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While invariances naturally arise in almost any type of real-world data, no efficient
and robust test exists for detecting them in observational data for arbitrarily given
group actions. We tackle this problem by studying measures of invariance that can
capture even negligible underlying patterns. Our first contribution is to show that,
while detecting subtle asymmetries is computationally intractable, a randomized
method can be used to estimate robust closeness measures to invariance within
constant factors. This provides a general framework for robust statistical tests of
invariance. In addition, we focus on kernel methods and propose deterministic
algorithms for robust testing with respect to both finite and infinite groups, accom-
panied by a rigorous analysis of their convergence rates and sample complexity.
Finally, we revisit the general framework in the specific case of kernel methods,
showing that recent closeness measures to invariance, defined via group averaging,
are provably robust, leading to powerful randomized algorithms.

1. Introduction

Invariances are ubiquitous. Almost all scientific fields study data that manifest consistent patterns
that remain unchanged under various transformations [1]. For example, the laws of physics exhibit
invariances under coordinate changes or changes in time, promising the universality of underlying
principles [2–4]. Traditionally, machine learning models are designed to be invariant with respect to
the symmetries of the data by construction, leading to better computational and statistical properties
[1]. However in general, prior to introducing invariances into models, either by design or through
post-processing steps, it is essential to first verify whether the observational data is invariant with
respect to a given algebraic group or not, which is the main focus of this work.

Group invariance hypothesis testing methods encompass a broad range of statistical approaches,
including permutation tests and randomization tests [5–10]. These nonparametric tests examine the
null hypothesis that the data distribution is invariant under a group action G of transformations [11].
In algebraic terms, the group action G is closed under composition, contains an identity element,
and has an inverse for each element g ∈ G. Koning and Hemerik [10], Koning [12], Hemerik [13]
argue that, by considering sign-flipping tests, the class of invariance tests can be traced back to
the early works of Fisher [14], Fisher et al. [15], Efron [16]. They further extend their argument by
suggesting that even standard methods, such as t-tests [17, 18], can be interpreted as tests for group
invariances. Testing other class of invariances, e.g., w.r.t. rotations with broader applications has
also been explored in the literature [19–22]. However, our focus is on developing general recipes,
rather than emphasizing a specific class of invariances.

In this paper, we study hypothesis testing of invariances, given a general topological compact group
G, which may be finite or infinite, acting on the domain of datapoints X . We test whether the input
distribution µ ∈ P(X ) is invariant with respect to transformations induced by G. We define the null
hypothesis H0 as the assumption that µ is the same as gµ for all g ∈ G. The alternative hypothesis
H1 is defined as the existence of g ∈ G such that D(µ, gµ) ≥ ϵ, where D is a metric on the probability
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space P(X ). This definition of the alternative hypothesis H1 is designed to robustly demonstrate
that µ is not G-invariant. The threshold ϵ is introduced to ensure the distinguishability between
hypotheses H0 and H1. In terms, we formulate the problem as the following.

Input: n independent and identically distributed (i.i.d.) samples from an unknown probabil-
ity distribution µ; a group action G, and a metric D over the space of probability measures, a
threshold ϵ.
Output: Either H0 or H1, where

H0 : µ
d≡ gµ for all g ∈ G.

H1 : sup
g∈G

D(µ, gµ) ≥ ϵ. (1)

The null hypothesis H0 can be equivalently rewritten as µ
d≡ gµ, where g is drawn according to

the Haar measure (uniform) defined over the group action G. The main challenge in this class of
hypothesis tests is that the group G may be infinite, or finite but with prohibitively large size |G|. For
example, for the group of orthogonal matrices O(d), G is infinite, while for the permutation group
Pd, |G| = d! ∼

√
d
(
d
e

)d
. As another example, for the group of sign-flipping matrices Fd, which are

diagonal matrices with elements in {±1}, we know that |G| = 2d. This computational problem is
amplified when searching for a certificate ĝ such that D(µ, ĝµ) ≥ ϵ, which serves as evidence for the
hypothesis H1. We note that, for almost all uncountable choices of the group G, e.g., Lie groups, the
Optimization Problem 1 is highly non-convex, even if we assume the measure µ is readily accessible.

Additionally, there is a major statistical barrier for Formulation 1. Recall that we do not have access
to µ directly; instead, we only have the empirical measure µ̂ induced by n i.i.d. samples. Therefore,
we cannot evaluate the optimization problem sup

g∈G
D(µ, gµ) directly. Instead, we can only estimate it

from the observations. The trivial estimator sup
g∈G

D(µ̂, gµ̂) is highly biased, and it is not clear how to

derive non-asymptotic consistency guarantees for this estimator for general choices of distributions
µ and group actions G.

Our fundamental result solves these obstacles. We show that there is no need to exhaustively search
over the space G for such a certificate ĝ. We demonstrate that, under minimal assumptions on the
metric D, supg∈G D(µ, gµ) is surprisingly sandwiched by constant factors of Eg[D(µ, gµ)], where the
randomness is induced by g drawn from the Haar measure over the compact group G. An informal
version of this theorem is provided below, with the formal details deferred to subsequent sections.

Theorem 1 (Informal version of Theorem 3). Under the minimal assumption that the metric D is
shift-invariant with respect to G,

Eg[D(µ, gµ)] ≤ sup
g∈G

D(µ, gµ) ≤ 4Eg[D(µ, gµ)],

where expectation is w.r.t. left Haar (uniform) measure over the group G.

This result is rather surprising, as at first glance, supg∈G D(µ, gµ) appears to be computationally
intractable. And indeed this is the case, as we show in subsequent sections. Even for a finite group
G, the exact computation of arg supg∈G D(µ, gµ) is NP-hard, even in the benign setting without
randomness, such as when µ is a Dirac delta measure. However, Theorem 1 shows that it can be
approximated within a factor of 4 by introducing randomization, which can be efficiently estimated
by data observations. This theorem is general and holds for many choices of the metric D (Section 4)
and any compact topological group G, including Lie groups. In light of this flexibility, we propose a
general recipe below.

General recipe. We introduce another alternative hypothesis H̃1, where

H̃1 : Eg[D(µ, gµ)] ≥ ϵ′, (2)
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with a threshold parameter ϵ′. By Theorem 1, non-asymptotic bounds on Type I and Type II errors of
the newly designed test 2 can be converted to non-asymptotic bounds on Type I and Type II errors of
the original hypothesis test 1. Furthermore, in contrast to the optimization problem supg∈G D(µ, gµ),
the term Eg[D(µ, gµ)] can be readily estimated from i.i.d. observations by calculating the empir-
ical mean of D(µ, gµ). We recall again that it is not clear how to estimate supg∈G D(µ, gµ) from
observations with non-asymptotic guarantees in general.

Next, while our framework is general, we focus on hypothesis testing described by H0 versus H1

for the special case of kernel Maximum Mean Discrepancy (MMD) distances, due to their favorable
computational and statistical properties. We propose solutions to achieve consistent hypothesis
testing for H0 and H1 with finite sample guarantees for Type I and Type II errors in the case of finite
groups. Furthermore, we illustrate how similar ideas can extend to infinite groups G, by elaborating
on the case of rotation invariances. Finally, we revisit the hypothesis testing based on our general
recipe and discuss its implications by analyzing the hypothesis test of H0 versus H̃1, as opposed to
H1.

The structure of this paper is as follows. We begin with discussion on the related work and defer
a detailed review of the preliminaries on invariances, kernels and embeddings of measures to
the appendix. Next, we discuss the robust invariance hypothesis testing of H0 versus H1 and its
computational hardness results. We then present our general framework, Theorem 1, and explain
how it allows us to reformulate the problem. We further explore the special case of Maximum Mean
Discrepancy (MMD) distance for testing H0 versus H1, offering solutions for both finite and infinite
group settings. Finally, we revisit the MMD setting in the context of H0 versus H̃1 and discuss its
implications. We provide rigorous analysis, confidence intervals, algorithms and consistency results
for each one of these settings. In the end, we complement our theory in Theorem 1 with experiments
on rotational symmetries, practically showing that supg∈G D(µ, gµ) is within constant factor of the
term Eg[D(µ, gµ)].

