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ABSTRACT

In the context of condition monitoring for structures and industrial assets, the
estimation of unknown inputs, usually referring to acting loads, is of salient im-
portance for guaranteeing safe and performant engineered systems. In this work,
we propose a novel method for estimating unknown inputs from measured out-
puts, for the case of systems with a known or learned model of the underlying
dynamics. The objective is to infer those system inputs that will reproduce the ac-
tual measured outputs; this can be reformulated as a Partially Observable Markov
Decision Process (POMDP) problem and solved with well-established planning
algorithms for POMDPs. The cross-entropy method (CEM) is adopted in this pa-
per for solving the POMDP due to its efficiency and robustness. The proposed
method is demonstrated using simulated dynamical systems for structures with
known dynamics, as well as a real wind turbine with learned dynamics inferred
through Neural Extended Kalman Filters (Neural EKF); a deep learning-based
method for learning stochastic dynamics, previously proposed by the authors.

1 INTRODUCTION

The inference of the external inputs that are acting on dynamical systems, operating across domains
(including engineering, robotics, economics, and biology), is essential for understanding the con-
ditions under which systems operate. This is particularly true for the domains of Structural Health
Monitoring (SHM) and Prognostics and Health Management (PHM). The assessment of perfor-
mance or condition, such as fatigue accumulation and reliability, can be improved through the accu-
rate estimation of acting loads (Leitner & Figuli, 2018). The direct measurement of these inputs is
often challenging due to their distributed and continuous nature and the limited and noisy available
observations (Vettori et al., 2023). Various methods have been proposed to estimate unknown inputs
from measurable outputs, within an inverse problem setting. This task has been traditionally ap-
proached through input or input-state estimation methods, such as delayed observers (Sundaram &
Hadjicostis, 2007), Bayesian filtering methods (Gillijns & De Moor, 2007; Azam et al., 2017; Tatsis
et al., 2021; Maes et al., 2016). The majority of input-state estimation methods, tend to adopt linear
filters, such as the Augmented Kalman Filter (Lourens et al., 2012) or the Dual Kalman Filter (Azam
et al., 2015) schemes. In this case, an explicit definition of the system’s (linear) state space model of
the dynamics is required, which hinder integration with deep learning frameworks. While nonlinear
filter settings, e.g. those relying on an Unscented or Particle filter (Dertimanis et al., 2019), relax
this setting, they may compromise prediction accuracy for the sake of online (real-time) estimation.

In this paper, we explore the input estimation problem from a new perspective, which operates in
an offline manner, but is flexible in admitting general (even neural network-based) representations
of the system dynamics. The proposed scheme aims to furnish a high precision reconstruction of
the system’s input, by formulating it as a Partially Observable Markov Decision Process (POMDP),
with the primary difference to a typical decision-making problem pertaining to the definition of

1



Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

reward/cost functions. This reformulation enables the use of state-of-the-art model-based reinforce-
ment learning algorithms for policy search. The cross-entropy method is chosen for its efficiency
and robustness. The proposed approach assumes the underlying dynamics model is either known or
learned.

2 BACKGROUND

2.1 PARTIALLY OBSERVABLE MARKOV DECISION PROCESS

A partially observable Markov decision process (POMDP) is defined by the tuple (Z,X ,U , f, g, r),
where Z is the state space, X is the observation space, and U is the action (input) space, while f, g
and r are the respective transition, observation and reward functions (Sutton et al., 1998). A Marko-
vian transition model is required for describing the system dynamics. One possible representation
is offered by the following stochastic equations:

zt = f(zt−1,ut−1) + wt,

xt = g(zt) + vt,

rt = r(xt,ut−1).

(1)

The latent states, zt, evolve according to the transition function, f , for an imposed instantaneous
input and a Gaussian random noise disturbance wt ∼ N (0,Q). Subsequently, we observe a noisy
or partially observed quantity according to the observation function, g, as well contaminated with a
Gaussian random noise vt ∼ N (0,R), reflecting measurement and modeling imprecision; finally, a
reward, rt, is received based on the reward function r, the generated observation, and the imposed
input. The ultimate goal is to search for a policy u1:T that maximizes the sum of rewards (or
minimizes costs).

