinate represen-
tations (O Pinheiro et al., 2024); as well as the underlying
methodology, e.g. variational autoencoders (Jin et al., 2018;
Maziarka et al., 2020), reinforcement learning (RL) (Loef-
fler et al., 2024) or diffusion models (Runcie & Mey, 2023;
Uehara et al., 2024). These methods have found applica-
tions in drug discovery, reporting successes in several areas
such as immunology and infectious diseases (Godinez et al.,
2022; Moret et al., 2023). Recently, Generative Flow Net-
works (GFlowNets) (Bengio et al., 2021; Nica et al., 2022;
Shen et al., 2023; Volokhova et al., 2024; Koziarski et al.,
2024a; Gaiński et al., 2024; Koziarski et al., 2024b) emerged
as a promising paradigm for molecular generation due to
the ability to sample diverse candidate molecules, which is
crucial in the drug discovery process. Importantly, similar
to RL, GFlowNets can be trained based on the specified
reward function, which makes them suitable for phenotypic
discovery. Compared to existing methods, which focus on
conditional generation based on a single property or mul-
tiple properties of interest, we tackle generation guided by
high-content readouts, which we achieve through a multi-
modal latent joint representation.

Deep learning for high-content molecular perturbations.

High-content phenotypic screening, particularly high-
content imaging (HCI), has become crucial in drug dis-
covery for characterizing molecular effects in cells and elu-
cidating targets, gene programs, and biological functions
(Moffat et al., 2017; Chandrasekaran et al., 2021). Recent
advances propose deep learning techniques to accelerate and
enhance these processes (Gavriilidis et al., 2024). Predic-
tive models to infer the outcome of molecular effects have
been developed both for transcriptomic readouts (Lotfollahi
et al., 2019; Hetzel et al., 2022; Piran et al., 2024) and HCI
readouts (Palma et al., 2023). In these models, the output
is highly multi-dimensional, capturing the full readout of
the high-throughput experiment, thus potentially requiring a
large amount of data for training and making it challenging
to separate biological effects from background signals. In
contrast to these works, we focus on the inverse problem,
designing molecules leading to a specific (target) readout.

Joint representation of molecules and high-content read-
outs. Multi-modal contrastive models (Radford et al., 2021)
have been used to align molecular representations to high-
dimensional readouts in latent space, thus capturing shared
features while avoiding high-dimensional supervised losses
(Sanchez-Fernandez et al., 2022; Zheng et al., 2022; Nguyen
et al., 2023). While these models can be used for screening

tasks, reporting improved generalization ability compared
to molecule-only models, they are unable to perform genera-
tive tasks. Compared to existing works in this area, we focus
on the novel task of HCI-guided molecular design, while
relying on a joint representation to guide the generation.

3. Method
3.1. Generative Flow Networks

GFlowNets are amortized variational inference algorithms
that are trained to sample from an unnormalized target distri-
bution over compositional objects. GFlowNets aim to sam-
ple objects from a set of terminal states X proportionally to
a reward function R : X → R+. GFlowNets are defined
on a pointed directed acyclic graph (DAG), G = (S,A),
where:

• s ∈ S are the nodes, referred to as states in our setting,
with the special starting state s0 being the only state
with no incoming edges, and the terminal states X
have no outgoing edges,

• a = s → s′ ∈ A are the edges, referred to as actions
in our setting, and correspond to applying an action
while in a state s and landing in state s′.

A state sequence τ = (s0 → s1 → · · · → sn = x), with
sn = x ∈ X and ai = (si → si+1) ∈ A for all i, is called
a complete trajectory. We denote the set of trajectories as
T .