2. Related Work

As discussed in the previous section, testing invariances is a prolonged fundamental problem in
machine learning and statistics. Here, we review some of the most recent works on this topic. In a
slightly less related topic, Law et al. [23] proposed probability distance measures that inherently
encoded invariance to additive symmetric noise within the embeddings, so as to account for
measurement and data collection noises. Bellot and van der Schaar [24] presented testing on set-
valued data with applications in electronic health records. Dobriban [25] discusses the consistency
of randomization tests based on invariances for signal-plus-noise models. Kashlak [26] shows
that specific functions of random variables exhibit certain invariances in the limit. Koning and
Hemerik [10] suggest statistically selective deterministic group transformation testing as opposed to
traditional Monte Carlo group-invariance tests based on a uniformly randomly selected subset of
the elements of the group. In a follow-up, Koning [12] introduce a tradeoff between the power of
the test and computational complexity by selecting a coded subgroup, a very tiny subgroup which
is not necessarily easy-to-find for all types of group actions. Ramdas et al. [27] observed that, in
the special case of permutations, sampling from any subset (not necessarily a subgroup) of the
permutations according to an arbitrary distribution (not necessarily uniform) suffices for the test.
Chiu and Bloem-Reddy [28] proposed measuring the invariance of a distribution by considering its
distance to the orbit-averaged distribution. In contrast to these works, we focus on robust hypothesis
testing, where a certificate of the Type described in Equation (1) is required. Additionally, we discuss
general remedies for invariance testing over arbitrary compact groups.

For further discussion on related work, particularly on invariances in machine learning and kernels,
please refer to Appendix A.
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3. Background

In this section, we provide a short review of the necessary background for the paper, while deferring
the detailed version to Appendix B.

Throughout this paper, we consider a complete metric space X and we study (Borel) probability
measures µ ∈ P(X ). Moreover, we consider a compact topological group G, endowed with the
(uniform) left Haar measure α, acting on X via homeomorphisms. Indeed, each group element g
corresponds to a continuous bijection on X , and the group operation is composing of functions. For
any probability measure µ ∈ X , let gµ ∈ P(X ) denote the push-forward measure according to the
action of g on X . Similarly, one can define µG which is the distribution of gx when x ∼ µ and g ∈ G
is chosen according to left Haar (uniform) measure on G, independently.

A probability metric D : P(X )×P(X ) → R is a metric on the space of (Borel) probability measures
P(X ). It is called shift-invariant, if and only if D(gµ, gν) = D(µ, ν) for any probability measures
µ, ν ∈ P(X ).

4. Main Results

We start this section by asserting that the exact computation of arg supg∈G D(µ, gµ), even when the
group G is finite and the distribution µ is a single-point Dirac delta distribution—and there is no
randomness—is computationally intractable.

Theorem 2 (Computational intractability). There exists a shift-invariant pseudometric D : P(X ) ×
P(X ) → R, a finite group G, and a discrete probability measure µ such that solving the optimization problem
arg sup

g∈G
D(µ, gµ) is NP-complete.

The proof of Theorem 2 is presented in Appendix E.1. We carefully craft a pseudometric D(., .), a
finite group action G, and a deterministic measure µ such that arg supg∈G D(µ, gµ) solves a special
variant of Travelling Salesman Problem (TSP), which we prove to be NP-complete. Theorem 2 implies
that, even in the simplest settings, the optimization problem of Equation (1) is computationally
intractable, let alone the statistical challenges in estimating supg∈G D(µ, gµ) from observations. Next,
we state our main theorem that enables a randomized approximation for supg∈G D(µ, gµ) instead.

Theorem 3 (Probabilistic approximation (formal version of Theorem 1)). Let X be a complete metric
space and P(X ) denote the space of (Borel) probability measures on X . Let G be a compact topological group
acting continuously on X . Consider a shift-invariant probability metric D : P(X )× P(X ) → R. Then,

Eg[D(µ, gµ)] ≤ sup
g∈G

D(µ, gµ) ≤ 4Eg[D(µ, gµ)],

where expectation is taken w.r.t. left Haar (uniform) measure over the group G.

The proof of Theorem 3 is presented in Appendix E.2.

Remark 4.1. The shift-invariance of D w.r.t. group G in Theorem 3 is a general assumption, satisfied
in many settings: Wasserstein distance and any isometry group G; Sobolev Integral Probability
Metric and isometry group G; TV distance and any general group G, and MMD distance with
shift-invariant kernels.

5. Kernel Maximum Invariance Criterion (KMaxIC)

In this section, we consider the special case of kernel Maximum Mean Discrepancy (MMD) dis-
tances2 and focus on proposing algorithms for the hypothesis testing described by H0 versus H1 in
Equation (1).

2A detailed review of the theory of kernel mean embeddings is provided in Appendix B.
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Let H denote the Reproducing Kernel Hilbert Space (RKHS) of a given Positive Definite Symmetric
(PDS) kernel K, and let µH ∈ H denote the embedding of µ ∈ P(X ) into H. Then, consider the
probability metric D(µ, ν) = MMD(µ, ν) := ∥µH − νH∥H.

The Kernel Maximum Invariance Criterion (KMaxIC) measures closeness to invariance by uniformly
bounding the MMD distance across all group elements transformations.

Definition 1 (Kernel Maximum Invariance Criterion (KMaxIC)). For any probability measure
µ ∈ P(X ), the Kernel Maximum Invariance Criterion (KMaxIC) is defined as

KMaxIC(µ) := sup
g∈G

∥∥(gµ)H − µH
∥∥2
H,

where gµ is the shifted version of µ with respect to the group element g ∈ G.

First, we note that KMaxIC successfully distinguishes G-invariant measures from non-invariants:

Theorem 4 (Definiteness of KMaxIC). For any probability measure µ ∈ P(X ), we have KMaxIC(µ) = 0
if and only if µ is G-invariant, assuming the kernel is universal.

The proof of Theorem 4 is provided in Appendix D.6. This result demonstrates that KMaxIC provides
a well-defined notion of distance to G-invariance for probability measures.

In the next section, we propose solutions to achieve consistent hypothesis testing for H0 and H1

(Equation (1)) with finite sample guarantees for Type I and Type II errors in the case of finite groups.

6. Testing Invariances via KMaxIC: Finite Groups

In this section, we present a deterministic hypothesis testing algorithm for H0 and H1 in Equation (1)
based on KMaxIC. For simplicity, we first focus on finite groups, and later we generalize to infinite
groups.

Note that KMaxIC does not admit a representation as expectations over kernels. To overcome
this challenge in designing statistical hypothesis tests using KMaxIC, we leverage group-theoretic
properties.

We begin with the following definition:

Definition 1 (Generating sets). A set S ⊆ G is called a generating set for a group G if for every
g ∈ G, there exists k ∈ N and s1, s2, . . . , sk ∈ S, such that for each i ∈ [k], either si ∈ S or s−1

i ∈ S,
and g = s1s2 . . . sk.

Intuitively, generating sets are subsets of a group that can "generate" the entire group when their
elements (or their inverses) are multiplied together. For any (not necessarily generating) set S ⊆ G,
we have the following inequality:

KMaxIC(µ) ≥ max
g∈S

∥∥(gµ)H − µH
∥∥2
H.

However, with generating sets S ⊆ G, we can establish a converse to the above inequality.

Theorem 5 (Definiteness of KMaxIC via generating sets). Assuming the underlying kernel used to define
KMaxIC is universal, for any arbitrary generating set S ⊆ G and any probability measure µ ∈ P(X ), if

max
g∈S

∥∥(gµ)H − µH
∥∥2
H = 0,

then KMaxIC(µ) = 0, which implies that µ is G-invariant.

The proof of Theorem 5 is provided in Appendix D.7.

This result suggests that it is sufficient to test over a generating set rather than the entire group.
Generating sets typically have much smaller cardinality compared to G, leading to significant
reductions in sample complexity. In fact, one can show that:
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Proposition 1 (Size of generating sets). Any finite group G has a generating set S ⊆ G of size at most
log2(|G|).

The proof of Proposition 1 is presented in Appendix D.8. Therefore, to test whether a probability
measure is G-invariant, we can estimate

∥∥(gµ)H − µH
∥∥2
H from data for each g ∈ S:

Proposition 2. For any g ∈ G and any probability measure µ ∈ P(X ), we have∥∥(gµ)H−µH
∥∥2
H = 2Ex,x′ [K(x, x′)]− 2Ex,x′ [K(x, gx′)],

where x, x′ ∼ µ are independent random variables.

The proof of Proposition 2 is provided in Appendix D.9. This identity leads to Algorithm 1.

Algorithm 1 Testing Invariance via KMaxIC
Input: n i.i.d. samples xi ∼ µ, i ∈ [n], a generating set S ⊆ G, and a threshold c ∈ (0,∞).

1: For each g ∈ S, compute:

ĉg =
4

n(n− 1)

n∑
i,j=1
i ̸=j

K(xi, xj)

− 4

n(n− 1)

n∑
i,j=1
i ̸=j

K(xi, gxj).

2: if max
g∈S

ĉg ≤ c then

3: return There is not enough evidence to reject the null hypothesis H0 that µ is G-invariant.
4: else
5: return H1: µ is not G-invariant.
6: end if

The total runtime of Algorithm 1 on n samples is O(n2|S|), assuming that the kernel function can
be computed for each pair of points in constant time. Thanks to Proposition 1, the time complexity
is logarithmic in the group size when an appropriate generating set is used, without the need to
sample from G. The time complexity can be further reduced to O(n|S|) by replacing U-statistics
with empirical estimates over disjoint pairs of independent samples.

