Under review as a conference paper at ICLR 2026

D2C-HRHR: DISCRETE ACTIONS WITH DOUBLE
DISTRIBUTIONAL CRITICS FOR HIGH-RISK-HIGH-
RETURN TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Tasks involving high-risk—high-return (HRHR) actions, such as obstacle crossing,
often exhibit multimodal action distributions and stochastic returns. Most rein-
forcement learning (RL) methods assume unimodal Gaussian policies and rely on
scalar-valued critics, which limits their effectiveness in HRHR settings. We for-
mally define HRHR tasks and theoretically show that Gaussian policies cannot
guarantee convergence to the optimal solution. To address this, we propose a rein-
forcement learning framework that (i) discretizes continuous action spaces to ap-
proximate multimodal distributions, (ii) employs entropy-regularized exploration
to improve coverage of risky but rewarding actions, and (iii) introduces a dual-
critic architecture for more accurate discrete value distribution estimation. The
framework scales to high-dimensional action spaces, supporting complex control
domains. Experiments on locomotion and manipulation benchmarks with high
risks of failure demonstrate that our method outperforms baselines, underscoring
the importance of explicitly modeling multimodality and risk in RL.

1 INTRODUCTION

Reinforcement Learning (RL) typically uses discrete action spaces for discrete tasks and continuous
spaces for continuous tasks. For discrete tasks, such as Atari games, Q-learning evaluates only a
small number of actions. For continuous tasks, such as robotic motion control, evaluating all actions
is infeasible. Discrete-action models can suffer from the curse of dimensionality (Kober et al., 2014;
Lillicrap et al.l 2016), while continuous-action models output actions directly (Vaserstein, 2014;
Lillicrap et al., 2016; |Schulman et al.| {2017} |[Fujimoto et al.,[2018};|Haarnoja et al., [2018}; |Kuznetsov
et al.l [2020).

Many real-world RL tasks involve high-risk-high-return (HRHR) scenarios (Fig |l| (a) top right),
where the highest rewards occur only in risky regions of the action space (Fig[I](c) region ;). Ex-
amples include parkour locomotion, obstacle crossing, or contact-rich robotic manipulation. Stan-
dard RL methods often assume unimodal Gaussian policies and scalar critics, which bias learning
toward safer actions (Fig[T] (c) region €22) and fail to capture high-reward regions in HRHR tasks.
We formally define HRHR tasks and show that Gaussian policies cannot guarantee convergence to
the optimal solution.

Recent work revisits discrete actions for continuous tasks. |[Andrychowicz et al.|(2020) and Tang &
Agrawal (2020a) demonstrated improved on-policy RL via discretization, and [Seyde et al.| (2021}
achieved state-of-the-art results using extreme discretization akin to Bang-Bang control. These suc-
cesses highlight discrete action spaces’ potential for multimodal exploration and capturing high-
reward actions in HRHR scenarios.

Based on these observations, we propose a discrete-action framework (i) discretizes continuous ac-
tion spaces to approximate multimodal distributions (Fig [I] (d)), (ii) employs entropy-regularized
exploration to improve coverage of risky but rewarding actions, and (iii) introduces a dual-critic
architecture for more accurate discrete value distribution estimation a discrete actor with twin dis-
crete critics ((Fig E] (e)). With them, our model can capture actions in localized high-reward regions
surrounded by low-return or even harmful outcomes (Fig|I|(c) region €2;).

Under review as a conference paper at ICLR 2026

Empirical results on baseline benchmarks, including locomotion tasks with a high risk of falling and
manipulation tasks with a high risk of failure, suggest that that our method outperforms baselines in
HRHR scenarios.

™
=)
S
E g
E 3
o) =
& g Agent observation
. = ;
< (x, a, 1, x)
£ ——mﬂﬂﬂ il =
Action dimension 1 2 —
(a) Rgtum z_md risk (b) Return contour qf a 5 Criticl ¢—==>(Critic2
dimensions non-HRHR scenario T I
Enviornment
£)
~ « 2 teach 9 “ ‘
= = = If
g g = Actor action
= =
= =)
S S
5 5
< <
Action dimension 1 Action dimension 1 ithmi k :
. . (e) Algorithmic Framework Overview
(c) Return contour of a (d) Discrete actions can
HRHR scenario capture high return points

Figure 1: Return and risk are in two dimensions. In an ideal task, higher expected returns are
associated with lower-risk actions, as shown by the green line in (a) and panel (b). However, in tasks
where favorable outcomes are intertwined with risk, the highest returns have to be extracted among
high-risk actions, as shown by the red line in (a) and panel (c). Actions sampled from Gaussian
distribution can be hard to capture the high return points during learning as the expectation on the
distribution is low, but discrete actions can capture the actions.

2 RELATED WORK

Distributional RL models focus on modeling the distribution of cumulative rewards rather than only
an expected scalar. C51 (Bellemare et al, 2017) employs a discrete value distribution for building
its critic network. QR-DQN (Dabney et al.,[2018b) and IQN (Dabney et al.} 2018a)) utilize quantile
regression to detail the distribution of stochastic reward returns.

Some previous works resemble a few aspects of our work, but differently. D4PG
proposed a C51 with an actor module. Our work, however, diverges by investigating
discretized action spaces, moving away from the conventional assumption that action variables con-
form to a normal distribution. SAC-Discrete (Christodouloul, 2019) broadens the scope of SAC to
discrete action spaces, thus enhancing the model’s capacity to use action entropy for exploration.

There are a few more works using discrete actions for continuous tasks. Neunert et al.| (2019)
explores a feasible approach for the unified control of discrete and continuous action variables based
on the MPO algorithm. [Tang & Agrawal (2020b) advocate for the discretization of continuous
action spaces, which can enhance the performance of on-policy algorithms such as PPO.
(2023) emphasize the benefits of discretizing action spaces in offline reinforcement learning and
examine potential solutions. decompose multi-dimensional action variables into
a sequence of decision-making processes for discrete variables. |[Farebrother et al.| (2024)) argues that
the cross-entropy loss function, compared to the mean squared error loss function, is more effective
for training critic networks in reinforcement learning. None of these works use double distributional
critics. In our experiments, we used some of these algorithms for comparison.

3 MODELS & METHODS

In this section, the high-risk-high-return (HRHR) scenario in RL tasks is formally defined, and why a
Gaussian policy cannot guarantee an optimal result is proved. According to the theoretical analysis,

Under review as a conference paper at ICLR 2026

we proposed our model which (i) discretizes continuous action spaces to approximate multimodal
distributions, (ii) employs entropy-regularized exploration to improve coverage of risky but reward-
ing actions, and (iii) introduces a dual-critic architecture for more accurate discrete value distribution
estimation. For consistency, the mathematical notation in this paper can also be referenced to the
Table of Mathematical Symbols in the Appendix

3.1 HRHR SCENARIO

Here we define the HRHR scenario in RL tasks as, given a state of the environment, a region of
action space contains a set of high return actions and a set of low return actions, which results in
that, the average return of this region is lower than that of another region whose highest return is
lower than the former’s highest return. In Figure[T](b) and (c), we present the contour plots of HRHR
scenarios and non-HRHR scenarios.

Consider a reinforcement learning agent operating in an environment with state space S and action
space A. Let @ : S x A — R denote the action-value function, where (s, a) represents the
expected return when taking action « in state s.

Definition 1 (High-Risk-High-Return Scenario). For a given state s € S, we say there exists a
high-risk-high-return (HRHR) scenario if there exist measurable regions Q01 C A and Qo C A with
positive measure ((21) > 0, 1(Q2) > 0) satisfying the following conditions:

sup Q(s,a) > sup Q(S,CL) Eamab{(&h) [Q(Sva)] < EENM(Qz) [Q(s,a)] (])
a€y a€fo

where U(S);) denotes the uniform distribution over region Q;, and Qq is called the HRHR region. If
A is continuous, the expectations are computed as:

Earu(e,) [@Q(s,a)] = @A Q(s,a)da 2)

In this scenario, an RL algorithm should adjust the distribution of the action to let the expectation of
the return measured on the action distribution be higher.

