
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

D2C-HRHR: DISCRETE ACTIONS WITH DOUBLE
DISTRIBUTIONAL CRITICS FOR HIGH-RISK-HIGH-
RETURN TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Tasks involving high-risk–high-return (HRHR) actions, such as obstacle crossing,
often exhibit multimodal action distributions and stochastic returns. Most rein-
forcement learning (RL) methods assume unimodal Gaussian policies and rely on
scalar-valued critics, which limits their effectiveness in HRHR settings. We for-
mally define HRHR tasks and theoretically show that Gaussian policies cannot
guarantee convergence to the optimal solution. To address this, we propose a rein-
forcement learning framework that (i) discretizes continuous action spaces to ap-
proximate multimodal distributions, (ii) employs entropy-regularized exploration
to improve coverage of risky but rewarding actions, and (iii) introduces a dual-
critic architecture for more accurate discrete value distribution estimation. The
framework scales to high-dimensional action spaces, supporting complex control
domains. Experiments on locomotion and manipulation benchmarks with high
risks of failure demonstrate that our method outperforms baselines, underscoring
the importance of explicitly modeling multimodality and risk in RL.

1 INTRODUCTION

Reinforcement Learning (RL) typically uses discrete action spaces for discrete tasks and continuous
spaces for continuous tasks. For discrete tasks, such as Atari games, Q-learning evaluates only a
small number of actions. For continuous tasks, such as robotic motion control, evaluating all actions
is infeasible. Discrete-action models can suffer from the curse of dimensionality (Kober et al., 2014;
Lillicrap et al., 2016), while continuous-action models output actions directly (Vaserstein, 2014;
Lillicrap et al., 2016; Schulman et al., 2017; Fujimoto et al., 2018; Haarnoja et al., 2018; Kuznetsov
et al., 2020).

Many real-world RL tasks involve high-risk-high-return (HRHR) scenarios (Fig 1 (a) top right),
where the highest rewards occur only in risky regions of the action space (Fig 1 (c) region Ω1). Ex-
amples include parkour locomotion, obstacle crossing, or contact-rich robotic manipulation. Stan-
dard RL methods often assume unimodal Gaussian policies and scalar critics, which bias learning
toward safer actions (Fig 1 (c) region Ω2) and fail to capture high-reward regions in HRHR tasks.
We formally define HRHR tasks and show that Gaussian policies cannot guarantee convergence to
the optimal solution.

Recent work revisits discrete actions for continuous tasks. Andrychowicz et al. (2020) and Tang &
Agrawal (2020a) demonstrated improved on-policy RL via discretization, and Seyde et al. (2021)
achieved state-of-the-art results using extreme discretization akin to Bang-Bang control. These suc-
cesses highlight discrete action spaces’ potential for multimodal exploration and capturing high-
reward actions in HRHR scenarios.

Based on these observations, we propose a discrete-action framework (i) discretizes continuous ac-
tion spaces to approximate multimodal distributions (Fig 1 (d)), (ii) employs entropy-regularized
exploration to improve coverage of risky but rewarding actions, and (iii) introduces a dual-critic
architecture for more accurate discrete value distribution estimation a discrete actor with twin dis-
crete critics ((Fig 1 (e)). With them, our model can capture actions in localized high-reward regions
surrounded by low-return or even harmful outcomes (Fig 1 (c) region Ω1).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Empirical results on baseline benchmarks, including locomotion tasks with a high risk of falling and
manipulation tasks with a high risk of failure, suggest that that our method outperforms baselines in
HRHR scenarios.

Risk

R
et

ur
n

Low Risk
High Return

High Risk
High Return

Low Risk
Low Return

High Risk
Low Return

Action dimension 1

A
ct

io
n

di
m

en
si

on
 2

(a) Return and risk
dimensions

(b) Return contour of a
non-HRHR scenario

Action dimension 1

A
ct

io
n

di
m

en
si

on
 2

Action dimension 1

A
ct

io
n

di
m

en
si

on
 2

(c) Return contour of a
HRHR scenario

(d) Discrete actions can
capture high return points

L
ow

 r
et

ur
n

H
ig

h
re

tu
rn

Enviornment

Critic2Critic1

Actor

correct

teach

action

Agent observation

(e) Algorithmic Framework Overview

Figure 1: Return and risk are in two dimensions. In an ideal task, higher expected returns are
associated with lower-risk actions, as shown by the green line in (a) and panel (b). However, in tasks
where favorable outcomes are intertwined with risk, the highest returns have to be extracted among
high-risk actions, as shown by the red line in (a) and panel (c). Actions sampled from Gaussian
distribution can be hard to capture the high return points during learning as the expectation on the
distribution is low, but discrete actions can capture the actions.

2 RELATED WORK

Distributional RL models focus on modeling the distribution of cumulative rewards rather than only
an expected scalar. C51 (Bellemare et al., 2017) employs a discrete value distribution for building
its critic network. QR-DQN (Dabney et al., 2018b) and IQN (Dabney et al., 2018a) utilize quantile
regression to detail the distribution of stochastic reward returns.

Some previous works resemble a few aspects of our work, but differently. D4PG (Barth-Maron
et al., 2018) proposed a C51 with an actor module. Our work, however, diverges by investigating
discretized action spaces, moving away from the conventional assumption that action variables con-
form to a normal distribution. SAC-Discrete (Christodoulou, 2019) broadens the scope of SAC to
discrete action spaces, thus enhancing the model’s capacity to use action entropy for exploration.

There are a few more works using discrete actions for continuous tasks. Neunert et al. (2019)
explores a feasible approach for the unified control of discrete and continuous action variables based
on the MPO algorithm. Tang & Agrawal (2020b) advocate for the discretization of continuous
action spaces, which can enhance the performance of on-policy algorithms such as PPO. Luo et al.
(2023) emphasize the benefits of discretizing action spaces in offline reinforcement learning and
examine potential solutions. Metz et al. (2019) decompose multi-dimensional action variables into
a sequence of decision-making processes for discrete variables. Farebrother et al. (2024) argues that
the cross-entropy loss function, compared to the mean squared error loss function, is more effective
for training critic networks in reinforcement learning. None of these works use double distributional
critics. In our experiments, we used some of these algorithms for comparison.

3 MODELS & METHODS

In this section, the high-risk-high-return (HRHR) scenario in RL tasks is formally defined, and why a
Gaussian policy cannot guarantee an optimal result is proved. According to the theoretical analysis,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

we proposed our model which (i) discretizes continuous action spaces to approximate multimodal
distributions, (ii) employs entropy-regularized exploration to improve coverage of risky but reward-
ing actions, and (iii) introduces a dual-critic architecture for more accurate discrete value distribution
estimation. For consistency, the mathematical notation in this paper can also be referenced to the
Table of Mathematical Symbols in the Appendix 6.1.

3.1 HRHR SCENARIO

Here we define the HRHR scenario in RL tasks as, given a state of the environment, a region of
action space contains a set of high return actions and a set of low return actions, which results in
that, the average return of this region is lower than that of another region whose highest return is
lower than the former’s highest return. In Figure 1 (b) and (c), we present the contour plots of HRHR
scenarios and non-HRHR scenarios.

Consider a reinforcement learning agent operating in an environment with state space S and action
space A. Let Q : S × A → R denote the action-value function, where Q(s, a) represents the
expected return when taking action a in state s.
Definition 1 (High-Risk-High-Return Scenario). For a given state s ∈ S, we say there exists a
high-risk-high-return (HRHR) scenario if there exist measurable regions Ω1 ⊆ A and Ω2 ⊆ A with
positive measure (µ(Ω1) > 0, µ(Ω2) > 0) satisfying the following conditions:

sup
a∈Ω1

Q(s, a) > sup
a∈Ω2

Q(s, a) Ea∼U(Ω1) [Q(s, a)] < Ea∼U(Ω2) [Q(s, a)] (1)

where U(Ωi) denotes the uniform distribution over region Ωi, and Ω1 is called the HRHR region. If
A is continuous, the expectations are computed as:

Ea∼U(Ωi) [Q(s, a)] =
1

µ(Ωi)

∫
Ωi

Q(s, a)da (2)

In this scenario, an RL algorithm should adjust the distribution of the action to let the expectation of
the return measured on the action distribution be higher.