At a high level, all standard reinforcement learning algorithms follow the same loop: the agent
interacts with the POMDP by using a trail policy, which may or may not match the true policy,
by observing the current observation xt, selecting an action ut, then observing the resulting next
observation xt+1 and a reward value rt+1 = r(xt+1,ut). This procedure is repeated for multiple
iterations, and the agent uses the observed tuple (xt,ut,xt+1, rt+1) to update its policy. In this
paper, we propose to apply a similar framework for solving the input estimation (reconstruction)
problem for dynamical systems, given an observed batch of data. In this case, the policies to be
optimized are the system inputs.

2.2 THE UNKNOWN INPUT ESTIMATION PROBLEM RECAST AS A POMDP

To formulate the unknown input estimation problem as a POMDP, the reward function is defined as

r(ût) = ∥x̂t − xt∥. (2)

The objective is to find a candidate input ût that can minimize the difference between the observation
that is generated from this candidate input and the true (measured) observation. The key idea is to
define the reward function as the difference between the generated observation from the candidate
input and the true observation, and then solve the POMDP based on a priori known or an inferred
dynamics model.

Reformulating the input estimation problem as a POMDP offers two distinct advantages: 1) When
the dynamics model is readily available, it is straightforward to solve the reformulated POMDP
with different well-established model predictive control (MPC) algorithms, offering ample solution
schemes. 2) When the dynamics model is not available, it is possible to apply model-based rein-
forcement learning (MBRL) methods, thus coupling this scheme with deep learning-based dynamics
models in order to accomplish simultaneous input estimation and dynamics model learning. For the
latter scenario, reinforcement learning is preferred over optimal control methods due to its ability
to handle uncertainty in data and modeling errors arising from fitted deep learning models. In this
work, we mainly investigate the use of the proposed framework for cases where the dynamics is
known a priori or inferred (learned) by means of deep learning methods. The task of simultaneous
estimation and learning is left for future work.
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Algorithm 1 Unknown Input Estimation with cross-entropy method (CEM)

Input: H Input estimation horizon I Optimization iterations
K Candidates per iteration n Number of top candidates to be selected

Initialize the belief distribution over inputs ut:t+H ∼ N(0, I)
for iteration i = 1, 2, ..., I do

Draw a set of candidate solutions u
(k)
t:t+H , k = 1, ...,K, from the current belief

N(µi, diag(σi))
Evaluate the rewards rk for k = 1, ...,K
Rank the K rewards rk and note their indices k an elite set N = {k ∈ {1, ...,K} :
rk is one of the minimal n rewards}
Update µi+1 = 1

n

∑
k∈N u

(k)
t:t+H and σi+1 = 1

n−1

∑
k∈N |u(k)

t:t+H − µi+1|
end for
return the first input ut

3 SIMULATION AND EXPERIMENTAL RESULTS

3.1 ROAD PROFILE

A degrading road surface (pavement) condition reduces the driving comfort, induces disruptions
compromising traffic safety, while further leading in substantial financial costs. Although high-
accuracy road profilers equipped with lasers, inertia sensors, and cameras have been developed,
their use is not practical for frequently evaluating the road network, owing to their high initial
and operation costs. Lower cost alternatives often suffer from poorer precision, unless boosted
with an appropriate processing or data analysis technique. Here, we suggest use of our suggested
POMDP scheme, for high accuracy estimation of road roughness, in the form of input estimation.

Figure 1: Road profile estimation.

In accounting for the interacting vehicle/road-surface sys-
tem, a half-car model is used. The system matrices are
detailed in Appendix A.3. We assume an accelerome-
ter is mounted on the car body, allowing to track accel-
eration. By checking the invertibility condition stated in
Appendix A.2, it is verified that a mere measurement of
the acceleration of the car body is enough for identify-
ing the input (i.e. the road profile). The road is sim-
ulated as a sinusoidal function, which represents large
wavelength variation in terms of an uphill and downhill
profile, with addition of random noise, for representing
shorter-wavelength variation, corresponding to the local
roughness of the road. The estimation results are shown

in Fig. 1, with the average RMSE of 4.14 × 10−4 and the average R2 of 0.9991. It can be ob-
served that both large-scale patterns and the local roughness can be accurately identified, using only
the acceleration of the car body, demonstrating the applicability and performance of the proposed
method.