However, given a policy with the Gaussian actions, if the variance of the action is larger than the
grain with the high rewards in the HRHR region, an RL algorithm could lead the policy to prefer 2o
instead of ;.

Definition 2 (High-Reward Grain). A high-reward grain G C Ry is a connected component satis-

fying:
inf Q(s,a) > sup Q(s,a) and diam(G) <o 3)
a€g a€R1\G

with & > 0 being the maximum grain diameter. The set of all high-reward grains in Ry is denoted
G;.

Theorem 1 (Policy Preference in HRHR Scenarios). For Gaussian policy my(-|s) =
N (po(s),02(s)I) in an HRHR scenario at state s with high-reward grains Gy of diameter 6, if
o9(s) > 0, then the gradient update satisfies:

<v9'](9)7 A0131> < <V9J(9)7 A9R2> “4)

where AOg, is the update direction toward region R;, and J(0) is the expected return. This implies
gradient updates prefer Rs over R;.

Thus, a policy with Gaussian actions can perform poorly in HRHR scenarios. In Section [6.3.1] of
the Appendix, we provide a detailed mathematical derivation to prove this point. In[6.3.2] we will
present different algorithms (SAC, TD3, C51) and our algorithm’s process of predicting Q values
in the form of schematic diagrams. This is closely related to the performance of the algorithm in
handling HRHR scenarios. Additionally, in Section [6.3.3] of the Appendix, we design an experi-
ment called the "Trap Cheese Problem” to demonstrate the difference of decision between Gaussian
policies and discrete policies in HRHR scenarios.

To address the challenges inherent in the HRHR scenarios defined above, we extended the basic
distributed reinforcement learning algorithm, proposed the D2C-HRHR (Figure E] (e)). For funda-
mentals of distributional reinforcement learning, please refer to[6.2.1]in the Appendix.

Under review as a conference paper at ICLR 2026

3.2 MULTIDIMENSIONAL DISCRETE ACTORS

Our model employs a discrete action space across multiple dimensions. Instead of learning a single
expected value of Q value, we learn the complete probability distribution, divide the possible reward
range into a series of atoms, and then predict the probability of the reward distribution corresponding
to each action on these atoms. In HRHR scenarios with high expected reward variance, this can more
accurately identify the peak of expected returns.

A one-dimensional continuous action space is discretized into m discrete action atoms
{a1,az2, - ,am}t,m € N,where N denotes the set of natural numbers. Then the discretization
is applied to each dimension of a n-dimensional continuous action space, so an action in this new
discrete space A can be noted as a matrix:

AZlar, a0, ,a,]")

where each row is one-hot coding of the corresponding action dimension. This shape is convenient
to match the action probability distribution A, which will be used as the output of policy network,
and the sum of each row of A is 1. When we sample A from A, each row in A is sampled from the
probability of the corresponding row in A.

In this action space, there exist m™ discrete potential actions. Given such an extensive search space,
employing exhaustive search methods such as those used by traditional DQN algorithms to find the
maximal Q-value is not feasible. In this study, we propose modeling the agent’s stochastic behavior
within the action space 4 by utilizing an action probability matrix, therefore we set the actor as
we X — RMX™,

pii(z) pi2(z) -0 pim(T)
D p21(x) poa(x) - pam(x)
m(x) = (6)
pn1(x) pr2(x) 0 pam(@)
where p;;(x) > 0, Z;”’:l pij(x) =1 for ¢ =1,2,--- n, and x is an observed state. This 7

characterizes a stochastic multi-dimensional discrete actor. A later section will detail how to use
a neural network to approximate 7. Please note that, in the original continuous action space, the
action dimensions are independent, so in A, the elements between rows are also independent.

3.3 CLIPPED DOUBLE Q-LEARNING FOR DISCRETE VALUE DISTRIBUTION

Although using discrete actors can identify multiple expected peaks in HRHR scenarios. However,
for distributed reinforcement learning algorithms with single criticism networks, such as C51, there
are still issues in the HRHR scenario. Once they find areas with high expected returns (van Hasselt
et al.|2015)) , they will continue to learn in this direction. However, single criticism networks often
overestimate the Q-value.

In this chapter, we will propose a novel dual value network suitable for discrete values. It can
prevent the critic from overestimating the value of a high-risk action based on a few successful sam-
ples, thereby converging to a suboptimal strategy. By constructing two critic networks to estimate
the discrete value distribution respectively and performing truncation operations during the update
process, we can greatly improve the accuracy of the value network in evaluating action values. Al-
though double critic networks have been used in some reinforcement learning methods, no one has
applied them to distributed reinforcement learning before D2C-HRHR.

Double Q-learning for discrete distributional Q uses two critic networks, O, (2, A) and O, (z, A),

and one actor network 74 (), where A is an action distribution matrix of a multidimensional discrete
action space. « is the current state of environment.

It also has target networks O (, A), Oy (z, A), and g/ () correspond to the main networks for
stability in training. The subscripts above, 11, Y2, ¢, 1], 1%, and ¢’ denote the parameters of
corresponding networks. Given a transition tuple ¢ = (x, A,r, «’), r means reward from environ-
ment, &’ is state of next observation. We consider how to effectively utilize these target networks to
yield an updated estimation of the value distribution, 7 Z(z, fl\@d,; ; Oy). With Oy, and O,

Under review as a conference paper at ICLR 2026

for A’ = 7 (2'), we derive ®Z(x’, fl’|@,/,;) as:

6(@1,,; (@,A"),

IS

P(Z(a', A'|0y:) = 1) @

Zj\r e(@wg (x,A");
A set of procedures is proposed to leverage the twin critic networks with a discrete value distribution,
as shown in Figure [J] These procedures are presented in the Appendix [6.2.2] in the form of an
algorithm table.

1. Firstly, the two critic networks estimate discrete value distributions according to ', respec-
tively.
2. Secondly, the distributions are accumulated respectively.

3. Then for each category across the cumulative distributions, the one with higher probability
is selected to form a new cumulative distribution.

4. Finally, each category of the new cumulative distribution, except the first one, is subtracted
by the former one, mapping it back to discrete value distribution.

(@) & (o)
Figure 2: Clipped Double Discrete Value Distribution

The first and second procedures use the concept of “cumulative distribution”. For a discrete value
distribution Z, it can be depicted as follows:

k

P(Z €{z,2,,2}) =Y P(Z =z)) ®)

Jj=1

For the k™ value atom, the third and fourth procedures can be presented by equation:

s}

Ck

n_lzlngP(Z(m',fl/@M) €{z1,22," ,2k})
Ck if k=1 ©)

= N
P(Z(:;:,A|®¢f1,9¢;)Z’e){Ck_ck1 if k>1

This approach allows for the inclusion of atoms with relatively low probability, preventing the Q
value from being overestimated. For the transition sample ¢t = (x, A, r, ') and the i value atom,
the Bellman Operation is as follows:

1
0

VMmIN

Nz

N
P(q)’i-Z(wa Ale'll’ia 9’4’5) = zl) = Z

Jj=1

L Il — =

(10)
where A notes the actual action taken rather than a probability distribution, and

T Z (x, A|©y1,Oq;) is the corrected discrete value distribution used in training ©, and
Oy, -

3.4 CRITIC LEARNING

After clarifying the clipped double Q-learning mechanism for discrete value distributions, we will
further elaborate on how the dubl critic network learns based on the aforementioned corrected value
distributions, so as to achieve accurate estimation of action values and lay the foundation for subse-
quent strategy optimization.