6.1. Confidence Intervals for KMaxIC

In this section, we provide confidence intervals for Algorithm 1. To begin, we introduce the
following definition. For any generating set S ⊆ G, let ℓ(S) denote the maximum length of the
minimal representations of group elements g ∈ G as products of elements (or inverses of elements)
from S. This quantity plays a crucial role in the confidence intervals derived for the parameter c in
Algorithm 1.

Theorem 6. Consider Algorithm 1 ran on n samples from a G-invariant probability measure µ. Then, the
probability of a Type I error (i.e., incorrectly rejecting the invariance) is bounded as

P
(
H1|H0

)
= P

(
max
g∈S

ĉg > c
∣∣∣ µ is G-invariant

)
≤ |S| exp

(
− nc2

128c21

)
,

where c1 := supx∈X K(x, x). Moreover, the Type II error, which is the probability of incorrectly accepting a
non-invariant measure using Algorithm 1, approaches zero as the sample size increases. Quantitatively, for
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any probability measure µ ∈ P(X ) such that KMaxIC(µ) ≥ 2c′ > cℓ(S)2, we have

P
(
H0|H1

)
= P

(
max
g∈S

ĉg ≤ c
∣∣∣ µ is not G-invariant

)
≤ exp

(
−

n
(

2c′

ℓ(S)2 − c
)2

128c21

)
.

The proof of Theorem 6 is presented in Appendix E.3. The theorem allows us to conclude:

Corollary 6.2. For any ϵ, δ > 0 and any finite group G, Algorithm 1 can distinguish G-invariant probability
measures from non-invariant measures with KMaxIC(µ) ≥ 2ϵ, with probability at least 1− δ, given

n ≥ 128c21ℓ(S)
4

ϵ2
log

(
|S|
δ

)
,

i.i.d. samples, via the threshold c =
ϵ

ℓ(S)2
. In other words, the sample complexity of Algorithm 1 is

O
(
ℓ(S)4

ϵ2
log

(
|S|
δ

))
.

In the next section, we provide detailed explanations about how to achieve appropriate generating
sets for different finite groups to evaluate the results. Note that the runtime of Algorithm 1 depends
linearly on |S|, which demands small size generating sets, while the sample complexity depends
quadratically with ℓ(G), and it is also required to be small.

Remark 6.3. Algorithm 1 provides a hypothesis test with confidence level (i.e., Type I error) δ for
the null hypothesis that µ is G-invariant with the acceptance threshold

c =

√
−128c21

ϵ2
log

(
δ

|S|

)
,

where c1 := supx∈X K(x, x). Moreover, the Type II error (i.e., the probability of incorrectly accepting
a non-invariant measure using Algorithm 1) vanishes as the sample size increases, as shown in
Theorem 6. Hence, the test in Algorithm 1 is consistent, in the statistical sense.

7. Examples and Applications to Finite Groups

In this section, we evaluate the performance of Algorithm 1 across several well-known finite groups
from the literature by computing their generating sets and analyzing their sample complexity.

7.1. Permutation Invariance Testing

To apply Algorithm 1 to the permutation group Pd, we need to find generating sets S ⊆ Pd that
minimize both |S| and ℓ(S). To this end, we define σi := (i i+ 1) for each i ∈ [d− 1], meaning that
σi swaps element i with i+ 1 while leaving the other elements unchanged. We then consider the
following generating set:

S⋆ :=

{
σi ∈ Pd : i ∈ [d− 1]

}
. (3)

Proposition 3. The set S⋆ ⊆ Pd defined via Equation (3) is a generating set for Pd and satisfies

ℓ(S⋆) ≤ d(d− 1)

2
.

The proof of Proposition 3 is presented in Appendix D.10. This shows that one can use Algorithm 1
to test permutation invariance with sample complexity

n = O
(
d8

ϵ2
log

(
d

δ

))
.
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7.2. Sign-Flips Invariance Testing

The group of d-dimensional sign-flips Fd consists of 2d diagonal matrices:

Fd :=

{
A = diag(v) ∈ Rd×d : v ∈ {±1}d

}
.

Although Fd is a large group, it can be generated simply using the following set:

S⋆ :=

{
A = diag

(
1d − 2ei

)
∈ Rd×d : i ∈ [d]

}
,

where ei ∈ Rd denotes the unit vector in coordinate i ∈ [d] and 1d ∈ Rd denotes the all-one vector.
Moreover, it is evident that ℓ(S⋆) = d. Therefore, using Algorithm 1, one can test invariance to
sign-flipping with sample complexity:

n = O
(
d4

ϵ2
log

(
d

δ

))
.

7.3. Testing Invariances to Cyclic Groups

As a final application of testing invariance via KMaxIC, we study the cyclic group G = Z/mZ with
size m. Note that cyclic groups are generated by only one element, 1 ∈ Z/mZ, but this is not an
appropriate generating set since it has ℓ(S) = m. To construct a generating set with smaller ℓ(G),
consider the following set:

S⋆ := [m] ∩
{
2k : k = 0, 1, . . .

}
. (4)

Proposition 4. The set S⋆ ⊆ G defined via Equation (4) is a generating set for G and satisfies

ℓ(S⋆) ≤ log2(m).

The proof of Proposition 4 is presented in Appendix D.11. Note that this gives a much better bound
compared to the one-element generating set. Indeed, using Algorithm 1 with S⋆ defined above
provides a statistical test of invariance to cyclic groups with sample complexity:

n = O

(
log4(m) + log

(
1
δ

)
ϵ2

)
.

8. Testing Invariances via KMaxIC: Infinite Groups

To apply Algorithm 1 to infinite groups, we need to find generating sets with small ℓ(G). However,
unlike finite groups, infinite groups can only have generating sets S with ℓ(S) < ∞ when |S| = ∞.
Therefore, if we naively use a generating set S to apply Algorithm 1 to an infinite group, we would
need to test over infinitely many group elements, which is impossible.

To resolve this issue, we fix a generating set S ⊆ G with ℓ(S) < ∞, and then refine it to a smaller
finite set Ŝ ⊆ S that provides an appropriate covering of the original set S. For simplicity, in this
section, we focus on matrix groups consisting of orthogonal matrices G ⊆ O(d) acting on X ⊆ Rd.
The general case follows using a similar approach.

Definition 1 (Covering sets). Given S ⊆ O(d), we say that a finite set Ŝ ⊆ S provides a γ-covering
of S if and only if

sup
s∈S

min
ŝ∈Ŝ

∥s− ŝ∥op < γ,

where ∥ · ∥op denotes the operator norm of matrices.
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Using the concept of covering sets, we can apply Algorithm 1 over Ŝ with provable guarantees on
both Type I and Type II errors:

Theorem 7. Consider a PDS kernel K : X ×X → R, where X ⊆ Rd is a closed subset, and let G ⊆ O(d) be
an orthogonal subgroup acting on X . Assume that K(x, ·) : X → R is an r-Lipschitz function with respect
to the norm ∥ · ∥2 on Rd, for each x ∈ X . Let S ⊆ G be a generating set for G with ℓ(G) < ∞, and let Ŝ be a
γ-covering of S.

Then, when applying Algorithm 1 via Ŝ to test invariance to G, the probability of a Type I error (i.e., incorrectly
rejecting the invariance) is bounded as

P
(
H1|H0

)
= P

(
max
g∈Ŝ

ĉg > c
∣∣∣ µ is G-invariant

)
≤ |Ŝ| exp

(
− nc2

128c21

)
,

where c1 := supx∈X K(x, x). Moreover, the Type II error, which is the probability of incorrectly accepting
a non-invariant measure using Algorithm 1, approaches zero as the sample size increases. Specifically, for
any probability measure µ ∈ P(X ) with Ex∼µ[∥x∥2] ≤ b such that KMaxIC(µ) ≥ 3c′ > cℓ(S)2 + 2rbγ,
we have

P
(
H0|H1

)
= P

(
max
g∈Ŝ

ĉg ≤ c
∣∣∣ µ is not G-invariant

)
≤ exp

−
n
(

3c′

ℓ(S)2 − 2rγb− c
)2

128c21

 .

The proof of Theorem 7 is presented in Appendix E.4.