However, given a policy with the Gaussian actions, if the variance of the action is larger than the
grain with the high rewards in the HRHR region, an RL algorithm could lead the policy to prefer Ω2

instead of Ω1.
Definition 2 (High-Reward Grain). A high-reward grain G ⊆ R1 is a connected component satis-
fying:

inf
a∈G

Q(s, a) > sup
a∈R1\G

Q(s, a) and diam(G) ≤ δ (3)

with δ > 0 being the maximum grain diameter. The set of all high-reward grains in R1 is denoted
G1.
Theorem 1 (Policy Preference in HRHR Scenarios). For Gaussian policy πθ(·|s) =
N (µθ(s), σ

2
θ(s)I) in an HRHR scenario at state s with high-reward grains G1 of diameter δ, if

σθ(s) > δ, then the gradient update satisfies:

⟨∇θJ(θ),∆θR1⟩ < ⟨∇θJ(θ),∆θR2⟩ (4)

where ∆θRi
is the update direction toward region Ri, and J(θ) is the expected return. This implies

gradient updates prefer R2 over R1.

Thus, a policy with Gaussian actions can perform poorly in HRHR scenarios. In Section 6.3.1 of
the Appendix, we provide a detailed mathematical derivation to prove this point. In 6.3.2, we will
present different algorithms (SAC, TD3, C51) and our algorithm’s process of predicting Q values
in the form of schematic diagrams. This is closely related to the performance of the algorithm in
handling HRHR scenarios. Additionally, in Section 6.3.3 of the Appendix, we design an experi-
ment called the ”Trap Cheese Problem” to demonstrate the difference of decision between Gaussian
policies and discrete policies in HRHR scenarios.

To address the challenges inherent in the HRHR scenarios defined above, we extended the basic
distributed reinforcement learning algorithm, proposed the D2C-HRHR (Figure 1 (e)). For funda-
mentals of distributional reinforcement learning, please refer to 6.2.1 in the Appendix.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.2 MULTIDIMENSIONAL DISCRETE ACTORS

Our model employs a discrete action space across multiple dimensions. Instead of learning a single
expected value of Q value, we learn the complete probability distribution, divide the possible reward
range into a series of atoms, and then predict the probability of the reward distribution corresponding
to each action on these atoms. In HRHR scenarios with high expected reward variance, this can more
accurately identify the peak of expected returns.

A one-dimensional continuous action space is discretized into m discrete action atoms
{a1, a2, · · · , am},m ∈ N,where N denotes the set of natural numbers. Then the discretization
is applied to each dimension of a n-dimensional continuous action space, so an action in this new
discrete space A can be noted as a matrix:

A
D
= [a1,a2, · · · ,an]

T (5)

where each row is one-hot coding of the corresponding action dimension. This shape is convenient
to match the action probability distribution Â, which will be used as the output of policy network,
and the sum of each row of Â is 1. When we sample A from Â, each row in A is sampled from the
probability of the corresponding row in Â.

In this action space, there exist mn discrete potential actions. Given such an extensive search space,
employing exhaustive search methods such as those used by traditional DQN algorithms to find the
maximal Q-value is not feasible. In this study, we propose modeling the agent’s stochastic behavior
within the action space A by utilizing an action probability matrix, therefore we set the actor as
π : X → Rn×m.

π(x)
D
=


p11(x) p12(x) · · · p1m(x)
p21(x) p22(x) · · · p2m(x)

...
...

. . .
...

pn1(x) pn2(x) · · · pnm(x)

 (6)

where pij(x) ≥ 0,
∑m

j=1 pij(x) = 1 for i = 1, 2, · · · , n, and x is an observed state. This π
characterizes a stochastic multi-dimensional discrete actor. A later section will detail how to use
a neural network to approximate π. Please note that, in the original continuous action space, the
action dimensions are independent, so in A, the elements between rows are also independent.

3.3 CLIPPED DOUBLE Q-LEARNING FOR DISCRETE VALUE DISTRIBUTION

Although using discrete actors can identify multiple expected peaks in HRHR scenarios. However,
for distributed reinforcement learning algorithms with single criticism networks, such as C51, there
are still issues in the HRHR scenario. Once they find areas with high expected returns (van Hasselt
et al., 2015) , they will continue to learn in this direction. However, single criticism networks often
overestimate the Q-value.

In this chapter, we will propose a novel dual value network suitable for discrete values. It can
prevent the critic from overestimating the value of a high-risk action based on a few successful sam-
ples, thereby converging to a suboptimal strategy. By constructing two critic networks to estimate
the discrete value distribution respectively and performing truncation operations during the update
process, we can greatly improve the accuracy of the value network in evaluating action values. Al-
though double critic networks have been used in some reinforcement learning methods, no one has
applied them to distributed reinforcement learning before D2C-HRHR.

Double Q-learning for discrete distributional Q uses two critic networks, Θψ1(x, Â) and Θψ2(x, Â),
and one actor network πϕ(x), where Â is an action distribution matrix of a multidimensional discrete
action space. x is the current state of environment.

It also has target networks Θψ′
1
(x, Â), Θψ′

2
(x, Â), and πϕ′(x) correspond to the main networks for

stability in training. The subscripts above, ψ1, ψ2, ϕ, ψ
′
1, ψ

′
2, and ϕ′ denote the parameters of

corresponding networks. Given a transition tuple t = (x, A, r,x′), r means reward from environ-
ment, x′ is state of next observation. We consider how to effectively utilize these target networks to
yield an updated estimation of the value distribution, ΦT̂ Z̃(x, Â|Θψ′

1
,Θψ′

2
). With Θψ′

1
and Θψ′

2
,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

for Â′ = πϕ′(x′), we derive ΦZ(x′, Â′|Θψ′
i
) as:

P (Z(x′, Â′|Θψ′
i
) = zk)

D
=

e
(Θψ′

i
(x,Â′))k∑N

j e
(Θψ′

i
(x,Â′))j

(7)

A set of procedures is proposed to leverage the twin critic networks with a discrete value distribution,
as shown in Figure 2. These procedures are presented in the Appendix 6.2.2 in the form of an
algorithm table.

1. Firstly, the two critic networks estimate discrete value distributions according to x′, respec-
tively.

2. Secondly, the distributions are accumulated respectively.
3. Then for each category across the cumulative distributions, the one with higher probability

is selected to form a new cumulative distribution.
4. Finally, each category of the new cumulative distribution, except the first one, is subtracted

by the former one, mapping it back to discrete value distribution.

(b) (c) (d)(a)

Figure 2: Clipped Double Discrete Value Distribution

The first and second procedures use the concept of “cumulative distribution”. For a discrete value
distribution Z, it can be depicted as follows:

P (Z ∈ {z1, z2, · · · , zk}) =
k∑

j=1

P (Z = zj) (8)

For the kth value atom, the third and fourth procedures can be presented by equation:

ck
D
= max

i=1,2
P (Z(x′, Â′|Θψ′

i
) ∈ {z1, z2, · · · , zk})

P (Z̃(x′, Â′|Θψ′
1
,Θψ′

2
) = zk) =

{
ck if k = 1

ck − ck−1 if k > 1

(9)

This approach allows for the inclusion of atoms with relatively low probability, preventing the Q
value from being overestimated. For the transition sample t = (x, A, r,x′) and the ith value atom,
the Bellman Operation is as follows:

P (ΦT̂ Z̃(x, A|Θψ′
1
,Θψ′

2
) = zi) =

N∑
j=1

[
1−
|[T̂ zj]VMAX

VMIN
− zi|

△z

]1

0

P (Z̃(x′, Â′|Θψ′
1
,Θψ′

2
) = zj)

(10)
where A notes the actual action taken rather than a probability distribution, and
ΦT̂ Z̃(x, A|Θψ′

1
,Θψ′

2
) is the corrected discrete value distribution used in training Θψ1 and

Θψ2 .