Under review as a conference paper at ICLR 2026

Because the action that the agent is about to perform is sampled from the distribution. To accommo-
date this, we developed an updating mechanism for the critic network informed by the previously

introduced ®7 Z (z, AlOyr, Oyy).
P@TZ(m, A|Oy;, Oyy) = z;) = Y PAJA)P(RT Z(x, A|Oyy;, Oyy) = 2))
VAcA

~ Y P(AJA)P(®TZ(x, AlOy;, Oyy) =)
t~D

Y

Where VA € A signifies the requirement to consider every available action within the action space
for a perfect estimation, whereas t ~ D represents the extraction of actions from the replay buffer for
an approximation. The first line of the above formula embodies the exhaustive consideration of the
action space, where each action’s value distribution is aggregated based on its respective occurrence
likelihood P(A|fl), constituting the expected value of the distribution across A. Nevertheless, due
to the extensive action space, such exhaustive consideration is impractical. Therefore, we invoke a
second-tier approximation by sampling the observed data from the replay buffer, circumventing the
full traversal of the action space, notwithstanding the potential distribution bias of the data within
the replay buffer. Accordingly, the critic network’s update rule for a data batch with size B and
i = 1,2 is defined as:

71 2 0T Z(x, AlOy;, Oyy)

&QZ@Aww) (12)
i hi — — Z P(A|A)Vy, Dx1(Z1|Z2)
tN'D

where D1, represents KL divergence, furthermore:

N
Vo, D (21| Z2) = =Y P(Z1 = 2;) Vi, log P(Zs = 2;) (13)

j=1

In the above equation, we eliminate terms that are independent of 1);, thus obtaining a form consis-
tent with cross-entropy loss. Z; denotes the new estimation of the value distribution procured from
the twin critic networks, and Z5 is the critic network’s resultant output. In this way, every critic’s
output is refined to align with the corrected value Z;, reducing the overestimation bias.

3.5 PoLICY LEARNING

Having introduced how the critic network learns based on the corrected value distributions, this
chapter focuses on the training mechanism of the Actor, which is responsible for generating the
actions that the critic evaluates. To train the actor robustly, the actor is trained with a loss func-
tion similar for training the critic networks as introduced in Section “Critic Learning”. The core is
to guide policy optimization through value distribution, enabling the Actor to maximize the selec-
tion probability of high-value actions while ensuring training stability, enable agents to learn more
extensively and make richer and bolder decisions when facing complex HRHR scenarios

Like other RL models with actor-critic architecture, the actor is updated to maximize the Q-value
predicted by a critic network. Differently, in our model, the output of the critic networks is prob-
abilistic, so the cumulative distribution can be used as an objective. More specifically, for the k™
value atom,

P(Z(x, 7y (x)|Oy,) € {21, 22, - 21}) = 0,

P(Z(x, 7p(x)|Oyy) € {2ht1, 2k 42, 2n}) = 1.
The notation “—"" here denotes a trend or movement toward a value. The goal is for the policy to
minimize the probability of Z occurring at lower-value atoms while maximizing it at higher-value
atoms. With the binary cross-entropy loss applied, the Policy Learning rules are established thus:

(14)

¢<—¢+*ZZ%[Ologpﬂrllog(l—ﬂj]—¢+*sz¢log L=p)) (9

t~D j=1 t~D j=1

where
p; 2 P(Z(z,14(x)|Oy,) € {21, 22, , 2;}) (16)

Under review as a conference paper at ICLR 2026

3.6 EXPLORATION

Effective exploration is critical in HRHR tasks, as high-reward opportunities may be sparse and
require precise maneuvers to discover. A naive or overly broad exploration strategy may never find
these solutions. Therefore, we design a heuristic, entropy-based exploration strategy that explicitly
links the agent’s exploratory behavior to its confidence, as measured by the value distribution, to
encourage deeper exploration of promising high-risk regions.

Definition 3. Given an action distribution A = m(x), the action entropy is defined as:

H(A) 2 — ZZpu x) log pi; () amn

i=1 j5=1
Additionally, H(A) has a calculable upper bound:

Z nlogm > H(A) Vr:X — RV (18)

H
Our objective is to correlate the action entropy with confidence levels. Specifically, increase the

action entropy 7-[(/1) when there is a higher probability occurrence at lower discretization atoms
within the discrete value distribution. To achieve this, we introduce an entropy exploration term.
The proposed update rule for the actor is as follows:

H(mg(®))

¢+ Z sV
t~D
. N—j 7-[(7r¢(cc)) (19)
s—J 1 if maxigen xorhes 2 TS
0 otherwise

where p; is same to in Equ equation. 16, 8 > 0 is the coefficient for the entropy term, 0<h<1
regulates the scale of action entropy. An action entropy threshold, £ N 1hpj, is assigned to each
discrete atom of the value distribution such that the entropy exploration term will only activate when
the action entropy H(mg(x)) falls below this threshold. This threshold decreases as j increases,
which means that atoms of higher values have lower thresholds.

We also use the cumulative distribution p; to represent the confidence level of the agent with respect
to the current state . It should be noted that for the ;" value atom of a high-confidence agent,
p;j should be a small scalar since it represents the probability between the 1™ atom and the 4
atom, which is the lower value range. We use p; to correct the action entropy H(mg(x)), so the
low-confidence agent will increase it to seek various solutions with respect to state &, however, the
high-confidence one will not. Integrating this with the prior section’s material, the comprehensive
update rule for the actor is:

¢<—¢+Bzv¢logl—p] stw +(2)) (20)

t~Dj=1 t~D

4 EXPERIMENTS

We trained our model on continuous control across multiple tasks using multiple random seeds,
including BipedalWalkerHardcore-v3 , FetchPush-v4 and MuJoCo tasks, and evaluated the perfor-
mance. We also used C51, SAC, SAC-Discrete, TD3, and TQC as baselines. For further imple-
mentation details of the experiments, such as, ablation experiment, and detailed description of the
environments, please refer to Section and[6.5]of the Appendix.

4.1 BIPEDALWALKERHARDCORE-V3

The BipedalWalkerHardcore-v (Towers et al.| 2023)) task is to control the joints of a planar bipedal
robot to walk through complex terrains involving randomly generated obstacles like staircase, obsta-
cles, and traps. An agent must attempt to overcome various barriers to achieve the highest possible

Under review as a conference paper at ICLR 2026

10
NN
300 o A Lo
= 08 \
E s Q
=200 ~ b=
© e ~ os
5 / - o
I
o 100 / 2 urs
§ / g o4 C51
0 / =] TQC
e /) Q
/ 02 / SAC
o [s ./ D3

0.0 0.5 1.0
Frames

1.5

o
o

0.0

0 1

2

3 4
Frames

Discrete_SAC

(a) BipedalWalkerHardcore-v3 (b) FetchPush-v4

Figure 3: Training Curves for BipedalWalkerHardcore-v3 Experiments and FetchPush-v4

Table 1: Algorithm Performance Comparison Across Environments. (The metric for BipedalWalker
is Average Score, while the metric for FetchPush is Success Rate)

Environment Ours Cs1 TQC SAC TD3 Discrete-SAC
BipedalWalkerHardcore-v3 327.1 +16.1 187.5 £32.4 150.2 + 10.8 5.14+0.7 -20.1 £2.2 82.8 + 10.1
FetchPush-v4 0.97 £ 0.09 0.03 + 0.0 0.11+0.01 0.18+0.04 0.16£0.04 0.154+0.05

score. The challenge lies in its high risk, characterized by randomly varying terrain, partial observ-
ability, and high penalties for falling. (Wei & Ying] |[2021; [Fujimoto et al., 2018))

We trained D2C-HRHR and baselines on the BipedalWalkerHardcore-v3 task for 20 million time
steps. Figure [3]shows the reward returns during training. In tests with 10 different random seeds,
our model achieved a mean score of 327.1 in 10,000 trials, as shown in Table 1. The experimental
results show that TQC, C51 perform better than TD3 and SAC, while our algorithm is the best.