Similar to the case with finite groups, the test in Algorithm 1 is statistically consistent for infinite
groups. Moreover, we conclude the following important result:

Corollary 8.2. Let G ⊆ O(d) denote an infinite group with a generating set S ⊆ G such that ℓ(S) < ∞,
and let Ŝ ⊆ S be a γ-covering of S with γ =

ϵ

2rbℓ(S)2
. Then, for any ϵ, δ > 0, Algorithm 1 can distinguish

G-invariant probability measures from non-invariant measures with KMaxIC(µ) ≥ 3ϵ, with probability at
least 1− δ, given

n ≥ 128c21ℓ(S)
4

ϵ2
log

(
|Ŝ|
δ

)
,

i.i.d. samples, via the threshold c =
ϵ

ℓ(S)2
. In other words, the sample complexity of Algorithm 1 is

O

(
ℓ(S)4

ϵ2
log

(
|Ŝ|
δ

))
.

We conclude this section by noting that the method we used here to obtain upper bounds differs
from traditional methods that focus on covering the entire group (e.g., group codes [12]). Here, we
focused on covering the generating set, which, as we will see, allows for exact constructions for
rotational symmetries SO(d) in the next section.

9. Examples and Applications to Infinite Groups

In this section, we apply the theory from the previous section to an important infinite group testing
problem: rotational symmetries, denoted by SO(d) on X = Rd, assuming that Ex∼µ[∥x∥2] ≤ 1. This
group is formally defined as:

SO(d) :=
{
A ∈ Rd×d : AAT = Id, det(A) = 1

}
.
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To apply Algorithm 1, we need to find a generating set S ⊆ SO(d) with small ℓ(S) and a good
γ-covering Ŝ ⊆ S. Define Rij(θij) ∈ Rd×d to be the ordinary rotation matrix rotating in the ij-plane
in Rd by an angle θij , while keeping all other coordinates fixed. We use the following generating set:

S :=

{
Rij(θij) : θij ∈ [0, 2π), i, j ∈ [d], i < j

}
.

It is well-known that this set generates SO(d). Specifically, for any A ∈ SO(d), there exist angles
θij for i, j ∈ [d], i < j, such that A =

∏
i<j

Rij(θij). Thus, S is a generating set for SO(d) with

ℓ(S) ≤ d(d− 1)

2
. Moreover, we can construct a finite γ-covering set Ŝ ⊆ S as follows. Fix a

parameter k ∈ N, and for each i < j, define

Ŝij :=

{
Rij(θij) : θij =

2πt

k
, t = 0, 1, . . . , k − 1

}
,

and let Ŝ :=
⋃

i<j Ŝij . Note that the set Ŝ contains
kd(d− 1)

2
elements. Moreover, there exists a

constant c′ such that

sup
θ

min
t

∥∥∥∥Rij(θ)−Rij

(
2πt

k

)∥∥∥∥
op

<
c′

k
.

Thus, to obtain a γ-covering, we set k =
c′

γ
.

To compute the sample complexity of Algorithm 1 using the proposed set Ŝ, we follow Corollary 8.2

and set γ =
ϵ

2rℓ(S)2
, which gives k =

2c′rℓ(S)2

ϵ
= O

(
d4

ϵ

)
. This implies that |Ŝ| = kd(d− 1)

2
=

O
(
d6

ϵ

)
. We can now run Algorithm 1 with the threshold c =

ϵ

ℓ(S)2
to test invariance to SO(d)

with n i.i.d. samples.

Therefore, for any ϵ, δ > 0, Algorithm 1 can distinguish SO(d)-invariant probability measures
from non-invariant ones with KMaxIC(µ) ≥ 3ϵ, with probability at least 1 − δ, given n =

O
(
d8

ϵ2
log

(
d

δ

))
, i.i.d. samples.

Remark 9.1. The method proposed in this section for exactly constructing coverings for SO(d) also
applies to many other matrix groups (such as O(d) or Stiefel manifold), as we have explicit small
generating sets for them. Here, we focused on rotational symmetries as an important application of
our method, but it can be generalized to other well-known infinite groups as well.

10. Kernel Mean Invariance Criterion (KMIC)

In this section, we revisit the general recipe for testing invariances via the alternative hypothesis H̃1:

H̃1 : Eg[D(µ, gµ)] ≥ ϵ.

In other words, we focus on proposing algorithms for the hypothesis testing described by H0 versus
H̃1 in Formulation 2. Similar to KMaxIC, here we focus on the special case of kernel Maximum
Mean Discrepancy (MMD) distances D ≡ MMD. Observe that according to Proposition 2,

D2(µ, gµ) =
∥∥(gµ)H − µH

∥∥2
H

= 2Ex,x′ [K(x, x′)]− 2Ex,x′ [K(x, gx′)],

where x, x′ ∼ µ independently, and g ∈ G is chosen uniformly at random and independently of x
and x′. This means that

Eg[D
2(µ, gµ)] = 2Ex,x′ [K(x, x′)]− 2Eg,x,x′ [K(x, gx′)].

10



Let µG denote the distribution of gx, where x ∼ µ and g ∈ G in uniformly distributed over the
group. Surprisingly, for shift-invariant kernels, we also have the following identity:

2
∥∥µG

H − µH
∥∥2
H = 2Ex,x′ [K(x, x′)]− 2Eg,x,x′ [K(x, gx′)],

See Proposition 6 for a proof. This means that

Eg[D
2(µ, gµ)] = 2

∥∥µG
H − µH

∥∥2
H.

The right hand side of the above identity, termed as the Kernel Mean Invariance Criterion (KMIC) in
this paper, is also introduced recently as a measure of closeness to invariance.

Definition 1 ([28]). Let µ ∈ P(X ). The Kernel Mean Invariance Criterion (KMIC) is defined as

KMIC(µ) :=
∥∥µG

H − µH
∥∥2
H,

where µG
H, µH ∈ H are the kernel mean embeddings of µG and µ, respectively.

KMIC also quantifies the distance to G-invariance: KMIC(µ) = 0 if and only if µ is G-invariant,
assuming the kernel is universal (Appendix C). More importantly, using our main result (Theorem 3),
we have

KMaxIC(µ) = sup
g∈G

D2(µ, gµ) ≤ 16
(
Eg[D(µ, gµ)]

)2
≤ 16Eg[D

2(µ, gµ)] = 32KMIC(µ).

Moreover, we also have

KMaxIC(µ) = sup
g∈G

D2(µ, gµ) ≥ Eg[D
2(µ, gµ)]

= 2KMIC(µ).

Therefore, we conclude that the optimal convergence rates and the Type I and Type II error bounds
for both tests according to KMIC and KMaxIC are equivalent to each other, up to constant factors. In
other words, while KMIC only provides an averaged measure of being invariance, it also provides
an algorithm, robust to all group transformations.

We provide a detailed review of testing invariance via KMIC as well as a detailed study of its
convergence rate and Type I and Type II errors in Appendix C. The corresponding testing algorithm
is also presented in Algorithm 2.

11. KMIC vs. KMaxIC: A Discussion and Comparison

In this paper, we proposed and analyzed two distinct methods for deriving testing algorithms:
KMaxIC (Algorithm 1) and KMIC (Algorithm 2). Thanks to Theorem 3, the two measures of distance
to invariance are equivalent up to a constant factor. Here, we provide a brief discussion on the
differences between their corresponding algorithms..

First, note that testing via KMIC is a randomized algorithm, as it involves generating n i.i.d. uniform
samples from the group to achieve µG. On the other hand, KMaxIC offers a deterministic testing
algorithm, with no need to sample from G, unlike KMIC. While the KMIC testing algorithm requires
n i.i.d. samples from G, KMaxIC evaluates invariance over a fixed subset of the group, which remains
independent of the number of samples.

Note that to propose a testing algorithm according to KMaxIC formulation, one needs to specifically
construct generating sets and coverings which needs problem specific designs. However, KMIC
allows to achieve a universal testing algorithm, which needs no design other than being able to
uniformly sample from the group.

11



12. Experiments
In this section, we examine Theorem 3 on synthetic data to validate the constant factor approximation.
Since the problem is intractable for large groups (Theorem 2), we focus on small-sized groups of
rotational symmetries.

We consider two-dimensional data x ∈ R2 generated independently according to a zero-mean

multivariate Gaussian distribution µ = N (0,Σ), where Σ =

[
1 0
0 2

]
. Moreover, we work with a

group of rotational symmetries of size k ∈ N:

G =

{
R
(2πt

k

)
: t = 0, 1, . . . , k − 1

}
,

where R(θ) :=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
∈ R2×2. Let µ̂ denote the empirical measure obtained from the

data.

In our experiments, we use n = 2000 data points and consider a rotational group of size k = 100.
We adopt the 1-Wasserstein distance as the metric on probability measures, formulated through the
optimal transport problem (i.e., we instantiate Theorem 3 with D ≡ W ). In Figure 1, we plot the
optimal transport distance W (µ̂, gµ̂) for all g ∈ G and its average over g ∈ G. The parameter θ = 2πt

k
runs from 0 to 2π, representing all group elements.

