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Abstract

The quality of the representations learned by neural networks depends on several
factors, including the loss function, learning algorithm, and model architecture.
In this work, we use information geometric measures to assess the representation
quality in a principled manner. We demonstrate that the sensitivity of learned
representations to input perturbations, measured by the spectral norm of the feature
Jacobian, provides valuable information about downstream generalization. On
the other hand, measuring the coefficient of spectral decay observed in the eigen-
spectrum of feature covariance provides insights into the global representation
geometry. First, we empirically establish an equivalence between these notions
of representation quality and show that they are inversely correlated. Second, our
analysis reveals the varying roles that overparameterization plays in improving
generalization. Unlike supervised learning, we observe that increasing model width
leads to higher discriminability and less smoothness in the self-supervised regime.
Furthermore, we report that there is no observable double descent phenomenon in
SSL with non-contrastive objectives for commonly used parameterization regimes,
which opens up new opportunities for tight asymptotic analysis. Taken together,
our results provide a loss-aware characterization of the different role of overparam-
eterization in supervised and self-supervised learning.

1 Introduction

Self-supervised learning (SSL) models learn representations from large unlabeled datasets by pro-
moting local self-consistency of the learned model function while avoiding trivial constant solu-
tions (Zbontar et al., 2021; Chen et al., 2020; Grill et al., 2020). State-of-the-art SSL algorithms are
able to learn generic features that can match the performance of supervised learning (Abbasi Kooh-
payegani et al., 2020). The quality of SSL representations is typically assessed via their generalization
performance on downstream tasks, requiring linear probes to be trained on top of these features using
labeled datasets. At present, developing a direct understanding of how the structure of SSL features
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Figure 1: (Left to right) Test error (solid) and train error (dashed) for ResNet18s of increasing base
width trained on CIFAR-10 as well as noisy CIFAR-10; Input Jacobian norm of features fθ learned
via standard supervised learning; Spectral decay coefficient. As model size increases, the test error
(left) undergoes double descent, mirrored by the feature Jacobian norm (middle). Intriguingly, the
spectral decay coefficient inversely correlates with the feature Jacobian trend, decreasing until the
interpolation threshold and then increasing again for overparameterized models.

affects downstream generalization is an important open problem (Agrawal et al., 2022), drawing
direct parallels to understanding biological representations in the brain (Chung & Abbott, 2021).

We propose a simple information geometric framework to explore the structure of the learned
representations, and their smoothness properties. In particular, for given (centered) features fθ :
X → Rd, we are interested in the structure of the sample covariance Σn = 1

n

∑
n fθ(xn)fθ(xn)T .

Recent works (Agrawal et al., 2022; He & Ozay, 2022), demonstrate that the eigenspectrum of
Σn, Λ(Σn) = {λ1 ≥ λ2 ≥ . . . ≥ λd}, can be approximated by a power law distribution where
λi ∝ i−α for i = 1, . . . , d and α > 0. Intuitively, the spectral-decay coefficient α, offers a label-
free measure of representation quality, where α → ∞ suggests dimensionality collapse or α → 0
suggests whitening (He & Ozay, 2022). Notably, α is a good proxy for measuring the extent of
heavy-tailed nature in the eigenspectrum distribution, which in turn provides insights into how the
signal and noise are distributed among the available d ambient dimensions. Although α is indicative
of representation manifold smoothness in asymptotic regime (Stringer et al., 2019), it is unclear
whether this correspondence holds in finite-dimensional settings.

In concurrent work, Gamba et al. (2023, 2022b,a) studied the role of overparameterization on the input
sensitivity of neural networks’ model functions, thereby quantifying the relationship between ambient
dimensionality and smoothness of the learned feature space in supervised learning settings. In this
work, we experimentally connect α to input sensitivity of the features fθ, by studying the expected
spectral norm of the input Jacobian J = 1

n

∑N
n=1 ‖∇xfθ‖2, on the training datasetD = {xn}Nn=1. In

doing so, we aim to bridge the gap between notions of representation geometry and more theoretically
grounded measures of representation smoothness.

