
Under review as a conference paper at ICLR 2021

SAFE REINFORCEMENT LEARNING WITH NATURAL
LANGUAGE CONSTRAINTS

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we tackle the problem of learning control policies for tasks when
provided with constraints in natural language. In contrast to instruction following,
language here is used not to specify goals, but rather to describe situations that an
agent must avoid during its exploration of the environment. Specifying constraints
in natural language also differs from the predominant paradigm in safe reinforce-
ment learning, where safety criteria are enforced by hand-defined cost functions.
While natural language allows for easy and flexible specification of safety con-
straints and budget limitations, its ambiguous nature presents a challenge when
mapping these specifications into representations that can be used by techniques
for safe reinforcement learning. To address this, we develop a model that contains
two components: (1) a constraint interpreter to encode natural language con-
straints into vector representations capturing spatial and temporal information on
forbidden states, and (2) a policy network that uses these representations to output
a policy with minimal constraint violations. Our model is end-to-end differen-
tiable and we train it using a recently proposed algorithm for constrained policy
optimization. To empirically demonstrate the effectiveness of our approach, we
create a new benchmark task for autonomous navigation with crowd-sourced free-
form text specifying three different types of constraints. Our method outperforms
several baselines by achieving 6-7 times higher returns and 76% fewer constraint
violations on average. Dataset and code to reproduce our experiments are avail-
able at https://sites.google.com/view/polco-hazard-world/.

1 INTRODUCTION

Reinforcement learning (RL) has shown great promise in a variety of control problems including
robot navigation (Anderson et al., 2018; Misra et al., 2018) and robotic control (Levine et al., 2016;
Rajeswaran et al., 2017), where the main goal is to optimize for scalar returns. However, as RL
is increasingly deployed in many real-world problems, it is imperative to ensure the safety of both
agents and their surroundings, which requires accounting for constraints that may be orthogonal to
maximizing returns. While there exist several safe RL algorithms (Achiam et al., 2017; Chow et al.,
2019; Yang et al., 2020b) in the literature, a major limitation they share is the need to manually
specify constraint costs and budget limitations. In many real-world problems, safety criteria tend
to be abstract and quite challenging to define, making their specification (e.g., as logical rules or
mathematical constraints) an expensive task requiring domain expertise.

On the other hand, natural language provides an intuitive and easily-accessible medium for specify-
ing constraints – not just for experts or system developers, but also for potential end users of the RL
agent. For example, instead of specifying a safety constraint in the form of “if water not in
previously visited states then do not visit lava”, one can simply say “Do
not visit the lava before visiting the water.” The key challenge lies in training the RL agent to
interpret natural language and accurately adhere to the constraints during exploration and execution.

In this paper, we develop a novel framework for safe reinforcement learning that can handle nat-
ural language constraints. This setting is different from traditional instruction following, in which
text instructions are used to specify goals for the agent (e.g., “reach the key” or “go forward two
steps”). To effectively learn a safe policy that obeys text constraints, we propose a model consist-
ing of two key modules. First, we use a constraint interpreter to encode language constraints into

1

Under review as a conference paper at ICLR 2021

intermediate vector and matrix representations–this captures spatial information of forbidden states
and the long-term dependency of the past states. Second, we design a policy network that operates
on a combination of these intermediate representations and state observations and is trained using a
constrained policy optimization algorithm (e.g., PCPO (Yang et al., 2020b)). This allows our agent
to map the abstract safety criteria (in language) into cost representations that are amendable for safe
RL. We call our approach Policy Optimization with Language COnstraints (POLCO).

Figure 1: Learning to navigate with language
constraints. The figure shows (1) three types of
language constraints, (2) items which provide re-
wards when collected, and (3) a third-person view
of the environment. The objective is to maximize
total reward without violating text constraints.

Since there do not exist standard benchmarks for
safe RL with language constraints, we construct a
new navigation task called Hazard World. Haz-
ard World is a 2D grid world environment with di-
verse, free-form text representing three types of con-
straints: (1) budgetary constraints that limit resource
usage or the frequency of being in undesirable states
(e.g., “The lava is really hot, so it will hurt you a
lot. Please only walk on it 3 times”), (2) relational
constraints that specify forbidden states in relation to
surrounding entities in the environment (e.g., “There
should always be at least 3 squares between you and
water”), and (3) sequential constraints that depend
on past events (e.g., “Grass will surround your boots
and protect you from dangerous lava.’). Fig. 1 pro-
vides a sample situation from the task.

In summary, we make the following key contribu-
tions. First, we formulate the problem of safe RL
with safety criteria specified in natural language.
Second, we propose POLCO, a new policy architecture and two-stage safe RL algorithm that first
encodes natural language constraints into quantitative representations and then uses these represen-
tations to learn a constraint-satisfying policy. Third, we introduce a new safe RL dataset (Hazard
World) containing three broad classes of abstract safety criteria, all described in diverse free-form
text. Finally, we empirically compare POLCO against other baselines in Hazard World. We show
that POLCO outperforms other baselines by achieving 6-7 times higher returns and 76% fewer con-
straint violations on average over three types of constraints. We also perform extensive evaluations
and analyses of our model and provide insights for future improvements.

2 RELATED WORK

Policy optimization with constraints. Learning constraint-satisfying policies has been explored
in prior work in the context of safe RL (see Garcia & Fernandez (2015) for a survey). Typically,
the agent learns policies either by (1) exploring the environment to identify forbidden behaviors
(Achiam et al., 2017; Tessler et al., 2018; Chow et al., 2019; Yang et al., 2020b; Stooke et al.,
2020), or (2) through expert demonstration data to recognize the safe trajectories (Ross et al., 2011;
Rajeswaran et al., 2017; Gao et al., 2018; Yang et al., 2020a). Critically, these works all require a
human to specify the cost constraints manually. In contrast, we use natural language to describe the
cost constraints, which allows for easier and more flexible specifications of safety constraint.

Instruction following without constraints. Instruction following for 2D and 3D navigation has
been explored in the context of deep RL (MacMahon et al., 2006; Vogel & Jurafsky, 2010; Chen &
Mooney, 2011; Artzi & Zettlemoyer, 2013; Kim & Mooney, 2013; Andreas & Klein, 2015; Thoma-
son et al., 2020; Luketina et al., 2019; Tellex et al., 2020). Prior work either focuses on providing a
dataset with a real-life visual urban or household environment (e.g., Google street view) (Bisk et al.,
2018; Chen et al., 2019; Anderson et al., 2018; de Vries et al., 2018); or proposes a computational
model to learn multi-modal representations that fuse 2D or 3D images with goal instructions (Janner
et al., 2018; Blukis et al., 2018; Fried et al., 2018; Liu et al., 2019; Jain et al., 2019; Gaddy & Klein,
2019; Hristov et al., 2019; Fu et al., 2019). These work use text to specify goals, not environmental
hazards. In contrast, we use language to describe the constraints that the agent must obey.