As observed in Figure 1, the function W (µ̂, gµ̂) is not concave over [0, 2π], aligning with Theo-
rem 2, which states that the overall maximization problem supg∈G W (µ̂, gµ̂) is generally intractable.
Furthermore, by plotting the ratio between W (µ̂, gµ̂) and supg∈G W (µ̂, gµ̂), we observe that it is
uniformly bounded above over the group by a constant (approximately 1.85). This is consistent with
Theorem 3, which proves a constant factor of four approximation through randomization.

Figure 1: A constant-factor approximation of the worst-case optimal transport distance, sup
g∈G

W (µ̂, gµ̂)

where G is the group of rotational symmetries in two dimensions, and µ̂ is the empirical measure
obtained from n samples of a non-isotropic multivariate Gaussian distribution.

13. Conclusion
In this paper, we study the robust formulation of testing invariance to a set of group transformations.
We prove that the robust distance to invariance, defined via probability metrics, while intractable to

12



compute exactly, can be approximated within constant factors through randomization. As a result,
we propose a general framework for robust testing of invariances using a new hypothesis testing
formulation. Next, we focus on distances defined via kernel methods, specifically Maximum Mean
Discrepancies (MMDs), and propose deterministic algorithms for robust testing with respect to both
finite and infinite groups, based on generating sets of groups and coverings. Finally, we prove that
another studied metric for measuring closeness to invariance, defined via group averaging and
kernels, is equivalent to the robust metric up to multiplicative constants. This leads to the result that
the group-averaged metric is robust, and we propose randomized testing algorithms with plausible
performance.
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A. Additional Related Work

Learning and Symmetries. Designing invariant machine learning models by construction has a rich
and long-standing history. To name a few, Convolutional Neural Networks (CNNs) were introduced
to exploit local shift-invariance structures in images [29, 30]. Deep Sets were developed to handle
set-structured data [31], and PointNets were proposed for point cloud data that are invariant to
permutations [32]. Graph Neural Networks (GNNs) [33] were designed for graph-structured data.

Recent efforts have explored alternative approaches, such as automatically discovering the underly-
ing symmetries in data [34–38]. Another line of work focuses on learning equivariant representations
given known symmetries [39, 40], particularly targeting symmetric disentangled representations
[41–43]. Despite this extensive body of work, the problem of testing invariances—central to our
work—remains relatively underexplored in the machine learning literature.

Kernels and Embedding of Distributions. The relationship between kernels and distributions has
been extensively studied over the past decades. Müller [44] introduced the notion of the Integral
Probability Metric (IPM) over a function class. Gretton et al. [45, 46] coined the term Maximum Mean
Discrepancy (MMD) when the function class is restricted to a Reproducing Kernel Hilbert Space
(RKHS). They showed that under the universality assumption of the RKHS, the MMD distance is
definite, meaning MMD(p, q) = 0 if and only if p = q. This led to the development of two-sample
testing using empirical MMD estimates.

Gretton et al. [47, 48] introduced the Hilbert-Schmidt Independence Criterion (HSIC) as a measure
of independence between random variables, defined as the Hilbert-Schmidt norm of the cross-
covariance operator. They demonstrated that independence could be tested using observations in
the form of universal kernels. Mroueh et al. [49] extended these ideas to gradient-regularized IPM
and explored its applications in feature selection.

Sriperumbudur et al. [50] characterized the relationship between characteristic and universal kernels,
providing necessary and sufficient conditions for the bijectivity of the kernel mean embedding of
distributions. Doran et al. [51] reduced kernel-based conditional independence testing to kernel
two-sample tests through permutations.

This area of research has seen continuous development. We conclude by highlighting a subset of
recent works contributing to this line of inquiry [52–61].

B. Background

In this section, we provide the necessary background group actions and kernels used in the paper.

B.1. Group Actions and Invariant Measures

The continuous action of a compact topological group G on a complete metric space X is defined
by a continuous function θ : G × X → X , such that for each g ∈ G, the mapping θ(g, ·) is a
homeomorphism on X . Additionally, it satisfies the property θ(g2, θ(g1, x)) = θ(g2g1, x) for any
g1, g2 ∈ G and any x ∈ X . For brevity, we denote the action of g ∈ G on x ∈ X as gx := θ(g, x). We
endow the group G with its associated unique (left) Haar probability measure, which provides the
uniform distribution over the group elements.

Examples of groups acting on spaces include the permutation group Pd, which acts on Rd via
permutation matrices, and the orthogonal group O(d), which acts on Rd via orthogonal matrices.

Let P(X ) denote the space of all Borel probability measures on X . For each µ ∈ P(X ), let gµ ∈ P(X )
be a Borel probability measure defined by (gµ)(A) = µ(g−1A) for any Borel-measurable set A ⊆ X
and any group element g ∈ G, where gA := {ga : a ∈ A}. We say that µ ∈ P(X ) is G-invariant if and
only if µ = gµ for all g ∈ G.
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In particular, a probability measure is invariant with respect to the action of a group G if and only
if it assigns the same probabilities to each event and its "shifted version" according to the group
action. For example, Gaussian random variables define G-invariant probability measures on Rd

with respect to the group of orthogonal matrices G = O(d).

B.2. Positive Definite Symmetric Kernels

Let X be a complete metric space. A Positive Definite Symmetric (PDS) kernel K : X × X → R is
a continuous symmetric function with the following property: for any positive integer n and any
points x1, x2, . . . , xn ∈ X , the Gram matrix [K(xi, xj)]

n
i,j=1 ∈ Rn×n is positive semi-definite.

Kernels serve as measures of similarity. Notable examples of PDS kernels include the Gaussian
kernel, defined as K(x1, x2) = exp

(
− 1

2σ2 ∥x1 − x2∥22
)
, where the kernel is defined over the space

X = Rd.

Let L2(X ) denote the space of square-integrable real-valued functions on X . For each PSD kernel K,
there is an associated Reproducing Kernel Hilbert Space (RKHS) H ⊆ L2(X ) with an inner product
denoted by ⟨·, ·⟩H, which satisfies the following properties:

• For each point x ∈ X , the feature function Φ(x) = K(·, x) belongs to the RKHS H.
• For any f ∈ H and any x ∈ X , we have the reproducing property: f(x) = ⟨f,K(·, x)⟩H.

Combining these two properties, we find that K(x1, x2) = ⟨Φ(x1),Φ(x2)⟩H for all x1, x2 ∈ X .

Note. For technical reasons, we consider uniformly bounded kernels: sup
x∈X

K(x, x) < ∞.

B.3. Shift-Invariant Kernels

As mentioned earlier, kernels introduce similarity measures on metric spaces. The concept of a
shift-invariant kernel refers to those kernels that measure similarity regardless of how the pair of
points is shifted according to a given group action.
Definition 1. Given a compact topological group G acting continuously on a complete metric space
X , and a PSD kernel K : X × X → R, we say that K is shift-invariant if and only if

K(x1, x2) = K(gx1, gx2),

for any g ∈ G and any x1, x2 ∈ X .

For example, the Gaussian kernel is shift-invariant with respect to G = O(d).

B.4. Kernel Mean Embeddings of Measures

For any probability measure µ ∈ P(X ) and any PSD kernel K, the kernel mean embedding of µ,
denoted as µH, is a unique element of the RKHS H that satisfies the following identity:

⟨f, µH⟩H = Ex∼µ[f(x)] = Ex∼µ[⟨f, ϕ(x)⟩],
for each f ∈ H. The existence and uniqueness of such a µH ∈ H are guaranteed by the Riesz
representation theorem for Hilbert spaces (see, for instance, [46]), therefore it can be inferred that
µH = Ex∼µ[ϕ(x)].

It is well-known that one can also uniquely recover the original probability measure µ from its kernel
mean embedding, provided that the PSD kernel K is universal. A PSD kernel K : X × X → R with
an RKHS H is said to be universal if, for any continuous function f : X → R and any positive ϵ, there
exists a function f̂ ∈ H such that supx∈X |f(x)− f̂(x)| < ϵ. The ability to uniquely recover probability
measures from their kernel mean embeddings leads to the following definition of Maximum Mean
Discrepancy (MMD) as a metric for comparing probability measures:

MMD(µ, ν) := ∥µH − νH∥H,

for any µ, ν ∈ P(X ).
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C. Kernel Mean Invariance Criterion (KMIC)

In this section, we provide a detailed review of the properties of KMIC [28].

The idea of KMIC is to construct a canonical G-invariant probability measure via group averaging,
and then compare it to the original measure using the Maximum Mean Discrepancy (MMD) metric
to quantify how far the measure is from being G-invariant.