Recent advances in understanding generalization of models trained with supervised learning show
that deep models exhibit double descent under overparameterization (Belkin et al., 2018). As model
size increase a neural network increases, the test error follows the classical bias-variance U-shaped
curve (Geman et al., 1992) until a model is large enough to interpolate the training set. Then, as
model size increases further, the test error improves again, providing a model for the remarkable
generalization ability of overparameterized models (Belkin et al., 2019; Geiger et al., 2019).

Contributions We empirically explore how the geometry of learned features, under a power law
assumption on their covariance eigenspectrum, relates to generalization via sensitivity of the learned
representation to input perturbations. We establish a strong inverse correlation between α and input
sensitivity on the training data of the underlying network function fθ , and connect α to generalization
performance. Our experimental contribution is two-fold: (1) in the supervised learning setting, we
report that overparameterization controls α non-monotonically and that spectral decay inversely
correlates with sensitivity of model function. (2) In the SSL setting, where the eigenspectrum power
law was first observed, we show that the eigenspectrum of overparameterized features is characterized
by lower spectral decay – corresponding to heavier eigenspectrum tails.
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Figure 2: (Left to right) Test error for linear probes trained on SSL features with ResNet18 encoder;
Input Jacobian norm of SSL features fθ; Spectral decay coefficient.

2 Related work

Multi-View Self-Supervised Learning has emerged as a promising approach to learning meaningful
feature representations from unlabeled data Chen et al. (2020); Zbontar et al. (2021). A key aspect of
these algorithms is to leverage multiple views of the same data sample by encouraging the network to
learn invariant and discriminative features that can be utilized for downstream tasks. Such algorithms
have broadly been studied under the umbrella of contrastive and non-contrastive learning. Notably,
non-contrastive learning algorithms, only require positively related samples. For instance, Barlow
Twins (Zbontar et al., 2021), aims to enforce orthogonality among the learned features (to avoid
collapse) in addition to learning to map similar images to nearby points in feature space. On the other
hand, BYOL (Grill et al., 2020) employs a bootstrapped teacher-student approach. Here an online
network is trained to predict the target network’s output given the same input, with the target network
being an exponential moving average of the online network’s weights.

Smooth Interpolation has been thought to underlie generalization performance in deep neural
networks. Specifically, large overparameterized models are known to learn smooth representations,
thereby impacting their consistency of predictions across small input perturbations and their ability to
generalize to unseen data (Gamba et al., 2023, 2022b; Novak et al., 2018). Smooth interpolation has
also been shown to reconcile the classical bias-variance tradeoff understanding of double descent
(Belkin et al., 2018). Furthermore, Arora et al. (2019) demonstrated that overparameterized neural
networks can learn to fit noiseless data with a small number of gradient descent steps and achieve
good generalization performance, implying that smoothness in the learned features plays a crucial role
in the generalization capabilities of these models. Additionally, techniques like data augmentation
Cubuk et al. (2018) and regularization methods such as dropout Srivastava et al. (2014) have been
employed to encourage smoothness in the learned feature space, leading to improved generalization.

3 Experiments

Across our experiments, we seek to explore the role of overparameterization as we keep the optimizer
fixed, but change the learning objective (i.e. supervised vs self-supervised objective). We compare the
learned representations obtained with end-to-end supervised training, to SSL representations. As our
backbones, we use convolutional networks with residual connections (ResNet18), which can be easily
trained with both pipelines, following common practice. To control model size, following Nakkiran
et al. (2019), we scale model capacity by varying the base-width of each residual block {1, ..., 64},
with experiments on CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009) and STL-10 (Coates et al.,
2011). For learning objectives, we consider supervised learning as the baseline, and compare learning
dynamics to Barlow Twins (Zbontar et al., 2021), BYOL (Grill et al., 2020) with 2 augmentations.
Experimental details are provided in appendix A. In line with prior work, we consider the noisy-label
regime to test the sensitivity and quality of features (Neyshabur et al., 2017). To measure information
geometry of the learned mappings, we approximate α and the Jacobian spectral norm, per protocols
elucidated in Appendix B. We also present additional results on purely convolutional models in the
Appendix C.
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Supervised learning setting
CIFAR-10 CIFAR-100

label noise 0% 10% 20% 0% 10% 20%
ConvNet -0.61 -0.56 -0.53 -0.53 -0.73 -0.72
ResNet18 -0.62 -0.75 -0.64 -0.26 -0.13 -0.05

SSL setting
CIFAR-10 STL-10

Barlow Twins -0.99 -0.89
BYOL -0.99 -0.83

Table 1: Spearman rank correlation ρ between α and the input Jacobian norm in the supervised
learning (left) and SSL (right) setting.

