

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 D2C-HRHR: DISCRETE ACTIONS WITH DOUBLE DISTRIBUTIONAL CRITICS FOR HIGH-RISK-HIGH- RETURN TASKS

006
007 **Anonymous authors**
008 Paper under double-blind review

011 ABSTRACT

013 Tasks involving high-risk-high-return (HRHR) actions, such as obstacle crossing,
014 often exhibit multimodal action distributions and stochastic returns. Most rein-
015 forcement learning (RL) methods assume unimodal Gaussian policies and rely on
016 scalar-valued critics, which limits their effectiveness in HRHR settings. We for-
017 mally define HRHR tasks and theoretically show that Gaussian policies cannot
018 guarantee convergence to the optimal solution. To address this, we propose a rein-
019 forcement learning framework that (i) discretizes continuous action spaces to ap-
020 proximate multimodal distributions, (ii) employs entropy-regularized exploration
021 to improve coverage of risky but rewarding actions, and (iii) introduces a dual-
022 critic architecture for more accurate discrete value distribution estimation. The
023 framework scales to high-dimensional action spaces, supporting complex control
024 domains. Experiments on locomotion and manipulation benchmarks with high
025 risks of failure demonstrate that our method outperforms baselines, underscoring
026 the importance of explicitly modeling multimodality and risk in RL.

028 1 INTRODUCTION

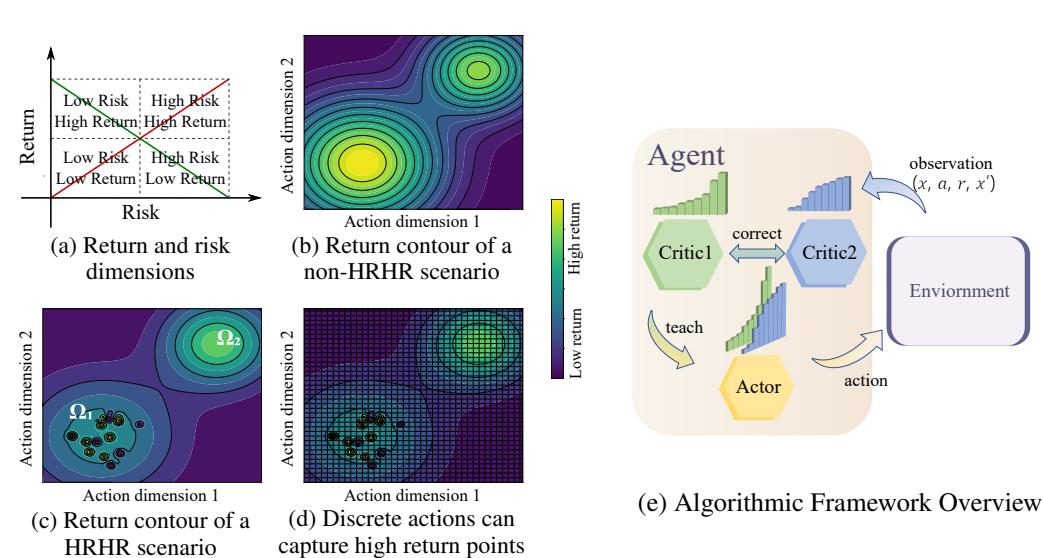
030 Reinforcement Learning (RL) typically uses discrete action spaces for discrete tasks and continuous
031 spaces for continuous tasks. For discrete tasks, such as Atari games, Q-learning evaluates only a
032 small number of actions. For continuous tasks, such as robotic motion control, evaluating all actions
033 is infeasible. Discrete-action models can suffer from the *curse of dimensionality* (Kober et al., 2014;
034 Lillicrap et al., 2016), while continuous-action models output actions directly (Vaserstein, 2014;
035 Lillicrap et al., 2016; Schulman et al., 2017; Fujimoto et al., 2018; Haarnoja et al., 2018; Kuznetsov
036 et al., 2020).

037 Many real-world RL tasks involve high-risk-high-return (HRHR) scenarios (Fig 1 (a) top right),
038 where the highest rewards occur only in risky regions of the action space (Fig 1 (c) region Ω_1). Ex-
039 amples include parkour locomotion, obstacle crossing, or contact-rich robotic manipulation. Stan-
040 dard RL methods often assume unimodal Gaussian policies and scalar critics, which bias learning
041 toward safer actions (Fig 1 (c) region Ω_2) and fail to capture high-reward regions in HRHR tasks.
042 We formally define HRHR tasks and show that Gaussian policies cannot guarantee convergence to
043 the optimal solution.

044 Recent work revisits discrete actions for continuous tasks. Andrychowicz et al. (2020) and Tang &
045 Agrawal (2020a) demonstrated improved on-policy RL via discretization, and Seyde et al. (2021)
046 achieved state-of-the-art results using extreme discretization akin to Bang-Bang control. These suc-
047 cesses highlight discrete action spaces' potential for multimodal exploration and capturing high-
048 reward actions in HRHR scenarios.

049 Based on these observations, we propose a discrete-action framework (i) discretizes continuous ac-
050 tion spaces to approximate multimodal distributions (Fig 1 (d)), (ii) employs entropy-regularized
051 exploration to improve coverage of risky but rewarding actions, and (iii) introduces a dual-critic
052 architecture for more accurate discrete value distribution estimation a discrete actor with twin dis-
053 crete critics ((Fig 1 (e)). With them, our model can capture actions in localized high-reward regions
surrounded by low-return or even harmful outcomes (Fig 1 (c) region Ω_1).

054 Empirical results on baseline benchmarks, including locomotion tasks with a high risk of falling and
 055 manipulation tasks with a high risk of failure, suggest that that our method outperforms baselines in
 056 HRHR scenarios.



057
 058 Figure 1: Return and risk are in two dimensions. In an ideal task, higher expected returns are
 059 associated with lower-risk actions, as shown by the green line in (a) and panel (b). However, in tasks
 060 where favorable outcomes are intertwined with risk, the highest returns have to be extracted among
 061 high-risk actions, as shown by the red line in (a) and panel (c). Actions sampled from Gaussian
 062 distribution can be hard to capture the high return points during learning as the expectation on the
 063 distribution is low, but discrete actions can capture the actions.

064 2 RELATED WORK

065 Distributional RL models focus on modeling the distribution of cumulative rewards rather than only
 066 an expected scalar. C51 (Bellemare et al., 2017) employs a discrete value distribution for building
 067 its critic network. QR-DQN (Dabney et al., 2018b) and IQN (Dabney et al., 2018a) utilize quantile
 068 regression to detail the distribution of stochastic reward returns.

069 Some previous works resemble a few aspects of our work, but differently. D4PG (Barth-Maron
 070 et al., 2018) proposed a C51 with an actor module. Our work, however, diverges by investigating
 071 discretized action spaces, moving away from the conventional assumption that action variables con-
 072 form to a normal distribution. SAC-Discrete (Christodoulou, 2019) broadens the scope of SAC to
 073 discrete action spaces, thus enhancing the model’s capacity to use action entropy for exploration.

074 There are a few more works using discrete actions for continuous tasks. Neunert et al. (2019)
 075 explores a feasible approach for the unified control of discrete and continuous action variables based
 076 on the MPO algorithm. Tang & Agrawal (2020b) advocate for the discretization of continuous
 077 action spaces, which can enhance the performance of on-policy algorithms such as PPO. Luo et al.
 078 (2023) emphasize the benefits of discretizing action spaces in offline reinforcement learning and
 079 examine potential solutions. Metz et al. (2019) decompose multi-dimensional action variables into
 080 a sequence of decision-making processes for discrete variables. Farebrother et al. (2024) argues that
 081 the cross-entropy loss function, compared to the mean squared error loss function, is more effective
 082 for training critic networks in reinforcement learning. None of these works use double distributional
 083 critics. In our experiments, we used some of these algorithms for comparison.

084 3 MODELS & METHODS

085 In this section, the high-risk-high-return (HRHR) scenario in RL tasks is formally defined, and why a
 086 Gaussian policy cannot guarantee an optimal result is proved. According to the theoretical analysis,

108 we proposed our model which (i) discretizes continuous action spaces to approximate multimodal
 109 distributions, (ii) employs entropy-regularized exploration to improve coverage of risky but reward-
 110 ing actions, and (iii) introduces a dual-critic architecture for more accurate discrete value distribution
 111 estimation. For consistency, the mathematical notation in this paper can also be referenced to the
 112 Table of Mathematical Symbols in the Appendix 6.1.

113

114 3.1 HRHR SCENARIO

115

116 Here we define the HRHR scenario in RL tasks as, given a state of the environment, a region of
 117 action space contains a set of high return actions and a set of low return actions, which results in
 118 that, the average return of this region is lower than that of another region whose highest return is
 119 lower than the former's highest return. In Figure 1 (b) and (c), we present the contour plots of HRHR
 120 scenarios and non-HRHR scenarios.

121
122
123

124 Consider a reinforcement learning agent operating in an environment with state space \mathcal{S} and action
 125 space \mathcal{A} . Let $Q : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$ denote the action-value function, where $Q(s, a)$ represents the
 126 expected return when taking action a in state s .

127
128
129

124 **Definition 1** (High-Risk-High-Return Scenario). *For a given state $s \in \mathcal{S}$, we say there exists a
 125 high-risk-high-return (HRHR) scenario if there exist measurable regions $\Omega_1 \subseteq \mathcal{A}$ and $\Omega_2 \subseteq \mathcal{A}$ with
 126 positive measure ($\mu(\Omega_1) > 0$, $\mu(\Omega_2) > 0$) satisfying the following conditions:*

130

$$\sup_{a \in \Omega_1} Q(s, a) > \sup_{a \in \Omega_2} Q(s, a) \quad \mathbb{E}_{a \sim \mathcal{U}(\Omega_1)} [Q(s, a)] < \mathbb{E}_{a \sim \mathcal{U}(\Omega_2)} [Q(s, a)] \quad (1)$$

131

130 where $\mathcal{U}(\Omega_i)$ denotes the uniform distribution over region Ω_i , and Ω_1 is called the HRHR region. If
 131 \mathcal{A} is continuous, the expectations are computed as:

132

$$\mathbb{E}_{a \sim \mathcal{U}(\Omega_i)} [Q(s, a)] = \frac{1}{\mu(\Omega_i)} \int_{\Omega_i} Q(s, a) da \quad (2)$$

133
134

135 In this scenario, an RL algorithm should adjust the distribution of the action to let the expectation of
 136 the return measured on the action distribution be higher.

137

138 However, given a policy with the Gaussian actions, if the variance of the action is larger than the
 139 grain with the high rewards in the HRHR region, an RL algorithm could lead the policy to prefer Ω_2
 140 instead of Ω_1 .

140
141

140 **Definition 2** (High-Reward Grain). *A high-reward grain $\mathcal{G} \subseteq R_1$ is a connected component satis-
 141 fying:*

142
143

$$\inf_{a \in \mathcal{G}} Q(s, a) > \sup_{a \in R_1 \setminus \mathcal{G}} Q(s, a) \quad \text{and} \quad \text{diam}(\mathcal{G}) \leq \delta \quad (3)$$

144
145

144 with $\delta > 0$ being the maximum grain diameter. The set of all high-reward grains in R_1 is denoted
 145 \mathbb{G}_1 .