Proposition 5 (Invariant Measure). Let µ ∈ P(X ) be a probability measure defined on a complete metric
space X , and let G be a compact topological group acting continuously on X . For each measurable set A ⊆ X ,
define

µG(A) := Eg[(gµ)(A)] = Eg[µ(gA)],

where the expectation is over uniformly sampled g ∈ G, according to its unique (left) Haar probability
measure. Then, µG ∈ P(X ) defines a G-invariant (Borel) probability measure on X .

The proof of Proposition 5 is presented in Appendix D.1.

This proposition motivates the following definition of the Kernel Mean Invariance Criterion (KMIC).

Definition 1 (Kernel Mean Invariance Criterion (KMIC)). Let X be a complete metric space and let
G be a compact topological group acting continuously on X . For any probability measure µ ∈ P(X ),
the Kernel Mean Invariance Criterion (KMIC) is defined as

KMIC(µ) :=
∥∥µG

H − µH
∥∥2
H,

where µG
H, µH ∈ H denote the kernel mean embeddings of the probability measures µG and µ,

respectively.

Note that KMIC(µ) ≥ 0 for all µ ∈ P(X ). Moreover, KMIC provides a notion of distance to being
G-invariant: KMIC(µ) = 0 if and only if µ is G-invariant.

Theorem 8 (Definiteness of KMIC). Let K be a universal PDS kernel defined on a complete metric space
X . Let µ ∈ P(X ) be a probability measure. Then, KMIC(µ) = 0 if and only if µ is G-invariant.

The proof of Theorem 8 is presented in Appendix D.2.

The above theorem demonstrates how KMIC is capable of distinguishing probability measures from
their canonical G-invariant probability measures. However, to propose statistical tests using KMIC,
an efficient representation is necessary to compute it using i.i.d. samples. The following proposition
facilitates this representation.

Proposition 6. Consider a shift-invariant PDS kernel K defined on the complete metric space X . Then,
KMIC can be alternatively represented as

KMIC(µ) = Ex,x′ [K(x, x′)]− Eg,x,x′ [K(x, gx′)],

where x, x′ ∼ µ independently, and g ∈ G is chosen uniformly at random and independently of x and x′.

The proof of Proposition 6 is presented in Appendix D.3. While we focused on shift-invariant kernels
in the above proposition, a general formula for arbitrary kernels is derived in the proof.

C.1. Testing Invariances via KMIC

Given n i.i.d. samples xi ∼ µ, i ∈ [n], how can one provide estimates of KMIC(µ)? Proposition 6
allows us to provide empirical estimates from data:

K̂MIC(µ) =
2

n(n− 1)

n∑
i,j=1
i̸=j

K(xi, xj)−
2

n(n− 1)

n∑
i,j=1
i ̸=j

K(xi, gjxj).

Here, we utilize n i.i.d. samples gj , j ∈ [n], each uniformly distributed over the group G. Note that
K̂MIC(µ), as a sum of two U-statistics, provides an unbiased estimator for KMIC(µ).
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Algorithm 2 Testing Invariances via KMIC
Input: n i.i.d. samples xi ∼ µ, i ∈ [n], and a threshold c ∈ (0,∞).

1: Generate n i.i.d. samples gj ∈ G, j ∈ [n], each uniformly distributed over G.
2: Compute the following:

K̂MIC(µ) =
2

n(n− 1)

n∑
i,j=1
i<j

K(xi, xj)−
2

n(n− 1)

n∑
i,j=1
i<j

K(xi, gjxj).

3: if K̂MIC(µ) ≤ c then
4: return There is not enough evidence to reject the null hypothesis H0 that µ is G-invariant.
5: else
6: return H̃1: µ is not G-invariant.
7: end if

The above estimator gives rise to Algorithm 2, a hypothesis testing algorithm with a threshold
c ∈ (0,∞).

It is worth mentioning that the total runtime of Algorithm 2 is O(n2), provided that we can sample
from G and compute the kernel function for each pair of points in constant time. Moreover, the
time complexity can be further improved to O(n) by modifying the algorithm and replacing the
U-statistics with empirical estimates over disjoint pairs of independent samples.

C.2. Convergence Rates and Confidence Intervals for KMIC

In this section, we analyze Algorithm 2. First, we derive the convergence rate of the empirical
estimator for KMIC(µ), and then we focus on obtaining confidence intervals to design the parameter
c ∈ (0,∞) appropriately.

Theorem 9 (Convergence rate for K̂MIC(µ)). For the estimator K̂MIC(µ) defined in Algorithm 2, we
have

E

[∣∣∣K̂MIC(µ)−KMIC(µ)
∣∣∣2] ≲

c21
n
, (5)

where c1 := sup
x∈X

K(x, x).

The proof of Theorem 9 is presented in Appendix D.4.

The above result shows that the estimator provided in Algorithm 2 converges in the mean. However,
to design statistical hypothesis tests, it is desirable to obtain confidence intervals based on the
threshold c ∈ (0,∞). The following theorem provides such bounds.

Theorem 10. For the estimator K̂MIC(µ) defined in Algorithm 2, we have

P

(∣∣∣∣∣K̂MIC(µ)−KMIC(µ)

∣∣∣∣∣ ≥ t

)
≤ 4 exp

(
− nt2

32c21

)
,

where c1 := sup
x∈X

K(x, x).

The proof of Theorem 10 is presented in Appendix D.5. We note that the result above provides confi-
dence intervals for estimating KMIC(µ) from data. Specifically, for any δ ∈ (0, 1), with probability
at least 1− δ, we have

K̂MIC(µ) ∈

[
KMIC(µ)−

√
32c21
n

log

(
4

δ

)
, KMIC(µ) +

√
32c21
n

log

(
4

δ

) ]
.
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In other words, we have

P
(
K̂MIC(µ) > c

∣∣∣ µ is G-invariant
)
≤ δ,

whenever n ≥
32c21 log

(
4
δ

)
c2

. This result shows that with an appropriate choice of the threshold c, the
Type I error of the proposed statistical test (i.e., the probability of failing to detect invariances in data
generated according to a G-invariant probability measure) is at most δ.
Corollary C.2. Algorithm 2 provides a hypothesis test with confidence level δ for the null hypothesis that µ

is G-invariant, with the acceptance threshold given by c =

√
32c21
n log

(
4
δ

)
, where c1 := supx∈X K(x, x).

Moreover, the Type II error, which is the probability of incorrectly accepting a non-invariant measure
using Algorithm 2, approaches zero as the sample size increases (Theorem 10). This demonstrates
that the test in Algorithm 2 is consistent in the statistical sense. Quantitatively, for any probability
measure µ ∈ P(X ) such that KMIC(µ) ≥ 2c, we have

P
(
K̂MIC(µ) ≤ c

∣∣∣ µ is not G-invariant
)
≤ δ,

whenever n ≥
32c21 log

(
4
δ

)
c2

. This shows that Algorithm 2 with threshold c can distinguish G-

invariant probability measures from non-invariant ones with KMIC(µ) ≥ 2c, with sample complexity

n =
32c21 log

(
4
δ

)
c2

, with probability at least 1− δ.

D. Proofs

D.1. Proof of Proposition 5

Proposition 5 (Invariant Measure). Let µ ∈ P(X ) be a probability measure defined on a complete metric
space X , and let G be a compact topological group acting continuously on X . For each measurable set A ⊆ X ,
define

µG(A) := Eg[(gµ)(A)] = Eg[µ(gA)],

where the expectation is over uniformly sampled g ∈ G, according to its unique (left) Haar probability
measure. Then, µG ∈ P(X ) defines a G-invariant (Borel) probability measure on X .

Proof. We start the proof by showing that µG is a valid (Borel) probability measure, in order to do so,
we show that it satisfies the following conditions, and hence it is a valid Borel measure.

• µG(∅) = Eg[µ(g∅)] = Eg[µ(∅)] = 0.

• Countable additivity: if {Ai}∞i is a sequence of disjoint sets belonging to Borel σ-field, then

µG(

∞⋃
i=1

Ai) = Eg[µ(g

∞⋃
i=1

Ai)]

= Eg[µ(

∞⋃
i=1

gAi)] (6)

= Eg[

∞∑
i=1

µ(gAi)] (7)

=

∞∑
i=1

Eg[µ(gAi)] (8)

=

∞∑
i=1

µG(Ai),
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where Equation (6) follows because of exchangeability of group actions and union, Equa-
tion (7) is due to σ-additivity of µ, and Equation (8) is derived by Fubini’s theorem. We also
note that µG(X ) = Eg[µ(gX )] = Eg[µ(X )] = 1 since g is bijective, thereby µG is a probability
measure. We conclude the proof by showing that µG is G-invariant,

∀g1 ∈ G µG(g1A) = Eg[µ(g
−1g1A)] = Eg′ [µ(g′A)] = µG(A),

where we used the fact that the Haar measure on the group G is invariant with respect to
any left action by g1 ∈ G, and thus g′ = g−1g1 is again distributed according to the Haar
measure on the group G.