Self-Supervised Learning A core focus of our work is understanding the scaling behaviors on
pretraining with SSL objectives in the overparameterized regime. To this effect, we train Resnet-18
backbones with varying base widths using the Barlow-Twins learning objective and track the loss on
training/test sets. Simultaneously, we measure α and the feature Jacobian-spectral-norm.

In Figure 2 we strikingly observe that, unlike the supervised setting, there is no observable double
descent phenomenon in the self-supervised setting for the range of parameterizations considered. In
particular, increasing model width monotonically improves both train and test loss. We report similar
observations on STL10, and with BYOL as the pretraining objective in the Appendix C.

Equivalence of information-geometric metrics Previous works have established that higher eigen-
spectrum decay coefficient is indicative of a transition from discontinuous to smooth representation
manifolds in infinite-dimensional settings (Stringer et al., 2019). However, it is unclear whether
higher α values are indicative of smooth representations in finite-dimensional settings. Our results,
both in the supervised and SSL settings, establish a strong anti-correlation between α and the spectral
norm of Jacobian (Table 1). Notably, computing α takes significantly lower compute and time,
compared to estimating the Jacobian, thereby offering practical computational benefits in quantifying
smoothness of neural network representations.

Overparameterization and Denoising To ground our understanding of representation quality as
quantified by the information geometric metrics, in this section, we evaluate downstream generaliza-
tion on classification. In particular, we take backbones pretrained with Barlow-Twins and evaluate
a linear probe on these frozen features with different levels of label-noise. We compare this to
corresponding supervised learning baselines trained end-to-end with 20% training labels corrupted.

Following (Stephenson et al., 2020), seeking a fine-grained analysis in the overparameterized regime,
we breakdown the training accuracy into three components (i) on samples with uncorrupted labels (ii)
samples with corrupted labels (iii) samples with corrupted labels, evaluated on the ground truth label.
In Figure 3, we visualize this for different linear evaluations. Strikingly, we observe that even with
noise levels as high as 80%, the SSL pretrained models can recover up to 60% of the corrupted labels.
Importantly, the supervised baseline interpolates both clean and noisy training samples, losing any
label-correction ability in the overparameterized regime (base width ω > 9).

4 Conclusion

Summary Our analysis reveals the different roles of overparameterization under the influence
of learning objectives. In particular, we show that in self-supervised learning, the worst-case
sensitivity of the model to inputs monotonically increases with overparameterization in conjunction
with the emergence of heavier tails in the feature eigenspectrum, without any observable double
descent phenomenon, in the range of parameterizations considered, corresponding to commonly
used backbones. In contrast, overparameterized supervised features present relatively weaker tails,
resulting in stronger worst-case sensitivity regularization.

Limitations Our analysis is primarily empirical in its current scope, and as such doesn’t theoretically
establish the absence of double-descent in SSL pretraining. Asymptotic characterizations and
theoretical foundations of this learning dynamics are an exciting direction for future research.
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Figure 3: Downstream generalization performance on CIFAR-10 with increasing ratio of noisy labels
for linear probes trained on top of frozen Barlow Twins CIFAR-10 with ResNet18 encoder features.
(Left) Test accuracy for each linear probe. (Mid-left to right) We break down the training accuracy of
each linear probe into accuracy on the training samples with uncorrupted labels (mid-left), and those
with corrupted labels (mid-right). Finally, we assess the generality of SSL features by measuring their
ability of denoise the corrupted training targets (right panel). We report for comparison analogous
performance metrics for ResNet18s trained with end-to-end supervised learning on CIFAR-10 with
20% training labels randomly perturbed (green line plots).
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A Experimental setup

A.1 Supervised training

We train a family of ConvNets composed of 4 convolutional stages – each corresponding to a [Conv,
ReLU] block followed by maxpooling with stride 2 – and 1 dense classification layer. We also train a
family of ResNet18s (He et al., 2015) without batch normalization layers. Both network architectures
are composed of 4 convolutional stages, in which each spatial dimension is reduced by factor of 2 and
the number of learned feature maps doubles. More precisely, the convolutional stages respectively
follow the progression [ω, 2ω, 4ω, 8ω], where ω is the base width of the network, i.e. the number of
feature maps learned at the first layer.