146
147
148

146 **Theorem 1** (Policy Preference in HRHR Scenarios). *For Gaussian policy $\pi_\theta(\cdot | s) =$
 147 $\mathcal{N}(\mu_\theta(s), \sigma_\theta^2(s)I)$ in an HRHR scenario at state s with high-reward grains \mathbb{G}_1 of diameter δ , if
 148 $\sigma_\theta(s) > \delta$, then the gradient update satisfies:*

149

$$\langle \nabla_\theta J(\theta), \Delta\theta_{R_1} \rangle < \langle \nabla_\theta J(\theta), \Delta\theta_{R_2} \rangle \quad (4)$$

150
151
152

150 where $\Delta\theta_{R_i}$ is the update direction toward region R_i , and $J(\theta)$ is the expected return. This implies
 151 gradient updates prefer R_2 over R_1 .

153
154
155
156
157
158
159

153 Thus, a policy with Gaussian actions can perform poorly in HRHR scenarios. In **Section 6.3.1** of
 154 the Appendix, we provide a detailed mathematical derivation to prove this point. In **6.3.2**, we will
 155 present different algorithms (SAC, TD3, C51) and our algorithm's process of predicting Q values
 156 in the form of schematic diagrams. This is closely related to the performance of the algorithm in
 157 handling HRHR scenarios. Additionally, in **Section 6.3.3** of the Appendix, we design an experi-
 158 ment called the "Trap Cheese Problem" to demonstrate the difference of decision between Gaussian
 159 policies and discrete policies in HRHR scenarios.

160
161

160 To address the challenges inherent in the HRHR scenarios defined above, we extended the basic
 161 distributed reinforcement learning algorithm, proposed the D2C-HRHR (Figure 1 (e)). For funda-
 162 mentals of distributional reinforcement learning, please refer to 6.2.1 in the Appendix.

162 3.2 MULTIDIMENSIONAL DISCRETE ACTORS
163

164 Our model employs a discrete action space across multiple dimensions. Instead of learning a single
165 expected value of Q value, we learn the complete probability distribution, divide the possible reward
166 range into a series of atoms, and then predict the probability of the reward distribution corresponding
167 to each action on these atoms. In HRHR scenarios with high expected reward variance, this can more
168 accurately identify the peak of expected returns.

169 A one-dimensional continuous action space is discretized into m discrete action atoms
170 $\{a_1, a_2, \dots, a_m\}, m \in \mathbb{N}$, where \mathbb{N} denotes the set of natural numbers. Then the discretization
171 is applied to each dimension of a n -dimensional continuous action space, so an action in this new
172 discrete space \mathcal{A} can be noted as a matrix:

$$173 \quad 174 \quad A \stackrel{D}{=} [\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n]^T \quad (5)$$

175 where each row is one-hot coding of the corresponding action dimension. This shape is convenient
176 to match the action probability distribution \hat{A} , which will be used as the output of policy network,
177 and the sum of each row of \hat{A} is 1. When we sample A from \hat{A} , each row in A is sampled from the
178 probability of the corresponding row in \hat{A} .
179

180 In this action space, there exist m^n discrete potential actions. Given such an extensive search space,
181 employing exhaustive search methods such as those used by traditional DQN algorithms to find the
182 maximal Q-value is not feasible. In this study, we propose modeling the agent's stochastic behavior
183 within the action space \mathcal{A} by utilizing an action probability matrix, therefore we set the actor as
184 $\pi : \mathcal{X} \rightarrow \mathbb{R}^{n \times m}$.
185

$$186 \quad \pi(\mathbf{x}) \stackrel{D}{=} \begin{bmatrix} p_{11}(\mathbf{x}) & p_{12}(\mathbf{x}) & \dots & p_{1m}(\mathbf{x}) \\ p_{21}(\mathbf{x}) & p_{22}(\mathbf{x}) & \dots & p_{2m}(\mathbf{x}) \\ \vdots & \vdots & \ddots & \vdots \\ p_{n1}(\mathbf{x}) & p_{n2}(\mathbf{x}) & \dots & p_{nm}(\mathbf{x}) \end{bmatrix} \quad (6)$$

187 where $p_{ij}(\mathbf{x}) \geq 0$, $\sum_{j=1}^m p_{ij}(\mathbf{x}) = 1$ for $i = 1, 2, \dots, n$, and \mathbf{x} is an observed state. This π
188 characterizes a stochastic multi-dimensional discrete actor. A later section will detail how to use
189 a neural network to approximate π . Please note that, in the original continuous action space, the
190 action dimensions are independent, so in A , the elements between rows are also independent.
191

194 3.3 CLIPPED DOUBLE Q-LEARNING FOR DISCRETE VALUE DISTRIBUTION
195

196 Although using discrete actors can identify multiple expected peaks in HRHR scenarios. However,
197 for distributed reinforcement learning algorithms with single criticism networks, such as C51, there
198 are still issues in the HRHR scenario. Once they find areas with high expected returns (van Hasselt
199 et al., 2015), they will continue to learn in this direction. However, single criticism networks often
200 overestimate the Q-value.
201

202 In this chapter, we will propose a novel dual value network suitable for discrete values. It can
203 prevent the critic from overestimating the value of a high-risk action based on a few successful sam-
204 ples, thereby converging to a suboptimal strategy. By constructing two critic networks to estimate
205 the discrete value distribution respectively and performing truncation operations during the update
206 process, we can greatly improve the accuracy of the value network in evaluating action values. Al-
207 though double critic networks have been used in some reinforcement learning methods, no one has
208 applied them to distributed reinforcement learning before D2C-HRHR.
209

210 Double Q-learning for discrete distributional Q uses two critic networks, $\Theta_{\psi_1}(\mathbf{x}, \hat{A})$ and $\Theta_{\psi_2}(\mathbf{x}, \hat{A})$,
211 and one actor network $\pi_{\phi}(\mathbf{x})$, where \hat{A} is an action distribution matrix of a multidimensional discrete
212 action space. \mathbf{x} is the current state of environment.
213

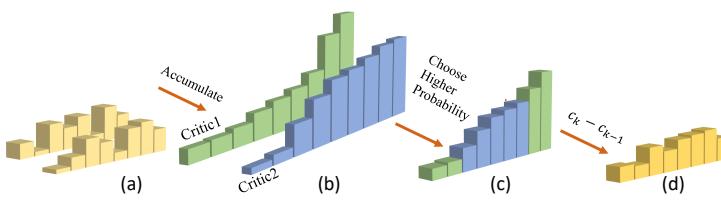
214 It also has target networks $\Theta_{\psi'_1}(\mathbf{x}, \hat{A})$, $\Theta_{\psi'_2}(\mathbf{x}, \hat{A})$, and $\pi_{\phi'}(\mathbf{x})$ correspond to the main networks for
215 stability in training. The subscripts above, ψ_1 , ψ_2 , ϕ , ψ'_1 , ψ'_2 , and ϕ' denote the parameters of
216 corresponding networks. Given a transition tuple $t = (\mathbf{x}, A, r, \mathbf{x}')$, r means reward from environ-
217 ment, \mathbf{x}' is state of next observation. We consider how to effectively utilize these target networks to
218 yield an updated estimation of the value distribution, $\Phi \hat{T} \tilde{Z}(\mathbf{x}, \hat{A} | \Theta_{\psi'_1}, \Theta_{\psi'_2})$. With $\Theta_{\psi'_1}$ and $\Theta_{\psi'_2}$,

216 for $\hat{A}' = \pi_{\phi'}(\mathbf{x}')$, we derive $\Phi Z(\mathbf{x}', \hat{A}' | \Theta_{\psi'_i})$ as:
 217

$$218 \quad 219 \quad 220 \quad P(Z(\mathbf{x}', \hat{A}' | \Theta_{\psi'_i}) = z_k) \stackrel{D}{=} \frac{e^{(\Theta_{\psi'_i}(\mathbf{x}, \hat{A}'))_k}}{\sum_j e^{(\Theta_{\psi'_i}(\mathbf{x}, \hat{A}'))_j}} \quad (7)$$

221 A set of procedures is proposed to leverage the twin critic networks with a discrete value distribution,
 222 as shown in Figure 2. These procedures are presented in the Appendix 6.2.2 in the form of an
 223 algorithm table.
 224

- 225 1. Firstly, the two critic networks estimate discrete value distributions according to \mathbf{x}' , respec-
 226 tively.
- 227 2. Secondly, the distributions are accumulated respectively.
- 228 3. Then for each category across the cumulative distributions, the one with higher probability
 229 is selected to form a new cumulative distribution.
- 230 4. Finally, each category of the new cumulative distribution, except the first one, is subtracted
 231 by the former one, mapping it back to discrete value distribution.



240 Figure 2: Clipped Double Discrete Value Distribution

241 The first and second procedures use the concept of “cumulative distribution”. For a discrete value
 242 distribution Z , it can be depicted as follows:
 243

$$244 \quad 245 \quad 246 \quad P(Z \in \{z_1, z_2, \dots, z_k\}) = \sum_{j=1}^k P(Z = z_j) \quad (8)$$

247 For the k^{th} value atom, the third and fourth procedures can be presented by equation:
 248

$$249 \quad 250 \quad c_k \stackrel{D}{=} \max_{i=1,2} P(Z(\mathbf{x}', \hat{A}' | \Theta_{\psi'_i}) \in \{z_1, z_2, \dots, z_k\})$$

$$251 \quad 252 \quad 253 \quad P(\tilde{Z}(\mathbf{x}', \hat{A}' | \Theta_{\psi'_1}, \Theta_{\psi'_2}) = z_k) = \begin{cases} c_k & \text{if } k = 1 \\ c_k - c_{k-1} & \text{if } k > 1 \end{cases} \quad (9)$$

254 This approach allows for the inclusion of atoms with relatively low probability, preventing the Q
 255 value from being overestimated. For the transition sample $t = (\mathbf{x}, A, r, \mathbf{x}')$ and the i^{th} value atom,
 256 the Bellman Operation is as follows:

$$257 \quad 258 \quad 259 \quad 260 \quad P(\Phi \hat{\mathcal{T}} \tilde{Z}(\mathbf{x}, A | \Theta_{\psi'_1}, \Theta_{\psi'_2}) = z_i) = \sum_{j=1}^N \left[1 - \frac{|[\hat{\mathcal{T}} z_j]_{V_{\text{MIN}}^{\text{MAX}}} - z_i|}{\Delta z} \right]^1 P(\tilde{Z}(\mathbf{x}', \hat{A}' | \Theta_{\psi'_1}, \Theta_{\psi'_2}) = z_j) \quad (10)$$

261 where A notes the actual action taken rather than a probability distribution, and
 262 $\Phi \hat{\mathcal{T}} \tilde{Z}(\mathbf{x}, A | \Theta_{\psi'_1}, \Theta_{\psi'_2})$ is the corrected discrete value distribution used in training $\Theta_{\psi'_1}$ and
 263 $\Theta_{\psi'_2}$.

264 3.4 CRITIC LEARNING

265 After clarifying the clipped double Q-learning mechanism for discrete value distributions, we will
 266 further elaborate on how the dbl critic network learns based on the aforementioned corrected value
 267 distributions, so as to achieve accurate estimation of action values and lay the foundation for subse-
 268 quent strategy optimization.