Constraints in natural language. Misra et al. (2018) propose two datasets called LANI and CHAI
to study spatial and temporal reasoning, as well as perception and planning. Their dataset contains
a few trajectory constraints, which specify goal locations (e.g., “go past the house by the right

2

Under review as a conference paper at ICLR 2021

side of the apple”). However, (1) their ‘constraints’ are actually goal instructions describing where
the reward is–not where forbidden states are, and (2) their model first recognizes (sub)goals from
language and then uses these language-defined goals as reward functions. Prakash et al. (2020) also
propose a method to convert constraints in synthetic language to reward functions. These approaches
do not guarantee safety since they do not explicitly model the constraints. In our work, we define
‘constraints’ as restrictions in state space, or specifications of forbidden states and learn safe policies.

The table below provides a quick summary of related work in instruction following and safe RL. We
differentiate these methods on several key axes: (1) whether they propose a new dataset, algorithm
or model, (2) whether they optimize reward functions or satisfy cost constraints, and (3) whether
they have text or 3D view simulation components. We also briefly describe their main objectives.

Work Properties Objective

Touchdown (Chen et al., 2019) Dataset for multi-modal representation learning
LANI & CHAI (Misra et al., 2018) Dataset and model for multi-modal learning
Checker (Prakash et al., 2020) Convert text constraints to reward functions

CPO (Achiam et al., 2017) Safe RL algorithm with a conditional gradient update
PCPO (Yang et al., 2020b) Safe RL algorithm with a projection gradient update

POLCO (ours) Framework for safe RL with language constraints

dataset algorithm model reward, constraint, natural language 3D view

3 PROBLEM FORMULATION

Our goal is to learn a constraint-satisfying policy that imposes safety or other application-specific
constraints using text descriptions. We formulate our problem as a partially observable constrained
Markov decision process (PO-CMDP) (Kaelbling et al., 1998; Altman, 1999) with text, which
is defined by the tuple < S,O,A, T, Z,R,C,X > . Here S is the set of states, O is the set of
observations, A is the set of actions, T is the conditional probability T (s′|s, a) of the next state s′
given the current state s and action a, Z is the conditional probability Z(o|s) of the observation o
given the state s, R : S × A → R is the reward function, C : S × A → R is the true underlying
constraint specification, and X is the set of constraint specifications in natural language. The reward
function encodes the benefit of using action a in state s, while the cost specification encodes penalties
for constraint violations. The agent does not know C and only observes constraints from X . We
assume that there exists a mapping from a language constraint x ∈ X to a cost specification C.

A policy π : O → P(A) is a mapping from observation O to the distributions of actions A. Let
γ ∈ (0, 1) denote a discount factor, µ : S → [0, 1] denote the initial state distribution, and τ denote
the trajectory τ = (o0, a0, o1, · · ·) induced by a policy π. We seek a policy π that maximizes the
cumulative discounted reward JR while keeping the cumulative discounted cost JC below the cost
constraint threshold hC(x):

max
π

JR(π)
.
= Eτ∼π

[∞∑
t=0

γtR(st, at)

]
s.t. JC(π)

.
= Eτ∼π

[∞∑
t=0

γtC(st, at;x)

]
≤ hC(x), (1)

where τ ∼ π is shorthand for indicating that the distribution over trajectories depends on π : s0 ∼
µ, ot ∼ Z(·|st), at ∼ π(·|ot), st+1 ∼ T (·|st, at), and we use C(st, at;x) and hC(x) to emphasize
that they are specified by x. And we will drop x for notation simplicity.

4 LEARNING POLICIES WITH NATURAL LANGUAGE CONSTRAINTS

4.1 MODEL

We now describe our proposed neural model in POLCO, illustrated in Fig. 2. The model consists
of two parts – (1) the constraint interpreter processes the text to form safety criteria (constraint
mask and threshold) and (2) the policy network subsequently produces an action. For simplicity, we
assume state s and observation o to be 2D matrices, although the model can easily be extended to
other input representations (e.g., we describe an extension to 3D scene inputs in the appendix).

3

Under review as a conference paper at ICLR 2021

Figure 2: Model overview. Our model consists of two components. (1) The constraint interpreter takes a
natural language constraint x and an observation ot as inputs and produces a constraint mask M̂C and cost con-
straint threshold prediction ĥC . (2) a policy network takes an environment embedding, a constraint mask M̂C ,
and a cost budget mask M̂B that specifies cost satisfaction at each step as inputs and produces an embedding.
We further concatenate this embedding with the embedding of ĥC , followed by an MLP to produce an action
at.

Constraint interpreter. Fig. 3 illustrates the constraint interpreter. The constraint interpreter itself
consists of two parts – (1) a constraint mask module and a (2) constraint threshold module.

(1) The constraint mask module uses the observation ot and the text x to predict a binary constraint
mask, denoted by M̂C , a prediction of the true constraint mask MC . Each cell in M̂C will contain
a one if there is a cost entity (i.e., the forbidden states mentioned in the text) in ith row and jth
column of the observation ot (denoted by ot(i, j)). Otherwise, the cell contains a zero. We use M̂C

to identify the cost entity in texts while preserving its spatial information for the policy network. (2)
The constraint threshold module uses an LSTM to obtain the text vector representation, followed
by a dense layer to produce ĥC , a prediction of the true constraint threshold hC . Full details of the
constraint interpreter can be found in Appendix A.2.

For sequential constraints with long-term dependency of the past states, M̂C changes based on the
states visited. For example, in Fig. 3(b), after the agent visits ‘water’, M̂C starts to locate the cost
entity (i.e., ‘grass’). Hence, we will need memory to keep track of the visited states. For this, we use
an LSTM that takes the vector representation produced by a convolutional neural network (CNN) as
an input and predicts M̂C , as illustrated in Fig. 3(b). Using M̂C and ĥC allows us to specify safety
criteria in text while encoding them into the policy network.

Policy network. The policy network produces an action given the safety criteria processed by the
constraint interpreter. The input to the network is the environment embedding (a tensor of size
n× n×m) that encodes the observation ot which is of size n× n. This tensor is concatenated with
the constraint mask M̂C and a cost budget mask, denoted by M̂B , a prediction of the true MB . M̂B

is a n × n matrix, where each element takes the value of
∑t′

t=0 Ĉ(st, at;x) − ĥC (i.e., the number
of cost violations until t′th step) if there is a cost entity in ot(i, j), or zero otherwise. Note that at
training and test time, we estimate the cumulative cost

∑t′

t=0 Ĉ(st, at;x) using M̂C and the agent’s
current location at time t. This allows the agent to understand the constraint satisfaction at each
step and use this information to accordingly plan for safe trajectories. Note that M̂C is produced by
the constraint interpreter, not by the policy network itself. This allows us to take advantage of the
factorization of the policy network and to separately design a constraint mask module that produces
an appropriate M̂C for different types of constraints.1

After applying both constraint mask M̂C and cost budget mask M̂B to the environment embedding,
we then feed the output into CNN to obtain a vector representation. While the constraint threshold
prediction ĥC (an important metric to measure safety) is an input to the constraint budget mask
M̂B , empirically we observe its signal can be weakened by the downstream convolution operation
(see Table 2(d)). To alleviate this issue, we further concatenate ĥC with the vector representation
outputted from the CNN. Finally, we pass the concatenated representation to a dense layer to produce

1In this work, M̂B equates to a scaled up version of M̂C since we assume only one constraint specification
per episode, but this is not necessary in general since we may have multiple constraints over different cost
entities. In that case, M̂B may have different cost budgets for different cells (entities).