In specific scenarios of the BipedalWalker task, successful decisions yield high rewards, while failed
actions result in high penalties, i.e., HRHR scenarios. In a fully observable and deterministic task,
TD3 and SAC could distinguish differences in actions and states to fit them well with a scalar expec-
tation. However, in this task, the scalar expectation can be misleading and captures neither the high
return nor high risk, but the average. We have verified this in the Appendix [6.3.1} TQC algorithm
also have its drawbacks. Although his critic network can output vectors of Q-value distribution, it
still uses Gaussian distribution process, which still limits its performance in action exploration.

While C51 utilizes discrete exploration and can capture bimodal distributions (performing stably
on stairs), it fails in high-risk scenarios involving stumps or traps. As shown in Fig [only our
algorithm maintains a bimodal distribution across all obstacle types.

The process of going up and down stairs involves low risk; Even if the agent loses balance, it will
only incur a small score deduction. In such cases, C51 which models the reward distribution using a
single distribution critic, is less affected by overestimation bias. It can capture the bimodal distribu-
tion and achieve good performance. However, in HRHR scenarios such as traps and obstacles, the
single critic of the C51 algorithm lacks cross-validation from another critic, making it overestimat-
ing the Q-value of certain erroneous actions. As shown|[6.3.2]in Appendix, we will demonstrate the
key differences between C51 and ours in predicting Q values.

Meanwhile, the Actor in the C51 algorithm only outputs the action atom with the highest probability
in the discrete space, rather than sampling outputs based on probability distributions like we do. Our
model will enable agents to use more diverse strategies, enabling them to perform better in extreme
HRHR environments.

To understand the necessity of each module, we conducted an ablation study on our model for the
BipedalWalkerHardcore-v3 task, as shown in Appendix [6.4.1] It was conducted on the Dual Critic
Network, Actor, and exploration mechanism to validate the necessity of each module and its impact
on performance.

Under review as a conference paper at ICLR 2026

22223, II722, d2l3%. 37300
{

b Al

yl . [
000855 50 0 s JL R 0 s o0 000009 30 0
The values of discretized rewards The values of discretized rewards The values of discretized rewards The values of discretized rewards
-50 0 50

The values of discretized rewards

(a)Crossing the Obstacle (b) Jumping Over the Trap (c) Going Down the Stairs (d) Going Up the Stairs

0.010

-

000065

0.008 I 0.008

s
2
2

S

=4

g

Z

2
g

0.006

=
s
g
S

Probability
Probability
o
2
Probability
Probability
=4
g

g
€

=
s
g
£

s o

g

g

S

0.002

3
S

=
g

0.025

0.008
015 0020, 0.008

ity
2
g

o
=
2

0015

0,010 0.004

Probability
°
g

Probability
Probabil
" Probability

0.005 0.002

B
g
5

100 000,55 50 0 50 100 D.OAL({MHH Uno
The values of discretized rewards

‘ ‘\ 0.000; h
00800 =30 0 B 00 o -

0 0 50
The values of discretized rewards The values of discretized rewards

Figure 4: The Distribution Plots of Reward Returns in BipedalWalkerHardcore-v3. (Blue repre-
senting our algorithm and green representing the C51 algorithm.)

4.2 FETCHPUSH-V3

To further validate the robustness of the D2C-HRHR model, we conducted tests on the FetchPush-
v3 task (Plappert et al.,[2018)). This task are based on a Fetch robotic arm with 7 degrees of freedom
and two parallel grippers, The robotic arm needs to learn to move a block to the target position on
the desktop. The difficulty of this task lies in its complex action space.

We conduct 100 tests on each model for each training step to check its success rate and obtain the
training curve, as shown in Figure[3(b). Finally, after 5 million steps of training, our algorithm was
able to adapt to the contact-rich operating environment and achieved a success rate of 0.97, as shown
in the table[I] This demonstrates that our task can adapt to complex action spaces.

4.3 MuJoCcO ENVIRONMENT

Although the model is intended for tasks with HRHR actions, we also evaluated it in typical contin-
uous control tasks. Experiments were conducted within Mujoco Environment
on a series of tasks, Ant-v5, HalfCheetah-v5, Hopper-v5, Humanoid-v5, and Walker2D-v5
[2012). These tasks involve controlling different types of robots to move forward. Our model
and baselines were applied to these tasks and trained over 20 million time steps for each task. Our
algorithm ranks second in the total score, as shown in Figure [TT} Table 4] and Table[5]in Appendix.

It is worth noting that our model demonstrates particularly outstanding performance on the Hu-
manoid task. This task aims to enable robots to mimic human walking by moving forward as quickly
as possible. We observe that robots guided by our algorithm exhibit greater joint flexibility and wider
range of motion during running in this task—in other words, they move more like a human. This
demonstrates that the Actor in D2C-HRHR enables agents to learn more broadly. Detailed training
curves and analysis are provided in Appendix [6.4.2] and FigurdI2]

5 DISCUSSION AND CONCLUSION

In this paper, we propose a distributed reinforcement learning model named D2C-HRHR. It adopts
a discrete action space, and employs a unique clipped dobule Q learning approach, policy learning
based on discrete action probability distribution sampling, and a cross-entropy nested exploration
mechanism. This model demonstrates outstanding performance in HRHR scenarios, achieving ca-
pabilities unmatched by other baselines. It solves BipedalWalkerHardcore-v3 with state-of-the-art
performance and exhibits excellent performance in various continuous control tasks.

Under review as a conference paper at ICLR 2026

REFERENCES

Open Al: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal J6zefowicz, Bob McGrew,
Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, Jonas Schneider,
Szymon Sidor, Josh Tobin, Peter Welinder, Lilian Weng, and Wojciech Zaremba. Learning dex-
terous in-hand manipulation. International Journal of Robotics Research, 39(1):3-20, 2020. ISSN
17413176. doi: 10.1177/0278364919887447.

Gabriel Barth-Maron, Matthew W Hoffman, David Budden, Will Dabney, Dan Horgan, Dhruva Tb,
Alistair Muldal, Nicolas Heess, and Timothy Lillicrap. Distributed distributional deterministic
policy gradients. arXiv preprint arXiv:1804.08617, 2018.

Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. In International conference on machine learning, pp. 449-458. PMLR, 2017.

Petros Christodoulou. Soft actor-critic for discrete action settings. arXiv preprint arXiv:1910.07207,
2019.

Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos. Implicit quantile networks for
distributional reinforcement learning. In International conference on machine learning, pp. 1096—
1105. PMLR, 2018a.

Will Dabney, Mark Rowland, Marc Bellemare, and Rémi Munos. Distributional reinforcement
learning with quantile regression. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 32, 2018b.

Jesse Farebrother, Jordi Orbay, Quan Vuong, Adrien Ali Taiga, Yevgen Chebotar, Ted Xiao, Alex
Irpan, Sergey Levine, Pablo Samuel Castro, Aleksandra Faust, Aviral Kumar, and Rishabh Agar-
wal. Stop regressing: Training value functions via classification for scalable deep rl, 2024. URL
https://arxiv.org/abs/2403.03950.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587-1596. PMLR, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861-1870. PMLR, 2018.

Jens Kober, J. Andrew Bagnell, and Jan Peters. Reinforcement Learning in Robotics: A Sur-
vey. Springer Tracts in Advanced Robotics, 97:9-67, 2014. ISSN 1610742X. doi: 10.1007/
978-3-319-03194-1_2.