Because the action that the agent is about to perform is sampled from the distribution. To accommodate this, we developed an updating mechanism for the critic network informed by the previously introduced $\Phi\hat{T}\tilde{Z}(\mathbf{x}, A|\Theta_{\psi'_1}, \Theta_{\psi'_2})$.

$$\begin{aligned} P(\Phi\hat{T}\tilde{Z}(\mathbf{x}, \hat{A}|\Theta_{\psi'_1}, \Theta_{\psi'_2}) = z_j) &= \sum_{\forall A \in \mathcal{A}} P(A|\hat{A})P(\Phi\hat{T}\tilde{Z}(\mathbf{x}, A|\Theta_{\psi'_1}, \Theta_{\psi'_2}) = z_j) \\ &\approx \sum_{t \sim \mathcal{D}} P(A|\hat{A})P(\Phi\hat{T}\tilde{Z}(\mathbf{x}, A|\Theta_{\psi'_1}, \Theta_{\psi'_2}) = z_j) \end{aligned} \quad (11)$$

Where $\forall A \in \mathcal{A}$ signifies the requirement to consider every available action within the action space for a perfect estimation, whereas $t \sim \mathcal{D}$ represents the extraction of actions from the replay buffer for an approximation. The first line of the above formula embodies the exhaustive consideration of the action space, where each action's value distribution is aggregated based on its respective occurrence likelihood $P(A|\hat{A})$, constituting the expected value of the distribution across \hat{A} . Nevertheless, due to the extensive action space, such exhaustive consideration is impractical. Therefore, we invoke a second-tier approximation by sampling the observed data from the replay buffer, circumventing the full traversal of the action space, notwithstanding the potential distribution bias of the data within the replay buffer. Accordingly, the critic network's update rule for a data batch with size B and $i = 1, 2$ is defined as:

$$\begin{aligned} Z_1 &\stackrel{D}{=} \Phi\hat{T}\tilde{Z}(\mathbf{x}, A|\Theta_{\psi'_1}, \Theta_{\psi'_2}) \\ Z_2 &\stackrel{D}{=} Z(\mathbf{x}, \hat{A}|\Theta_{\psi_i}) \\ \psi_i &\leftarrow \psi_i - \frac{\alpha}{B} \sum_{t \sim \mathcal{D}} P(A|\hat{A}) \nabla_{\psi_i} D_{KL}(Z_1||Z_2) \end{aligned} \quad (12)$$

where D_{KL} represents KL divergence, furthermore:

$$\nabla_{\psi_i} D_{KL}(Z_1||Z_2) = - \sum_{j=1}^N P(Z_1 = z_j) \nabla_{\psi_i} \log P(Z_2 = z_j) \quad (13)$$

In the above equation, we eliminate terms that are independent of ψ_i , thus obtaining a form consistent with cross-entropy loss. Z_1 denotes the new estimation of the value distribution procured from the twin critic networks, and Z_2 is the critic network's resultant output. In this way, every critic's output is refined to align with the corrected value Z_1 , reducing the overestimation bias.

3.5 POLICY LEARNING

Having introduced how the critic network learns based on the corrected value distributions, this chapter focuses on the training mechanism of the Actor, which is responsible for generating the actions that the critic evaluates. To train the actor robustly, the actor is trained with a loss function similar for training the critic networks as introduced in Section "Critic Learning". The core is to guide policy optimization through value distribution, enabling the Actor to maximize the selection probability of high-value actions while ensuring training stability, enable agents to learn more extensively and make richer and bolder decisions when facing complex HRHR scenarios

Like other RL models with actor-critic architecture, the actor is updated to maximize the Q-value predicted by a critic network. Differently, in our model, the output of the critic networks is probabilistic, so the cumulative distribution can be used as an objective. More specifically, for the k^{th} value atom,

$$\begin{aligned} P(Z(\mathbf{x}, \pi_{\phi}(\mathbf{x})|\Theta_{\psi_1}) \in \{z_1, z_2, \dots, z_k\}) &\rightarrow 0, \\ P(Z(\mathbf{x}, \pi_{\phi}(\mathbf{x})|\Theta_{\psi_1}) \in \{z_{k+1}, z_{k+2}, \dots, z_N\}) &\rightarrow 1. \end{aligned} \quad (14)$$

The notation " \rightarrow " here denotes a trend or movement toward a value. The goal is for the policy to minimize the probability of Z occurring at lower-value atoms while maximizing it at higher-value atoms. With the binary cross-entropy loss applied, the Policy Learning rules are established thus:

$$\phi \leftarrow \phi + \frac{\alpha}{B} \sum_{t \sim \mathcal{D}} \sum_{j=1}^N \nabla_{\phi} [0 \log \rho_j + 1 \log(1 - \rho_j)] = \phi + \frac{\alpha}{B} \sum_{t \sim \mathcal{D}} \sum_{j=1}^N \nabla_{\phi} \log(1 - \rho_j) \quad (15)$$

where

$$\rho_j \stackrel{D}{=} P(Z(\mathbf{x}, \pi_{\phi}(\mathbf{x})|\Theta_{\psi_1}) \in \{z_1, z_2, \dots, z_j\}) \quad (16)$$

324 3.6 EXPLORATION
325

326 Effective exploration is critical in HRHR tasks, as high-reward opportunities may be sparse and
327 require precise maneuvers to discover. A naive or overly broad exploration strategy may never find
328 these solutions. Therefore, we design a heuristic, entropy-based exploration strategy that explicitly
329 links the agent’s exploratory behavior to its confidence, as measured by the value distribution, to
330 encourage deeper exploration of promising high-risk regions.

331 **Definition 3.** Given an action distribution $\hat{A} = \pi(\mathbf{x})$, the action entropy is defined as:
332

$$333 \quad \mathcal{H}(\hat{A}) \stackrel{D}{=} - \sum_{i=1}^n \sum_{j=1}^m p_{ij}(\mathbf{x}) \log p_{ij}(\mathbf{x}) \quad (17)$$

336 Additionally, $\mathcal{H}(\hat{A})$ has a calculable upper bound:
337

$$338 \quad \overline{\mathcal{H}} \stackrel{D}{=} n \log m \geq \mathcal{H}(\hat{A}) \quad \forall \pi : \mathcal{X} \rightarrow \mathbb{R}^{n \times m} \quad (18)$$

340 Our objective is to correlate the action entropy with confidence levels. Specifically, increase the
341 action entropy $\mathcal{H}(\hat{A})$ when there is a higher probability occurrence at lower discretization atoms
342 within the discrete value distribution. To achieve this, we introduce an entropy exploration term.
343 The proposed update rule for the actor is as follows:

$$344 \quad \phi \leftarrow \phi + \frac{\alpha\beta}{B} \sum_{t \sim \mathcal{D}} s \nabla_{\phi} \frac{\mathcal{H}(\pi_{\phi}(\mathbf{x}))}{\mathcal{H}} \quad (19)$$

$$345 \quad s = \begin{cases} 1 & \text{if } \max_{1 \leq j \leq N} \frac{N-j}{N-1} h \rho_j \geq \frac{\mathcal{H}(\pi_{\phi}(\mathbf{x}))}{\mathcal{H}} \\ 0 & \text{otherwise} \end{cases}$$

350 where ρ_j is same to in Equ equation 16 , $\beta > 0$ is the coefficient for the entropy term, $0 < h \leq 1$
351 regulates the scale of action entropy. An action entropy threshold, $\frac{N-j}{N-1} h \rho_j$, is assigned to each
352 discrete atom of the value distribution such that the entropy exploration term will only activate when
353 the action entropy $\mathcal{H}(\pi_{\phi}(\mathbf{x}))$ falls below this threshold. This threshold decreases as j increases,
354 which means that atoms of higher values have lower thresholds.

355 We also use the cumulative distribution ρ_j to represent the confidence level of the agent with respect
356 to the current state \mathbf{x} . It should be noted that for the j^{th} value atom of a high-confidence agent,
357 ρ_j should be a small scalar since it represents the probability between the 1^{th} atom and the j^{th}
358 atom, which is the lower value range. We use ρ_j to correct the action entropy $\mathcal{H}(\pi_{\phi}(\mathbf{x}))$, so the
359 low-confidence agent will increase it to seek various solutions with respect to state \mathbf{x} , however, the
360 high-confidence one will not. Integrating this with the prior section’s material, the comprehensive
361 update rule for the actor is:

$$362 \quad \phi \leftarrow \phi + \frac{\alpha}{B} \sum_{t \sim \mathcal{D}} \sum_{j=1}^N \nabla_{\phi} \log(1 - \rho_j) + \frac{\alpha\beta}{B} \sum_{t \sim \mathcal{D}} s \nabla_{\phi} \frac{\mathcal{H}(\pi_{\phi}(\mathbf{x}))}{\mathcal{H}} \quad (20)$$

366 4 EXPERIMENTS
367

368 We trained our model on continuous control across multiple tasks using multiple random seeds,
369 including BipedalWalkerHardcore-v3 , FetchPush-v4 and MuJoCo tasks, and evaluated the performance.
370 We also used C51, SAC, SAC-Discrete, TD3, and TQC as baselines. For further implementation
371 details of the experiments, such as, ablation experiment, and detailed description of the
372 environments, please refer to Section 6.4 and 6.5 of the Appendix.

373
374 4.1 BIPEDALWALKERHARDCORE-V3
375

376 The BipedalWalkerHardcore-v (Towers et al., 2023) task is to control the joints of a planar bipedal
377 robot to walk through complex terrains involving randomly generated obstacles like staircase, obstacles,
378 and traps. An agent must attempt to overcome various barriers to achieve the highest possible

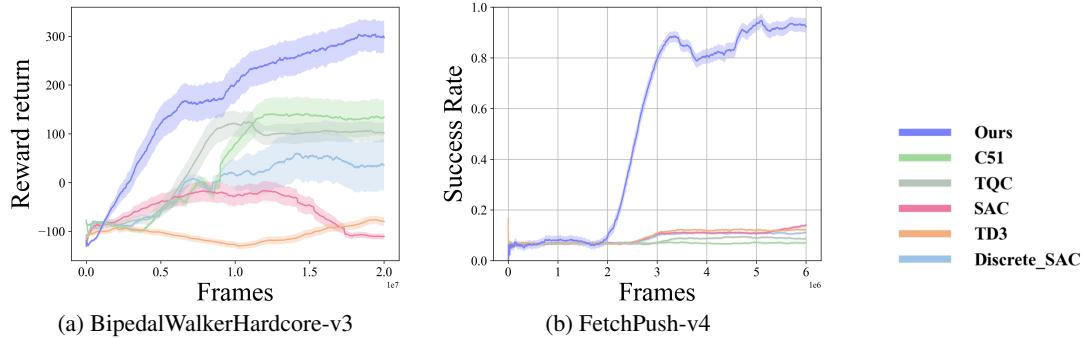


Figure 3: Training Curves for BipedalWalkerHardcore-v3 Experiments and FetchPush-v4

Table 1: Algorithm Performance Comparison Across Environments. (The metric for BipedalWalker is Average Score, while the metric for FetchPush is Success Rate)

Environment	Ours	C51	TQC	SAC	TD3	Discrete-SAC
BipedalWalkerHardcore-v3	327.1 ± 16.1	187.5 ± 32.4	150.2 ± 10.8	5.1 ± 0.7	-20.1 ± 2.2	82.8 ± 10.1
FetchPush-v4	0.97 ± 0.09	0.03 ± 0.0	0.11 ± 0.01	0.18 ± 0.04	0.16 ± 0.04	0.15 ± 0.05

score. The challenge lies in its high risk, characterized by randomly varying terrain, partial observability, and high penalties for falling. (Wei & Ying, 2021; Fujimoto et al., 2018)

We trained D2C-HRHR and baselines on the BipedalWalkerHardcore-v3 task for 20 million time steps. Figure 3 shows the reward returns during training. In tests with 10 different random seeds, our model achieved a mean score of 327.1 in 10,000 trials, as shown in Table 1. The experimental results show that TQC, C51 perform better than TD3 and SAC, while our algorithm is the best.