4

Under review as a conference paper at ICLR 2021

(a) For budgetary and relational constraints (b) For sequential constraints
Figure 3: Constraint interpreter. (a) For the budgetary and relational constraints, a constraint mask module
takes the environment embedding and text vector representation as inputs and predicts M̂C . (b) For the sequen-
tial constraints, we use an LSTM to store the information of the past visited states. For example, if the agent
has visited ‘water’, the constraint mask M̂C will begin to identify the cost entity (i.e., ‘grass’). In addition, for
these three types of constraints, we use another LSTM given text x to predict ĥC . (Best viewed in color.)

an action at. This policy architecture enables us to encode the language constraint into the policy
network and hence learn a constraint-satisfying policy.

4.2 TRAINING Algorithm 1 Learning algorithm in POLCO

Stage 1 (Interpreter pre-training)
Initialize a policy π0 = π(·|θ0) and a buffer B
Run π0 and store trajectories in B
Train Θ1 and Θ2 using Eq. (2) and Eq. (3)

Stage 2 (Policy learning)
Empty B
For k = 0, 1, 2, · · · do

Run πk = π(·|θk) and store trajectories in B
Obtain θk+1 using Eq. (4) and Eq. (5)
Empty B

Training this model with RL would require
significant amount of data and computa-
tion, especially when the constraint in-
terpreter model needs to be learned from
scratch. To improve data efficiency, we de-
compose our training procedure into two
stages (Algorithm 1): (1) a pre-training
phase for the constraint interpreter, which
is followed by (2) a policy optimization
phase to learn the rest of the policy net-
work. Once all the model components are
trained, there is no further change to the parameters. During execution, the agent is set in a random
environment and provided a randomly sampled constraint to follow (e.g., “Don’t touch grass more
than two times”). We then measure the ability of the policy to complete the task without violating
the constraints. Importantly, our model architecture does allow for end-to-end differentiability via
tricks like Gumbel Softmax (one can treat ĥC as a continuous variable). However, in this version,
we do not train end-to-end for computational reasons.

Stage 1 (Interpreter pre-training). For each type of constraint, we split the collected text into train-
ing and test sets using an 80-20 ratio, denoted by Dtrain and Dtest, respectively. We then form an
offline pre-training dataset Dinter by using a random policy to obtain trajectories over observations
ot along with corresponding text constraints x from the training set Dtrain. For the observations in
Dinter, we compute the corresponding ground-truthMC and hC values to use as supervision. Utiliz-
ing this dataset we first train the constraint mask module in the constraint interpreter by minimizing
the following binary cross-entropy loss:

L(Θ1) = −E(ot,x)∼Dinter

[
1
|MC |

∑n
i,j=1MC(i, j; ot, x) log M̂C(i, j; ot, x)

+ (1−MC(i, j; ot, x)) log(1− M̂C(i, j; ot, x))
]
, (2)

where Θ1 is the parameter of the constraint mask module, MC(i, j; ot, x) denotes the ground-truth
(binary) mask label in ith row and jth column of the n × n environment given ot and x, and
M̂C(i, j; ot, x) is the corresponding binary probability prediction of constraint mask model (here
we emphasize that MC is specified by ot and x).

For the constraint threshold module, we minimize the following mean-square-error loss using the
data from Dtrain:

L(Θ2) = E(ot,x)∼Dinter

[
(hC(x)− ĥC(x))2

]
, (3)

where Θ2 is the parameter of the constraint threshold module. Unlike RL, empirically we only need
a smaller dataset to train both models in the constraint interpreter, as the models tend to converge
relatively quickly.

5

Under review as a conference paper at ICLR 2021

Stage 2 (Policy learning). We then use a state-of-the-art safe RL algorithm–projection-based con-
strained policy optimization (PCPO) (Yang et al., 2020b)–to train the policy network. During train-
ing, the agent interacts with the environment to obtain rewards and penalty costs from trained M̂C

for computing JR(π) and JC(π). PCPO is an iterative method that performs two key steps in each
iteration:

PCPO Step 1 (Optimize the reward). The PCPO algorithm performs one step of trust region policy
optimization (TRPO (Schulman et al., 2015a)) to maximize the reward advantage function AπR(s, a)
over a KL-divergence neighborhood of πk:

πk+
1
2 = arg max

π
E
s∼dπ

k
, a∼π

[Aπ
k

R (s, a)] s.t. E
s∼dπk

[
DKL(π(s)‖πk(s))

]
≤ δ, (4)

where dπ
k

is the state visitation frequency induced by the policy π at kth update.

PCPO Step 2 (Project to satisfy the cost constraint). Next, PCPO projects πk+
1
2 onto the set of

policies satisfying the cost constraint to minimize the distance function D (e.g., KL divergence):
πk+1 = arg min

π
D(π, πk+

1
2) s.t. JC(πk) + 1

1−γEs∼dπk , a∼π[Aπ
k

C (s, a)] ≤ ĥC , (5)

where γ is the discounted factor and AπC(s, a) is the cost advantage function. Finally, during test
time, we evaluate our model in Dtest.

While our method does require pre-training of the constraint interpreter with ground-truth constraint
maps, we envision in future work the dependence on this phase can be reduced by leveraging tech-
niques such as curriculum learning or pre-trained language models like BERT (Devlin et al., 2019).

5 EXPERIMENTS

Task. We construct a new task Hazard World for our experimental evaluation (Fig. 1). In this task,
for each episode, the agent starts at a random location within a procedurally generated environment
and receives an abstract constraint specified by natural language, sampled from a pool of all available
constraints. The agent’s objective is to collect all the reward entities and navigate safely (i.e., avoid
cost entities) by adhering to the constraint. The agent needs to satisfy the constraints during both
training and testing, unlike prior work (Misra et al., 2018) that allows the agent to explore the entire
state space during training without any constraints.