Arsenii Kuznetsov, Pavel Shvechikov, Alexander Grishin, and Dmitry Vetrov. Controlling overesti-
mation bias with truncated mixture of continuous distributional quantile critics. In Infernational
Conference on Machine Learning, pp. 5556-5566. PMLR, 2020.

Timothy P. Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In 4th
International Conference on Learning Representations, ICLR 2016 - Conference Track Proceed-
ings, 2016.

Jianlan Luo, Perry Dong, Jeffrey Wu, Aviral Kumar, Xinyang Geng, and Sergey Levine. Action-
quantized offline reinforcement learning for robotic skill learning, 2023. URL https://
arxiv.org/abs/2310.11731l

Luke Metz, Julian Ibarz, Navdeep Jaitly, and James Davidson. Discrete sequential prediction of
continuous actions for deep rl, 2019. URL https://arxiv.org/abs/1705.05035|

Michael Neunert, Abbas Abdolmaleki, Markus Wulfmeier, Thomas Lampe, Jost Tobias Sprin-
genberg, Roland Hafner, Francesco Romano, Jonas Buchli, Nicolas Heess, and Martin Ried-
miller. Continuous-discrete reinforcement learning for hybrid control in robotics, 2019. URL
https://arxiv.org/abs/2001.004409.

10

https://arxiv.org/abs/2403.03950
https://arxiv.org/abs/2310.11731
https://arxiv.org/abs/2310.11731
https://arxiv.org/abs/1705.05035
https://arxiv.org/abs/2001.00449

Under review as a conference paper at ICLR 2026

Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob McGrew, Bowen Baker, Glenn Powell,
Jonas Schneider, Josh Tobin, Maciek Chociej, Peter Welinder, Vikash Kumar, and Wojciech
Zaremba. Multi-goal reinforcement learning: Challenging robotics environments and request
for research. CoRR, abs/1802.09464, 2018.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347,2017.

Tim Seyde, Igor Gilitschenski, Wilko Schwarting, Bartolomeo Stellato, Martin Riedmiller, Markus
Waulfmeier, and Daniela Rus. Is Bang-Bang Control All You Need? Solving Continuous Control
with Bernoulli Policies. In Advances in Neural Information Processing Systems, volume 32, pp.
27209-27221,2021. ISBN 9781713845393.

Yunhao Tang and Shipra Agrawal. Discretizing continuous action space for on-policy optimization.
In AAAI 2020 - 34th AAAI Conference on Artificial Intelligence, pp. 5981-5988, 2020a. ISBN
9781577358350. doi: 10.1609/aaai.v34i04.6059.

Yunhao Tang and Shipra Agrawal. Discretizing continuous action space for on-policy optimization,
2020b. URL https://arxiv.org/abs/1901.10500.

Yuval Tassa, Tom Erez, and Emanuel Todorov. Synthesis and stabilization of complex behaviors
through online trajectory optimization. 2012.

Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de Cola, Tristan Deleu,
Manuel Gouldo, Andreas Kallinteris, Arjun KG, Markus Krimmel, Rodrigo Perez-Vicente, An-
drea Pierré, Sander Schulhoff, Jun Jet Tai, Andrew Tan Jin Shen, and Omar G. Younis. Gymna-
sium, March 2023. URL https://zenodo.org/record/8127025.

Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double g-
learning. CoRR, abs/1509.06461, 2015.

Leonid Nisonovich Vaserstein. Markov processes over denumerable products of spaces, describing
large systems of automata. Problemy Peredachi Informatsii, 5(3):64-72, 2014.

Honghao Wei and Lei Ying. Fork: A forward-looking actor for model-free reinforcement learning.
2021.

11

https://arxiv.org/abs/1901.10500
https://zenodo.org/record/8127025

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work focuses on methodological and theoretical advances in discrete reinforcement learning.
It does not involve human or animal subjects, nor does it rely on sensitive or proprietary data. We
do not anticipate any immediate ethical concerns. Potential applications of reinforcement learning
should always be carefully evaluated to prevent harmful or unsafe use.

REPRODUCIBILITY STATEMENT

We provide detailed descriptions of our algorithm, theoretical definitions and proofs, and experi-
mental setups to ensure reproducibility. All assumptions and complete proofs of theoretical results
are included in the Appendix.

For experiments, we describe setup and implementation details in the Appendix and Supplementary
Material. Results and analysis of experiments are provided in the main text and appendix. Experi-
ments are conducted on a desktop workstation with the Intel® Core TMi9-12900 Processor, 64GB
RAM, and the NVIDIA® GeForce RTX TM4090. The code for the algorithm can be found in the
additional materials. Below are the hyperparameters used by our algorithm in various environments.

We plan to release our source code publicly upon acceptance of the paper. We believe these resources
will help other researchers to reproduce our findings.

Table 2: Training Results Comparison

Environment Hyperparameters

Learning Rate Vi, Vigas ¥ Batch Size
BipedalWalkerHardcore-3 2.5 x 1074 -100 100 0.99 512
FetchPush-v4 3x107° -50 50 1-1/50 512
Mujuco 1x1074 -200 200 0.99 1024

12

Under review as a conference paper at ICLR 2026

6 APPENDIX

6.1 MATH SYMBOLS

Table 3: Mathematical Symbols

Symbol

Description

Typical value

Virax
Vi

o8

:B\>

R

2
9

DIRER IS TWe
E)

00DE
IITT

Discount factor.

Upper bound of the discrete value.

Lower bound of discrete value.

Random variable for discrete value.

The ™ discrete value atom of Z.

Sample of current state observation.

An action sample vector.

Distribution of an action vector.

An action distribution matrix of a multidimensional discrete action
space, in which the sum of each row is 1.

An action sample matrix. Each row in A adopts one-hot coding sampled
from the corresponding row in A.

Action distribution for the next state.

Reward from an environment.

Sample of next state observation.

Distribution of the next state observation.

Distribution of a random variable.

A variable in the next time step.

Denotes definition.

Space of state observations.

Space of actions.

Ceiling of =.

Number of discrete atoms for Z.

r+~2".

Projecting T Z back to origin discrete value atoms.
The estimated Z from the twin critic networks.
Discrete distribution critic network.

™ Element of a Vector.

Policy for action selection.

Expected scalar critic network.

Parameters of first and second critic networks.
Parameters of actor network

Parameters for delayed updated networks.
Denotes parameter update.

Gradient of J with respect to w.

Learning rate.

Batch size.

Sample from Replay Buffer.

Number of dimensions in action.

Number of atoms per action dimension.
Entropy of action A.

Maximum entropy of action.

Scaling factor for action entropy.

Coefficient for exploration.

Represents the upper bound.

The high-risk-high-return region.

The low-risk-stable-return region.

A generalized notation for any subregion of the action space, used for
mathematical uniformity.

0.98 or 0.99

[Varrn, Varax]

51

<1073
256 or 512

<20

51

< nlogm
nlogm
0.5

0.5

13

Under review as a conference paper at ICLR 2026

6.2 FURTHER BACKGROUND
6.2.1 FUNDAMENTALS OF DISTRIBUTED REINFORCEMENT LEARNING

This chapter will introduce some basic concepts regarding the model we proposed. Reading this
chapter will help you gain some basic knowledge about discrete reinforcement learning. Our model
is extended on the basis of the content of this chapter.

For a stochastic transition process (x,a) — (&’,a’) in a environment, x represents the observed
current state of the environment, and a specifies the action taken in response to «. The resulting
state distribution is denoted &’. A stochastic policy output an action distribution a’, and the actual

action a’ taken in the task will be sampled from &’.
The value Z is a discrete distribution and is associated with the process (x,a) — (&’,a’). It can be
formularized using a recursive equation:

Z(x,a) 2 R(z,a) +vZ(&',&") Q1)

wherein R(x, a) represents the stochastic reward function of the environment and ~ denotes the
discount rate.