3.2 WIND TURBINE

Figure 2: Position of sensors on the experimentally tested wind turbine blade. A total of eight
accelerometers, ai, are mounted on the blade, marked in red. Strain information is also collected,
sij , but remains unused here. The figure is reused from (Ou et al., 2021).
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We further demonstrate the value of the proposed input estimation framework in the context of SHM
applications for wind energy infrastructure. We validate use of the proposed scheme for vibration
monitoring of operational wind turbines. The data used in this paper were obtained and illustrated in
(Ou et al., 2021) by experimentally testing a small-scale wind turbine blade. The sensor placement
adopted during the experiments is shown in Fig. 2.

Figure 3: Input estimation of the wind tur-
bine blade.

Neural Extended Kalman Filters (Neural EKF),
adopted in (Liu et al., 2022) for learning struc-
tural dynamics (detailed in Appendix A.4), is a deep
learning framework to capture the dynamics of com-
plex systems. Here, we use Neural EKF as a means
to demonstrating applicability of the herein sug-
gested POMDP approach to input estimation, even
for cases where a model is not known a priori (as was
the case in the previous examples). Thus, the Neu-
ral EKF serves for recovering an underlying (latent)
dynamics model under availability of data. With this
learned model, we can use the presented POMDP
framework to conduct model-based input estimation.
In this example, we infer a dynamics model using
Neural EKF based on the acceleration measurements
collected from accelerometers a1 to a8, which serve

as system outputs, while the data collected from the force transducer f1 serve as information on the
system input. For the training purpose, the system inputs are also required to be measured for learn-
ing an input-output dynamics model, and simultaneous model learning and input estimation will be
considered for future work. Then, based on the learned dynamics model, we utilize the proposed
POMDP approach to conduct input estimation on further test datasets, this time assuming that the
input on f1 is unmeasured (unknown) and to be inferred. The results are shown in Fig. 3. To com-
pare the performance of our proposed method with other baseline models, we also trained a long
short-term memory (LSTM) network. It is observed that our proposed method yielded significantly
more accurate input estimation, with an RMSE of 0.129, while the RMSE for LSTM is 0.187. Our
method is model-based, in contrast to LSTM which is model-free, but it does not require any prior
knowledge of the model and relies solely on available data. We first estimate a deep learning-based
dynamics model from the available data, and then use a POMDP to perform model-based input es-
timation. The results are accurate even for use of a learned dynamics model, which intrinsically
contains modeling errors and approximations. Since in a real-world scenario, such modeling errors
are ubiquitous, it is important to establish flexible inference schemes, which account for uncertain-
ties. This is a trait of the proposed POMDP approach, where, further, the accumulated errors during
the input estimation process do not grow to be unbounded.

4 CONCLUSION

In this work, we investigate input estimation for dynamical systems from a new perspective, by re-
formulating this as a Partially Observable Markov Decision Process (POMDP). The ground-truth
system inputs are shown to be well-approximated by iteratively selecting those candidate inputs,
whose corresponding outputs can best approximate the actual measurements, and then updating the
belief distribution of the inputs. We show the applicability of the proposed methodology in the-
ory and real-world applications, and adopt a straight forward algorithm, the cross-entropy method,
to solve the reformulated POMDP. Different model-based reinforcement learning frameworks and
dynamics modeling methods can be integrated into the proposed methodology. The results of this
study demonstrate the potential of this new approach in improving the safety and performance of
engineered systems in the field of structural health monitoring. This method can be leveraged to
identify the loads acting on the structure during its operation, which can be used to ensure safety,
but also for improving the design of structural systems. This work aims to set the idea of such a use
case for POMDPs in place. The influence of various reinforcement learning methods and a thorough
comparison against further input estimation frameworks are left for further work.
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A APPENDIX

A.1 ADDITIONAL RESULTS ON A SIMULATED STRUCTURAL SYSTEM

Figure 4: Illustration of the simulated 10-DOF structural system.