We implement Hazard World on top of the 2D GridWorld layout of BabyAI (Chevalier-Boisvert
et al., 2018a;b). We randomly place three reward entities on the map: ‘ball,’ ‘box,’ and ‘key,’ with
rewards of 1, 2, and 3, respectively. We also randomly place numerous cost entities on the map:
‘lava,’ ‘water,’ and ‘grass’. A textual constraint is then imposed upon one of these cost entities
(e.g., “Touch water fewer than once”). Note that to construct the Hazard World task we can generate
multiple maps given the same text constraint. The environment st is of size 13×13, including the
surrounding walls, and the agent’s observation ot is of size 7×7.

Hazard World contains three types of constraints – (1) Budgetary constraints, which limit on the
number of times a set of states can be visited (i.e., up to hC), (2) Relational constraints, which
define a minimal distance that must be maintained between the agent and a set of cost entities, and
(3) Sequential constraints, which restrict the set of safe states, given that some condition has been
met. For relational and sequential constraints, we set budget hC as zero for simplicity.

Count Vocab. Size Mean Length

Bud. 432 274 9.09 ± 4.30
Rel. 262 180 9.02 ± 3.65
Seq. 290 241 10.36 ± 3.49
Total 984 526 9.44 ± 3.95

Table 1: Statistics in Hazard World.

We collect free-form text in English for the constraints us-
ing Amazon Mechanical Turk (AMT). To generate a sam-
ple constraint, we provided workers with a description of
Hazard World, the cost entity to be avoided, and one of
three possible additional pieces of information, depending
on the constraint type: the cost budget (budgetary), the
minimum safe distance (relational), or the other cost entity
impacted by past events (sequential). Workers were then
asked to instruct another person to safely navigate Hazard World. After collecting all responses
from AMT, we filtered the data to remove off-topic responses. For examples of text and AMT
worker prompts, we refer the reader to Appendix A.1. Table 1 provides statistics on the text.

6

Under review as a conference paper at ICLR 2021

hC = 0 hC = 2 hC = 4

Method JR(π)↑ ∆C↓ ∆RC↑ JR(π)↑ ∆C↓ ∆RC↑ JR(π)↑ ∆C↓ ∆RC↑
RW 1.2 17.8 -16.6 1.2 15.8 -14.6 1.2 13.8 -12.6
CF w/ TRPO 3.6 12.1 -8.5 3.5 10.2 -6.7 3.6 8.7 -5.1
CF w/ PCPO 0.5 4.0 -3.5 0.5 2.3 -1.8 0.5 0.2 0.3
PN w/ TRPO 5.7 8.0 -2.3 5.7 7.1 -1.3 5.7 2.4 3.3
PN w/ FPO 0.3 0.1 0.2 0.2 -0.8 0.2 0.3 -3.8 0.3
POLCO (ours) 5.0 1.9 3.1 5.0 0.3 4.7 5.1 -1.1 5.1

(a) Budgetary Constraints

hC = 0

Method JR(π)↑ ∆C↓ ∆RC↑
RW 0.9 19.1 -18.2
CF w/ TRPO 2.2 11.2 -9
CF w/ PCPO 0.0 0.0 0
PN w/ TRPO 5.1 17.3 -12.2
PN w/ FPO 0.4 0.0 0.4
POLCO (ours) 1.1 0.0 1.1

(b) Relational Constraints

hC = 0

Method JR(π)↑ ∆C↓ ∆RC↑
RW 1.1 9.8 -8.7
CF w/ TRPO 0.0 0.0 0.0
CF w/ PCPO 3.4 11.3 -7.9
PN w/ TRPO 5.8 2.5 3.3
PN w/ FPO 0.0 4.5 -4.5
POLCO (ours) 5.1 1.0 4.1

(c) Sequential Constraints

hC = 0 hC = 2 hC = 4

Method JR(π)↑ ∆C↓ JR(π)↑ ∆C↓ JR(π)↑ ∆C↓
CF w/ PCPO 0.5 4.0 0.5 2.3 0.5 0.2
w/o MC 3.9 2.5 4.1 0.8 4.0 -1.8
w/o hC emb. 4.5 1.6 4.6 0.2 4.6 -1.2
w/o MB 5.2 2.3 5.2 0.2 5.2 -1.6
Full Model 5.4 1.5 5.5 0.2 5.5 -0.9

(d) Ablation studies on budgetary constraints
Table 2: (a-c) Performance of POLCO (i.e., PN w/ PCPO) and baselines across three types of constraints on
the test set. (d) Ablations showing the effect of each component in POLCO. POLCO outperforms all the other
variants by achieving higher reward and lower constraint violations. (Arrows denote higher or lower scores.)

Train-test split. For each type of constraint, we split the collected text into training and test sets
using an 80-20 ratio, denoted by Dtrain and Dtest, respectively.
Stage 1 (Interpreter pre-training). To formDinter for pre-training, we first sample a text constraint
x fromDtrain and generate a map. We then use a random policy to obtain the trajectories with rollout
length 200 over observations ot along with corresponding text constraints x. In total, we repeat this
procedure 5,000 times to form Dinter (i.e., each constraint is paired with 6.35 maps on average).
We train one constraint interpreter for each type of constraint, which ensures that the constraint
interpreter can robustly produce MC and hC . During testing of the cost constraint interpreter, we
use the same procedure and generate 5,000 constraint-map pairs.
Stage 2 (Policy learning). For training POLCO, we use text constraints from Dtrain paired with
randomly generated maps. Note that for each type of constraints, we train a single network with
different values of hC . During testing, we randomly sample constraints from Dtest, followed by
randomly generating the map. In total, we obtain 5,000 constraint-map pairs to test the model (i.e.,
on average one constraint is paired with 25.38 maps). Please read Appendix A.2 for more details.

Baselines. The baselines are combinations of the following models and training algorithms:
(1) Models. We consider a baseline model from Walsman et al. (2018), which does not have the
MC , MB and hC representations. This model simply takes a concatenation of the observations and
text representations as input and produces an action. We call this model constraint-fusion (CF).
(2) Algorithms. (a) TRPO (Schulman et al., 2015a). In TRPO, the agent ignores all constraints
and only optimizes the reward. (b) Fixed-point policy optimization (FPO) (Achiam et al., 2017).
In FPO, the reward objective is combined with the weighted cost objective (i.e., receive the penalty
of 1 if the agent visits the cost entity). We include it to demonstrate that simply treating the cost
penalty as a negative reward will hinder the exploration of the agent.
Finally, we also include a random walk (RW) baseline to serve as a lower bound on the reward and
cost performance. POLCO is a combination of our policy network (PN) and the PCPO algorithm.

Evaluation metrics. Our primary evaluation metrics are (1) the average value of the reward (i.e.,
JR(π)), (2) the average cost violations ∆C := JC(π) − hC , and (3) the difference between the
reward and the cost violations ∆RC := JR(π) − α · max(0,∆C), where α represents a tradeoff
between reward and cost violation. We set α to 1 for simplicity, but α may depend on the task. Note
that we want to enforce ∆C to be non-positive while maximizing JR(π) (i.e., maximize ∆RC).