Trajectory balance. Several training losses were explored
to train a GFlowNet. Among those, trajectory balance
(Malkin et al., 2022a) has been shown to improve credit
assignment. In addition to learning a forward policy PF , we
also learn a backwards policy PB and a scalar Zθ, such that,
for every trajectory τ = (s0 → s1 → · · · → sn = x), they
satisfy:

Zθ

n∏
t=1

PF (st|st−1) = R(x)

n∏
t=1

PB(st−1|st) (1)

3.2. Multi-modal contrastive learning

Contrastive learning is a self-supervised approach that learns
embeddings by maximizing agreement between similar sam-
ples and minimizing it between dissimilar ones, using con-
trastive loss functions like InfoNCE (Oord et al., 2018).
Multi-modal contrastive learning effectively learns joint
representations from diverse data modalities. A notable in-
stance of this approach is CLIP (Radford et al., 2021), which
aligns textual descriptions with visual representations, en-
abling robust cross-modal understanding. We leverage a
multi-modal contrastive model to learn a joint embedding
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Figure 1. Graphical illustration of the proposed approach. In the first stage (top), cross-modal contrastive learning is used to train latent
encoders f and h that produce aligned representations between molecules and readouts. Then, in the second stage (bottom), the target
morphology readout is first converted into a latent vector, and the similarity between that and latents from molecules output by a generator
is used as a reward. The model learns to sample molecules capable of inducing similar latents to the target.

of molecules and molecular effects. This choice avoids
high-dimensional supervised losses and promotes learning
“informative” features for the task (i.e., features that relate
the two modalities to each other).

Let {(xi, yi)}Ni=1 be a batch of N pairs of molecular
graphs (xi) and their corresponding morphology images
(yi). Let f and h be the molecular and morphology en-
coders, respectively. Let the similarity between the molecu-
lar graph and morphology image embeddings be defined as
Sij = exp

(
sim(f(xi),h(yj))

τ

)
, where sim(f(xi), h(yj)) de-

notes the cosine similarity between embeddings. The CLIP
loss is defined as follows:

LCLIP =
1

N

N∑
i=1

[
− log

Sii∑N
j=1 Sij

− log
Sii∑N
j=1 Sji

]
,

(2)
where τ is a temperature parameter.

Instead of relying on CLIP, in this work, we leverage the
closely related Geometric Multimodal Contrastive (GMC)
loss (Poklukar et al., 2022). GMC leverages the same loss
function in (2) to align modality-specific encoders to a joint
encoder, which takes as input all modalities. Therefore, in
addition to providing modality-specific embeddings f and
h, it also provides a joint embedding fh that we leverage
when both the target molecule and its readout are available.

3.3. GFlowNets for morphology-guided molecular
design

The proposed approach exploits recent developments in
multi-modal contrastive learning and molecular generation
with GFlowNets into a unified pipeline, as illustrated in
Figure 1. The method relies on first training a contrastive
learning model capable of producing aligned latent repre-

sentations, and then using these representations as a guiding
signal for GFlowNet. We define the reward function for
the GFlowNet from the embeddings of the GMC model as
described in Section 3.2:

R(x|y) = 1 +
f(x)h(y)

2∥f(x)∥∥h(y)∥
. (3)

This normalized cosine similarity between the target mor-
phology latent and the generated structure latent is crucial to
enforce the non-negativity of the GFlowNet reward. During
the training of the GMC model, we impose early-stopping
using the correlation between the cross-modality distance
metric. We observe that early-stopping reduces the vari-
ance of cosine similarity between the multimodal GMC
embeddings, while it does not affect the performance of
GFlowNet (see Appendix A.4 for more details). Inspired by
using replay buffer in reinforcement learning (Vemgal et al.,
2023), we leverage replay buffer with known decomposed
structure when training on joint morphology and structure-
guided generations. This increases the structural similarity
of generated samples to the known target.

4. Experimental study
We evaluate the proposed approach, first by examining the
quality and diversity of generated samples, and then their
predicted biological activity in downstream tasks. Experi-
ments verifying the underlying assumption of our method,
namely that the similarity in latent space produced by the
contrastive model correlates with the morphological similar-
ity, can be found in Appendix A.1. Experiments on struc-
turally conditioned generation, where we base our target
latent on the combination of target morphology and the as-
sociated molecular structure, can be found in Appendix A.2.
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Figure 2. Comparison of examined methods in terms of reward optimization: a) distribution of rewards from generated samples, 10,000
samples generated by a trained model (left) and b) number of modes discovered (right). Both plots aggregate across all examined targets.