Subsequently, the value Z is conceptualized as a random variable with a discrete value distribution.
The number of discrete atoms N & N denotes the granularity of discretization required for the
value domain, and the bounds Vysrn, Varax € R specify the lower and upper limits of the values,
respectively. The set of discrete atoms is constructed as {z; = Varny + (2 — 1) Az|li = 1,2,--- N},
with the interval Az calculated by W The probability of each discrete atom’s occurrence

is determined using a neural network © : X x A — R,

o(O(,a));

Z(x,al®) =z w.p. pi(%a)zw

(22)

For a tuple of a stochastic transition t = (x, @, r,’), a Bellman update for a discrete distribution
is applied to each discrete atom z;, designated as 7'zj := 1 4 7z;. The probability associated with
T z;, denoted p; (’, 7(x’)), is then redistributed amongst adjacent discrete atoms. The i element
of the resultant projected discrete probability distribution 7 Z(x, a|©) is:

1

- ol [T 21V — =il '’
P(OTZ(z,al®) =z) =Y [1- - pi(x’, m(z'))
Jj=1 0

The notation [-]® signifies that the value is constrained within the interval [a, b].

: M)ﬂh{

Figure 5: Operations to update Z. (a) The current value distribution of Z. (b) Discount factor v
changes the shape in the dimension of atoms. (c) The current reward R shifts the distribution in the
dimension of atoms. (d) The resulting distribution R + vZ is mapped back to the original atoms by
.

14

Under review as a conference paper at ICLR 2026

6.2.2 ALGORITHM OF DOUBLE CRITIC NETWORK

Algorithm 1 Dual-Critic Network Based on Discrete Value Distribution

1: Input: Twin critic networks @,/,/1, 9%, next state x’
2: Output: Refined value distribution Z(’, A’)

3. procedure DUALCRITICEVALUATION
4: ®;, Py < Estimate discrete value distributions for &’ using both critics
5: C1, Cy < Compute cumulative distributions from ®; and @5
6 for each value category k = 1 to N do
7 e + max(Cy[k], Calk]) > Select conservative cumulative probability
8: end for
9: for each value category k = 1to NV do
10: if £ = 1 then
11: P+ 1
12: else
13: Py + ¢ —cr—1 > Convert back to probability distribution
14: end if
15: end for _

16: return Z with probabilities P, P, ..., Py
17: end procedure

6.3 A DEEPER ANALYSIS AND ILLUSTRATION OF MECHANISMS

6.3.1 THE REASON WHY A POLICY WITH GAUSSIAN ACTIONS PERFORMS WORSE IN
HRHR SCENARIOS

Section [3.1introduces Theorem [I] Here we recall to it again and prove it:

For Gaussian policy mg(-|s) = N (ug(s),03(s)I) in an HRHR scenario at state s with high-reward
grains G; of diameter 4, if oy (s) > d, then the gradient update satisfies:
(VoJ(0),AbOr,) < (VaJ(0), AOr,) (23)

where Af g, is the update direction toward region R;, and J(0) is the expected return. This implies
gradient updates prefer Ry over R;.

Proof. The policy gradient is:

VoJ(0) = Eqnry Vo log mo(als)Q(s, a)] 24)
For Gaussian policies, the score function is:
Vg logmo(als) = 05 *(s)(a — puo(s)) (25)
The key inner product is:
(VoJ(0), AOR,) = Eqron, [(AbR,, Volog mg(als)Q(s,a))] (26)
= 05 2 (8)Eamry (AR, (a — p10(5)))Q(s,)] 27
Define the advantage relative to Rs:
ARz(Saa) = Q(S7a) _Ea’~u(Rz)[Q(57al)] (28)
The difference in update directions is:
(VoJ(0),A0r, — AbR,) (29)
= 052 (8)Eamry [(AOR, — Mg, (a — po(s))) A, (s,)] (30)
Under oy(s) > ¢, the covariance between action displacement and advantage is:
Covanmy (@ — po(s), Ar,(s,a)) <0 (31)

because high-reward grains contribute negligibly due to their small size (§) relative to policy variance
(c¢(8)). Thus:

(Vo J(0), Abr,) < (Vo J(0), AbR,) (32)

O

15

Under review as a conference paper at ICLR 2026

When oy (s) > 9§, the policy’s exploration radius exceeds high-reward grain sizes. This makes R;’s
low average return dominate over its high maximum return, causing gradient updates to prefer R,.

This explains why Gaussian policies with fixed large variance struggle in HRHR scenarios. Adaptive
variance schedules or heavy-tailed distributions are often necessary to capture high-reward regions.

(a) HRHR Scenarios (b) Output Scalar Q-value Expectation

Figure 6: Illustration of returns sampled by Gaussian distribution actions. After sampling, the posi-
tions where highest true returns locate no longer keep the highest, but the position with the subopti-
mal true return is highest.

(b) Select the Cell with the Highest

(a) HRHR Scenarios with Discrete Space Expected Q-value for Output

Figure 7: Illustration of returns sampled by discrete actions.

(b) Critic 1 Output Q-Value Prediction

(d) Select Lower Q Value and Output the
Probability Distribution of Action Atoms

(c) Critic 2 Output Q-Value Prediction

Figure 8: Illustration of double discrete critics

16

Under review as a conference paper at ICLR 2026

6.3.2 ILLUSTRATIONS OF Q-VALUE ESTIMATION WITH DIFFERENT ALGORITHMS

For a more intuitive illustration of why a Gaussian policy is hard to find the optimal actions in HRHR
scenarios, we plot contour maps to illustrate landscapes of true returns and possible estimated returns
after sampling the true returns on Gaussian distribution actions.

As shown in Figure [6] (a) is the true landscape and (b) is the landscape after a Gaussian blur to
approximate the sampling of the returns by actions with a Gaussian distribution. Although the best
return in (a) is in the bottom left, the best return in (b) is in the top right, which is not optimal. It is
the case for algorithms with a policy with Gaussian action, such as SAC and TD3.

Differently, if the action dimensions are discretised (Figure [7] (a)) and the returns are sampled by
discrete actions (Figure[7] (b)), although the resolution is much lower, the high return regions in the
HRHR scenario are more likely to be captured. It is the case for algorithms with discrete actions.

However, because of the sharp gradient in a box after the discretization, the sampled return is a
distribution; hence, adopting a critic with distributional output is beneficial. Like critics with scalar
output, we notice critics with distributional outputs also suffer from overestimation; hence, in our
model, we mitigate it by using double critics. Figure [§]shows an example of discrete double critics
by a zoom-in of the return landscape. (b) and (c) show two samples by discrete actions which
illustrate the estimation of two critics, (d) shows choosing the lower returns from (b) and (c) and
combining them for less overestimated returns.

6.3.3 TRAP CHEESE PROBLEM AND MATHEMATICAL ANALYSIS

Sterring = 1.0
Mouse Trap -1. 0(100% Cheese:]1. 0(50%) 0. 0(50%
Sterring =-1.0

Figure 9: Trap Cheese Problem

We designed a toy task called "Trap or Cheese” to illustrate that continuous models averaging good
actions can result in a bad action, but our model does not have this problem. As shown in Figure[9]
there is a trap in front of the mouse, behind which lies a piece of cheese. When the mouse chooses
to move straight ahead, it falls into the trap and dies, resulting in a reward of -1.0. When the mouse
chooses to turn left or right, it can bypass the trap and reach the cheese. However, there is a 50%
chance that the cheese has expired and cannot be eaten, resulting in a reward of 0.0. If the cheese is
not expired, the reward is 1.0. Obviously, a normal mouse would not choose to walk into the trap.