In specific scenarios of the BipedalWalker task, successful decisions yield high rewards, while failed actions result in high penalties, i.e., HRHR scenarios. In a fully observable and deterministic task, TD3 and SAC could distinguish differences in actions and states to fit them well with a scalar expectation. However, in this task, the scalar expectation can be misleading and captures neither the high return nor high risk, but the average. We have verified this in the Appendix 6.3.1. TQC algorithm also have its drawbacks. Although his critic network can output vectors of Q-value distribution, it still uses Gaussian distribution process, which still limits its performance in action exploration.

While C51 utilizes discrete exploration and can capture bimodal distributions (performing stably on stairs), it fails in high-risk scenarios involving stumps or traps. As shown in Fig 4, only our algorithm maintains a bimodal distribution across all obstacle types.

The process of going up and down stairs involves low risk; Even if the agent loses balance, it will only incur a small score deduction. In such cases, C51 which models the reward distribution using a single distribution critic, is less affected by overestimation bias. It can capture the bimodal distribution and achieve good performance. However, in HRHR scenarios such as traps and obstacles, the single critic of the C51 algorithm lacks cross-validation from another critic, making it overestimating the Q-value of certain erroneous actions. As shown **6.3.2** in Appendix, we will demonstrate the key differences between C51 and ours in predicting Q values.

Meanwhile, the Actor in the C51 algorithm only outputs the action atom with the highest probability in the discrete space, rather than sampling outputs based on probability distributions like we do. Our model will enable agents to use more diverse strategies, enabling them to perform better in extreme HRHR environments.

To understand the necessity of each module, we conducted an ablation study on our model for the BipedalWalkerHardcore-v3 task, as shown in Appendix 6.4.1. It was conducted on the Dual Critic Network, Actor, and exploration mechanism to validate the necessity of each module and its impact on performance.

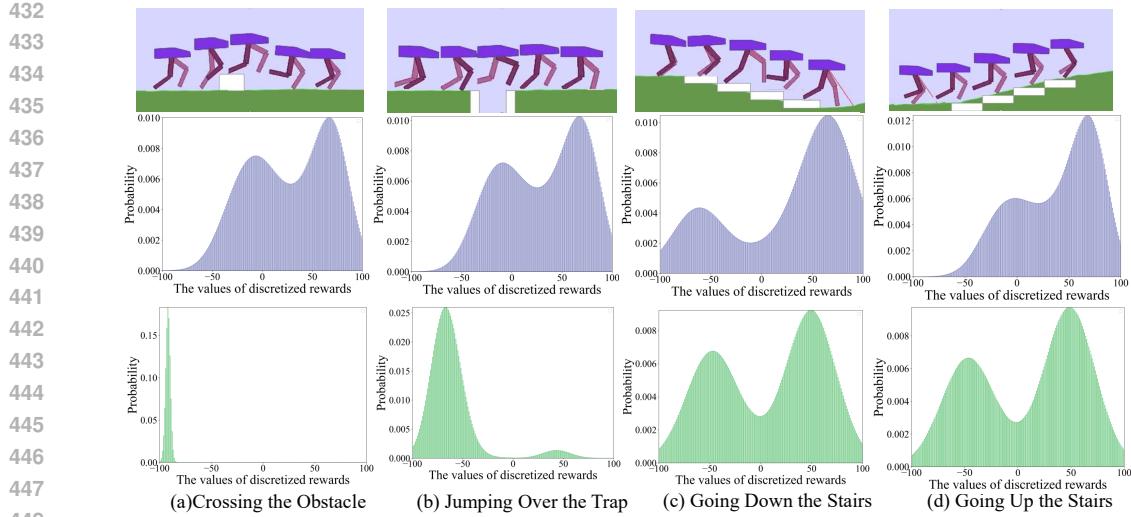


Figure 4: The Distribution Plots of Reward Returns in BipedalWalkerHardcore-v3. (Blue representing our algorithm and green representing the C51 algorithm.)

4.2 FETCHPUSH-V3

To further validate the robustness of the D2C-HRHR model, we conducted tests on the FetchPush-v3 task (Plappert et al., 2018). This task are based on a Fetch robotic arm with 7 degrees of freedom and two parallel grippers, The robotic arm needs to learn to move a block to the target position on the desktop. The difficulty of this task lies in its complex action space.

We conduct 100 tests on each model for each training step to check its success rate and obtain the training curve, as shown in Figure 3(b). Finally, after 5 million steps of training, our algorithm was able to adapt to the contact-rich operating environment and achieved a success rate of 0.97, as shown in the table 1. This demonstrates that our task can adapt to complex action spaces.

4.3 MUJOCO ENVIRONMENT

Although the model is intended for tasks with HRHR actions, we also evaluated it in typical continuous control tasks. Experiments were conducted within Mujoco Environment (Towers et al., 2023) on a series of tasks, Ant-v5, HalfCheetah-v5, Hopper-v5, Humanoid-v5, and Walker2D-v5 (Tassa et al., 2012). These tasks involve controlling different types of robots to move forward. Our model and baselines were applied to these tasks and trained over 20 million time steps for each task. Our algorithm ranks second in the total score, as shown in Figure 11, Table 4 and Table 5 in Appendix.

It is worth noting that our model demonstrates particularly outstanding performance on the Humanoid task. This task aims to enable robots to mimic human walking by moving forward as quickly as possible. We observe that robots guided by our algorithm exhibit greater joint flexibility and wider range of motion during running in this task—in other words, they move more like a human. This demonstrates that the Actor in D2C-HRHR enables agents to learn more broadly. Detailed training curves and analysis are provided in Appendix 6.4.2 and Figure12.

5 DISCUSSION AND CONCLUSION

In this paper, we propose a distributed reinforcement learning model named D2C-HRHR. It adopts a discrete action space, and employs a unique clipped double Q learning approach, policy learning based on discrete action probability distribution sampling, and a cross-entropy nested exploration mechanism. This model demonstrates outstanding performance in HRHR scenarios, achieving capabilities unmatched by other baselines. It solves BipedalWalkerHardcore-v3 with state-of-the-art performance and exhibits excellent performance in various continuous control tasks.

486 REFERENCES
487

488 Open AI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Józefowicz, Bob McGrew,
489 Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, Jonas Schneider,
490 Szymon Sidor, Josh Tobin, Peter Welinder, Lilian Weng, and Wojciech Zaremba. Learning dex-
491 terous in-hand manipulation. *International Journal of Robotics Research*, 39(1):3–20, 2020. ISSN
492 1743176. doi: 10.1177/0278364919887447.

493 Gabriel Barth-Maron, Matthew W Hoffman, David Budden, Will Dabney, Dan Horgan, Dhruva Tb,
494 Alistair Muldal, Nicolas Heess, and Timothy Lillicrap. Distributed distributional deterministic
495 policy gradients. *arXiv preprint arXiv:1804.08617*, 2018.

496 Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
497 learning. In *International conference on machine learning*, pp. 449–458. PMLR, 2017.

498 Petros Christodoulou. Soft actor-critic for discrete action settings. *arXiv preprint arXiv:1910.07207*,
499 2019.

500 Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos. Implicit quantile networks for
501 distributional reinforcement learning. In *International conference on machine learning*, pp. 1096–
502 1105. PMLR, 2018a.

503 Will Dabney, Mark Rowland, Marc Bellemare, and Rémi Munos. Distributional reinforcement
504 learning with quantile regression. In *Proceedings of the AAAI Conference on Artificial Intelli-
505 gence*, volume 32, 2018b.

506 Jesse Farnsworth, Jordi Orbay, Quan Vuong, Adrien Ali Taïga, Yevgen Chebotar, Ted Xiao, Alex
507 Irpan, Sergey Levine, Pablo Samuel Castro, Aleksandra Faust, Aviral Kumar, and Rishabh Agar-
508 wal. Stop regressing: Training value functions via classification for scalable deep rl, 2024. URL
509 <https://arxiv.org/abs/2403.03950>.

510 Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
511 critic methods. In *International conference on machine learning*, pp. 1587–1596. PMLR, 2018.

512 Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
513 maximum entropy deep reinforcement learning with a stochastic actor. In *International confer-
514 ence on machine learning*, pp. 1861–1870. PMLR, 2018.

515 Jens Kober, J. Andrew Bagnell, and Jan Peters. Reinforcement Learning in Robotics: A Sur-
516 vey. *Springer Tracts in Advanced Robotics*, 97:9–67, 2014. ISSN 1610742X. doi: 10.1007/
517 978-3-319-03194-1_2.

518 Arsenii Kuznetsov, Pavel Shvechikov, Alexander Grishin, and Dmitry Vetrov. Controlling overesti-
519 mation bias with truncated mixture of continuous distributional quantile critics. In *International
520 Conference on Machine Learning*, pp. 5556–5566. PMLR, 2020.

521 Timothy P. Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
522 David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In *4th
523 International Conference on Learning Representations, ICLR 2016 - Conference Track Proceed-
524 ings*, 2016.

525 Jianlan Luo, Perry Dong, Jeffrey Wu, Aviral Kumar, Xinyang Geng, and Sergey Levine. Action-
526 quantized offline reinforcement learning for robotic skill learning, 2023. URL <https://arxiv.org/abs/2310.11731>.

527 Luke Metz, Julian Ibarz, Navdeep Jaitly, and James Davidson. Discrete sequential prediction of
528 continuous actions for deep rl, 2019. URL <https://arxiv.org/abs/1705.05035>.

529 Michael Neunert, Abbas Abdolmaleki, Markus Wulfmeier, Thomas Lampe, Jost Tobias Sprin-
530 genberg, Roland Hafner, Francesco Romano, Jonas Buchli, Nicolas Heess, and Martin Ried-
531 miller. Continuous-discrete reinforcement learning for hybrid control in robotics, 2019. URL
532 <https://arxiv.org/abs/2001.00449>.

540 Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob McGrew, Bowen Baker, Glenn Powell,
 541 Jonas Schneider, Josh Tobin, Maciek Chociej, Peter Welinder, Vikash Kumar, and Wojciech
 542 Zaremba. Multi-goal reinforcement learning: Challenging robotics environments and request
 543 for research. *CoRR*, abs/1802.09464, 2018.

544 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 545 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

546 Tim Seyde, Igor Gilitschenski, Wilko Schwarting, Bartolomeo Stellato, Martin Riedmiller, Markus
 547 Wulfmeier, and Daniela Rus. Is Bang-Bang Control All You Need? Solving Continuous Control
 548 with Bernoulli Policies. In *Advances in Neural Information Processing Systems*, volume 32, pp.
 549 27209–27221, 2021. ISBN 9781713845393.

550 Yunhao Tang and Shipra Agrawal. Discretizing continuous action space for on-policy optimization.
 551 In *AAAI 2020 - 34th AAAI Conference on Artificial Intelligence*, pp. 5981–5988, 2020a. ISBN
 552 9781577358350. doi: 10.1609/aaai.v34i04.6059.

553 Yunhao Tang and Shipra Agrawal. Discretizing continuous action space for on-policy optimization,
 554 2020b. URL <https://arxiv.org/abs/1901.10500>.

555 Yuval Tassa, Tom Erez, and Emanuel Todorov. Synthesis and stabilization of complex behaviors
 556 through online trajectory optimization. 2012.

557 Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de Cola, Tristan Deleu,
 558 Manuel Goulão, Andreas Kallinteris, Arjun KG, Markus Krimmel, Rodrigo Perez-Vicente, An-
 559 drea Pierré, Sander Schulhoff, Jun Jet Tai, Andrew Tan Jin Shen, and Omar G. Younis. Gymna-
 560 sium, March 2023. URL <https://zenodo.org/record/8127025>.