D.2. Proof of Theorem 8

Theorem 8 (Definiteness of KMIC). Let K be a universal PDS kernel defined on a complete metric space
X . Let µ ∈ P(X ) be a probability measure. Then, KMIC(µ) = 0 if and only if µ is G-invariant.

Proof. We notice that by definition KMIC(µ) = ∥µG
H − µH∥H = MMD(µ, µG). Hence, by Theorem 5

of Gretton et al. [46], KMIC(µ) = 0 if and only if µ = µG, thus µ is G-invariant.

D.3. Proof of Proposition 6

Proposition 6. Consider a shift-invariant PDS kernel K defined on the complete metric space X . Then,
KMIC can be alternatively represented as

KMIC(µ) = Ex,x′ [K(x, x′)]− Eg,x,x′ [K(x, gx′)],

where x, x′ ∼ µ independently, and g ∈ G is chosen uniformly at random and independently of x and x′.

Proof. First, we indicate that by definition of µG, µG
H = Ex∼µG [ϕ(x)] = Eg[µH(gx)] = Ex∼µ,g[ϕ(gx)].

In turn,

KMIC(µ) = ∥µH − µG
H∥2H

= ⟨µH, µH⟩H + ⟨µG
H, µG

H⟩H − 2⟨µG
H, µH⟩H

= Ex∼µ[µH(x)] + Ex∼µG [µHG(x)]− 2Ex∼µ[µHG(x)]

= ⟨µH(x),Ex∼µ[ϕ(x)]⟩+ ⟨µG
H(x),Ex∼µG [ϕ(x)]⟩ − 2⟨µG

H(x),Ex∼µ[ϕ(x)]⟩
= ⟨µH(x),Ex∼µ[ϕ(x)]⟩+ ⟨Eg[µH(gx)],Ex∼µG [ϕ(x)]⟩ − 2⟨Eg[µH(gx)],Ex∼µ[ϕ(x)]⟩
= ⟨Ex∼µ[ϕ(x)],Ex∼µ[ϕ(x)]⟩+ ⟨Ex∼µ,g[ϕ(gx)],Ex∼µ,g[ϕ(gx)]⟩ − 2⟨Ex∼µ,g[ϕ(gx)],Ex∼µ[ϕ(x)]⟩
= Ex,x′∼µ[K(x, x′)] + Ex,x′∼µ,g,g′ [K(gx, g′x′)]− 2Ex,x′∼µ,g[K(gx, x′)]

= Ex,x′∼µ[K(x, x′)] + Ex,x′∼µ,g,g′ [K(g−1gx, g−1g′x′)]− 2Ex,x′∼µ,g[K(gx, x′)] (9)
= Ex,x′∼µ[K(x, x′)] + Ex,x′∼µ,g′′ [K(x, g′′x′)]− 2Ex,x′∼µ,g[K(gx, x′)] (10)
= Ex,x′∼µ[K(x, x′)]− Ex,x′∼µ,g[K(x, gx′)],

where Equation (9) follows by shift-invariance property of the kernel and Equation (10) by properties
of Haar measures.

Remark D.1. In the proof of Proposition 6, we leveraged the shift invariance property in Equation (9).
However, for general kernels, it is immediate to show that similarly,

KMIC(µ) = Ex,x′ [K(x, x′)] + Ex,x′,g,g′ [K(gx, g′x′)]− 2Ex,x′,g[K(x, gx′)].
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D.4. Proof of Theorem 9

Theorem 9 (Convergence rate for K̂MIC(µ)). For the estimator K̂MIC(µ) defined in Algorithm 2, we
have

E

[∣∣∣K̂MIC(µ)−KMIC(µ)
∣∣∣2] ≲

c21
n
, (5)

where c1 := sup
x∈X

K(x, x).

Proof. Define T1 = 2
n(n−1)

∑n
i,j=1
i<j

K(xi, xj) and T2 = 2
n(n−1)

∑n
i,j=1
i<j

K(xi, gjxj). Note that

E

[∣∣∣K̂MIC(µ)−KMIC(µ)
∣∣∣2] ≤ 2E

[
|T1 − E[T1]|2

]
+ 2E

[
|T2 − E[T2]|2

]
.

Let us focus on the first term. Define aij = K(xi, xj) = E[K(xi, xj)]. Note that

E
[
|T1 − E[T1]|2

]
= E

[∣∣∣ 2

n(n− 1)

n∑
i,j=1
i<j

aij

∣∣∣2] = 4

n2(n− 1)2

n∑
i,j=1
i<j

n∑
k,ℓ=1
k<ℓ

E[aijakℓ].

However, note that if i ̸= k and j ̸= ℓ, then E[aijakℓ] = 0. Therefore, there exists at most O(n3)
non-zero elements in the above sum, and each is at most E[aijakℓ] ≤ c21. Therefore, E

[
|T1−E[T1]|2

]
≲

n3 c21
n4 =

c21
n . Similarly, one can conclude that E

[
|T2 − E[T2]|2

]
≲ c21

n , and this completes the proof.

D.5. Proof of Theorem 10

Theorem 10. For the estimator K̂MIC(µ) defined in Algorithm 2, we have

P

(∣∣∣∣∣K̂MIC(µ)−KMIC(µ)

∣∣∣∣∣ ≥ t

)
≤ 4 exp

(
− nt2

32c21

)
,

where c1 := sup
x∈X

K(x, x).

Proof. Similar to the proof of Theorem 9, let us define T1 = 2
n(n−1)

∑n
i,j=1
i<j

K(xi, xj) and T2 =

2
n(n−1)

∑n
i,j=1
i<j

K(xi, gjxj). Note that

P
(
K̂MIC(µ)−KMIC(µ) ≥ t

)
= P(T1 + T2 ≥ t)

= P
(
T1 + T2 ≥ t

∣∣T1 > t/2
)
P(T1 > t/2)

+ P
(
T1 + T2 ≥ t

∣∣T1 ≤ t/2
)
P(T1 ≤ t/2)

≤ P(T1 > t/2) + P
(
T1 + T2 ≥ t

∣∣T1 ≤ t/2
)

≤ P(T1 > t/2) + P(T2 > t/2).

Therefore, we conclude that

P

(∣∣∣∣∣K̂MIC(µ)−KMIC(µ)

∣∣∣∣∣ ≥ t

)
≤ P(|T1| > t/2) + P(|T2| > t/2).

Using standard tail bounds on U-statistics [62, Example 2.23], we know that P(|T1| > t/2) ≤
2 exp

(
−nt2

4c21

)
. A similar upper bound also holds for T2. The proof is thus complete.

23



D.6. Proof of Theorem 4

Theorem 4 (Definiteness of KMaxIC). For any probability measure µ ∈ P(X ), we have KMaxIC(µ) = 0
if and only if µ is G-invariant, assuming the kernel is universal.

Proof. If the measure µ is G-invariant, then for all g ∈ G, gµ = µ almost everywhere and hence,
∥(gµ)H − µH∥2H = 0 and thereby, KMaxIC(µ) = 0. Next, assume that KMaxIC(µ) = 0, then
∥(gµ)H − µH∥2H = 0 for all g ∈ G. Thus, by Theorem 5 of Gretton et al. [46], gµ = µ and µ is
G-invariant.

D.7. Proof of Theorem 5

Theorem 5 (Definiteness of KMaxIC via generating sets). Assuming the underlying kernel used to define
KMaxIC is universal, for any arbitrary generating set S ⊆ G and any probability measure µ ∈ P(X ), if

max
g∈S

∥∥(gµ)H − µH
∥∥2
H = 0,

then KMaxIC(µ) = 0, which implies that µ is G-invariant.

Proof. Let the generating set S = {g1, g2, . . . , g|S|} and let g′ be a maxima element that attains
KMaxIC

g′ = argmax
g∈G

∥(gµ)H − µH∥2H.

By definition of generating set, there exist a finite set {g′i}ℓi=1, where its potential repetitive member

g′i ∈ S and g′ =
ℓ∏

i=1

g′i. Thus,√
KMaxIC(µ) = ∥(g′µ)H − µH∥H

= ∥(
ℓ∏

i=1

g′iµ)H − µH∥H

≤ ∥(
ℓ∏

i=1

g′iµ)H − (

ℓ−1∏
i=1

g′iµ)H∥H + ∥(
ℓ−1∏
i=1

g′iµ)H − µH∥H,

where we used triangle equality over the ∥.∥H norm. By iterative applications of triangle equality,√
KMaxIC(µ) ≤

ℓ∑
l=1

∥(
l∏

i=0

g′iµ)H − (

l−1∏
i=0

g′iµ)H∥H,

where we overload the notation by setting g′0 = e the indentity member in the group G. Now, by
induction we prove that for all l ∈ [ℓ], the term ∥(

∏l
i=0 g

′
iµ)H − (

∏l−1
i=0 g

′
iµ)H∥H = 0. We know that

∥(g′1µ)H − µH∥H = 0, thus µ = eµ = g′1µ almost surely. Now, assume that by induction assumption
for l,

∥(
l∏

i=0

g′iµ)H − (

l−1∏
i=0

g′iµ)H∥H = 0.