Both SAC and our model are tested in this task. The results show that SAC tends to unhesitatingly
choose the middle route and walk into the trap, with an average score staying at -1.0. In contrast, our
discrete model can learn the correct strategy, with an average score staying at 0.5. This simple task
is difficult for SAC because, although its critic network can learn that moving forward is a very bad
choice, since moving forward can be considered as an average of moving left and right, SAC still
chooses to move forward. This problem could widely exist in continuous RL models which tend to
average best actions. The BipedalWalkerHardcore task shares a similar property when stepping over
obstacles. Hence, we suspect it is the reason why continuous models cannot solve this task as well
as our model. For further discussion and mathematical analysis, please refer to the following proof.

We describe the () function of the Trap Cheese problem as:

17

Under review as a conference paper at ICLR 2026

33
—1 otherwise (33)

Q(zo,a) = {0'5 if a€[-1-8,—-14+68U[l-41+9)

Where § is used to denote the width of the range where high rewards can be obtained, 0 < § < 1.
For convenience, we represent this region with the symbol C(0). We are interested in the maximum
likelihood estimation of the normal distribution a ~ N (i, o) on C(6).

1 (a—p)?
log L = / log(———e~ 302)da
C(9)

2o

1 2
= —46log(V2ro) — ﬁ /C(6>(a —) da
= —4510g(Vro) — (1 46—) — (1= =)" + (-1 45—) = (-1 =5 - "] O¥
= —46log(V2mo) — 7[(1 —)26 4 26° + 6(1 + p)*3 + 26°]

— _45log(v2ro) — 5[(1+ %) 1 67

Letting dlog L — (0 and 81°g L — 0, we can obtain the maximum likelihood estimates for 1 and 0.

OlogL _ 4éu

on o2’ =0 35)
mgfL = —% + %[3(1 +u%)+6%, =1+ %
Hessian matrix helps to verify whether 1 = 0 and 6° = 1 + % is the unique critical point
logL 9’loglL 45 85
{ailggf 62§§§7L:| = [g 48 (52 1352 B 3)} (36)
Substituting i = 0 and 62 = 1 + %, we obtain:
82logL 82logL -2 0
|:6281igL BglllngL:| = [187 8] =0 37
Fndo 202 lps 1482

Therefore, ji = 0 and 52 = 1+ % is the unique maximum point on the domain. Although N (fi,5?)
is the maximum likelihood estimate for the set C () under the assumption of a normal distribution,
its maximum probability density point /i does not yield satisfactory values on the () function; Obvi-
ously, Q(xg, i) = —1. Now we will compute the maximum likelihood estimate again, this time on
a discrete distribution.

Pla=a)=p;, i=12--,m, Y pi=10, p;>=0 (38)

In the case of a discrete distribution, the range of action a is given by A = {a;,as2, - ,a,,}, and

ANC(s) # 0.

I » (39)

ANC(5)

According to AM-GM inequality, we have:

18

Under review as a conference paper at ICLR 2026

. 2ancPi 1
m pp . (40)
Anc(s))] Al:[us) [ANC)] = [ANC(S)]

The two equalities in the above inequality can be attained; therefore, the maximum likelihood esti-
mate in the case of a discrete distribution is:

0 otherwise

Pi = {INW}?US) if ai€C(5) @)

In the maximum likelihood estimate of a discrete distribution, we take the point a;, with the highest
probability, and obviously it satisfies Q(xo, ax) = 0.5. The above result suggests that when dealing
with complex obstacles, discrete distributions might have an advantage over normal distributions, at
least in the context of maximum likelihood estimation.

6.4 FURTHER EXPERIMENT RESULTS

250 4
E 200
E 150 4
(]
) 100 4
el
8 o
a7 04 wsss Qurs
100 l/ mmmmm= Normal Exploration
Normal Actor
I

000 025 050 075 100 125 1.50 175 200

Frames 7 Single Critic

Figure 10: Ablation Experiments of over 10,000 Trials for BipedalWalkerHardcore-v3

6.4.1 ABLATION EXPERIMENTS OF D2C-HRHR ON BIPEDALWALKERHARDCORE-V3

As shown in the Figure [T0] we conducted ablation experiments on each module of the algorithm
in different random seeds. Following D3PG (Barth-Maron et al., 2018), we substituted our discrete
actor with a conventional continuous action actor based on our twin critic network. The results are
depicted by the curve labeled “Normal Actor”. Additionally, we also attempted to replace our ex-
ploration mechanism based on action entropy with the exploration mechanism relying on fixed noise
from the C51 algorithm, and the results are represented by the curve labeled “Normal Exploration”.
The results suggest that the different modules proposed in our model are necessary for the model’s
performance.

6.4.2 RESULTS AND ANALYSIS OF THE MUJOCO MISSION

Calculate the test scores of our algorithm and baseline on the training curves of five tasks (Ant-
v5, HalfSheetah-v5, Hopper-v5, Humanoid-v5, and Walker2D-v5). The training curves of various
algorithms on MuJoCo tasks, as well as the specific scores and standard deviations after 10,000
evaluations, can be found in Figure [IT]and Table] Assuming that the weights of the five tasks are
the same, by taking a weighted average of the scores of each algorithm on different tasks, we find
that D2C-HRHR ranks second in the total score, second only to the SAC algorithm, as shown in
Table[3

Our algorithm performs exceptionally well on Humanoid-v5. D2C-HRHR enables humanoid robots
to walk with greater amplitude and more adventurous movements. This not only makes the robot
walk faster but also more like a real human. As evidence, in Figure[T2] we selected three algorithms
that performed best in this task for testing, obtaining the joint position distribution maps of the
humanoid robot’s lower limbs, including the knee and hip joints.

19

Under review as a conference paper at ICLR 2026

As shown, the robot guided by our algorithm exhibits highly flexible joints during testing, moving in
a remarkably fluid manner. In contrast, the SAC and TD3 algorithms produce relatively fixed joint
positions, causing the robot to advance in a crawling fashion. Despite this movement style, they still
achieve relatively high rewards. As mentioned earlier, the characteristics of D2C-HRHR stem from

its unique architecture.

6000 12500 2500
5000 J = 10000 =N e SN 2000
E 4000 / g E 700 S 1500 \ / —
I~ / 2 s 2 v
= 3000 / e} | g 1000
5 4 5 25001 | 5 /
% 2000 G % . | q% 5001 f
. | /
& 1000 g ~ [22 0 y
2500
0 5000 =500
0.0 0.5 1.0 1.5 20 25 0.0 0.5 1.0 1.5 20 25 0.0 0.5 1.0 1.5 20
Frames - Frames - Frames -
(a) Humanoid-v5 (b) HalfCheetah-v5 (c) Hopper-v5
7000
6000 4000
E £ 3000
2 o W E
© 4000 / L 2000 s Ours
g 000 / E 1000 oy
E 2000 ,/ % TQC
/ 0 SAC
Q‘ 1000 r/ M
,) D3
oq | 1000
Discrete_SAC

Frames

1.5 20
1e7

(d) Ant-v5

0.0 0.5 1.0

Frames

1.5 20 25
17

(e) Walker2D-v5

Figure 11: Training Curves for the MuJoCo Environments

Agor

=

ithm
ours

™3

1o 05
Joint Position (Radians)

(a) Joint Position Distribution for Hip

Figure 12: Joint Position Distributions for the Robot of Task Humanoid-v5 (Blue is Ours, red is

SAC, orange is TD3

Density

o~

Agorithm
=1 ours

™3

-3

-2 1
Joint Position (Radians)

(b) Joint Position Distribution for Knee

Table 4: Algorithm Final Evaluation over 10,000 Trials for MuJoCo

Average Score (+ Standard Deviation)