3.4 CRITIC LEARNING

After clarifying the clipped double Q-learning mechanism for discrete value distributions, we will
further elaborate on how the dubl critic network learns based on the aforementioned corrected value
distributions, so as to achieve accurate estimation of action values and lay the foundation for subse-
quent strategy optimization.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Because the action that the agent is about to perform is sampled from the distribution. To accommo-
date this, we developed an updating mechanism for the critic network informed by the previously
introduced ΦT̂ Z̃(x, A|Θψ′

1
,Θψ′

2
).

P (ΦT̂ Z̃(x, Â|Θψ′
1
,Θψ′

2
) = zj) =

∑
∀A∈A

P (A|Â)P (ΦT̂ Z̃(x, A|Θψ′
1
,Θψ′

2
) = zj)

≈
∑
t∼D

P (A|Â)P (ΦT̂ Z̃(x, A|Θψ′
1
,Θψ′

2
) = zj)

(11)

Where ∀A ∈ A signifies the requirement to consider every available action within the action space
for a perfect estimation, whereas t ∼ D represents the extraction of actions from the replay buffer for
an approximation. The first line of the above formula embodies the exhaustive consideration of the
action space, where each action’s value distribution is aggregated based on its respective occurrence
likelihood P (A|Â), constituting the expected value of the distribution across Â. Nevertheless, due
to the extensive action space, such exhaustive consideration is impractical. Therefore, we invoke a
second-tier approximation by sampling the observed data from the replay buffer, circumventing the
full traversal of the action space, notwithstanding the potential distribution bias of the data within
the replay buffer. Accordingly, the critic network’s update rule for a data batch with size B and
i = 1, 2 is defined as:

Z1
D
= ΦT̂ Z̃(x, A|Θψ′

1
,Θψ′

2
)

Z2
D
= Z(x, Â|Θψi)

ψi ← ψi −
α

B

∑
t∼D

P (A|Â)▽ψiDKL(Z1||Z2)

(12)

where DKL represents KL divergence, furthermore:

▽ψiDKL(Z1||Z2) = −
N∑

j=1

P (Z1 = zj)▽ψi logP (Z2 = zj) (13)

In the above equation, we eliminate terms that are independent of ψi, thus obtaining a form consis-
tent with cross-entropy loss. Z1 denotes the new estimation of the value distribution procured from
the twin critic networks, and Z2 is the critic network’s resultant output. In this way, every critic’s
output is refined to align with the corrected value Z1, reducing the overestimation bias.

3.5 POLICY LEARNING

Having introduced how the critic network learns based on the corrected value distributions, this
chapter focuses on the training mechanism of the Actor, which is responsible for generating the
actions that the critic evaluates. To train the actor robustly, the actor is trained with a loss func-
tion similar for training the critic networks as introduced in Section ”Critic Learning”. The core is
to guide policy optimization through value distribution, enabling the Actor to maximize the selec-
tion probability of high-value actions while ensuring training stability, enable agents to learn more
extensively and make richer and bolder decisions when facing complex HRHR scenarios

Like other RL models with actor-critic architecture, the actor is updated to maximize the Q-value
predicted by a critic network. Differently, in our model, the output of the critic networks is prob-
abilistic, so the cumulative distribution can be used as an objective. More specifically, for the kth

value atom,
P (Z(x, πϕ(x)|Θψ1) ∈ {z1, z2, · · · zk})→ 0,

P (Z(x, πϕ(x)|Θψ1) ∈ {zk+1, zk+2, · · · zN})→ 1.
(14)

The notation “→” here denotes a trend or movement toward a value. The goal is for the policy to
minimize the probability of Z occurring at lower-value atoms while maximizing it at higher-value
atoms. With the binary cross-entropy loss applied, the Policy Learning rules are established thus:

ϕ← ϕ+
α

B

∑
t∼D

N∑
j=1

▽ϕ[0 log ρj + 1 log(1− ρj)] = ϕ+
α

B

∑
t∼D

N∑
j=1

▽ϕ log(1− ρj) (15)

where
ρj

D
= P (Z(x, πϕ(x)|Θψ1) ∈ {z1, z2, · · · , zj}) (16)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

3.6 EXPLORATION

Effective exploration is critical in HRHR tasks, as high-reward opportunities may be sparse and
require precise maneuvers to discover. A naive or overly broad exploration strategy may never find
these solutions. Therefore, we design a heuristic, entropy-based exploration strategy that explicitly
links the agent’s exploratory behavior to its confidence, as measured by the value distribution, to
encourage deeper exploration of promising high-risk regions.

Definition 3. Given an action distribution Â = π(x), the action entropy is defined as:

H(Â)
D
= −

n∑
i=1

m∑
j=1

pij(x) log pij(x) (17)

Additionally,H(Â) has a calculable upper bound:

H D
= n logm ≥ H(Â) ∀π : X → Rn×m (18)

Our objective is to correlate the action entropy with confidence levels. Specifically, increase the
action entropy H(Â) when there is a higher probability occurrence at lower discretization atoms
within the discrete value distribution. To achieve this, we introduce an entropy exploration term.
The proposed update rule for the actor is as follows:

ϕ← ϕ+
αβ

B

∑
t∼D

s▽ϕ
H(πϕ(x))
H

s =

{
1 if max1≤j≤N

N−j
N−1

hρj ≥
H(πϕ(x))

H
0 otherwise

(19)

where ρj is same to in Equ equation 16 , β > 0 is the coefficient for the entropy term, 0 < h ≤ 1

regulates the scale of action entropy. An action entropy threshold, N−j
N−1hρj , is assigned to each

discrete atom of the value distribution such that the entropy exploration term will only activate when
the action entropy H(πϕ(x)) falls below this threshold. This threshold decreases as j increases,
which means that atoms of higher values have lower thresholds.

We also use the cumulative distribution ρj to represent the confidence level of the agent with respect
to the current state x. It should be noted that for the jth value atom of a high-confidence agent,
ρj should be a small scalar since it represents the probability between the 1th atom and the jth

atom, which is the lower value range. We use ρj to correct the action entropy H(πϕ(x)), so the
low-confidence agent will increase it to seek various solutions with respect to state x, however, the
high-confidence one will not. Integrating this with the prior section’s material, the comprehensive
update rule for the actor is:

ϕ← ϕ+
α

B

N∑
t∼Dj=1

▽ϕ log(1− ρj) +
αβ

B

∑
t∼D

s▽ϕ
H(πϕ(x))
H

(20)

4 EXPERIMENTS

We trained our model on continuous control across multiple tasks using multiple random seeds,
including BipedalWalkerHardcore-v3 , FetchPush-v4 and MuJoCo tasks, and evaluated the perfor-
mance. We also used C51, SAC, SAC-Discrete, TD3, and TQC as baselines. For further imple-
mentation details of the experiments, such as, ablation experiment, and detailed description of the
environments, please refer to Section 6.4 and 6.5 of the Appendix.