561 Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
 562 learning. *CoRR*, abs/1509.06461, 2015.

563 Leonid Nisonovich Vaserstein. Markov processes over denumerable products of spaces, describing
 564 large systems of automata. *Problemy Peredachi Informatsii*, 5(3):64–72, 2014.

565 Honghao Wei and Lei Ying. Fork: A forward-looking actor for model-free reinforcement learning.
 566 2021.

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594
595
ETHICS STATEMENT596
597
598
599
This work focuses on methodological and theoretical advances in discrete reinforcement learning.
It does not involve human or animal subjects, nor does it rely on sensitive or proprietary data. We
do not anticipate any immediate ethical concerns. Potential applications of reinforcement learning
should always be carefully evaluated to prevent harmful or unsafe use.
600601
602
REPRODUCIBILITY STATEMENT603
604
605
We provide detailed descriptions of our algorithm, theoretical definitions and proofs, and exper-
imental setups to ensure reproducibility. All assumptions and complete proofs of theoretical results
are included in the Appendix.
606607
608
609
610
611
For experiments, we describe setup and implementation details in the Appendix and Supplementary
Material. Results and analysis of experiments are provided in the main text and appendix. Experi-
ments are conducted on a desktop workstation with the Intel® Core TMi9-12900 Processor, 64GB
RAM, and the NVIDIA® GeForce RTX TM4090. The code for the algorithm can be found in the
additional materials. Below are the hyperparameters used by our algorithm in various environments.
612613
614
615
We plan to release our source code publicly upon acceptance of the paper. We believe these resources
will help other researchers to reproduce our findings.
616617
Table 2: Training Results Comparison618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Environment	Hyperparameters				
	Learning Rate	V_{Min}	V_{Max}	γ	Batch Size
BipedalWalkerHardcore-3	2.5×10^{-4}	-100	100	0.99	512
FetchPush-v4	3×10^{-5}	-50	50	$1 - 1/50$	512
Mujoco	1×10^{-4}	-200	200	0.99	1024

648 **6 APPENDIX**
649650 **6.1 MATH SYMBOLS**
651652 Table 3: Mathematical Symbols
653

655 Symbol	656 Description	657 Typical value
γ	658 Discount factor.	659 0.98 or 0.99
V_{MAX}	660 Upper bound of the discrete value.	$\frac{1}{1-\gamma}$
V_{MIN}	661 Lower bound of discrete value.	$-\frac{1}{1-\gamma}$
Z	662 Random variable for discrete value.	
z_i	663 The i^{th} discrete value atom of Z .	
x	664 Sample of current state observation.	$[V_{MIN}, V_{MAX}]$
a	665 An action sample vector.	
\hat{a}	666 Distribution of an action vector.	
\hat{A}	667 An action distribution matrix of a multidimensional discrete action space, in which the sum of each row is 1.	
A	668 An action sample matrix. Each row in A adopts one-hot coding sampled from the corresponding row in \hat{A} .	
\hat{A}'	669 Action distribution for the next state.	
r	670 Reward from an environment.	≤ 1
x'	671 Sample of next state observation.	
\hat{x}'	672 Distribution of the next state observation.	
$\hat{\cdot}$	673 Distribution of a random variable.	
$\hat{!}$	674 A variable in the next time step.	
$\stackrel{D}{=}$	675 Denotes definition.	
\mathcal{X}	676 Space of state observations.	
\mathcal{A}	677 Space of actions.	
$\left\lceil \frac{1}{1-\gamma} \right\rceil$	678 Ceiling of $\frac{1}{1-\gamma}$.	
N	679 Number of discrete atoms for Z .	51
$\hat{T}Z$	680 Projecting $\hat{T}Z$ back to origin discrete value atoms.	
\tilde{Z}	681 The estimated Z from the twin critic networks.	
Θ	682 Discrete distribution critic network.	
$(\cdot)_i$	683 i^{th} Element of a Vector.	
π	684 Policy for action selection.	
Q	685 Expected scalar critic network.	
ψ_1, ψ_2	686 Parameters of first and second critic networks.	
ϕ	687 Parameters of actor network	
ψ'_1, ψ'_2, ϕ'	688 Parameters for delayed updated networks.	
\leftarrow	689 Denotes parameter update.	
$\nabla \omega J$	690 Gradient of J with respect to ω .	
α	691 Learning rate.	$\leq 10^{-3}$
B	692 Batch size.	256 or 512
$t \sim \mathcal{D}$	693 Sample from Replay Buffer.	
n	694 Number of dimensions in action.	≤ 20
m	695 Number of atoms per action dimension.	51
$\mathcal{H}(\hat{A})$	696 Entropy of action \hat{A} .	$\leq n \log m$
$\bar{\mathcal{H}}$	697 Maximum entropy of action.	$n \log m$
h	698 Scaling factor for action entropy.	0.5
β	699 Coefficient for exploration.	0.5
\sup	700 Represents the upper bound.	
Ω_1	701 The high-risk-high-return region.	
ΩR_2	702 The low-risk-stable-return region.	
ΩR_i	703 A generalized notation for any subregion of the action space, used for mathematical uniformity.	

702 6.2 FURTHER BACKGROUND
703704 6.2.1 FUNDAMENTALS OF DISTRIBUTED REINFORCEMENT LEARNING
705706 This chapter will introduce some basic concepts regarding the model we proposed. Reading this
707 chapter will help you gain some basic knowledge about discrete reinforcement learning. Our model
708 is extended on the basis of the content of this chapter.
709710 For a stochastic transition process $(\mathbf{x}, \mathbf{a}) \rightarrow (\hat{\mathbf{x}}', \hat{\mathbf{a}}')$ in a environment, \mathbf{x} represents the observed
711 current state of the environment, and \mathbf{a} specifies the action taken in response to \mathbf{x} . The resulting
712 state distribution is denoted $\hat{\mathbf{x}}'$. A stochastic policy output an action distribution $\hat{\mathbf{a}}'$, and the actual
713 action \mathbf{a}' taken in the task will be sampled from $\hat{\mathbf{a}}'$.714 The value Z is a discrete distribution and is associated with the process $(\mathbf{x}, \mathbf{a}) \rightarrow (\hat{\mathbf{x}}', \hat{\mathbf{a}}')$. It can be
715 formularized using a recursive equation:
716

717
$$Z(\mathbf{x}, \mathbf{a}) \stackrel{D}{=} R(\mathbf{x}, \mathbf{a}) + \gamma Z(\hat{\mathbf{x}}', \hat{\mathbf{a}}') \quad (21)$$

718

719 wherein $R(\mathbf{x}, \mathbf{a})$ represents the stochastic reward function of the environment and γ denotes the
720 discount rate.
721722 Subsequently, the value Z is conceptualized as a random variable with a discrete value distribution.
723 The number of discrete atoms $N \in \mathbb{N}$ denotes the granularity of discretization required for the
724 value domain, and the bounds $V_{MIN}, V_{MAX} \in \mathbb{R}$ specify the lower and upper limits of the values,
725 respectively. The set of discrete atoms is constructed as $\{z_i = V_{MIN} + (i - 1) \Delta z | i = 1, 2, \dots, N\}$,
726 with the interval Δz calculated by $\frac{V_{MAX} - V_{MIN}}{N-1}$. The probability of each discrete atom's occurrence
727 is determined using a neural network $\Theta : \mathcal{X} \times \mathcal{A} \rightarrow \mathbb{R}^N$.
728

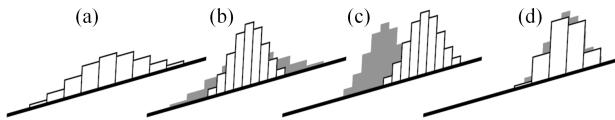
729
$$Z(\mathbf{x}, \mathbf{a} | \Theta) = z_i \quad w.p. \quad p_i(\mathbf{x}, \mathbf{a}) = \frac{e^{(\Theta(\mathbf{x}, \mathbf{a}))_i}}{\sum_j^N e^{(\Theta(\mathbf{x}, \mathbf{a}))_j}} \quad (22)$$

730

731 For a tuple of a stochastic transition $t = (\mathbf{x}, \mathbf{a}, r, \mathbf{x}')$, a Bellman update for a discrete distribution
732 is applied to each discrete atom z_j , designated as $\hat{T}z_j := r + \gamma z_j$. The probability associated with
733 $\hat{T}z_j$, denoted $p_j(\mathbf{x}', \pi(\mathbf{x}'))$, is then redistributed amongst adjacent discrete atoms. The i^{th} element
734 of the resultant projected discrete probability distribution $\Phi \hat{T}Z(\mathbf{x}, \mathbf{a} | \Theta)$ is:
735

736
$$P(\Phi \hat{T}Z(\mathbf{x}, \mathbf{a} | \Theta) = z_i) = \sum_{j=1}^N \left[1 - \frac{|\hat{T}z_j|_{V_{MIN}}^{V_{MAX}} - z_i|}{\Delta z} \right]_0^1 p_j(\mathbf{x}', \pi(\mathbf{x}'))$$

737

738 The notation $[\cdot]_a^b$ signifies that the value is constrained within the interval $[a, b]$.
739751 Figure 5: Operations to update Z . (a) The current value distribution of Z . (b) Discount factor γ
752 changes the shape in the dimension of atoms. (c) The current reward R shifts the distribution in the
753 dimension of atoms. (d) The resulting distribution $R + \gamma Z$ is mapped back to the original atoms by
754 Φ .
755

6.2.2 ALGORITHM OF DOUBLE CRITIC NETWORK

Algorithm 1 Dual-Critic Network Based on Discrete Value Distribution

```

1: Input: Twin critic networks  $\Theta_{\psi'_1}, \Theta_{\psi'_2}$ , next state  $\mathbf{x}'$ 
2: Output: Refined value distribution  $\tilde{Z}(\mathbf{x}', \hat{A}')$ 

3: procedure DUALCRITICEVALUATION
4:    $\Phi_1, \Phi_2 \leftarrow$  Estimate discrete value distributions for  $\mathbf{x}'$  using both critics
5:    $C_1, C_2 \leftarrow$  Compute cumulative distributions from  $\Phi_1$  and  $\Phi_2$ 
6:   for each value category  $k = 1$  to  $N$  do
7:      $c_k \leftarrow \max(C_1[k], C_2[k])$                                  $\triangleright$  Select conservative cumulative probability
8:   end for
9:   for each value category  $k = 1$  to  $N$  do
10:    if  $k = 1$  then
11:       $\tilde{P}_k \leftarrow c_1$ 
12:    else
13:       $\tilde{P}_k \leftarrow c_k - c_{k-1}$                                  $\triangleright$  Convert back to probability distribution
14:    end if
15:  end for
16:  return  $\tilde{Z}$  with probabilities  $\tilde{P}_1, \tilde{P}_2, \dots, \tilde{P}_N$ 
17: end procedure

```

6.3 A DEEPER ANALYSIS AND ILLUSTRATION OF MECHANISMS

6.3.1 THE REASON WHY A POLICY WITH GAUSSIAN ACTIONS PERFORMS WORSE IN HRHR SCENARIOS

Section 3.1 introduces Theorem 1. Here we recall to it again and prove it:

$$\langle \nabla_{\theta} J(\theta), \Delta\theta_{R_1} \rangle < \langle \nabla_{\theta} J(\theta), \Delta\theta_{R_2} \rangle \quad (23)$$

where $\Delta\theta_{R_i}$ is the update direction toward region R_i , and $J(\theta)$ is the expected return. This implies gradient updates prefer R_2 over R_1 .