Overall performance. Table 2(a-c) details the performance of POLCO and the baselines over
three types of constraints on the test set. We observe from Table 2(a) that POLCO achieves the
best ∆RC over different choices of hC , outperforming other baseline methods. For instance, when
hC = 0 the constraint violation of the policy network trained with TRPO is 3.21 times larger than
that of POLCO. This implies that simply optimizing the reward as in Misra et al. (2018) cannot
guarantee safety. We also observe that PN trained with TRPO achieves better reward performance
compared when with CF and TRPO, which indicates that our proposed policy network is easier to
optimize than the CF model. CF with PCPO also fails to improve the reward since merely combining
the observations and the text is not sufficient to learn an effective representation for parsing the

7

Under review as a conference paper at ICLR 2021

Budgetary Relational Sequential

Ours Rule Ours Rule Ours Rule
MC ACC 96.06% 95.86% 81.46 65.49% 91.84% 91.36%
MC AUC 98.17% - 90.71 - 96.99% -
hC MSE 0.21 0.74 0.04 0.52 0.0002 0.22

(a) Performance of the interpreter (b) Visualization of the constraint mask
Figure 4: (a) The cell-level accuracy (ACC) and area-under-curve (AUC) of predicting MC , and mean-square-
error (MSE) of predicting hC over three types of constraints on the test set. We observe that POLCO achieves
superior results compared to the rule-based baseline. (b) Visualization of the constraint mask MC for the
sequential constraints. We show the probability of predicting the cost entity. Our model can accurately locate
the cost entity given the language constraints. The first two views are mostly black because the agent spawned
facing a wall. (Best viewed in color.)

(a) Lavawall (Chevalier-Boisvert et al., 2018a)

hC = 0 hC = 2 hC = 4

JR(π)↑∆C↓∆RC↑JR(π)↑∆C↓∆RC↑JR(π)↑∆C↓∆RC↑
RW 0.1 23.4 -23.3 0.1 21.4 -21.3 0.1 19.4 -19.3
CF w/ TRPO 3.4 35.6 -32.2 3.4 33.6 -30.2 3.4 31.6 -28.2
CF w/ PCPO 0.7 7.4 -6.7 0.7 5.4 -4.7 0.7 3.4 -2.7
PN w/ TRPO 4.5 54.7 -50.2 4.5 52.7 -48.2 4.5 50.7 -46.2
PN w/ FPO 1.8 0.0 1.8 1.8 -2.0 1.8 1.8 -4.0 1.8
Ours 3.7 2.9 0.8 3.9 2.1 1.8 4.5 1.8 2.7

(b) Generalization results in Lavawall

Figure 5: (a) Lavawall environment: Reward function and transition dynamics are same as Hazard World,
but map contains only ‘lava’ entities. (b) Generalization performance in Lavawall over the tested models and
algorithms. (Arrows denote higher or lower scores being better.)

constraints. Finally, the PN agent trained with FPO has a low reward, because simply treating the
cost penalty as the negative reward hinders the agent’s exploration.

Tables 2(b-c) also show that POLCO achieves the best ∆RC for the more complex relational and
sequential constraints. For the relational case, although the CF agent trained with PCPO satisfies the
constraints, it has a relatively low reward. For the sequential constraints, even though the PN agent
trained with TRPO obtains a higher reward than POLCO, it also has 1.5 times higher cost violations.

Ablation studies. We perform ablation studies on the proposed POLCO policy network to examine
the importance of each component – MC ,MB and hC embedding. The performance over different
hC in terms of the reward and cost violation is shown in Table. 2(d). To eliminate the prediction
error of the constraint interpreter, here we use the ground-truthMC and hC instead. We observe that
the full model achieves the best performance in all cases, averaging 5.12% more reward and 2.22%
fewer cost violations. Without MC , the agent cannot recognize the cost entities. This causes the
agent to incur 66.67% higher ∆C compared with the full model. In addition, ∆C in the full model
is almost zero. This suggests that with the hC embedding and the MB mask the agent is able to
better understand the cost satisfaction at every step and hence plan for safer trajectories. In contrast,
without these components the agent fails to understand the text constraints and improve the reward.

Constraint interpreter. Next, we examine the performance of the constraint interpreter. The result
is illustrated in Fig. 4(a). Please read the caption for more details. The rule-based baseline here
is similar to a n-gram model, in which we compute the likelihood of the cost entity given the text.
Please read Appendix A.2 for more details. We observe that our model achieves superior perfor-
mance in all cases. We further visualize the predicted MC for the sequential constraints shown in
Fig. 4(b). We observe that after visiting ‘grass’, MC changes from near zero prediction probability
to predict cost entities precisely. This shows that our constraint interpreter model can effectively
maintain the long-term dependency of the past states and produce an accurate MC .

Generalization to different environments. Finally, we examine whether POLCO is robust to co-
variate shift in the environment distribution (i.e., a new environment containing only a subset of all
cost entities). We first train POLCO and the other baselines in Hazard World and then test them on
the commonly-used Lavawall (Chevalier-Boisvert et al., 2018a) task as shown in Fig. 5(a). We select
free-form constraints from Hazard World imposed over the ‘lava’ cost entity to be the training set.
Fig. 5(b) shows the reward and cost violation over different hC of different agents in the budgetary-
constrained Lavawall experiment. We observe that in experiments with a larger hC , generally the
agents are less constrained during navigation and yield higher reward and lower cost violations.

8

Under review as a conference paper at ICLR 2021

Still, in most cases the baseline agents have substantially higher cost violations or obtain minimal
reward. This shows that the POLCO agents generalize better to unseen environments, obtaining
higher reward and lower constraint violations.

6 CONCLUSION

We addressed the problem of safe reinforcement learning when safety constraints are specified by
natural language. We proposed the two-stage POLCO algorithm that both learns to understand the
abstract language constraints and effectively solves for a safe policy. To demonstrate the effective-
ness of POLCO, we created a new benchmark navigation task via crowd-sourcing which contains
a variety of text constraints. Experiments showed that POLCO achieves superior reward perfor-
mance, lower constraint violation, and better generalizability than other safe RL approaches. Future
directions include (1) applying POLCO to 3D navigation tasks with high-dimensional (image) ob-
servations, (2) improving representation learning to handle more complex language constraints, and
(3) applying POLCO to large-scale safety-critical problems (e.g., robotics).

REFERENCES

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
Proceedings of International Conference on Machine Learning, pp. 22–31, 2017.

Eitan Altman. Constrained Markov decision processes, volume 7. CRC Press, 1999.

Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko Sünderhauf, Ian Reid,
Stephen Gould, and Anton van den Hengel. Vision-and-language navigation: Interpreting
visually-grounded navigation instructions in real environments. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pp. 3674–3683, 2018.