4.1. Set-up

We perform experiments on the Cell Painting dataset intro-
duced by (Bray et al., 2016; 2017), as further pre-processed
in (Moshkov et al., 2023). The dataset includes 16,170
molecules and associated cell morphology images. Each
image includes five color channels that describe the mor-
phology of five cellular compartments. Images have been
pre-processed using CellProfiler 3.0 (McQuin et al., 2018;
Moshkov et al., 2023).

Additionally, to support the evaluation of the generated
molecules, we leverage oracle models independently trained
on data from multiple assays released by the Broad Institute
(Moshkov et al., 2023) (see Appendix B.3 for more details).
This allows us to evaluate the ability of the model to generate
molecules with biochemical and cellular effects similar to
the (unknown) target molecule.

4.2. Generating high reward and diverse samples

We are interested in evaluating the capabilities of a
GFlowNet in optimizing the specified reward function.
Given our primary focus on its application in the initial
discovery stage, it is essential to generate not only high-
reward outcomes but also a diverse set of samples.

We compare GFlowNet with random sampling (RND) and
two standard RL-based baselines: soft Q-learning (SQL)
(Haarnoja et al., 2017) and soft actor-critic (SAC) (Haarnoja
et al., 2018). Note that since, to the best of our knowledge,
this is the first published attempt at guiding the generative
molecular model with expected image morphology outcome,
we focus specifically on benchmarking against other poten-
tial molecular generation methods.

We show the distribution of rewards for generated samples
and the number of discovered modes (defined as molecules
with reward ≥ 90th percentile and Tanimoto similarity to
other modes ≤ 0.3) in Figure 2, and the distribution of
similarities between the top-100 generated samples in Fig-
ure 3 (each figure aggregated across all considered targets).

As shown, GFlowNet learns to sample high-reward candi-
date molecules (with a significantly higher average reward
than random sampling and SQL, comparable to SAC) while
also significantly improving the diversity compared to SAC
(with a lower similarity between top candidates). Both of
the above translate into a significantly higher number of
discovered modes than the baseline methods. The diversity
of the generated samples is further illustrated in Figure 3,
where a UMAP visualization of the molecular structures
produced by different methods is presented for a specific
target. As can be seen, GFlowNet displays sample coverage
similar to random sampling, which is a desirable outcome.

4.3. Biological activity estimation

So far, we have established that the proposed approach is
capable of generating diverse samples with high reward and
that there is a moderate correlation between the reward and
the similarity to the target. However, what is critical in the
end is whether this will translate into generated molecules
inducing similar biological effects to the original target per-
turbation (ground truth). Ideally, we wish to evaluate this on
the basis of experiments comparing generated molecules and
the ground truth, but this can be costly and time-consuming.
Instead, in the following we estimate the similarity of the
biological effect based on the available data. We consider
two approaches.

First of all, we would expect a perfectly optimized gener-
ator to be able to sample known molecules that induced
target morphological profiles. In practice, this might be
unattainable: not only is the problem itself heavily under-
constrained (we expect multiple molecules, likely a very
large number, to be able to induce a given morphological
outcome), but also our morphological similarity estimation
is intrinsically noisy. Because of the above, what we try
to achieve is the highest possible structural similarity of
generated samples to the known molecule that induced the
given morphology. The maximum Tanimoto similarity to
the known molecular target, averaged across all considered
targets, is presented in Table 1. As shown, the proposed
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Figure 3. Comparison of examined methods in terms of diversity: a) distribution of Tanimoto similarities between top-100 generated
samples (left; aggregated across all examined targets, lower is better) and b) structural diversity of top-1000 highest reward samples to
Target #8636 (right).

Table 1. Max. Tanimoto similarity to the target in the last 10,000 samples, averaged across all targets.

Random Soft Actor-Critic Soft Q-Learning GFlowNet

Morphology Target 0.305 (± 0.057) 0.261 (± 0.068) 0.329 (± 0.079) 0.337 (± 0.092)
Joint Target 0.311 (± 0.064) 0.388 (± 0.163) 0.309 (± 0.064) 0.451 (± 0.163)

approach generally recovers the underlying targets more
effectively, suggesting its utility in identifying molecules
with expected biological activity. Unsurprisingly, this effect
is particularly pronounced when conditioning on specific
molecular structures.