4.1 BIPEDALWALKERHARDCORE-V3

The BipedalWalkerHardcore-v (Towers et al., 2023) task is to control the joints of a planar bipedal
robot to walk through complex terrains involving randomly generated obstacles like staircase, obsta-
cles, and traps. An agent must attempt to overcome various barriers to achieve the highest possible

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) BipedalWalkerHardcore-v3 (b) FetchPush-v4

Figure 3: Training Curves for BipedalWalkerHardcore-v3 Experiments and FetchPush-v4

Table 1: Algorithm Performance Comparison Across Environments. (The metric for BipedalWalker
is Average Score, while the metric for FetchPush is Success Rate)

Environment Ours C51 TQC SAC TD3 Discrete-SAC

BipedalWalkerHardcore-v3 327.1 ± 16.1 187.5 ± 32.4 150.2 ± 10.8 5.1 ± 0.7 -20.1 ± 2.2 82.8 ± 10.1

FetchPush-v4 0.97 ± 0.09 0.03 ± 0.0 0.11 ± 0.01 0.18 ± 0.04 0.16 ± 0.04 0.15 ± 0.05

score. The challenge lies in its high risk, characterized by randomly varying terrain, partial observ-
ability, and high penalties for falling. (Wei & Ying, 2021; Fujimoto et al., 2018)

We trained D2C-HRHR and baselines on the BipedalWalkerHardcore-v3 task for 20 million time
steps. Figure 3 shows the reward returns during training. In tests with 10 different random seeds,
our model achieved a mean score of 327.1 in 10,000 trials, as shown in Table 1. The experimental
results show that TQC, C51 perform better than TD3 and SAC, while our algorithm is the best.

In specific scenarios of the BipedalWalker task, successful decisions yield high rewards, while failed
actions result in high penalties, i.e., HRHR scenarios. In a fully observable and deterministic task,
TD3 and SAC could distinguish differences in actions and states to fit them well with a scalar expec-
tation. However, in this task, the scalar expectation can be misleading and captures neither the high
return nor high risk, but the average. We have verified this in the Appendix 6.3.1. TQC algorithm
also have its drawbacks. Although his critic network can output vectors of Q-value distribution, it
still uses Gaussian distribution process, which still limits its performance in action exploration.

While C51 utilizes discrete exploration and can capture bimodal distributions (performing stably
on stairs), it fails in high-risk scenarios involving stumps or traps. As shown in Fig 4, only our
algorithm maintains a bimodal distribution across all obstacle types.

The process of going up and down stairs involves low risk; Even if the agent loses balance, it will
only incur a small score deduction. In such cases, C51 which models the reward distribution using a
single distribution critic, is less affected by overestimation bias. It can capture the bimodal distribu-
tion and achieve good performance. However, in HRHR scenarios such as traps and obstacles, the
single critic of the C51 algorithm lacks cross-validation from another critic, making it overestimat-
ing the Q-value of certain erroneous actions. As shown 6.3.2 in Appendix, we will demonstrate the
key differences between C51 and ours in predicting Q values.

Meanwhile, the Actor in the C51 algorithm only outputs the action atom with the highest probability
in the discrete space, rather than sampling outputs based on probability distributions like we do. Our
model will enable agents to use more diverse strategies, enabling them to perform better in extreme
HRHR environments.

To understand the necessity of each module, we conducted an ablation study on our model for the
BipedalWalkerHardcore-v3 task, as shown in Appendix 6.4.1. It was conducted on the Dual Critic
Network, Actor, and exploration mechanism to validate the necessity of each module and its impact
on performance.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a)Crossing the Obstacle (b) Jumping Over the Trap (c) Going Down the Stairs (d) Going Up the Stairs

The values of discretized rewards

The values of discretized rewards

The values of discretized rewards The values of discretized rewardsThe values of discretized rewards

The values of discretized rewards The values of discretized rewards

P
ro

b
ab

il
it

y

P
ro

b
ab

il
it

y

P
ro

b
ab

il
it

y

P
ro

b
ab

il
it

y

P
ro

b
ab

il
it

y

P
ro

b
ab

il
it

y

P
ro

b
ab

il
it

y

P
ro

b
ab

il
it

y

Figure 4: The Distribution Plots of Reward Returns in BipedalWalkerHardcore-v3. (Blue repre-
senting our algorithm and green representing the C51 algorithm.)

4.2 FETCHPUSH-V3

To further validate the robustness of the D2C-HRHR model, we conducted tests on the FetchPush-
v3 task (Plappert et al., 2018). This task are based on a Fetch robotic arm with 7 degrees of freedom
and two parallel grippers, The robotic arm needs to learn to move a block to the target position on
the desktop. The difficulty of this task lies in its complex action space.

We conduct 100 tests on each model for each training step to check its success rate and obtain the
training curve, as shown in Figure 3(b). Finally, after 5 million steps of training, our algorithm was
able to adapt to the contact-rich operating environment and achieved a success rate of 0.97, as shown
in the table 1. This demonstrates that our task can adapt to complex action spaces.

4.3 MUJOCO ENVIRONMENT

Although the model is intended for tasks with HRHR actions, we also evaluated it in typical contin-
uous control tasks. Experiments were conducted within Mujoco Environment (Towers et al., 2023)
on a series of tasks, Ant-v5, HalfCheetah-v5, Hopper-v5, Humanoid-v5, and Walker2D-v5 (Tassa
et al., 2012). These tasks involve controlling different types of robots to move forward. Our model
and baselines were applied to these tasks and trained over 20 million time steps for each task. Our
algorithm ranks second in the total score, as shown in Figure 11, Table 4 and Table 5 in Appendix.

It is worth noting that our model demonstrates particularly outstanding performance on the Hu-
manoid task. This task aims to enable robots to mimic human walking by moving forward as quickly
as possible. We observe that robots guided by our algorithm exhibit greater joint flexibility and wider
range of motion during running in this task—in other words, they move more like a human. This
demonstrates that the Actor in D2C-HRHR enables agents to learn more broadly. Detailed training
curves and analysis are provided in Appendix 6.4.2 and Figure12.

5 DISCUSSION AND CONCLUSION

In this paper, we propose a distributed reinforcement learning model named D2C-HRHR. It adopts
a discrete action space, and employs a unique clipped dobule Q learning approach, policy learning
based on discrete action probability distribution sampling, and a cross-entropy nested exploration
mechanism. This model demonstrates outstanding performance in HRHR scenarios, achieving ca-
pabilities unmatched by other baselines. It solves BipedalWalkerHardcore-v3 with state-of-the-art
performance and exhibits excellent performance in various continuous control tasks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Open AI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Józefowicz, Bob McGrew,
Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, Jonas Schneider,
Szymon Sidor, Josh Tobin, Peter Welinder, Lilian Weng, and Wojciech Zaremba. Learning dex-
terous in-hand manipulation. International Journal of Robotics Research, 39(1):3–20, 2020. ISSN
17413176. doi: 10.1177/0278364919887447.

Gabriel Barth-Maron, Matthew W Hoffman, David Budden, Will Dabney, Dan Horgan, Dhruva Tb,
Alistair Muldal, Nicolas Heess, and Timothy Lillicrap. Distributed distributional deterministic
policy gradients. arXiv preprint arXiv:1804.08617, 2018.

Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. In International conference on machine learning, pp. 449–458. PMLR, 2017.

Petros Christodoulou. Soft actor-critic for discrete action settings. arXiv preprint arXiv:1910.07207,
2019.

Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos. Implicit quantile networks for
distributional reinforcement learning. In International conference on machine learning, pp. 1096–
1105. PMLR, 2018a.

Will Dabney, Mark Rowland, Marc Bellemare, and Rémi Munos. Distributional reinforcement
learning with quantile regression. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 32, 2018b.

Jesse Farebrother, Jordi Orbay, Quan Vuong, Adrien Ali Taı̈ga, Yevgen Chebotar, Ted Xiao, Alex
Irpan, Sergey Levine, Pablo Samuel Castro, Aleksandra Faust, Aviral Kumar, and Rishabh Agar-
wal. Stop regressing: Training value functions via classification for scalable deep rl, 2024. URL
https://arxiv.org/abs/2403.03950.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. PMLR, 2018.

Jens Kober, J. Andrew Bagnell, and Jan Peters. Reinforcement Learning in Robotics: A Sur-
vey. Springer Tracts in Advanced Robotics, 97:9–67, 2014. ISSN 1610742X. doi: 10.1007/
978-3-319-03194-1 2.

Arsenii Kuznetsov, Pavel Shvechikov, Alexander Grishin, and Dmitry Vetrov. Controlling overesti-
mation bias with truncated mixture of continuous distributional quantile critics. In International
Conference on Machine Learning, pp. 5556–5566. PMLR, 2020.