In this section, we implement the proposed framework on a simulated 10 Degree of Freedom (10-
DOF) structural system, which is shown in Fig. 4. The structural system is governed by the follow-
ing differential equations:

Mq̈(t) +Cq̇(t) +Kq(t) = Suu(t), (3)
where the displacement vector q = [q1, ..., q10]

T ; the mass matrix M = diag(m1, ...,m10), and
m1 = ... = m10 = 1; the damping matrix C = diag(c1, ..., c10), and c1 = ... = c10 = 1; and the
stiffness matrix

K =



k1 + k2 −k2 0 . . . 0 0
−k2 k2 + k3 −k3 . . . 0 0
0 −k3 k3 + k4 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . k9 + k10 −k10
0 0 0 . . . −k10 k10

 ,

where k1 = ... = k10 = 1. In order to embed this within the POMDP framework, the afore-
mentioned differential equation can be brought in state-space form, by introducing the state vector
z = [qT , q̇T ]T . Consequently, Eq. 3 can be rewritten in a first order ODE form:

ż(t) = Acz(t) +Bcu(t), (4)

where the system matrices are

Ac =

[
0 I

−M−1K −M−1C

]
, Bc =

[
0

M−1Su

]
. (5)

Eq. 4 can be further discretized in time, using for example a zero order hold (zoh) scheme, which
leads into the following formulation:

zt+1 = Azt +But (6)

As for the observation equation, we consider the most general case, where a combination of the
displacement, velocities and accelerations of this system can be measured, and thus the measurement
vector can be formulated as the following form by using Eq. 3:

xt = Czt +Dut, (7)

where

C =

 Sd 0
0 Sv

SaM
−1K SaM

−1C

 , D =

 0
0

SaM
−1Su

 . (8)

Here, Sd, Sv and Sa are the selection matrices that determine which DOFs in terms of available
displacements, velocities and accelerations are measured.

We conduct a comprehensive investigation on the proposed method in terms of various traits: 1)
input type (random, sinusoidal, and sine-swept inputs) and input localization; and 2) measurement
availability.

To illustrate the workings of the proposed method, we evaluate the method for different input types,
including random noise (sampled from N (0, 1)), harmonic inputs (generated as sin(t)) and swept
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sine inputs (generated by sin(t2)). We first set the fourth, fifth and sixth DOFs to be loaded with the
same type of inputs, for the three different types respectively, while all other DOFs remain unloaded,
as shown in Fig. 4, so as to investigate its capability of input localization. Then we also test scenarios
where all three different types of inputs are applied to the fourth, fifth and sixth DOFs respectively
and simultaneously, while other DOFs of the inputs are set to be zero. For a comparison across
various input types, accelerations of all DOFs are assumed as available measurements. We evaluate
the root mean square error (RMSE) for the simulation cases. The results are presented in the left
side of Table 1. As an instance, the input estimation results for mixed-type inputs are plotted in
Fig. 5. The results reveal that the proposed method can effectively tackle diverse input types, and
can further estimate whether external inputs are applied on remaining DOFs, thus delivering input
localization information.

Table 1: Performance for different input types

Input type RMSE Measurement availability RMSE

Random noise .0219 Displacement .0105
Sine .0068 Velocity .0317
Sinesweep .0064 Acceleration .0553
Mixed .0116 Mixed .0341

Figure 5: Input estimation results for scenario with mixed input types.

Additionally, we wish to investigate the efficacy of the proposed approach under availability of
diversified measurements, i.e., different quantities from the possible set of displacement, velocity
and acceleration outputs. In accounting for such a mixed measurement case, it is assumed that
the displacements of the first 5 DOFs and the accelerations of the last 5 DOFs are measured. The
results are presented in the right side of Table 1. It is observed that the proposed method achieved
high accuracy for all the considered scenarios, which demonstrates the effectiveness of the proposed
method under different availability of measurements.

A.2 INVERTIBILITY CONDITIONS

If the unknown input u can be uniquely identified from the output x, the system is called invertible.
The conditions for invertibility have already been well studied in the literature (Sain & Massey,
1969). Here, we state a sufficient and necessary condition for invertibility of linear dynamical sys-
tems with different kinds of measurements.

8



Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

Theorem 1. The system is invertible if and only if the matrix N has full column rank, where

N =



D 0 . . . 0
CB D . . . 0
CAB CB . . . 0

...
...

...
CAn−1B CAn−2B . . . D
CAnB CAn−1B . . . CB

...
...

...
CA2n−1B CA2n−2B . . . CAn−1B


(9)

and n is the dimension of the state space.

If the system is not invertible, there would be infinitely many candidate inputs that can generate the
same output, which makes the search for the true system inputs impossible, since the problem is
intrinsically ill-conditioned.

A.3 HALF-CAR MODEL

Figure 6: Road condition evaluation via input estimation algorithms. mf ,mr, and mH represent
the masses of the front tire, rear tire, and the car body, respectively.