Proof. The policy gradient is:

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{a \sim \pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(a|s) Q(s, a)] \quad (24)$$

For Gaussian policies, the score function is:

$$\nabla_{\mu_\theta} \log \pi_\theta(a|s) = \sigma_\theta^{-2}(s)(a - \mu_\theta(s)) \quad (25)$$

The key inner product is:

$$\langle \nabla_{\theta} J(\theta), \Delta \theta_P \rangle \equiv \mathbb{E}_{\pi_{\theta}} \left[\langle \Delta \theta_P, \nabla_{\theta} \log \pi_{\theta}(a|s) Q(s, a) \rangle \right] \quad (26)$$

$$\equiv \sigma_{\perp}^{-2}(s) \mathbb{E}_{\perp} - [\langle \Delta \theta_B \rangle (a = \mu_B(s)) \rangle O(s, a)] \quad (27)$$

Define the advantage relative to B_0 :

$$A_{\mu}(s, s) = Q(s, s) - \mathbb{E}[Q(s, s')]. \quad (28)$$

The difference in update directions is:

$$\langle \nabla_{\theta} I(\theta) \Delta \theta \rangle = \Delta \theta \quad \text{(29)}$$

$$-2(\Delta \mathbf{B} - \Delta \mathbf{B}^* - (\mathbf{B} - \mathbf{B}^*)) \mathbf{A} - (\mathbf{B} - \mathbf{B}^*) \quad (20)$$

Under $\pi_\theta(s) > \delta$, the covariance between action displacement and advantage is:

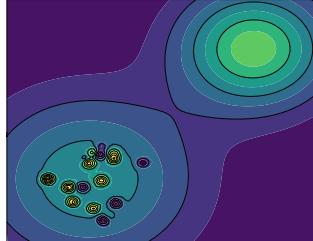
$$C = \langle \dots \langle \dots \langle \dots \rangle \dots \rangle \dots \rangle \leq 0 \quad (31)$$

because high-reward grains contribute negligibly due to their small size (δ) relative to policy variance ($\sigma_\pi(s)$). Thus:

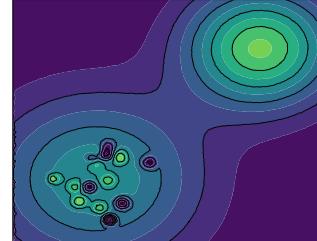
$$\langle \nabla_{\theta} I(\theta) | \Delta \theta_E \rangle \leq \langle \nabla_{\theta} I(\theta) | \Delta \theta_E \rangle \quad (32)$$

□

810 When $\sigma_\theta(s) > \delta$, the policy's exploration radius exceeds high-reward grain sizes. This makes R_1 's
 811 low average return dominate over its high maximum return, causing gradient updates to prefer R_2 .
 812
 813 This explains why Gaussian policies with fixed large variance struggle in HRHR scenarios. Adaptive
 814 variance schedules or heavy-tailed distributions are often necessary to capture high-reward regions.
 815

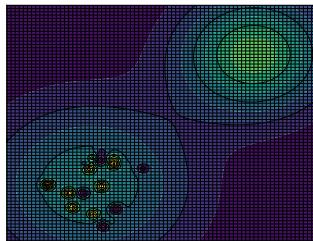


(a) HRHR Scenarios



(b) Output Scalar Q-value Expectation

825 Figure 6: Illustration of returns sampled by Gaussian distribution actions. After sampling, the posi-
 826 tions where highest true returns locate no longer keep the highest, but the position with the subopti-
 827 mal true return is highest.
 828



(a) HRHR Scenarios with Discrete Space

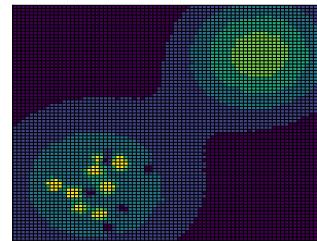
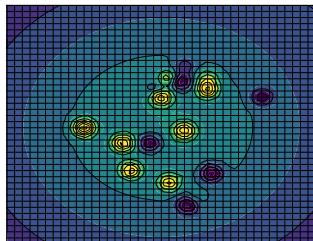
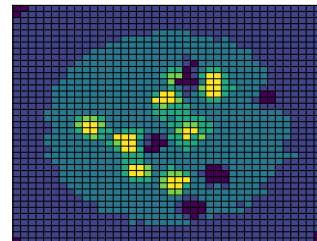
(b) Select the Cell with the Highest
Expected Q-value for Output

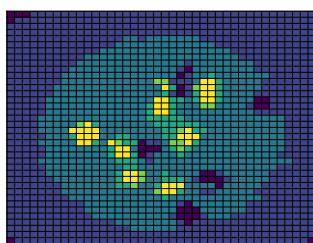
Figure 7: Illustration of returns sampled by discrete actions.



(a) HRHR Scenarios with Discrete Space



(b) Critic 1 Output Q-Value Prediction



(c) Critic 2 Output Q-Value Prediction

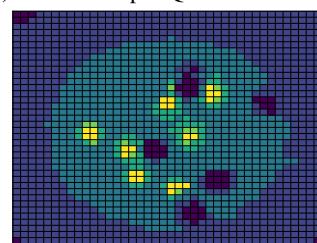
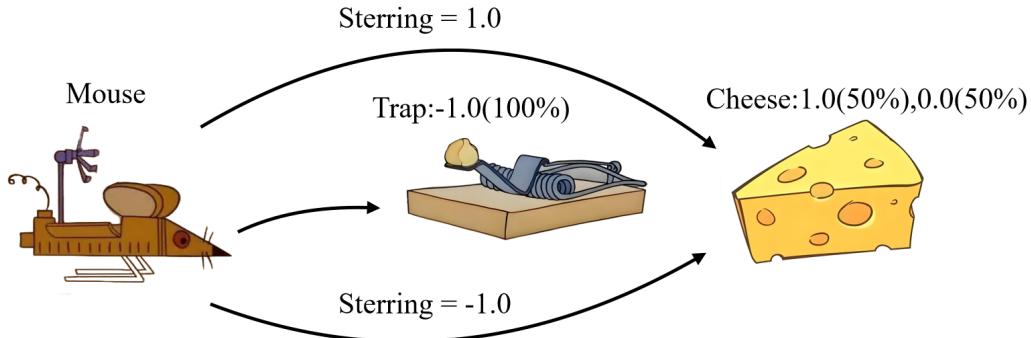
(d) Select Lower Q Value and Output the
Probability Distribution of Action Atoms

Figure 8: Illustration of double discrete critics

864 6.3.2 ILLUSTRATIONS OF Q-VALUE ESTIMATION WITH DIFFERENT ALGORITHMS
865866 For a more intuitive illustration of why a Gaussian policy is hard to find the optimal actions in HRHR
867 scenarios, we plot contour maps to illustrate landscapes of true returns and possible estimated returns
868 after sampling the true returns on Gaussian distribution actions.869 As shown in Figure 6, (a) is the true landscape and (b) is the landscape after a Gaussian blur to
870 approximate the sampling of the returns by actions with a Gaussian distribution. Although the best
871 return in (a) is in the bottom left, the best return in (b) is in the top right, which is not optimal. It is
872 the case for algorithms with a policy with Gaussian action, such as SAC and TD3.
873874 Differently, if the action dimensions are discretised (Figure 7 (a)) and the returns are sampled by
875 discrete actions (Figure 7 (b)), although the resolution is much lower, the high return regions in the
876 HRHR scenario are more likely to be captured. It is the case for algorithms with discrete actions.
877878 However, because of the sharp gradient in a box after the discretization, the sampled return is a
879 distribution; hence, adopting a critic with distributional output is beneficial. Like critics with scalar
880 output, we notice critics with distributional outputs also suffer from overestimation; hence, in our
881 model, we mitigate it by using double critics. Figure 8 shows an example of discrete double critics
882 by a zoom-in of the return landscape. (b) and (c) show two samples by discrete actions which
883 illustrate the estimation of two critics, (d) shows choosing the lower returns from (b) and (c) and
884 combining them for less overestimated returns.
885886 6.3.3 TRAP CHEESE PROBLEM AND MATHEMATICAL ANALYSIS
887888 Figure 9: Trap Cheese Problem
889
900901 We designed a toy task called "Trap or Cheese" to illustrate that continuous models averaging good
902 actions can result in a bad action, but our model does not have this problem. As shown in Figure 9,
903 there is a trap in front of the mouse, behind which lies a piece of cheese. When the mouse chooses
904 to move straight ahead, it falls into the trap and dies, resulting in a reward of -1.0. When the mouse
905 chooses to turn left or right, it can bypass the trap and reach the cheese. However, there is a 50%
906 chance that the cheese has expired and cannot be eaten, resulting in a reward of 0.0. If the cheese is
907 not expired, the reward is 1.0. Obviously, a normal mouse would not choose to walk into the trap.
908909 Both SAC and our model are tested in this task. The results show that SAC tends to unhesitatingly
910 choose the middle route and walk into the trap, with an average score staying at -1.0. In contrast, our
911 discrete model can learn the correct strategy, with an average score staying at 0.5. This simple task
912 is difficult for SAC because, although its critic network can learn that moving forward is a very bad
913 choice, since moving forward can be considered as an average of moving left and right, SAC still
914 chooses to move forward. This problem could widely exist in continuous RL models which tend to
915 average best actions. The BipedalWalkerHardcore task shares a similar property when stepping over
916 obstacles. Hence, we suspect it is the reason why continuous models cannot solve this task as well
917 as our model. For further discussion and mathematical analysis, please refer to the following proof.918 We describe the Q function of the Trap Cheese problem as:

918
919
920
921

$$Q(x_0, a) = \begin{cases} 0.5 & \text{if } a \in [-1 - \delta, -1 + \delta] \cup [1 - \delta, 1 + \delta] \\ -1 & \text{otherwise} \end{cases} \quad (33)$$

922 Where δ is used to denote the width of the range where high rewards can be obtained, $0 < \delta < 1$.
 923 For convenience, we represent this region with the symbol $\mathcal{C}(\delta)$. We are interested in the maximum
 924 likelihood estimation of the normal distribution $a \sim N(\mu, \sigma^2)$ on $\mathcal{C}(\delta)$.
 925

926

$$\begin{aligned} 927 \log L &= \int_{\mathcal{C}(\delta)} \log\left(\frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(a-\mu)^2}{2\sigma^2}}\right) da \\ 928 &= -4\delta \log(\sqrt{2\pi}\sigma) - \frac{1}{2\sigma^2} \int_{\mathcal{C}(\delta)} (a - \mu)^2 da \\ 929 &= -4\delta \log(\sqrt{2\pi}\sigma) - \frac{1}{6\sigma^2} [(1 + \delta - \mu)^3 - (1 - \delta - \mu)^3 + (-1 + \delta - \mu)^3 - (-1 - \delta - \mu)^3] \\ 930 &= -4\delta \log(\sqrt{2\pi}\sigma) - \frac{1}{6\sigma^2} [6(1 - \mu)^2\delta + 2\delta^3 + 6(1 + \mu)^2\delta + 2\delta^3] \\ 931 &= -4\delta \log(\sqrt{2\pi}\sigma) - \frac{2\delta}{3\sigma^2} [3(1 + \mu^2) + \delta^2] \end{aligned} \quad (34)$$