Timothy P. Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In 4th
International Conference on Learning Representations, ICLR 2016 - Conference Track Proceed-
ings, 2016.

Jianlan Luo, Perry Dong, Jeffrey Wu, Aviral Kumar, Xinyang Geng, and Sergey Levine. Action-
quantized offline reinforcement learning for robotic skill learning, 2023. URL https://
arxiv.org/abs/2310.11731.

Luke Metz, Julian Ibarz, Navdeep Jaitly, and James Davidson. Discrete sequential prediction of
continuous actions for deep rl, 2019. URL https://arxiv.org/abs/1705.05035.

Michael Neunert, Abbas Abdolmaleki, Markus Wulfmeier, Thomas Lampe, Jost Tobias Sprin-
genberg, Roland Hafner, Francesco Romano, Jonas Buchli, Nicolas Heess, and Martin Ried-
miller. Continuous-discrete reinforcement learning for hybrid control in robotics, 2019. URL
https://arxiv.org/abs/2001.00449.

10

https://arxiv.org/abs/2403.03950
https://arxiv.org/abs/2310.11731
https://arxiv.org/abs/2310.11731
https://arxiv.org/abs/1705.05035
https://arxiv.org/abs/2001.00449

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob McGrew, Bowen Baker, Glenn Powell,
Jonas Schneider, Josh Tobin, Maciek Chociej, Peter Welinder, Vikash Kumar, and Wojciech
Zaremba. Multi-goal reinforcement learning: Challenging robotics environments and request
for research. CoRR, abs/1802.09464, 2018.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Tim Seyde, Igor Gilitschenski, Wilko Schwarting, Bartolomeo Stellato, Martin Riedmiller, Markus
Wulfmeier, and Daniela Rus. Is Bang-Bang Control All You Need? Solving Continuous Control
with Bernoulli Policies. In Advances in Neural Information Processing Systems, volume 32, pp.
27209–27221, 2021. ISBN 9781713845393.

Yunhao Tang and Shipra Agrawal. Discretizing continuous action space for on-policy optimization.
In AAAI 2020 - 34th AAAI Conference on Artificial Intelligence, pp. 5981–5988, 2020a. ISBN
9781577358350. doi: 10.1609/aaai.v34i04.6059.

Yunhao Tang and Shipra Agrawal. Discretizing continuous action space for on-policy optimization,
2020b. URL https://arxiv.org/abs/1901.10500.

Yuval Tassa, Tom Erez, and Emanuel Todorov. Synthesis and stabilization of complex behaviors
through online trajectory optimization. 2012.

Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Arjun KG, Markus Krimmel, Rodrigo Perez-Vicente, An-
drea Pierré, Sander Schulhoff, Jun Jet Tai, Andrew Tan Jin Shen, and Omar G. Younis. Gymna-
sium, March 2023. URL https://zenodo.org/record/8127025.

Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. CoRR, abs/1509.06461, 2015.

Leonid Nisonovich Vaserstein. Markov processes over denumerable products of spaces, describing
large systems of automata. Problemy Peredachi Informatsii, 5(3):64–72, 2014.

Honghao Wei and Lei Ying. Fork: A forward-looking actor for model-free reinforcement learning.
2021.

11

https://arxiv.org/abs/1901.10500
https://zenodo.org/record/8127025

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work focuses on methodological and theoretical advances in discrete reinforcement learning.
It does not involve human or animal subjects, nor does it rely on sensitive or proprietary data. We
do not anticipate any immediate ethical concerns. Potential applications of reinforcement learning
should always be carefully evaluated to prevent harmful or unsafe use.

REPRODUCIBILITY STATEMENT

We provide detailed descriptions of our algorithm, theoretical definitions and proofs, and experi-
mental setups to ensure reproducibility. All assumptions and complete proofs of theoretical results
are included in the Appendix.

For experiments, we describe setup and implementation details in the Appendix and Supplementary
Material. Results and analysis of experiments are provided in the main text and appendix. Experi-
ments are conducted on a desktop workstation with the Intel® Core TMi9-12900 Processor, 64GB
RAM, and the NVIDIA® GeForce RTX TM4090. The code for the algorithm can be found in the
additional materials. Below are the hyperparameters used by our algorithm in various environments.

We plan to release our source code publicly upon acceptance of the paper. We believe these resources
will help other researchers to reproduce our findings.

Table 2: Training Results Comparison

Environment Hyperparameters

Learning Rate VMin VMax γ Batch Size

BipedalWalkerHardcore-3 2.5× 10−4 -100 100 0.99 512
FetchPush-v4 3× 10−5 -50 50 1− 1/50 512
Mujuco 1× 10−4 -200 200 0.99 1024

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

6 APPENDIX

6.1 MATH SYMBOLS

Table 3: Mathematical Symbols

Symbol Description Typical value

γ Discount factor. 0.98 or 0.99
VMAX Upper bound of the discrete value. 1

1−γ

VMIN Lower bound of discrete value. − 1
1−γ

Z Random variable for discrete value.
zi The ith discrete value atom of Z. [VMIN , VMAX]
x Sample of current state observation.
a An action sample vector.
â Distribution of an action vector.
Â An action distribution matrix of a multidimensional discrete action

space, in which the sum of each row is 1.
A An action sample matrix. Each row in A adopts one-hot coding sampled

from the corresponding row in Â.
Â′ Action distribution for the next state.
r Reward from an environment. ≤ 1
x′ Sample of next state observation.
x̂′ Distribution of the next state observation.
·̂ Distribution of a random variable.
·′ A variable in the next time step.
D
= Denotes definition.
X Space of state observations.
A Space of actions.⌈

1
1−γ

⌉
Ceiling of 1

1−γ
.

N Number of discrete atoms for Z. 51
T̂ Z r + γZ′.
ΦT̂ Z Projecting T̂ Z back to origin discrete value atoms.
Z̃ The estimated Z from the twin critic networks.
Θ Discrete distribution critic network.
(·)i ith Element of a Vector.
π Policy for action selection.
Q Expected scalar critic network.
ψ1,ψ2 Parameters of first and second critic networks.
ϕ Parameters of actor network
ψ′

1,ψ
′
2,ϕ

′ Parameters for delayed updated networks.
← Denotes parameter update.
▽ωJ Gradient of J with respect to ω.
α Learning rate. ≤ 10−3

B Batch size. 256 or 512
t ∼ D Sample from Replay Buffer.
n Number of dimensions in action. ≤ 20
m Number of atoms per action dimension. 51
H(Â) Entropy of action Â. ≤ n logm
H Maximum entropy of action. n logm
h Scaling factor for action entropy. 0.5
β Coefficient for exploration. 0.5
sup Represents the upper bound.
Ω1 The high-risk-high-return region.
ΩR2 The low-risk-stable-return region.
ΩRi A generalized notation for any subregion of the action space, used for

mathematical uniformity.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

6.2 FURTHER BACKGROUND

6.2.1 FUNDAMENTALS OF DISTRIBUTED REINFORCEMENT LEARNING

This chapter will introduce some basic concepts regarding the model we proposed. Reading this
chapter will help you gain some basic knowledge about discrete reinforcement learning. Our model
is extended on the basis of the content of this chapter.

For a stochastic transition process (x,a) → (x̂′, â′) in a environment, x represents the observed
current state of the environment, and a specifies the action taken in response to x. The resulting
state distribution is denoted x̂′. A stochastic policy output an action distribution â′, and the actual
action a′ taken in the task will be sampled from â′.

The value Z is a discrete distribution and is associated with the process (x,a)→ (x̂′, â′). It can be
formularized using a recursive equation:

Z(x,a)
D
= R(x,a) + γZ(x̂′, â′) (21)

wherein R(x,a) represents the stochastic reward function of the environment and γ denotes the
discount rate.