A half-car model is here used to simulate the vehicle dynamics. The state vector is defined as
z = [zH , θ, zf , zr], where zH , zf and zr are the displacements of the car body, front tire and rear
tire, respectively, corresponding to the half car structure shown in Fig. 6; and θ is the pitching angle
of the car body. The corresponding system matrices serve as the dynamics model describing the
vehicle, which allows to conduct model-based input estimation for the road profile. The system
matrices for the half-car model are as follows:

M =

 mH 0 0 0
0 Iy 0 0
0 0 mf 0
0 0 0 mr

 ,

C =

 cf + cr Lrcr − Lfcf −cf −cr
Lrcr − Lfcf L2

fcf + L2
rcr Lfcf −Lrcr

−cf Lfcf cf 0
−cr −Lrcr 0 cr

 ,

K =

 kf + kr Lrkr − Lfkf −kf −kr
Lrkr − Lfkf L2

fkf + L2
rkr Lfkf −Lrkr

−kf Lfkf kf + ktf 0
−kr −Lrkr 0 kr + ktr

 ,

(10)

where mH = 2200, Iy = 1100,mf = 106,mr = 152, cf = cr = 2500, kf = 2 × 104, kr =
2.6× 104, ktf = ktr = 4× 105.

A.4 NEURAL EXTENDED KALMAN FILTERS

Neural Extended Kalman Filters (Neural EKF), adopted in Liu et al. (2022) for learning structural
dynamics, is a deep learning framework to capture the dynamics of complex systems. The frame-
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work can be described in the form of a nonlinear state space model:

zt = fθt(zt−1,ut−1) + wt, (transition) (11)
xt = gθo(zt) + vt, (observation) (12)

where fθt and gθo are learnable functions (i.e., not defined a priori) governing the transition and
observation models, both parameterized by neural networks with parameters θ = θt

⋃
θo. The

process, wt, and observation, vt, noise sources are assumed to follow Gaussian distributions, with
respective covariances set as learnable parameters during the training process.

It is worth noting that, while most of the dynamical VAE setups (Girin et al., 2020; Krishnan et al.,
2017; Rangapuram et al., 2018; Fraccaro et al., 2017; Chung et al., 2015; Karl et al., 2017; Higgins
et al., 2017), which extend VAEs to a dynamical version by considering the temporal evolution of
the latent variables, or deep state space models, use an additional neural network as the inference
model. However, here the inference model of the Neural EKF follows the format of an Extended
Kalman Filter, which is a well-established Bayesian filter approximation for nonlinear systems of
known nonlinear functions. The Neural EKF in essence extends the EKF framework to a learnable
observer representation. This alleviates the need for deriving a separate inference network, qϕ,
parameterized by a parameter vector ϕ that is independent of parameters within fθt and gθo . Since
the objective ELBO largely depends on the goodness of reconstruction and inference, a separate
inference network can weaken the training of the transition and observation models.

Within this framework, the model of Eq. 12 can be learned by maximizing an evidence lower bound
(ELBO) of the data log-likelihood

log p(x) ≥ L(θ, ϕ;x) = Eqϕ(z|x,u)[log pθo(x|z)]− KL
(
qϕ(z|x,u)||pθt(z,u)

)
, (13)

Since the posterior distributions qθ(zt|x,u) can be computed in closed form by EKF, the above
ELBO can be computed in a surrogate way as:

L(θ;x) = −1

2

T∑
t=1

[
log |Ct|TΣt|TC

T
t|T +R|

+ (xt − gθo(µt|T ))
T (Ct|TΣt|TC

T
t|T )

−1(xt − gθo(µt|T )) + dx log(2π)

+ log
|At−1|TΣt−1|TA

T
t−1|T +Q|

|Σt|T |
− dz + Tr((At−1|TΣt−1|TA

T
t−1|T +Q)−1Σt|T )

+ (fθt(µt−1|T )− µt|T )
T (At−1|TΣt−1|TA

T
t−1|T +Q)−1(fθt(µt−1|T )− µt|T )

]
,

(14)

where A·|· =
∂f(µ·|·,ut−1)

∂µ·|·
is the Jacobian of f at µ·|·, and C·|· =

∂g(µ·|·)

∂µ·|·
is the Jacobian of g at

µ·|·.
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