935

Letting $\frac{\partial \log L}{\partial \mu} = 0$ and $\frac{\partial \log L}{\partial \sigma} = 0$, we can obtain the maximum likelihood estimates for μ and σ .
 936

937

$$\begin{aligned} 940 \frac{\partial \log L}{\partial \mu} &= -\frac{4\delta\mu}{\sigma^2}, \quad \tilde{\mu} = 0 \\ 941 \frac{\partial \log L}{\partial \sigma} &= -\frac{4\delta}{\sigma} + \frac{4\delta}{3\sigma^3} [3(1 + \mu^2) + \delta^2], \quad \tilde{\sigma}^2 = 1 + \frac{\delta^2}{3} \end{aligned} \quad (35)$$

944

Hessian matrix helps to verify whether $\tilde{\mu} = 0$ and $\tilde{\sigma}^2 = 1 + \frac{\delta^2}{3}$ is the unique critical point.
 945

946

$$\begin{bmatrix} \frac{\partial^2 \log L}{\partial \mu^2} & \frac{\partial^2 \log L}{\partial \mu \partial \sigma} \\ \frac{\partial^2 \log L}{\partial \mu \partial \sigma} & \frac{\partial^2 \log L}{\partial \sigma^2} \end{bmatrix} = \begin{bmatrix} -\frac{4\delta}{\sigma^2} & \frac{8\delta\mu}{\sigma^3} \\ \frac{8\delta\mu}{\sigma^3} & \frac{4\delta}{\sigma^4} (\sigma^2 - \delta^2 - 3) \end{bmatrix} \quad (36)$$

950

Substituting $\tilde{\mu} = 0$ and $\tilde{\sigma}^2 = 1 + \frac{\delta^2}{3}$, we obtain:
 951

952

$$\begin{bmatrix} \frac{\partial^2 \log L}{\partial \mu^2} & \frac{\partial^2 \log L}{\partial \mu \partial \sigma} \\ \frac{\partial^2 \log L}{\partial \mu \partial \sigma} & \frac{\partial^2 \log L}{\partial \sigma^2} \end{bmatrix}_{\tilde{\mu}, \tilde{\sigma}} = \begin{bmatrix} -\frac{4\delta}{1 + \frac{\delta^2}{3}} & 0 \\ 0 & -\frac{8\delta}{1 + \frac{\delta^2}{3}} \end{bmatrix} \preceq 0 \quad (37)$$

956

Therefore, $\tilde{\mu} = 0$ and $\tilde{\sigma}^2 = 1 + \frac{\delta^2}{3}$ is the unique maximum point on the domain. Although $N(\tilde{\mu}, \tilde{\sigma}^2)$ is the maximum likelihood estimate for the set $\mathcal{C}(\delta)$ under the assumption of a normal distribution, its maximum probability density point $\tilde{\mu}$ does not yield satisfactory values on the Q function; Obviously, $Q(x_0, \tilde{\mu}) = -1$. Now we will compute the maximum likelihood estimate again, this time on a discrete distribution.
 961

962

$$P(a = a_i) = p_i, \quad i = 1, 2, \dots, m, \quad \sum_i p_i = 1.0, \quad p_i \geq 0 \quad (38)$$

965

In the case of a discrete distribution, the range of action a is given by $\mathcal{A} = \{a_1, a_2, \dots, a_m\}$, and $\mathcal{A} \cap \mathcal{C}(\delta) \neq \emptyset$.
 966

968

969

970

971

According to AM-GM inequality, we have:

972
973
974
975

$$\|\mathcal{A} \cap \mathcal{C}(\delta)\| \sqrt{\prod_{\mathcal{A} \cap \mathcal{C}(\delta)} p_i} \leq \frac{\sum_{\mathcal{A} \cap \mathcal{C}} p_i}{\|\mathcal{A} \cap \mathcal{C}(\delta)\|} \leq \frac{1}{\|\mathcal{A} \cap \mathcal{C}(\delta)\|} \quad (40)$$

976
977
978
979
980
981

The two equalities in the above inequality can be attained; therefore, the maximum likelihood estimate in the case of a discrete distribution is:

982
983
984
985

$$\tilde{p}_i = \begin{cases} \frac{1}{\|\mathcal{A} \cap \mathcal{C}(\delta)\|} & \text{if } a_i \in \mathcal{C}(\delta) \\ 0 & \text{otherwise} \end{cases} \quad (41)$$

986
987
988
989
990
991
992
993
994
995
996
997
998
999

In the maximum likelihood estimate of a discrete distribution, we take the point a_k with the highest probability, and obviously it satisfies $Q(x_0, a_k) = 0.5$. The above result suggests that when dealing with complex obstacles, discrete distributions might have an advantage over normal distributions, at least in the context of maximum likelihood estimation.

6.4 FURTHER EXPERIMENT RESULTS

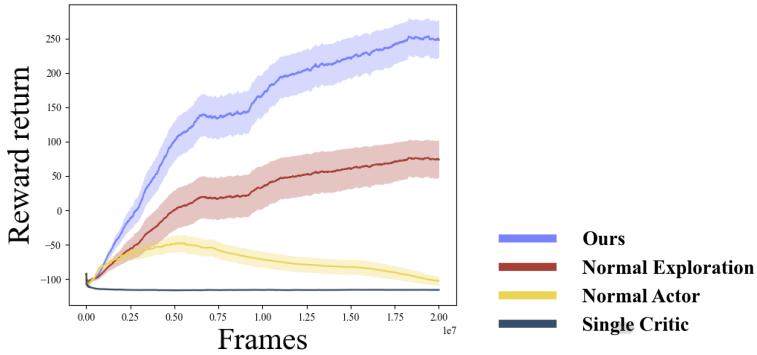
1000
1001
1002

Figure 10: Ablation Experiments of over 10,000 Trials for BipedalWalkerHardcore-v3

1003
1004
1005
1006
1007
1008
1009
1010
1011
1012

6.4.1 ABLATION EXPERIMENTS OF D2C-HRHR ON BIPEDALWALKERHARDCORE-V3

As shown in the Figure 10, we conducted ablation experiments on each module of the algorithm in different random seeds. Following D3PG (Barth-Maron et al., 2018), we substituted our discrete actor with a conventional continuous action actor based on our twin critic network. The results are depicted by the curve labeled ‘‘Normal Actor’’. Additionally, we also attempted to replace our exploration mechanism based on action entropy with the exploration mechanism relying on fixed noise from the C51 algorithm, and the results are represented by the curve labeled ‘‘Normal Exploration’’. The results suggest that the different modules proposed in our model are necessary for the model’s performance.

1013
1014

6.4.2 RESULTS AND ANALYSIS OF THE MUJOCO MISSION

1015
1016
1017
1018
1019
1020
1021

Calculate the test scores of our algorithm and baseline on the training curves of five tasks (Ant-v5, HalfSheetah-v5, Hopper-v5, Humanoid-v5, and Walker2D-v5). The training curves of various algorithms on MuJoCo tasks, as well as the specific scores and standard deviations after 10,000 evaluations, can be found in Figure 11 and Table 4. Assuming that the weights of the five tasks are the same, by taking a weighted average of the scores of each algorithm on different tasks, we find that D2C-HRHR ranks second in the total score, second only to the SAC algorithm, as shown in Table 5.

1022
1023
1024
1025

Our algorithm performs exceptionally well on Humanoid-v5. D2C-HRHR enables humanoid robots to walk with greater amplitude and more adventurous movements. This not only makes the robot walk faster but also more like a real human. As evidence, in Figure 12, we selected three algorithms that performed best in this task for testing, obtaining the joint position distribution maps of the humanoid robot’s lower limbs, including the knee and hip joints.

1026 As shown, the robot guided by our algorithm exhibits highly flexible joints during testing, moving in
1027 a remarkably fluid manner. In contrast, the SAC and TD3 algorithms produce relatively fixed joint
1028 positions, causing the robot to advance in a crawling fashion. Despite this movement style, they still
1029 achieve relatively high rewards. As mentioned earlier, the characteristics of D2C-HRHR stem from
1030 its unique architecture.

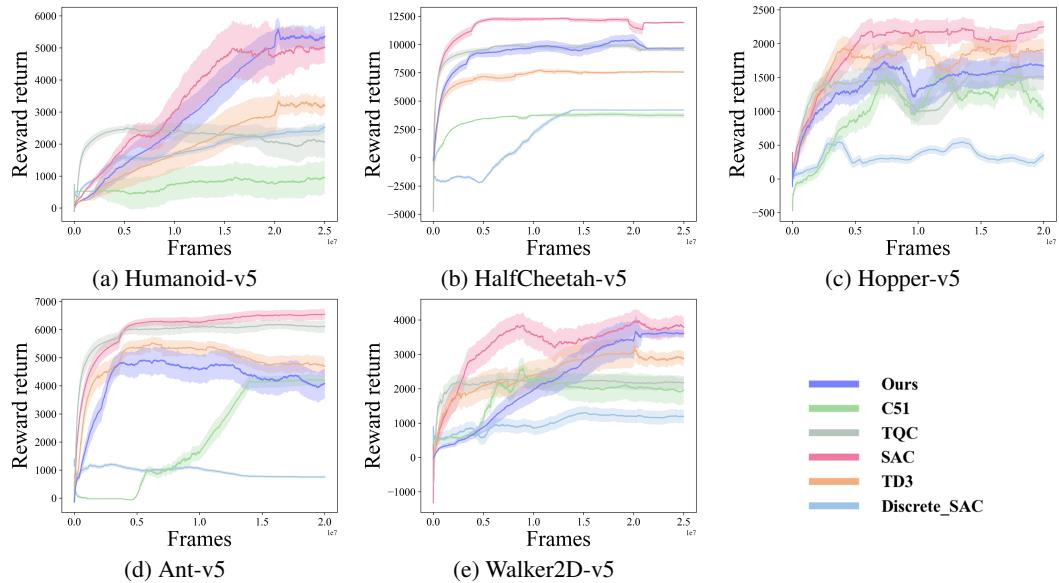


Figure 11: Training Curves for the MuJoCo Environments

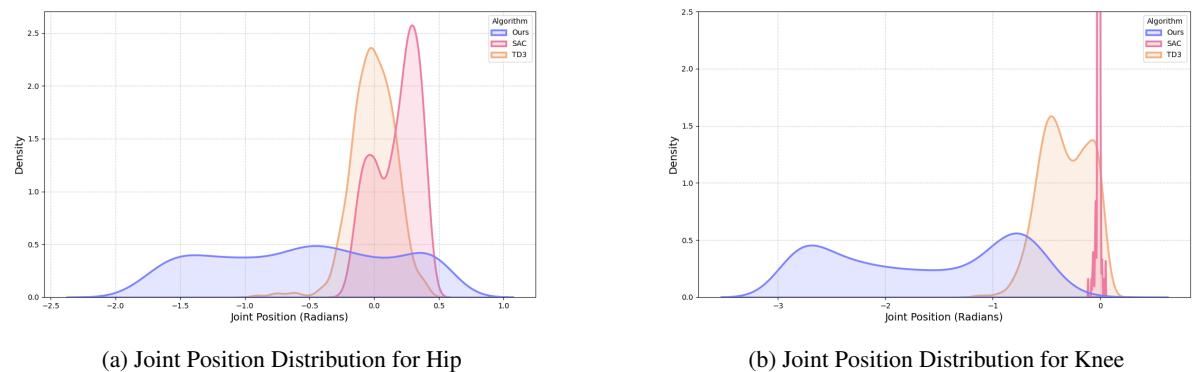


Figure 12: Joint Position Distributions for the Robot of Task Humanoid-v5 (Blue is Ours, red is SAC, orange is TD3)