Subsequently, the value Z is conceptualized as a random variable with a discrete value distribution.
The number of discrete atoms N ∈ N denotes the granularity of discretization required for the
value domain, and the bounds VMIN , VMAX ∈ R specify the lower and upper limits of the values,
respectively. The set of discrete atoms is constructed as {zi = VMIN +(i− 1)△z|i = 1, 2, · · ·N},
with the interval△z calculated by VMAX−VMIN

N−1 . The probability of each discrete atom’s occurrence
is determined using a neural network Θ : X ×A → RN .

Z(x,a|Θ) = zi w.p. pi(x,a) =
e(Θ(x,a))i∑N
j e(Θ(x,a))j

(22)

For a tuple of a stochastic transition t = (x,a, r,x′), a Bellman update for a discrete distribution
is applied to each discrete atom zj , designated as T̂ zj := r + γzj . The probability associated with
T̂ zj , denoted pj(x

′, π(x′)), is then redistributed amongst adjacent discrete atoms. The ith element
of the resultant projected discrete probability distribution ΦT̂ Z(x,a|Θ) is:

P (ΦT̂ Z(x,a|Θ) = zi) =

N∑
j=1

[
1−
|[T̂ zj]VMAX

VMIN
− zi|

△z

]1

0

pj(x
′, π(x′))

The notation [·]ba signifies that the value is constrained within the interval [a, b].

Figure 5: Operations to update Z. (a) The current value distribution of Z. (b) Discount factor γ
changes the shape in the dimension of atoms. (c) The current reward R shifts the distribution in the
dimension of atoms. (d) The resulting distribution R+ γZ is mapped back to the original atoms by
Φ.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

6.2.2 ALGORITHM OF DOUBLE CRITIC NETWORK

Algorithm 1 Dual-Critic Network Based on Discrete Value Distribution

1: Input: Twin critic networks Θψ′
1
, Θψ′

2
, next state x′

2: Output: Refined value distribution Z̃(x′, Â′)

3: procedure DUALCRITICEVALUATION
4: Φ1,Φ2 ← Estimate discrete value distributions for x′ using both critics
5: C1, C2 ← Compute cumulative distributions from Φ1 and Φ2

6: for each value category k = 1 to N do
7: ck ← max(C1[k], C2[k]) ▷ Select conservative cumulative probability
8: end for
9: for each value category k = 1 to N do

10: if k = 1 then
11: P̃k ← c1
12: else
13: P̃k ← ck − ck−1 ▷ Convert back to probability distribution
14: end if
15: end for
16: return Z̃ with probabilities P̃1, P̃2, . . . , P̃N

17: end procedure

6.3 A DEEPER ANALYSIS AND ILLUSTRATION OF MECHANISMS

6.3.1 THE REASON WHY A POLICY WITH GAUSSIAN ACTIONS PERFORMS WORSE IN
HRHR SCENARIOS

Section 3.1 introduces Theorem 1. Here we recall to it again and prove it:

For Gaussian policy πθ(·|s) = N (µθ(s), σ
2
θ(s)I) in an HRHR scenario at state s with high-reward

grains G1 of diameter δ, if σθ(s) > δ, then the gradient update satisfies:
⟨∇θJ(θ),∆θR1⟩ < ⟨∇θJ(θ),∆θR2⟩ (23)

where ∆θRi
is the update direction toward region Ri, and J(θ) is the expected return. This implies

gradient updates prefer R2 over R1.

Proof. The policy gradient is:
∇θJ(θ) = Ea∼πθ [∇θ log πθ(a|s)Q(s, a)] (24)

For Gaussian policies, the score function is:
∇µθ log πθ(a|s) = σ−2

θ (s)(a− µθ(s)) (25)

The key inner product is:
⟨∇θJ(θ),∆θRi⟩ = Ea∼πθ

[⟨∆θRi ,∇θ log πθ(a|s)Q(s, a)⟩] (26)

= σ−2
θ (s)Ea∼πθ

[⟨∆θRi , (a− µθ(s))⟩Q(s, a)] (27)
Define the advantage relative to R2:

AR2(s, a) = Q(s, a)− Ea′∼U(R2)[Q(s, a′)] (28)

The difference in update directions is:
⟨∇θJ(θ),∆θR1

−∆θR2
⟩ (29)

= σ−2
θ (s)Ea∼πθ

[⟨∆θR1 −∆θR2 , (a− µθ(s))⟩AR2(s, a)] (30)
Under σθ(s) > δ, the covariance between action displacement and advantage is:

Cova∼πθ (a− µθ(s), AR2(s, a)) < 0 (31)

because high-reward grains contribute negligibly due to their small size (δ) relative to policy variance
(σθ(s)). Thus:

⟨∇θJ(θ),∆θR1⟩ < ⟨∇θJ(θ),∆θR2⟩ (32)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

When σθ(s) > δ, the policy’s exploration radius exceeds high-reward grain sizes. This makes R1’s
low average return dominate over its high maximum return, causing gradient updates to prefer R2.

This explains why Gaussian policies with fixed large variance struggle in HRHR scenarios. Adaptive
variance schedules or heavy-tailed distributions are often necessary to capture high-reward regions.

(a) HRHR Scenarios (b) Output Scalar Q-value Expectation

Figure 6: Illustration of returns sampled by Gaussian distribution actions. After sampling, the posi-
tions where highest true returns locate no longer keep the highest, but the position with the subopti-
mal true return is highest.

(a) HRHR Scenarios with Discrete Space (b) Select the Cell with the Highest
Expected Q-value for Output

Figure 7: Illustration of returns sampled by discrete actions.

(a) HRHR Scenarios with Discrete Space (b) Critic 1 Output Q-Value Prediction

(c) Critic 2 Output Q-Value Prediction (d) Select Lower Q Value and Output the
Probability Distribution of Action Atoms

Figure 8: Illustration of double discrete critics

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

6.3.2 ILLUSTRATIONS OF Q-VALUE ESTIMATION WITH DIFFERENT ALGORITHMS

For a more intuitive illustration of why a Gaussian policy is hard to find the optimal actions in HRHR
scenarios, we plot contour maps to illustrate landscapes of true returns and possible estimated returns
after sampling the true returns on Gaussian distribution actions.

As shown in Figure 6, (a) is the true landscape and (b) is the landscape after a Gaussian blur to
approximate the sampling of the returns by actions with a Gaussian distribution. Although the best
return in (a) is in the bottom left, the best return in (b) is in the top right, which is not optimal. It is
the case for algorithms with a policy with Gaussian action, such as SAC and TD3.

Differently, if the action dimensions are discretised (Figure 7 (a)) and the returns are sampled by
discrete actions (Figure 7 (b)), although the resolution is much lower, the high return regions in the
HRHR scenario are more likely to be captured. It is the case for algorithms with discrete actions.

However, because of the sharp gradient in a box after the discretization, the sampled return is a
distribution; hence, adopting a critic with distributional output is beneficial. Like critics with scalar
output, we notice critics with distributional outputs also suffer from overestimation; hence, in our
model, we mitigate it by using double critics. Figure 8 shows an example of discrete double critics
by a zoom-in of the return landscape. (b) and (c) show two samples by discrete actions which
illustrate the estimation of two critics, (d) shows choosing the lower returns from (b) and (c) and
combining them for less overestimated returns.

6.3.3 TRAP CHEESE PROBLEM AND MATHEMATICAL ANALYSIS

Figure 9: Trap Cheese Problem

We designed a toy task called ”Trap or Cheese” to illustrate that continuous models averaging good
actions can result in a bad action, but our model does not have this problem. As shown in Figure 9,
there is a trap in front of the mouse, behind which lies a piece of cheese. When the mouse chooses
to move straight ahead, it falls into the trap and dies, resulting in a reward of -1.0. When the mouse
chooses to turn left or right, it can bypass the trap and reach the cheese. However, there is a 50%
chance that the cheese has expired and cannot be eaten, resulting in a reward of 0.0. If the cheese is
not expired, the reward is 1.0. Obviously, a normal mouse would not choose to walk into the trap.