In our experiments, following Nakkiran et al. (2019), we vary the base width in the range ω =
1, . . . , 64. By controlling the network size through the network width, we produce a range of models
presenting model-wise double descent in the test error, which captures the essence of the benign
overfitting phenomenon(Bartlett et al., 2020) observed for large interpolating networks, while also
presenting malign overfitting for models near the interpolation threshold. Furthermore, controlling
model size through base width allows us to keep the network depth fixed, and focus our study on
effective complexity of fixed-depth networks, for two network architecture families (ConvNets and
ResNets).

To tune hyperparameters, we take a random validation split of size 1000 from each CIFAR training
set. We train all networks with SGD with momentum 0.9, batch size 128, and fixed learning rate,
set at η = 5e − 3 for the ConvNets and η = 1e − 4 for the ResNets. We train all networks for
1000 epochs. To stabilize prolonged training, we use learning rate warmup over the first 5 epochs of
training, starting from a learning rate η0 = 10−1 × η.

A.2 SSL training

For our SSL experiments, we use a standard ResNet18 backbone with batch normalization layers
as the feature encoder. Similarly to the supervised experiments, we control model size by varying
the base width ω = 1, . . . , 64. Accordingly, the embedding dimensionality varies from dimension
d = 32 to d = 2048. To ensure good performance, we use a non-linear projector head consisting
of one hidden MLP layer with batch normalization and ReLU activations, with width matching the
embedding dimensionality of the encoder.

SSL features are learned on CIFAR-10 by using Barlow Twins (Zbontar et al., 2021) and BYOL (Grill
et al., 2020). At the end of SSL training, the projection layer is discarded, and the ResNet18 encoder
is used to generate features fθ(x).

For both Barlow Twins and BYOL, SSL learning is carried out using the Adam optimizer (Kingma &
Ba, 2014), with starting learning rate 0.001, and weight decay coefficients 1e− 5 (Barlow Twins)
and 1e− 6 (BYOL), for 100 epochs (Barlow Twins) and 300 epochs (BYOL). The lambda parameter
of Barlow Twins is set to λ = 0.005. The momentum parameter for BYOL is set to τ = 0.99.

Once SSL features are learned, linear probes are trained for 200 epochs with SGD with base learning
rate 0.1, decayed by a multiplicative factor γ = 0.95 at every epoch. The linear probes are trained
without weight decay. The chosen learning rate schedule is meant to ensure that training can
accommodate for fitting corrupted as well as clean labels, following Zhang et al. (2018).

A.3 Hardware specifications

Our codebase is implemented in Pytorch version 1.11, running on a local cluster equipped with
NVIDIA A100 GPUs with 40GB onboard memory. Our experiments involve training 64 ConvNets
and ResNets (each corresponding to a base width ω) for 1000 epochs. We use 3 random seeds,
controlling network initialization and the shuffling and sampling of mini-batches from the training set.
We use a dedicated random seed for generating the validation split used for hyperparameter tuning,
fixed for all networks, as well as a fixed seed for corrupting the CIFAR training labels.
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B Computing the feature Jacobian spectral norm

For linear operators A : (Rm, ‖ · ‖p)→ (Rd, ‖ · ‖q), the operator norm is defined as

‖A‖op := sup
x:‖x‖p 6=0

‖Ax‖q
‖x‖p

, (1)

where the norms ‖ · ‖p and ‖ · ‖q are respectively taken in input and feature space. Crucially, if
p = q = 2, the operator norm can be estimated by computing the largest singular value of A.