Table 4: Algorithm Final Evaluation over 10,000 Trials for MuJoCo

Environment	Average Score (\pm Standard Deviation)					
	Ours	C51	TQC	SAC	TD3	Discrete-SAC
Humanoid-v5	5426.2 \pm 75.3	1042.2 \pm 80.1	1821.0 \pm 46.4	5050.4 \pm 91.0	3241.1 \pm 74.6	2241.8 \pm 30.7
Ant-v5	4468.7 \pm 96.1	4471.0 \pm 50.3	5821.2 \pm 21.7	6001.0 \pm 14.2	4521.3 \pm 91.2	930.0 \pm 9.4
HalfCheetah-v5	10000.8 \pm 37.4	2347.2 \pm 17.6	9942.6 \pm 32.3	11472.6 \pm 28.5	3986.0 \pm 22.2	2802.3 \pm 10.1
Hopper-v5	1745.2 \pm 67.1	985.5 \pm 45.2	1453.0 \pm 78.8	2420.8 \pm 60.6	1977.1 \pm 52.2	422.8 \pm 18.7
Walker2D-v5	3663.6 \pm 78.6	2021.8 \pm 62.6	2110.0 \pm 36.8	3840.5 \pm 55.7	2740.2 \pm 77.1	1025.4 \pm 37.1

Table 5: Overall Performance Comparison of Six Tasks in the Mujoco Series

Algorithm	Composite Score
Ours	4.76
SAC	5.14
TD3	3.55
TQC	3.36
C51	1.87
Discrete-SAC	1.69

6.4.3 AN DETAILED DESCRIPTION TO VARIOUS TASKS IN EXPERIMENT

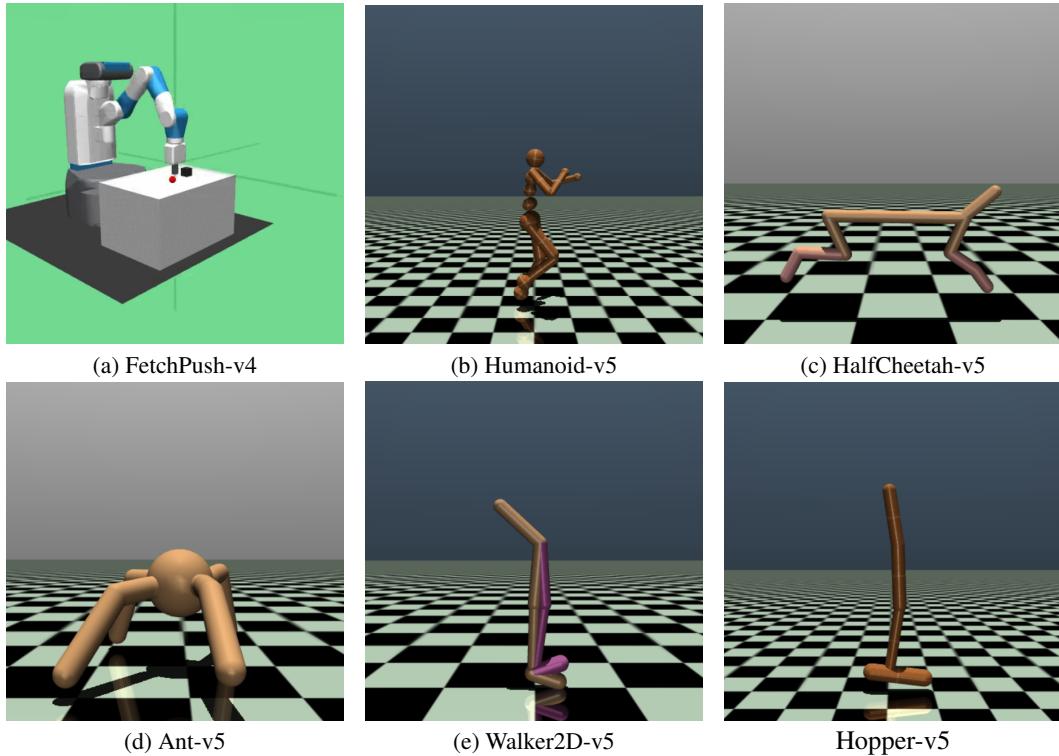


Figure 13: Presentation of Various Tasks in the Experiment

As shown in Figure 13.

FetchPush-v4 : The task in the environment is for a manipulator to move a block to a target position on top of a table by pushing with its gripper. The robot is a 7-DoF Fetch Mobile Manipulator with a two-fingered parallel gripper. The robot is controlled by small displacements of the gripper in Cartesian coordinates and the inverse kinematics are computed internally by the MuJoCo framework. The gripper is locked in a closed configuration in order to perform the push task. The task is also continuing which means that the robot has to maintain the block in the target position for an indefinite period of time.

Ant-v5: The ant is a 3D quadruped robot consisting of a torso (free rotational body) with four legs attached to it, where each leg has two body parts. The goal is to coordinate the four legs to move in the forward (right) direction by applying torque to the eight hinges connecting the two body parts of each leg and the torso (nine body parts and eight hinges).

Humanoid-v5: The 3D bipedal robot is designed to simulate a human. It has a torso (abdomen) with a pair of legs and arms, and a pair of tendons connecting the hips to the knees. The legs each consist

of three body parts (thigh, shin, foot), and the arms consist of two body parts (upper arm, forearm). The goal of the environment is to walk forward as fast as possible without falling over.

HalfCheetah-v5: The HalfCheetah is a 2-dimensional robot consisting of 9 body parts and 8 joints connecting them (including two paws). The goal is to apply torque to the joints to make the cheetah run forward (right) as fast as possible, with a positive reward based on the distance moved forward and a negative reward for moving backward. The cheetah's torso and head are fixed, and torque can only be applied to the other 6 joints over the front and back thighs (which connect to the torso), the shins (which connect to the thighs), and the feet (which connect to the shins).

Walker2D-v5: Like other MuJoCo environments, this environment aims to increase the number of independent state and control variables compared to classical control environments. The walker is a two-dimensional bipedal robot consisting of seven main body parts - a single torso at the top (with the two legs splitting after the torso), two thighs in the middle below the torso, two legs below the thighs, and two feet attached to the legs on which the entire body rests. The goal is to walk in the forward (right) direction by applying torque to the six hinges connecting the seven body parts.

Hopper-v5: The environment aims to increase the number of independent state and control variables compared to classical control environments. The hopper is a two-dimensional one-legged figure consisting of four main body parts - the torso at the top, the thigh in the middle, the leg at the bottom, and a single foot on which the entire body rests. The goal is to make hops that move in the forward (right) direction by applying torque to the three hinges that connect the four body parts.

6.5 IMPLEMENTATION DETAILS

6.5.1 REWARD NORMALIZATION

Reward Normalization is crucial in the training and convergence of models. The original reward function, denoted as $R_1(\mathbf{x}, A)$, is advised to be transformed into a normalized form $R_2(\mathbf{x}, A)$, which ideally possesses the following characteristics:

$$R_2(\mathbf{x}, A) = CR_1(\mathbf{x}, A), \quad C > 0, \quad \sup_{\mathbf{x}, A} R_2(\mathbf{x}, A) \leq 1 \quad (42)$$

If a constant C , typically represented as $\frac{1}{\sup_{\mathbf{x}, A} R_1(\mathbf{x}, A)}$, can be identified, the following equation holds:

$$\begin{aligned} Z_t &= R_2(\mathbf{x}_t, A_t) + \gamma R_2(\mathbf{x}_{t-1}, A_{t-1}) + \gamma^2 R_2(\mathbf{x}_{t-2}, A_{t-2}) + \dots \\ &\leq 1 + \gamma 1 + \gamma^2 1 + \dots \leq \frac{1}{1 - \gamma} \end{aligned} \quad (43)$$

Taking into account the upper bound mentioned above, we recommend configuring the hyperparameters $V_{MAX} = \frac{1}{1 - \gamma}$.

6.5.2 LOGARITHMIC OPERATIONS

If logarithmic operations are directly used to compute the loss function, it will result in significant precision loss, especially when dealing with very small values. Therefore, directly using the logarithm operator is unwise; we need to make some transformations on paper to avoid these precision losses. The technique demonstrated below is the 'log sum exp' trick.

$$\log\left(\sum_{1 \leq i \leq N} e^{x_i}\right) = x^* + \log\left(\sum_{1 \leq i \leq N} e^{x_i - x^*}\right), \quad x^* = \max_{1 \leq i \leq N} x_i \quad (44)$$

The above transformation ensures that the values inside the logarithmic operations are greater than 1, thereby avoiding the problem of significant precision loss when the values are very small. Based on the above discussion, 'log softmax' can be represented as:

$$\log\left(\frac{e^{x_j}}{\sum_{1 \leq i \leq N} e^{x_i}}\right) = x_j - x^* - \log\left(\sum_{1 \leq i \leq N} e^{x_i - x^*}\right), \quad x^* = \max_{1 \leq i \leq N} x_i \quad (45)$$

Furthermore, for the logarithmic operation of cumulative distribution, it can be represented as:

$$\begin{aligned}
1188 \\
1189 & \log\left(1 - \frac{\sum_{1 \leq i \leq K} e^{x_i}}{\sum_{1 \leq i \leq N} e^{x_i}}\right) = \log\left(\frac{\sum_{K < i \leq N} e^{x_i}}{\sum_{1 \leq i \leq N} e^{x_i}}\right) \\
1190 \\
1191 & = (x^{**} + \log(\sum_{K < i \leq N} e^{x_i - x^{**}})) - (x^* + \log(\sum_{1 \leq i \leq N} e^{x_i - x^*})) \quad (46) \\
1192 \\
1193 & x^* = \max_{1 \leq i \leq N} x_i, \quad x^{**} = \max_{K < i \leq N} x_i \\
1194 \\
1195
\end{aligned}$$

In practice, we found that setting a near-zero lower bound (such as $\epsilon = 0.0001$) for all cumulative probabilities when constructing the Policy Loss will be more robust. This helps prevent the actor network from making significant policy changes in pursuit of minor fluctuations in noise.

$$\begin{aligned}
1196 \\
1197 & \log\left(1 - (1 - \epsilon) \frac{\sum_{1 \leq i \leq K} e^{x_i}}{\sum_{1 \leq i \leq N} e^{x_i}}\right) \\
1198 \\
1199 & = \log\left(\frac{\epsilon \sum_{1 \leq i \leq K} e^{x_i} + \sum_{K < i \leq N} e^{x_i}}{\sum_{1 \leq i \leq N} e^{x_i}}\right) \\
1200 \\
1201 & = \log\left(\frac{\sum_{1 \leq i \leq K} e^{x_i + \log(\epsilon)} + \sum_{K < i \leq N} e^{x_i}}{\sum_{1 \leq i \leq N} e^{x_i}}\right) \quad (47) \\
1202 \\
1203 & = x^{**} + \log(\sum_{1 \leq i \leq K} e^{x_i + \log(\epsilon) - x^{**}} + \sum_{K < i \leq N} e^{x_i - x^{**}}) - (x^* + \log(\sum_{1 \leq i \leq N} e^{x_i - x^*})) \\
1204 \\
1205 & x^* = \max_{1 \leq i \leq N} x_i, \quad x^{**} = \max(\max_{1 \leq i \leq K} x_i + \log(\epsilon), \max_{K < i \leq N} x_i) \\
1206 \\
1207 \\
1208 \\
1209 \\
1210
\end{aligned}$$

1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241