The second approach we consider involves utilizing ora-
cle models for predicting biological activity. We train an
MLP using molecular structures, specifically their extracted
molecular fingerprints, as inputs to predict the outcomes
of biological assays (details of the model training are pro-
vided in Appendix B.4). For each target molecule, at least
one associated assay has a positive outcome. The objective
is to generate molecules with a high predicted probability
of producing a positive outcome in the specific assay for
which the target molecule has known activity. The number
of generated samples with high predicted assay probabil-
ity (≥ 0.7) is presented in Figure 4. Note that, due to the
high uncertainty of the oracle model, we are primarily inter-
ested in quantifying the number of high-likelihood samples.
As can be seen, using guided generation helps improve
the proportion of generated molecules with high predicted
assay probability, which serves as a proxy for generating
molecules with similar biological activity. It is worth noting
that while we observe a higher predicted probability for
SAC when considering the top-1000 molecules by reward,
this trend reverses when considering different modes, once
again highlighting the higher diversity combined with high
reward of GFlowNet samples. It is also worth noting that
we observe a large variance across targets. While this can be
partially attributed to the uncertainty of the oracle, further
investigation of factors determining whether the proposed
approach is helpful or not for a given target is an important

future research direction.
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Figure 4. Number of samples with predicted assay probability ≥
0.7 in the top 1000 modes with Tanimoto similarity ≤ 0.3. Results
are aggregated across multiple targets.

5. Conclusions
In this paper, we consider the task of designing a generative
model able to produce molecules that can induce a cell mor-
phology profile similar to a given target. Such framework
is broadly applicable, for example to design drugs mim-
icking the effect of a genetic perturbation, designing drug
analogs, or, more generally, molecular design guided by
phenotypic readouts. The proposed approach relies on the
GFlowNet framework for molecular generation, and uses a
reward based on the latent similarity of representations from
a multi-modal contrastive learning model. To the best of our
knowledge, this is the first published attempt at the challeng-
ing task of guiding the generative molecular model with the
expected image morphology outcome. We experimentally
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demonstrate the usefulness of the proposed approach for
generating diverse drug candidates, which was shown to
increase the likelihood of producing molecules with similar
biological activity when compared to random screening.
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A. Additional experiments and plots
A.1. Relation between proposed reward and

morphological distance

The underlying assumption behind our method is that the
latent representations produced by the contrastive learning
model are of a high enough quality to reliably compute
similarity. Specifically, given a target pair of a molecule
and its associated morphology (ẋ, ẏ), an arbitrary pair of
a generated molecule and the morphology that would be
induced by that molecule (x, y), distance d in the input
modality space, distance d̂ in the latent space, and models f
and h that transforms our input into a latent representation,
we require that

R(x|ẏ) = d̂(h(ẏ), f(x)) ∼ d(ẏ, y). (4)

It is worth noting that during generation we always know
x, which is simply the molecule generated by our model,
and never know y, which is why we need f . Similarly, we
always know the target morphology ẏ, and in some settings,
such as finding drug analogs, we might also have access to
the associated molecule ẋ. In particular, in the latter setting,
we might consider conditioning on the joint latent, produced
based on the pair of (ẋ, ẏ): R(x|ẋ, ẏ) = d̂(fh(ẋ, ẏ), f(x)).

To evaluate this assumption, for every pair of observations
from the dataset, we measure the correlation between the
similarity of morphological features and the similarity be-
tween the latent representation of the structure from the first
observation and the latent representation of the target mor-
phology from the second observation. Additionally, we also
do the same for the joint target latent, computed based on
both the morphology and the associated molecule structure.
The results are presented in Figure 5. As can be seen, in
both cases we observe a medium level of correlation. While
not perfect, we argue that this can be sufficient for screen-
ing purposes (where we are interested in improving the hit
ratio, but due to the difficulty of the task do not expect very
precise outcomes).