Both SAC and our model are tested in this task. The results show that SAC tends to unhesitatingly
choose the middle route and walk into the trap, with an average score staying at -1.0. In contrast, our
discrete model can learn the correct strategy, with an average score staying at 0.5. This simple task
is difficult for SAC because, although its critic network can learn that moving forward is a very bad
choice, since moving forward can be considered as an average of moving left and right, SAC still
chooses to move forward. This problem could widely exist in continuous RL models which tend to
average best actions. The BipedalWalkerHardcore task shares a similar property when stepping over
obstacles. Hence, we suspect it is the reason why continuous models cannot solve this task as well
as our model. For further discussion and mathematical analysis, please refer to the following proof.

We describe the Q function of the Trap Cheese problem as:

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Q(x0, a) =

{
0.5 if a ∈ [−1− δ,−1 + δ] ∪ [1− δ, 1 + δ]

−1 otherwise
(33)

Where δ is used to denote the width of the range where high rewards can be obtained, 0 < δ < 1.
For convenience, we represent this region with the symbol C(δ). We are interested in the maximum
likelihood estimation of the normal distribution a ∼ N(µ, σ2) on C(δ).

logL =

∫
C(δ)

log(
1√
2πσ

e
− (a−µ)2

2σ2)da

= −4δ log(
√
2πσ)− 1

2σ2

∫
C(δ)

(a− µ)2da

= −4δ log(
√
2πσ)− 1

6σ2
[(1 + δ − µ)3 − (1− δ − µ)3 + (−1 + δ − µ)3 − (−1− δ − µ)3]

= −4δ log(
√
2πσ)− 1

6σ2
[6(1− µ)2δ + 2δ3 + 6(1 + µ)2δ + 2δ3]

= −4δ log(
√
2πσ)− 2δ

3σ2
[3(1 + µ2) + δ2]

(34)

Letting ∂ logL
∂µ = 0 and ∂ logL

∂σ = 0, we can obtain the maximum likelihood estimates for µ and σ.

∂ logL

∂µ
= −4δµ

σ2
, µ̃ = 0

∂ logL

∂σ
= −4δ

σ
+

4δ

3σ3
[3(1 + µ2) + δ2], σ̃2 = 1 +

δ2

3

(35)

Hessian matrix helps to verify whether µ̃ = 0 and σ̃2 = 1 + δ2

3 is the unique critical point.

[
∂2 logL

∂µ2
∂2 logL
∂µ∂σ

∂2 logL
∂µ∂σ

∂2 logL
∂σ2

]
=

[
− 4δ

σ2
8δµ
σ3

8δµ
σ3

4δ
σ4 (σ

2 − δ2 − 3)

]
(36)

Substituting µ̃ = 0 and σ̃2 = 1 + δ2

3 , we obtain:

[
∂2 logL

∂µ2
∂2 logL
∂µ∂σ

∂2 logL
∂µ∂σ

∂2 logL
∂σ2

]
µ̃,σ̃

=

− 4δ

1+ δ2

3

0

0 − 8δ

1+ δ2

3

 ⪯ 0 (37)

Therefore, µ̃ = 0 and σ̃2 = 1+ δ2

3 is the unique maximum point on the domain. Although N(µ̃, σ̃2)
is the maximum likelihood estimate for the set C(δ) under the assumption of a normal distribution,
its maximum probability density point µ̃ does not yield satisfactory values on the Q function; Obvi-
ously, Q(x0, µ̃) = −1. Now we will compute the maximum likelihood estimate again, this time on
a discrete distribution.

P (a = ai) = pi, i = 1, 2, · · · ,m,

m∑
i

pi = 1.0, pi >= 0 (38)

In the case of a discrete distribution, the range of action a is given by A = {a1, a2, · · · , am}, and
A ∩ C(δ) ̸= ∅.

L =
∏

A∩C(δ)

pi (39)

According to AM-GM inequality, we have:

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

∥A∩C(δ)∥

√ ∏
A∩C(δ)

pi ≤
∑

A∩C pi

∥A ∩ C(δ)∥ ≤
1

∥A ∩ C(δ)∥ (40)

The two equalities in the above inequality can be attained; therefore, the maximum likelihood esti-
mate in the case of a discrete distribution is:

p̃i =

{
1

∥A∩C(δ)∥ if ai ∈ C(δ)
0 otherwise

(41)

In the maximum likelihood estimate of a discrete distribution, we take the point ak with the highest
probability, and obviously it satisfies Q(x0, ak) = 0.5. The above result suggests that when dealing
with complex obstacles, discrete distributions might have an advantage over normal distributions, at
least in the context of maximum likelihood estimation.

6.4 FURTHER EXPERIMENT RESULTS

Figure 10: Ablation Experiments of over 10,000 Trials for BipedalWalkerHardcore-v3

6.4.1 ABLATION EXPERIMENTS OF D2C-HRHR ON BIPEDALWALKERHARDCORE-V3

As shown in the Figure 10, we conducted ablation experiments on each module of the algorithm
in different random seeds. Following D3PG (Barth-Maron et al., 2018), we substituted our discrete
actor with a conventional continuous action actor based on our twin critic network. The results are
depicted by the curve labeled “Normal Actor”. Additionally, we also attempted to replace our ex-
ploration mechanism based on action entropy with the exploration mechanism relying on fixed noise
from the C51 algorithm, and the results are represented by the curve labeled “Normal Exploration”.
The results suggest that the different modules proposed in our model are necessary for the model’s
performance.

6.4.2 RESULTS AND ANALYSIS OF THE MUJOCO MISSION

Calculate the test scores of our algorithm and baseline on the training curves of five tasks (Ant-
v5, HalfSheetah-v5, Hopper-v5, Humanoid-v5, and Walker2D-v5). The training curves of various
algorithms on MuJoCo tasks, as well as the specific scores and standard deviations after 10,000
evaluations, can be found in Figure 11 and Table 4. Assuming that the weights of the five tasks are
the same, by taking a weighted average of the scores of each algorithm on different tasks, we find
that D2C-HRHR ranks second in the total score, second only to the SAC algorithm, as shown in
Table 5.

Our algorithm performs exceptionally well on Humanoid-v5. D2C-HRHR enables humanoid robots
to walk with greater amplitude and more adventurous movements. This not only makes the robot
walk faster but also more like a real human. As evidence, in Figure 12, we selected three algorithms
that performed best in this task for testing, obtaining the joint position distribution maps of the
humanoid robot’s lower limbs, including the knee and hip joints.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

As shown, the robot guided by our algorithm exhibits highly flexible joints during testing, moving in
a remarkably fluid manner. In contrast, the SAC and TD3 algorithms produce relatively fixed joint
positions, causing the robot to advance in a crawling fashion. Despite this movement style, they still
achieve relatively high rewards. As mentioned earlier, the characteristics of D2C-HRHR stem from
its unique architecture.