Jacob Andreas and Dan Klein. Alignment-based compositional semantics for instruction following.
In Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2015.

Yoav Artzi and Luke Zettlemoyer. Weakly supervised learning of semantic parsers for mapping
instructions to actions. Transactions of the Association for Computational Linguistics, 1(1):49–
62, 2013.

Yonatan Bisk, Kevin J. Shih, Yejin Choi, and Daniel Marcu. Learning interpretable spatial opera-
tions in a rich 3d blocks world. In Proceedings of the AAAI Conference on Artificial Intelligence,
2018.

Valts Blukis, Dipendra Misra, Ross A. Knepper, and Yoav Artzi. Mapping navigation instructions to
continuous control actions with position-visitation prediction. In Proceedings of the Conference
on Robot Learning, pp. 505–518, 2018.

David L Chen and Raymond J Mooney. Learning to interpret natural language navigation instruc-
tions from observations. San Francisco, CA, pp. 859–865, 2011.

Howard Chen, Alane Suhr, Dipendra Misra, Noah Snavely, and Yoav Artzi. Touchdown: Natural
language navigation and spatial reasoning in visual street environments. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 12538–12547, 2019.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia,
Thien Huu Nguyen, and Yoshua Bengio. Babyai: A platform to study the sample efficiency of
grounded language learning. In International Conference on Learning Representations, 2018a.

Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalistic gridworld environment
for openai gym. https://github.com/maximecb/gym-minigrid, 2018b.

Yinlam Chow, Ofir Nachum, Aleksandra Faust, Mohammad Ghavamzadeh, and Edgar Duenez-
Guzman. Lyapunov-based safe policy optimization for continuous control. arXiv preprint
arXiv:1901.10031, 2019.

9

Under review as a conference paper at ICLR 2021

Harm de Vries, Kurt Shuster, Dhruv Batra, Devi Parikh, Jason Weston, and Douwe Kiela. Talk the
walk: Navigating new york city through grounded dialogue. arXiv preprint arXiv:1807.03367,
2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, 2019.

Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking deep
reinforcement learning for continuous control. In International Conference on Machine Learning,
pp. 1329–1338, 2016.

Daniel Fried, Ronghang Hu, Volkan Cirik, Anna Rohrbach, Jacob Andreas, Louis-Philippe
Morency, Taylor Berg-Kirkpatrick, Kate Saenko, Dan Klein, and Trevor Darrell. Speaker-follower
models for vision-and-language navigation. In Advances of the International Conference on Neu-
ral Information Processing Systems, pp. 3318–3329, 2018.

Justin Fu, Anoop Korattikara, Sergey Levine, and Sergio Guadarrama. From language to goals:
Inverse reinforcement learning for vision-based instruction following. Proceedings of the Inter-
national Conference on Learning Representations, 2019.

David Gaddy and Dan Klein. Pre-learning environment representations for data-efficient neural
instruction following. In Proceedings of the Annual Meeting of the Association for Computational
Linguistics, pp. 1946–1956, 2019.

Yang Gao, Ji Lin, Fisher Yu, Sergey Levine, and Trevor Darrell. Reinforcement learning from imper-
fect demonstrations. In Proceedings of the 35th International Conference on Machine Learning,
2018.

Javier Garcia and Fernando Fernandez. A comprehensive survey on safe reinforcement learning.
Journal of Machine Learning Research, 16(1):1437–1480, 2015.

Yordan Hristov, Daniel Angelov, Michael Burke, Alex Lascarides, and Subramanian Ramamoor-
thy. Disentangled relational representations for explaining and learning from demonstration. In
Proceedings of the Conference on Robot Learning, 2019.

Vihan Jain, Gabriel Magalhaes, Alexander Ku, Ashish Vaswani, Eugene Ie, and Jason Baldridge.
Stay on the path: Instruction fidelity in vision-and-language navigation. In Proceedings of the
Annual Meeting of the Association for Computational Linguistics, pp. 1862–1872, 2019.

Michael Janner, Karthik Narasimhan, and Regina Barzilay. Representation learning for grounded
spatial reasoning. Transactions of the Association for Computational Linguistics, 6:49–61, 2018.

Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and acting in
partially observable stochastic domains. Artificial intelligence, 101(1-2):99–134, 1998.

Joohyun Kim and Raymond J. Mooney. Adapting discriminative reranking to grounded language
learning. In Proceedings of the Association for Computational Linguistics, pp. 218–227, 2013.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep visuo-
motor policies. Journal of Machine Learning Research, 17(39):1–40, 2016.

Ninghao Liu, Mengnan Du, and Xia Hu. Representation interpretation with spatial encoding and
multimodal analytics. In Proceedings of the ACM International Conference on Web Search and
Data Mining, pp. 60–68. ACM, 2019.

Jelena Luketina, Nantas Nardelli, Gregory Farquhar, Jakob Foerster, Jacob Andreas, Edward Grefen-
stette, Shimon Whiteson, and Tim Rocktäschel. A survey of reinforcement learning informed by
natural language. International Joint Conferences on Artificial Intelligence, 2019.

Matt MacMahon, Brian Stankiewicz, and Benjamin Kuipers. Walk the talk: Connecting language,
knowledge, and action in route instructions. In Proceedings of the Conference on Artificial Intel-
ligence, pp. 1475–1482, 2006.

10

Under review as a conference paper at ICLR 2021

Dipendra Misra, Andrew Bennett, Valts Blukis, Eyvind Niklasson, Max Shatkhin, and Yoav Artzi.
Mapping instructions to actions in 3d environments with visual goal prediction. In Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 2667–2678,
2018.

Bharat Prakash, Nicholas Waytowich, Ashwinkumar Ganesan, Tim Oates, and Tinoosh Mohsenin.
Guiding safe reinforcement learning policies using structured language constraints. UMBC Stu-
dent Collection, 2020.

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations. arXiv preprint arXiv:1709.10087, 2017.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In Proceedings of International Conference on
Artificial Intelligence and Statistics, pp. 627–635, 2011.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897, 2015a.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015b.

Adam Stooke, Joshua Achiam, and Pieter Abbeel. Responsive safety in reinforcement learning by
pid lagrangian methods. In Proceedings of International Conference on Machine Learning, 2020.

Stefanie Tellex, Nakul Gopalan, Hadas Kress-Gazit, and Cynthia Matuszek. Robots that use lan-
guage. Annual Review of Control, Robotics, and Autonomous Systems, 3:25–55, 2020.

Chen Tessler, Daniel J. Mankowitz, and Shie Mannor. Reward constrained policy optimization. In
Proceedings of International Conference on Learning Representations, 2018.

Jesse Thomason, Michael Murray, Maya Cakmak, and Luke Zettlemoyer. Vision-and-dialog navi-
gation. In Conference on Robot Learning, pp. 394–406, 2020.