A.2. Joint morphology and structure-guided generation

Our original assumption is that generating a molecule ca-
pable of inducing specified morphological outcome would
be sufficient to produce desirable drug candidates. How-
ever, it is worth noting that in practice this problem can be
significantly under-constrained, meaning that there might
be a large number of not sufficiently druglike, too toxic,
or otherwise not useful molecules capable of inducing the

https://openreview.net/forum?id=pBk1cRPKBv
https://openreview.net/forum?id=pBk1cRPKBv


Cell Morphology-Guided Small Molecule Generation with GFlowNets

0.50 0.25 0.00 0.25 0.50 0.75 1.00
Cosine Similarity (struct-morph)

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0
Co

sin
e 

Si
m

ila
rit

y 
(m

or
ph

-m
or

ph
 P

CA
)

Cross-Modal Latent Cosine Sim. (Struct-Morph)
vs Morph PCA Cosine Sim.

r = 0.47

0.50 0.25 0.00 0.25 0.50 0.75 1.00
Cosine Similarity (struct-joint)

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e 
Si

m
ila

rit
y 

(m
or

ph
-m

or
ph

 P
CA

)

Cross-Modal Latent Cosine Sim. (Struct-Joint)
vs Morph PCA Cosine Sim.

r = 0.46

Figure 5. Correlation between the similarity in morphological feature space and latent similarity between target structure and a) morphology
(left) or b) joint morphology and structure (right).

same response. There are multiple ways of constraining
generated molecules to a particular subspace of chemical
space with desirable properties, for instance by including ad-
ditional reward terms during GFlowNet training. However,
one particularly well suited for our approach is, assuming
that we have the molecular structure associated with target
morphology available (e.g. in the drug analog search set-
ting), conditioning on the joint latent representation. The
aim of this is anchoring generated molecules to the known,
desirable molecular structure.

We evaluate the capabilities of the proposed approach in con-
straining searchable space based on the given structure by
replacing target latent with a joint representation, generated
based on both morphology and associated structure. We
evaluate the number of discovered modes (Figure 6), molec-
ular similarity to the given target (Table 1) and number of
samples with high predicted assay probability (Figure 7).
As can be seen, using joint representations does not impact
the ability of GFlowNet to generate high-reward and di-
verse samples, and actually increases the average number
of discovered modes. Crucially, as expected, it also leads to
producing more structurally similar to the target molecules,
effectively constraining generation process. However, some-
how surprisingly, conditioning based on the joint does not
seem to increase the proportion of molecules with high assay
probability.

Our leading hypothesis is that the joint embedding space
learned by the GMC model acquires a stronger structural sig-
nal than a morphological signal, thus leading the GFlowNet
to sample molecules that are more similar to the target,
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Figure 6. Number of modes discovered for joint morphology and
structure-guided generation.

but that don’t necessarily trigger the desired morphological
profile in the target cell. This claim is supported by Ap-
pendix A.6, where the GMC alignment between joint and
structural latent space (r = 0.94) is greater than the align-
ment between joint and morphology (r = 0.88). Although
the alignment between structure and morphology embed-
dings is even lower (r = 0.75), we argue that this setting
provides a stronger and more direct signal that guides the
GFlowNet towards more diverse molecules that exhibit the
desired morphological profile of the target. This is consis-
tent with our results in Figure 7 which suggest that the joint
setting yields a higher number of molecules that are struc-
turally similar to the target, but finds less molecules with
high assay probabilities than the morphology-only setting.
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Figure 7. Comparison of morphology-only versus joint morphol-
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prediction assay probability ≥ 0.7 in top 1000 modes (left; higher
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moto similarity to target ≥ 0.2 (right). Modes are defined as high
reward samples with mutual Tanimoto similarity ≤ 0.3

A.3. Target selection

To evaluate the generative models, we selected a total of
17 targets from the Cell Painting dataset among which 9
were used for the cluster identity experiments and 8 for
the assay activity experiments. All targets were verified to
be decomposable into the molecular fragment set used for
generative modelling and were chosen to represent a diverse
set of morphological clusters and active biological assay.