(a) Humanoid-v5 (b) HalfCheetah-v5 (c) Hopper-v5

(d) Ant-v5 (e) Walker2D-v5

Figure 11: Training Curves for the MuJoCo Environments

(a) Joint Position Distribution for Hip (b) Joint Position Distribution for Knee

Figure 12: Joint Position Distributions for the Robot of Task Humanoid-v5 (Blue is Ours, red is
SAC, orange is TD3

Table 4: Algorithm Final Evaluation over 10,000 Trials for MuJoCo

Environment Average Score (± Standard Deviation)

Ours C51 TQC SAC TD3 Discrete-SAC

Humanoid-v5 5426.2 ± 75.3 1042.2 ± 80.1 1821.0 ± 46.4 5050.4 ± 91.0 3241.1 ± 74.6 2241.8 ± 30.7
Ant-v5 4468.7 ± 96.1 4471.0 ± 50.3 5821.2 ± 21.7 6001.0 ± 14.2 4521.3 ± 91.2 930.0 ± 9.4
HalfCheetah-v5 10000.8 ± 37.4 2347.2 ± 17.6 9942.6 ± 32.3 11472.6 ± 28.5 3986.0 ± 22.2 2802.3 ± 10.1
Hopper-v5 1745.2 ± 67.1 985.5 ± 45.2 1453.0 ± 78.8 2420.8 ± 60.6 1977.1 ± 52.2 422.8 ± 18.7
Walker2D-v5 3663.6 ± 78.6 2021.8 ± 62.6 2110.0 ± 36.8 3840.5 ± 55.7 2740.2 ± 77.1 1025.4 ± 37.1

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 5: Overall Performance Comparison of Six Tasks in the Mujoco Series

Algorithm Composite Score
Ours 4.76
SAC 5.14
TD3 3.55
TQC 3.36
C51 1.87
Discrete-SAC 1.69

6.4.3 AN DETAILED DESCRIPTION TO VARIOUS TASKS IN EXPERIMENT

(a) FetchPush-v4 (b) Humanoid-v5 (c) HalfCheetah-v5

(d) Ant-v5 (e) Walker2D-v5 Hopper-v5

Figure 13: Presentation of Various Tasks in the Experiment

As shown in Figure 13.

FetchPush-v4 : The task in the environment is for a manipulator to move a block to a target posi-
tion on top of a table by pushing with its gripper. The robot is a 7-DoF Fetch Mobile Manipulator
with a two-fingered parallel gripper. The robot is controlled by small displacements of the gripper
in Cartesian coordinates and the inverse kinematics are computed internally by the MuJoCo frame-
work. The gripper is locked in a closed configuration in order to perform the push task. The task
is also continuing which means that the robot has to maintain the block in the target position for an
indefinite period of time.

Ant-v5: The ant is a 3D quadruped robot consisting of a torso (free rotational body) with four legs
attached to it, where each leg has two body parts. The goal is to coordinate the four legs to move in
the forward (right) direction by applying torque to the eight hinges connecting the two body parts of
each leg and the torso (nine body parts and eight hinges).

Humanoid-v5: The 3D bipedal robot is designed to simulate a human. It has a torso (abdomen) with
a pair of legs and arms, and a pair of tendons connecting the hips to the knees. The legs each consist

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

of three body parts (thigh, shin, foot), and the arms consist of two body parts (upper arm, forearm).
The goal of the environment is to walk forward as fast as possible without falling over.

HalfCheetah-v5: The HalfCheetah is a 2-dimensional robot consisting of 9 body parts and 8 joints
connecting them (including two paws). The goal is to apply torque to the joints to make the cheetah
run forward (right) as fast as possible, with a positive reward based on the distance moved forward
and a negative reward for moving backward. The cheetah’s torso and head are fixed, and torque can
only be applied to the other 6 joints over the front and back thighs (which connect to the torso), the
shins (which connect to the thighs), and the feet (which connect to the shins).

Walker2D-v5: Like other MuJoCo environments, this environment aims to increase the number of
independent state and control variables compared to classical control environments. The walker is a
two-dimensional bipedal robot consisting of seven main body parts - a single torso at the top (with
the two legs splitting after the torso), two thighs in the middle below the torso, two legs below the
thighs, and two feet attached to the legs on which the entire body rests. The goal is to walk in the
forward (right) direction by applying torque to the six hinges connecting the seven body parts.

Hopper-v5: The environment aims to increase the number of independent state and control variables
compared to classical control environments. The hopper is a two-dimensional one-legged figure
consisting of four main body parts - the torso at the top, the thigh in the middle, the leg at the
bottom, and a single foot on which the entire body rests. The goal is to make hops that move in the
forward (right) direction by applying torque to the three hinges that connect the four body parts.

6.5 IMPLEMENTATION DETAILS

6.5.1 REWARD NORMALIZATION

Reward Normalization is crucial in the training and convergence of models. The original reward
function, denoted as R1(x, A), is advised to be transformed into a normalized form R2(x, A),
which ideally possesses the following characteristics:

R2(x, A) = CR1(x, A), C > 0, sup
x,A

R2(x, A) ≤ 1 (42)

If a constant C, typically represented as 1
supx,A R1(x,A) , can be identified, the following equation

holds:
Zt =R2(xt, At) + γR2(xt−1, At−1) + γ2R2(xt−2, At−2) + · · ·

≤1 + γ1 + γ21 + · · · ≤ 1

1− γ

(43)

Taking into account the upper bound mentioned above, we recommend configuring the hyperparam-
eters VMAX = 1

1−γ .

6.5.2 LOGARITHMIC OPERATIONS

If logarithmic operations are directly used to compute the loss function, it will result in significant
precision loss, especially when dealing with very small values. Therefore, directly using the loga-
rithm operator is unwise; we need to make some transformations on paper to avoid these precision
losses. The technique demonstrated below is the ’log sum exp’ trick.

log(
∑

1≤i≤N

exi) = x∗ + log(
∑

1≤i≤N

exi−x∗
), x∗ = max

1≤i≤N
xi (44)

The above transformation ensures that the values inside the logarithmic operations are greater than
1, thereby avoiding the problem of significant precision loss when the values are very small. Based
on the above discussion, ’log softmax’ can be represented as:

log(
exj∑

1≤i≤N exi
) = xj − x∗ − log(

∑
1≤i≤N

exi−x∗
), x∗ = max

1≤i≤N
xi (45)

Furthermore, for the logarithmic operation of cumulative distribution, it can be represented as:

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

log(1−
∑

1≤i≤K exi∑
1≤i≤N exi

) = log(

∑
K<i≤N exi∑
1≤i≤N exi

)

= (x∗∗ + log(
∑

K<i≤N

exi−x∗∗
))− (x∗ + log(

∑
1≤i≤N

exi−x∗
))

x∗ = max
1≤i≤N

xi, x∗∗ = max
K<i≤N

xi

(46)

In practice, we found that setting a near-zero lower bound (such as ϵ = 0.0001) for all cumulative
probabilities when constructing the Policy Loss will be more robust. This helps prevent the actor
network from making significant policy changes in pursuit of minor fluctuations in noise.

log(1− (1− ϵ)

∑
1≤i≤K exi∑
1≤i≤N exi

)

= log(
ϵ
∑

1≤i≤K exi +
∑

K<i≤N exi∑
1≤i≤N exi

)

= log(

∑
1≤i≤K exi+log(ϵ) +

∑
K<i≤N exi∑

1≤i≤N exi
)

=x∗∗ + log(
∑

1≤i≤K

exi+log(ϵ)−x∗∗
+

∑
K<i≤N

exi−x∗∗
)− (x∗ + log(

∑
1≤i≤N

exi−x∗
))

x∗ = max
1≤i≤N

xi, x∗∗ = max(max
1≤i≤K

xi + log(ϵ), max
K<i≤N

xi)

(47)

23

	Introduction
	Related Work
	Models & Methods
	HRHR scenario
	Multidimensional Discrete Actors
	Clipped Double Q-learning for Discrete Value Distribution
	Critic Learning
	Policy Learning
	Exploration

	Experiments
	BipedalWalkerHardcore-v3
	FetchPush-v3
	Mujoco Environment

	Discussion and Conclusion
	Appendix
	Math Symbols
	Further background
	Fundamentals of Distributed Reinforcement Learning
	Algorithm of Double Critic Network

	A deeper analysis and illustration of mechanisms
	The Reason Why A Policy with Gaussian Actions Performs Worse in HRHR Scenarios
	Illustrations of Q-Value estimation with Different Algorithms
	Trap Cheese Problem and Mathematical Analysis

	Further Experiment Results
	Ablation Experiments of D2C-HRHR on BipedalWalkerHardcore-v3
	Results and Analysis of the Mujoco Mission
	An Detailed Description to Various Tasks in Experiment

	Implementation Details
	 Reward Normalization
	 Logarithmic Operations