Computing the spectral norm Computing the spectral norm of ∇xfθ ∈ Rd×m entails two steps.
First, computing the gradient∇xfθ|x=x (via automatic differentiation), and then estimating its largest
singular value. To perform the latter, we use a standard power method. Starting at iteration t = 0 with
randomly initialized vectors ũ0 ∈ Rd, ṽ0 ∈ Rm, and corresponding normalized vectors u0 = ũ0

‖ũ0‖q ,

v0 = ṽ0

‖ṽ0‖p , at step t we compute
ũt ← ∇xfθ vt−1

ṽt ← uTt ∇xfθ

σt ← uTt ∇xfθ vt

(2)

with σt storing the largest singular value at convergence, defined based on a relative tolerance 1e− 6
on the size of the increments of σt. For large input spaces and large models fθ , where instantiating the
gradient might require too much memory, the power method algorithm can be efficiently computed
via iterated Jacobian-vector products.

C Additional experiments
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Figure 4: (Left to right) Test error (solid) and train error (dashed) for ConvNets of increasing base
width trained on CIFAR-10 as well as noisy CIFAR-10; Input Jacobian norm of features fθ learned
via standard supervised learning; Spectral decay coefficient. As model size increases, the test error
(left) undergoes double descent, mirrored by the feature Jacobian norm (middle). Intriguingly, the
spectral decay coefficient inversely correlates with the feature Jacobian trend, decreasing until the
interpolation threshold and then increasing again for overparameterized models.
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Figure 5: (Left to right) Test error (solid) and train error (dashed) for ConvNets of increasing base
width trained on CIFAR-100 as well as noisy CIFAR-100; Input Jacobian norm of features fθ learned
via standard supervised learning; Spectral decay coefficient. As model size increases, the test error
(left) undergoes double descent, mirrored by the feature Jacobian norm (middle). Intriguingly, the
spectral decay coefficient inversely correlates with the feature Jacobian trend, decreasing until the
interpolation threshold and then increasing again for overparameterized models.
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Figure 6: (Left to right) Test error (solid) and train error (dashed) for ResNet18s of increasing base
width trained on CIFAR-100 as well as noisy CIFAR-100; Input Jacobian norm of features fθ learned
via standard supervised learning; Spectral decay coefficient. As model size increases, the test error
(left) undergoes double descent, mirrored by the feature Jacobian norm (middle). Intriguingly, the
spectral decay coefficient inversely correlates with the feature Jacobian trend, decreasing until the
interpolation threshold and then increasing again for overparameterized models.
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Figure 7: Downstream generalization performance on STL-10 with increasing ratio of noisy labels,
for linear probes trained on top of frozen Barlow Twins STL-10 with ResNet18 encoder features.
(Left) Test accuracy for each linear probe. (Mid-left to right) We break down the training accuracy of
each linear probe into accuracy on the training samples with uncorrupted labels (mid-left), those with
corrupted labels (mid-right). Finally, we assess the generality of SSL features by measuring their
ability of denoising the corrupted training targets (right panel).
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Figure 8: Downstream generalization performance on CIFAR-10 with increasing ratio of noisy labels,
for linear probes trained on top of frozen BYOL CIFAR-10 with ResNet18 encoder features. (Left)
Test accuracy for each linear probe. (Mid-left to right) We break down the training accuracy of each
linear probe into accuracy on the training samples with uncorrupted labels (mid-left), those with
corrupted labels (mid-right). Finally, we assess the generality of SSL features by measuring their
ability of denoising the corrupted training targets (right panel). We report for comparison analogous
performance metrics for ResNet18s trained with end-to-end supervised learning on CIFAR-10 with
20% training labels randomly perturbed (green line plots).
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Figure 9: Downstream generalization performance on STL-10 with increasing ratio of noisy labels,
for linear probes trained on top of frozen BYOL STL-10 with ResNet18 encoder features. (Left) Test
accuracy for each linear probe. (Mid-left to right) We break down the training accuracy of each linear
probe into accuracy on the training samples with uncorrupted labels (mid-left), those with corrupted
labels (mid-right). Finally, we assess the generality of SSL features by measuring their ability of
denoising the corrupted training targets (right panel).
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