A.4. GMC model selection

While training the GMC model, we were faced with the
choice of which metric to use for model selection. Other
than the standard GMC contrastive loss, we used the correla-
tion between the cross modalilty distance metric presented
in section 4.2 for early-stopping. While there wasn’t a sig-
nificant difference in GFlowNet performance when using
these two GMC variants, we found that early-stopping on
the correlation metric reduces the variance of cosine simi-
larity between the multimodal GMC embeddings associated

from the same sample when measured in the test split.

A.5. High Reward Samples

Here we plot some modes sampled by GFlowNet for some
targets in a) morphology only guided sampling (left) and b)
joint morphology and structure guided sampling (right)

A.6. GMC cross-modality alignment

Here we plot the correlation between latent distances in one
modality versus latent distances in a second modality of
the GMC representation space. A high correlation value
indicates that the GMC model learns to properly align the
modality specific inputs of the data such that associated
inputs are aligned closely and distinct inputs aren’t. As
expected, GMC achieves higher correlation when the joint
modality is included in one of the axes since the joint
latent space integrates signals from both the structure and
morphology features.

B. Experimental details
In this section, we present the experiment details for the
results obtained in the main paper.

B.1. GMC model training

We follow the specification in the original GMC paper (Pok-
lukar et al., 2022) and select a single model checkpoint
for all our experiments by early-stopping on the GMC val-
idation loss. We employ a Graph Convolutional Network
(GCN) for the structure encoder and a simple Multilayer
Perceptron (MLP) for the cell morphology inputs. MLPs
are also used for the projector architecture for all modali-
ties. See table Table 2 for a full breakdown of the hyper-
parameters we used.

Parameter Value

Batch size β 128
Number of epochs 200
Optimizer Adam
Learning rate 1× 2e−6

Non-Linearity ReLU
Temperature τ 0.4
Intermediate Dim. Size d 1024
Latent Dim. Size s 1024

Table 2. Hyperparameters of the Geometric Multimodal Con-
trastive proxy model
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Figure 8. Active Assay Targets (left) and Morphological Cluster Targets (right).
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B.2. Fragment-based molecule generation

Parameter Value

Batch size 64
Number of steps 10,000
Optimizer Adam
Number of Layers 4
Hidden Dim. Size 128
Number of Heads 2
Positional Embeddings Rotary
Reward scaling β in Rβ 64
Learning rate 1× 10−4

Z Learning rate 1× 10−3

Table 3. Hyperparameters of the Graph Attention Transformer
used across all models in fragment-based molecule generation.

In this section, we provide details on the molecule gen-
eration experiments and the hyperparameters we used for
the methods presented in the paper. In our experimental
setup, we follow the same environment specifications and
implementations provided in (Malkin et al., 2022b) with

the exception of a different proxy model (GMC) and re-
ward function. The architecture of the GFlowNet, SAC
and SQL models is based on a graph attention transformer
(Veličković et al., 2017) whose specification is detailed in
table Table 3. For SAC, we use a fixed α value of 0.2 chosen
from 0.1, 0.2, 0.5. For SQL, we use a fixed α value of 0.1.
All methods use discount factor γ value of 1.0.

B.3. Assay selection

For the selection of assays to train the oracle, we primar-
ily focus on assays that have been linked to morphological
features and/or combinations of morphological and chemi-
cal properties. We select 37 assays identified in (Moshkov
et al., 2023) as predictable from morphological features or
combined chemical and morphological features with high
accuracy (AUROC > 0.9).

B.4. Oracle training

We trained two MLPs on molecular fingerprints to predict
active biological assays (in a multi-label classification set-
ting), and active morphological clusters (in a multi-class
classification setting) for the targets in Appendix A.3. For
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High Reward Samples for Some Targets in Joint Training

Figure 10. High reward samples generated by GFlowNet.
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Figure 11. Cross-modal alignment of samples.

the input, we use Morgan fingerprints with radius 3 and
dimension 2048. The MLP has two 64 dim. hidden layers
and uses ReLU activation. Both methods are trained with a
learning rate of 1e−4 with Adam optimizer for 200 epochs.
We perform model selection based average precision score
on the validation set for both models.