Adam Vogel and Dan Jurafsky. Learning to follow navigational directions. In Proceedings of the
48th Annual Meeting of the Association for Computational Linguistics, pp. 806–814. Association
for Computational Linguistics, 2010.

Aaron Walsman, Yonatan Bisk, Saadia Gabriel, Dipendra Misra, Yoav Artzi, Yejin Choi, and Dieter
Fox. Early fusion for goal directed robotic vision. arXiv preprint arXiv:1811.08824, 2018.

Tsung-Yen Yang, Justinian Rosca, Karthik Narasimhan, and Peter J. Ramadge. Accelerating safe
reinforcement learning with constraint-mismatched policies. arXiv preprint arXiv:2006.11645,
2020a.

Tsung-Yen Yang, Justinian Rosca, Karthik Narasimhan, and Peter J. Ramadge. Projection-based
constrained policy optimization. In Proceedings of the International Conference on Learning
Representations, 2020b.

A APPENDIX

Outline. The appendix is outlined as follows. Section A.1 details the dataset and the procedure
of collecting the dataset. Section A.2 describes the parameters of the constraint interpreter and the
policy network, and the PCPO training details. Section A.3 provides the learning curves of training
the policy network. Finally, we fill the Machine Learning Reproducibility Checklist in Section A.5.

11

Under review as a conference paper at ICLR 2021

Constraint Type Examples

Budgetary

The water should only be stepped on a max of 5 times.
Lava hurts a lot, but you have special shoes that you can use to walk on
it, but only up to 5 times, remember!
You can get in lava, but only once.
Four is the most number of times you can touch water
You cannot step on the lava block at all. You will die otherwise.

Relational

Water will hurt you if you are two steps or less from them.
Always stay 1 step away from lava
Any block within one unit of a grass cannot be touched.
The explosion radius of grass is three, so stay at least that distance away
from grass.
Waters are dangerous, so do not cross them.

Sequential

Make sure you don’t walk on water after walking on grass.
Do not touch the water or water will become risky.
You may touch the water first, but the lava is dangerous so do not touch
it after.
Avoid lava since you can only walk on it once. After that the lava will
hurt you.
Water will trigger grass to become dangerous.

Invalid

good
move foreward
Just avoid the perimeter when collecting the objects, and you’ll be safe.
Your directions are as follows: if you’re facing a block with a water
block in front of it, walk five blocks ahead . . . (81 more words)
asdf

Table 3: Examples from the various constraint classes. When a constraint does not fully describe all
forbidden states in the environment, we classify it as invalid.

A.1 DATASET

At a high level, Hazard World applies the instruction following paradigm to safe reinforcement
learning. Concretely, this means that safety constraints in our environment are specified via lan-
guage. Our dataset is thus comprised of two components: the environment, made up of the objects
that the agent interacts with, and the constraint, which imposes a restriction on which environmental
states can be visited.

The environment is procedurally generated. For each episode, Hazard World places the agent at
a randomized start location and fills the environment with objects. Hazard World then randomly
samples one constraint out of all possible constraints and assigns this constraint to the environment.

We collected natural language constraints in a two-step process. In the first step, or the data gen-
eration step, we prompted workers on Amazon Mechanical Turk with scenarios shown in Fig. 6.
Workers are provided the minimum necessary information to define the constraint and asked to
describe the situation to another person. For example, to generate a so-called budgetary constraint,
workers are given the cost entity to avoid (‘lava’, ‘grass’ or ‘water’) and the budget (i.e., hC , a num-
ber 0 through 5). The workers use this information to write an instruction for another person. This
allows us to ensure that the texts we collected are free-form. These generations form our language
constraints.

In the second step, or the data validation step, we employed an undergraduate student to remove
invalid constraints. We define a constraint as invalid if (a) the constraint is off-topic or (b) the
constraint does not clearly describe states that should be avoided. Examples of valid and invalid
constraints are included in Table 3. Finally, we randomly split the dataset into 80% training and
20% test sets.

In Hazard World and Lawawall, the agent has 4 actions in total: a ∈ A = {right, left,up,down}.
The transition dynamics T is deterministic.

12

Under review as a conference paper at ICLR 2021

(a) General prompt for all constraint classes.

(b) Budgetary prompt.

(c) Relational prompt.

(d) Sequential prompt.

Figure 6: AMT workers receive the general prompt and one of the three specific prompts. They are
then asked to instruct another person for the given situation. This ensures that the texts we collected
are free-form.

A.2 ARCHITECTURES, PARAMETERS, AND TRAINING DETAILS

Policy network in POLCO. The architecture of the policy network is shown in Fig. 7. The environ-
ment embedding for the observation ot is of the size 7×7×3. This embedding is further concatenated
with the cost constraint mask MC and the cost budget mask MB . This forms the input with the size
7×7×5. We then use convolutions, followed by dense layers to get a vector with the size 5. This
vector is further concatenated with the hC embedding. Finally, we use dense layers to the categori-
cal distribution with four classes (i.e., turn right, left, up or down in Hazard World). We then sample
an action from this distribution.

Constraint interpreter in POLCO. The architecture of the constraint interpreter is shown in Fig. 8.
For the constraint mask module, the input is the text with w words. We then use an embedding
network, followed by an LSTM to obtain the text embedding with the size 5. The text embedding is
duplicated to get a tensor with the size 7×7×5. This tensor is concatenated with the observation of
size 7 × 7 × 3, creating a tensor with the size 7×7×8. In addition, we use a convolution, followed
by dense layers and a reshaping to get the cost constraint mask MC .

Next, we use a heuristic to compute Ĉtot :=
∑t′

t=0 C(st, at;x) from MC . At execution time, we
give our constraint interpreter access to the agent’s actions. We initialize Ĉtot = 0. Per timestep,

13

Under review as a conference paper at ICLR 2021

Figure 7: Description of the policy network in POLCO.

Parameter
Reward dis. factor γ 0.99

Constraint cost dis. factor γC 1.0
step size δ 10−3

λGAE
R 0.95
λGAE
C 0.9

Batch size 10,000
Rollout length 200

Number of policy updates 2,500

Table 4: Parameters used in POLCO.

our agent either turns or moves forward. If the agent moves forward and the square in front of the
agent contains a cost entity according to MC , we increment Ĉtot.

For the constraint threshold module, we use the same architecture to get the text embedding. We
then use dense layers to predict the value of hC .

Rule-based baseline. The rule-based baseline is similar to a n-gram model, in which we compute
the likelihood of the cost entity given the text. Specifically, in the training set we count the number
of word-cost entity pairs. For example, for each map, given the language constraints “The water
should only be stepped on a max of 5 times” and the ground-truth cost entity (e.g., ‘water’), the pair
‘the’-‘water’ is added one and so forth. During testing, for a given text and map, we compute the
following probability for each possible cost entity:

P (‘water′|text constraints) ∝P (text constraints)P (‘water′)

=ΠwordP (word|‘water′)P (‘water′),

14

Under review as a conference paper at ICLR 2021

(a) Constraint mask module (b) Constraint thresh-
old module

Figure 8: Description of the constraint interpreter.