Environment

Ours Cs1 TQC SAC TD3 Discrete-SAC
Humanoid-v5 5426.2 +75.3 10422 £80.1 1821.0+46.4 50504 +£91.0 3241.1 +£74.6 2241.8 +30.7
Ant-v5 4468.7 £ 96.1 4471.0 =503 5821.2+21.7 6001.0+ 142 4521.3+£91.2 930.0 £94
HalfCheetah-v5 10000.8 + 37.4 23472+ 17.6 9942.6 +32.3 11472.6 £28.5 3986.0 £22.2 2802.3 £+ 10.1
Hopper-v5 1745.2 £+ 67.1 985.5+452 14530+ 78.8 24208 £60.6 1977.1 =522 422.8 +18.7
Walker2D-v5 3663.6 + 78.6 2021.8 +62.6 2110.0+36.8 3840.5 +557 27402 +77.1 10254+ 37.1

20

Under review as a conference paper at ICLR 2026

Table 5: Overall Performance Comparison of Six Tasks in the Mujoco Series

Algorithm Composite Score
Ours 4.76
SAC 5.14
TD3 3.55
TQC 3.36
Csl 1.87
Discrete-SAC 1.69

6.4.3 AN DETAILED DESCRIPTION TO VARIOUS TASKS IN EXPERIMENT

(a) FetchPush-v4 (b) Humanoid-v5 (c) HalfCheetah-v5

(d) Ant-v5 (e) Walker2D-v5 Hopper-v5

Figure 13: Presentation of Various Tasks in the Experiment

As shown in Figure[[3]

FetchPush-v4 : The task in the environment is for a manipulator to move a block to a target posi-
tion on top of a table by pushing with its gripper. The robot is a 7-DoF Fetch Mobile Manipulator
with a two-fingered parallel gripper. The robot is controlled by small displacements of the gripper
in Cartesian coordinates and the inverse kinematics are computed internally by the MuJoCo frame-
work. The gripper is locked in a closed configuration in order to perform the push task. The task
is also continuing which means that the robot has to maintain the block in the target position for an
indefinite period of time.

Ant-v5: The ant is a 3D quadruped robot consisting of a torso (free rotational body) with four legs
attached to it, where each leg has two body parts. The goal is to coordinate the four legs to move in
the forward (right) direction by applying torque to the eight hinges connecting the two body parts of
each leg and the torso (nine body parts and eight hinges).

Humanoid-v5: The 3D bipedal robot is designed to simulate a human. It has a torso (abdomen) with
a pair of legs and arms, and a pair of tendons connecting the hips to the knees. The legs each consist

21

Under review as a conference paper at ICLR 2026

of three body parts (thigh, shin, foot), and the arms consist of two body parts (upper arm, forearm).
The goal of the environment is to walk forward as fast as possible without falling over.

HalfCheetah-v5: The HalfCheetah is a 2-dimensional robot consisting of 9 body parts and 8 joints
connecting them (including two paws). The goal is to apply torque to the joints to make the cheetah
run forward (right) as fast as possible, with a positive reward based on the distance moved forward
and a negative reward for moving backward. The cheetah’s torso and head are fixed, and torque can
only be applied to the other 6 joints over the front and back thighs (which connect to the torso), the
shins (which connect to the thighs), and the feet (which connect to the shins).

Walker2D-v5: Like other MuJoCo environments, this environment aims to increase the number of
independent state and control variables compared to classical control environments. The walker is a
two-dimensional bipedal robot consisting of seven main body parts - a single torso at the top (with
the two legs splitting after the torso), two thighs in the middle below the torso, two legs below the
thighs, and two feet attached to the legs on which the entire body rests. The goal is to walk in the
forward (right) direction by applying torque to the six hinges connecting the seven body parts.

Hopper-v5: The environment aims to increase the number of independent state and control variables
compared to classical control environments. The hopper is a two-dimensional one-legged figure
consisting of four main body parts - the torso at the top, the thigh in the middle, the leg at the
bottom, and a single foot on which the entire body rests. The goal is to make hops that move in the
forward (right) direction by applying torque to the three hinges that connect the four body parts.

6.5 IMPLEMENTATION DETAILS
6.5.1 REWARD NORMALIZATION

Reward Normalization is crucial in the training and convergence of models. The original reward
function, denoted as Rj(x, A), is advised to be transformed into a normalized form Ry(x, A),
which ideally possesses the following characteristics:

Ry(x,A) = CRi(x,A), C >0, supRs(z,A)<1 (42)
x,A

If a constant C, typically represented as
holds:

m, can be identified, the following equation
Zy =Ro (e, At) + YRo(xt—1, Ar—1) + ’Ysz(iBt—z, A—2) + -+

2 1 (43)

<d+9l+914+ < ——

L=

Taking into account the upper bound mentioned above, we recommend configuring the hyperparam-

eters Viyax = ﬁ

6.5.2 LOGARITHMIC OPERATIONS

If logarithmic operations are directly used to compute the loss function, it will result in significant
precision loss, especially when dealing with very small values. Therefore, directly using the loga-
rithm operator is unwise; we need to make some transformations on paper to avoid these precision
losses. The technique demonstrated below is the "log sum exp’ trick.

log(Z e’) =" + log(Z "), 2" = max (44)

1<i<N
1<i<N 1<i<N ==

The above transformation ensures that the values inside the logarithmic operations are greater than
1, thereby avoiding the problem of significant precision loss when the values are very small. Based
on the above discussion, ’log softmax’ can be represented as:

-)=z; —z" — log(Z e®*"), 2" = max (45)

. evi 1<i<N
ZISZSN 1<i<N ==

log(
Furthermore, for the logarithmic operation of cumulative distribution, it can be represented as:

22

Under review as a conference paper at ICLR 2026

ZlgigK e’

Z1§i§N eri

Dk<icn €
) = log(=
219’9\7 e

= (2" + log(Z %)) = (2" + log(Z %)) (46)

K<i<N 1<i<N

log(1

* k%
r = max x;, & = max x;
1<i<N K<i<N

In practice, we found that setting a near-zero lower bound (such as ¢ = 0.0001) for all cumulative
probabilities when constructing the Policy Loss will be more robust. This helps prevent the actor
network from making significant policy changes in pursuit of minor fluctuations in noise.

Dici<x €

2i<i<n €"

52151'51(e’ + ZK<1‘§N e’)
Z1gigN e

ZlgigK e@itlog(e) 4 ZK<i§N e:ci)

2i<i<n €"

:l’**+10g(Z erz,;+log(e)—m** + Z emi—z**)_(x*+log(Z ezi—m*))

1<i<K K<i<N 1<i<N

log(1 —(1—¢)

=log(

(47)

= log(

* * %k
" = max x;, x = max(max x; + log(e), max x;)
1<i<N 1<i<K K<i<N

23

	Introduction
	Related Work
	Models & Methods
	HRHR scenario
	Multidimensional Discrete Actors
	Clipped Double Q-learning for Discrete Value Distribution
	Critic Learning
	Policy Learning
	Exploration

	Experiments
	BipedalWalkerHardcore-v3
	FetchPush-v3
	Mujoco Environment

	Discussion and Conclusion
	Appendix
	Math Symbols
	Further background
	Fundamentals of Distributed Reinforcement Learning
	Algorithm of Double Critic Network

	A deeper analysis and illustration of mechanisms
	The Reason Why A Policy with Gaussian Actions Performs Worse in HRHR Scenarios
	Illustrations of Q-Value estimation with Different Algorithms
	Trap Cheese Problem and Mathematical Analysis

	Further Experiment Results
	Ablation Experiments of D2C-HRHR on BipedalWalkerHardcore-v3
	Results and Analysis of the Mujoco Mission
	An Detailed Description to Various Tasks in Experiment

	Implementation Details
	 Reward Normalization
	 Logarithmic Operations