P (‘lava′|text constraints) ∝P (text constraints)P (‘lava′)

=ΠwordP (word|‘lava′)P (‘lava′),

P (‘grass′|text constraints) ∝P (text constraints)P (‘grass′)

=ΠwordP (word|‘grass′)P (‘grass′).
Finally, we select the one with the maximum value to predict the cost entity.

Details of the algorithm–PCPO. We use a KL divergence projection in PCPO to project the policy
onto the cost constraint set since it has a better performance than L2 norm projection. We use GAE-
λ approach (Schulman et al., 2015b) to estimate AπR(s, a) and AπC(s, a). We use neural network
baselines with the same architecture and activation functions as the policy networks. The hyper-
parameters of training POLCO are in Table 4. We conduct the experiments on the machine with
Intel Core i7-4770HQ CPU. The experiments are implemented in rllab (Duan et al., 2016), a tool
for developing RL algorithms.

Baseline model–Constraint Fusion (CF). Our baseline is adapted from Walsman et al. (2018).
The model is illustrated in Fig. 9. An LSTM takes the text x as an input and produces a vector
representation. The CNN takes the environment embedding of ot as an input and produces a vector
representation. These two vector representations are concatenated, followed by a MLP to produce
an action at. We do not consider other baselines in Janner et al. (2018) and Misra et al. (2018). This
is because that their models are designed to learn a multi-modal representation (e.g., processing a 3D
vision) and follow goal instructions. In contrast, our work focuses on learning a constraint-satisfying
policy.

The parameters of the baseline is shown in Fig. 10. We use the same CNN parameters as in our
policy network to process ot. Then, we use the same LSTM parameters as in our constraint mask

15

Under review as a conference paper at ICLR 2021

Figure 9: Baseline model–Constraint Fusion (CF). It is composed of two parts – (1) a CNN takes
ot as an input and produce a vector representation, (2) an LSTM takes x as an input and produce
a vector representation. We then concatenate these two vectors, followed by a MLP to produce an
action at.

Figure 10: Description of our baseline model-Constraint Fusion (CF).

module to get a vector representation with size 5. Note that we use almost the same number of the
parameters to ensure that POLCO does not have an advantage over CF. Finally, we use dense layers
to the categorical distribution with four classes. We then sample an action from this distribution.

A.3 ADDITIONAL EXPERIMENTS

Learning curves of training the policy network. The learning curves of the undiscounted
constraint cost, the discounted reward, and the number of steps over policy updates are shown for
all tested algorithms and the constrains in Fig. 11. Overall, we observe that

(1) POLCO improves the reward performance while satisfying the cost constraints during train-
ing in all cases,

(2) the policy network trained with TRPO has substantial cost constraint violations during
training,

(3) the policy network trained with FPO is overly restricted, hindering the reward improve-
ment.

16

Under review as a conference paper at ICLR 2021

(a) Budgetary constraints

(b) Relational constraints

(c) Sequential constraints

Figure 11: Learning curves of training the policy network. The undiscounted reward, the undis-
counted cost violations (i.e., ∆C = JC(π) − hC), and the number of steps over policy updates
for the tested algorithms and the constrains. In the undiscounted cost violations plots, we further
include the numbers for the interpreter pre-training stage in the first 100 points. This is equal to
5000 trajectories. The maximum allowable step for each trajectory is 200. We observe that POLCO
satisfies the cost constraints throughout training while improving the reward. In contrast, the pol-
icy network trained with TRPO suffers from violating the constraints and the one trained with FPO
cannot effectively improve the reward. (Best viewed in color.)

A.4 POLCO FOR PIXEL OBSERVATIONS/3D EGO-CENTRIC OBSERVATIONS

To deal with pixel observations ot, we can still use the proposed architecture to process ot as shown
in Fig. 12. To predict the cost constraint mask M̂C , we use the object segmentation method to get
the bounding box of each object in the scene. As a result, the area of that bounding box will be one
if there is a cost entity (i.e., the forbidden states mentioned in the text). Otherwise, the bounding box
contains a zero. For M̂B , we can use a similar approach to compute the cumulative cost violations
at each step. In addition, to deal with navigation environments with 3D ego-centric observations,
we propose shifting the ot, M̂C and M̂B matrices to be the first-person view. The bounding box
approach for image case can still be applied here. We leave this proposal to future work.

17

Under review as a conference paper at ICLR 2021

Figure 12: POLCO for pixel observations and 3D ego-centric observations. The red cloud area
represents the bounding box of each object in ot.

A.5 THE MACHINE LEARNING REPRODUCIBILITY CHECKLIST (VERSION 1.2, MAR.27
2019)

For all models and algorithms presented, indicate if you include2:

• A clear description of the mathematical setting, algorithm, and/or model:

– Yes, please see the problem formulation in Section 3, the algorithm and the model in
Section 4.

• An analysis of the complexity (time, space, sample size) of any algorithm:

– Yes, we provide discussions in Section 4 and Appendix A.2 for showing a training
infrastructure.

• A link to a downloadable source code, with specification of all dependencies, including
external libraries:

– Yes, please see our abstract.

For any theoretical claim, check if you include:

• A statement of the result:

– Not applicable.

• A clear explanation of any assumptions:

– Not applicable.

• A complete proof of the claim:

– Not applicable.

For all figures and tables that present empirical results, indicate if you include:

• A complete description of the data collection process, including sample size:

– Yes, please see Appendix A.1 and Table 1 for sample size.

• A link to a downloadable version of the dataset or simulation environment:

– Yes, please see our abstract.

• An explanation of any data that were excluded, description of any pre-processing step:

– Yes, please see Appendix A.1.
2Here is a link to the list: https://www.cs.mcgill.ca/˜jpineau/

ReproducibilityChecklist.pdf.

18

Under review as a conference paper at ICLR 2021

• An explanation of how samples were allocated for training / validation / testing:
– Yes, please see section 5 and Appendix A.1

• The range of hyper-parameters considered, method to select the best hyper-parameter con-
figuration, and specification of all hyper-parameters used to generate results:

– Yes, please see Appendix A.2.
• The exact number of evaluation runs:

– Yes, please see section 5.
• A description of how experiments were run:

– Yes, please see section 5.
• A clear definition of the specific measure or statistics used to report results:

– Yes, please see Section 5.
• Clearly defined error bars:

– Not applicable.
• A description of results with central tendency (e.g., mean) variation (e.g., stddev):

– Not applicable.
• A description of the computing infrastructure used:

– Yes, please see Appendix A.2.

19