Thus,
∏l

i=0 g
′
iµ =

∏l−1
i=0 g

′
iµ = · · · = g′1µ = µ almost everywhere. Hence,

∥(
l+1∏
i=0

g′iµ)H − (

l∏
i=0

g′iµ)H∥H = ∥(g′l+1µ)H − µH∥H = 0,

and the induction hypothesis is proved. Putting all pieces together,√
KMaxIC(µ) ≤

ℓ∑
l=1

∥(
l∏

i=0

g′iµ)H − (

l−1∏
i=0

g′iµ)H∥H = 0.

Therefore, KMaxIC(µ) = 0 and the proof is concluded.
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D.8. Proof of Proposition 1

Proposition 1 (Size of generating sets). Any finite group G has a generating set S ⊆ G of size at most
log2(|G|).

Proof. Let S = {g1, g2, . . . , g|S|} be a minimal generating set for the finite group G. For each
k ∈ {1, 2, . . . , |S|}, define the subgroup Gk = ⟨g1, g2, . . . , gk⟩, which is generated by the first k
elements of S.

For each k ∈ {1, 2, . . . , |S|}, the element gk+1 must lie outside Gk. If this were not the case, then
the group G could be generated by the set {g1, g2, . . . , gk, gk+2, . . . , g|S|}, which contradicts the
assumption that S is minimal.

As a result, the coset gn+1Gn is disjoint from Gn. By construction, we know that gn+1Gn∪Gn ⊆ Gn+1,
which implies |Gn+1| ≥ |gn+1Gn|+ |Gn| = 2|Gn|. By applying, it follows that |G| = |G|S|| ≥ 2|S||G1|,
and since |G1| = 1, we conclude that |G| ≥ 2|S|, thus proving the result.

D.9. Proof of Proposition 2

Proposition 2. For any g ∈ G and any probability measure µ ∈ P(X ), we have∥∥(gµ)H−µH
∥∥2
H = 2Ex,x′ [K(x, x′)]− 2Ex,x′ [K(x, gx′)],

where x, x′ ∼ µ are independent random variables.

Proof. Note that (gµ)H = Ex∼gµ[ϕ(x)] = Ex∼µ[ϕ(gx)] where ϕ(x) = K(., x) for each x ∈ X . There-
fore, ∥∥(gµ)H − µH

∥∥2
H = ⟨µH, µH⟩H + ⟨(gµ)H, (gµ)H⟩H − 2⟨µH, (gµ)H⟩H

= Ex∼µ[µH(x)] + Ex∼gµ[(gµ)H]− 2Ex∼µ[(gµ)H]

= Ex,x′∼µ[K(x, x′)] + Ex,x′∼µ[K(gx, gx′)]− 2Ex,x′∼µ[K(x, gx′)]

= Ex,x′∼µ[K(x, x′)] + Ex,x′∼µ[K(x, x′)]− 2Ex,x′∼µ[K(x, gx′)] (11)
= 2Ex,x′∼µ[K(x, x′)]− 2Ex,x′∼µ[K(x, gx′)],

where x, x′ ∼ µ are independent and in Equation (11), we used the shift-invariance property of the
kernel. The proof is thus complete.

D.10. Proof of Proposition 3

Proposition 3. The set S⋆ ⊆ Pd defined via Equation (3) is a generating set for Pd and satisfies

ℓ(S⋆) ≤ d(d− 1)

2
.

Proof. Let σ ∈ Pd be an arbitrary permutation. We need to show that there exists a sequence
i1, i2, . . . , ik ∈ [d] of length k ≤ d(d−1)

2 such that σ = σi1 ◦ σi2 ◦ . . . ◦ σik . We prove this by induction
on d.

First note that the case d = 2 is trivial. Fix d > 2 and let σ ∈ Pd be an arbitrary permutation. Assume
that σ(d) = ℓ, for some ℓ ∈ [d]. Consider the following permutation: σ̃ = σℓ ◦ σℓ+1 ◦ . . . σd−1 ∈ Pd.
Note that σ̃(d) = ℓ. Let σ′ = σ̃−1 ◦ σ ∈ Pd. Note that σ′(d) = σ̃−1(ℓ) = d. This means that σ′ ∈ Pd

can be considered as a permutation of [d− 1]. Using induction hypothesis, one can represent σ′ as

25



composition of at most (d−1)(d−2)
2 transpositions. Moreover, since σ = σ̃ ◦ σ′, one can represent σ as

compositions of at most

(d− 1)(d− 2)

2
+ (d− 1) =

d(d− 1)

2

transpositions, and this completes the proof.

D.11. Proof of Proposition 4

Proposition 4. The set S⋆ ⊆ G defined via Equation (4) is a generating set for G and satisfies

ℓ(S⋆) ≤ log2(m).

Proof. Let t ∈ G = Z/mZ be an arbitrary group element. Our goal is to find ti ∈ S⋆, for i ∈ [k]

with k ≤ log2(m), such that t =
∑k

i=1 ti. Note that the elements of S⋆ are of the form 2ℓ for some
ℓ. Now, consider the binary representation of t: t =

∑k
i=1 ai2

i, where ai ∈ {0, 1} and k ≤ log2(m)
since t ∈ [m]. This representation provides the necessary decomposition of t ∈ [m], thus completing
the proof.

E. Proof of Main results

E.1. Proof of Theorem 2

Theorem 2 (Computational intractability). There exists a shift-invariant pseudometric D : P(X ) ×
P(X ) → R, a finite group G, and a discrete probability measure µ such that solving the optimization problem
arg sup

g∈G
D(µ, gµ) is NP-complete.

Proof. We demonstrate the computational hardness result by reducing it to a special variant of the
metric traveling salesperson problem (Metric TSP), which we refer to as the reward maximization
metric traveling salesperson problem (Reward Metric TSP). In this variant, instead of finding the
minimum tour that starts and ends at the same node, the objective is to find the maximum (most
profitable) tour. In Reward Metric TSP, the edges between nodes are characterized by a reward
function, rather than distances, that satisfies the metric property. In Proposition E.1, we show that
this special variant is also NP-complete.

Given a complete graph G with d nodes denoted by the set V , for all nodes u, v ∈ V , we de-
note the positive reward function between them by ρ(u, v). By the definition, ρ(., .) is a met-
ric and it satisfies triangle inequality. We want to find the maximum tour Cmax, i.e., Cmax =
argmaxC is a tour

∑
(u,v)∈C ρ(u, v). We scale the reward function ρ to design the new reward func-

tion d(., .) by d(u, v) := ρ(u, v)/M + 1, where M is an upper bound on the reward function ρ, i.e,
M = supu,v∈V ρ(u, v). By definition, 1 ≤ d(u, v) ≤ 2 and clearly d(., .) is also a metric. Additionally,
Cmax = argmaxC is a tour

∑
(u,v)∈C d(c, v).

Number the nodes of the graph G arbitrarily from 1 to d and call this numbering e : [d] → [d], e(i) = i
for all i ∈ [d]. For any other numbering g : [d] → [d] of the nodes of G, let Gg denote the resulting
renumbered copy of G. The set of all such numberings corresponds to the permutation group Pd. By
definition, for the identity element e ∈ Pd, we have Ge = G. Next, we choose the group action set
G = Pd and define the set X := {Gg | g ∈ Pd}, so that G ∈ X . Let µ be the Dirac delta measure on the
element G, i.e., µ = δG .

26



In sequel, we define the pseudometric D for any g ∈ G,

D(µ, gµ) :=

d∑
i=1

d
(
e−1g(i), e−1g(i+ 1 mod d)

)
+

d∑
i=1

d
(
g−1e(i), g−1e(i+ 1 mod d)

)
=

d∑
i=1

d
(
g(i), g(i+ 1 mod d)

)
+

d∑
i=1

d
(
g−1(i), g−1(i+ 1 mod d)

)
= 2

d∑
i=1

d
(
g(i), g(i+ 1 mod d)

)
, (12)

where Equation (12) follows by the double counting argument on the direction of calculating
the value of the resulting tour and the symmetry property of reward function d(., .). Intuitively,
1
2D(µ, gµ) is calculating reward of the tour resulted by traversing the graph G according to the
numbering g (or equivalently permutation g of the nodes).

Similarly, for any g, g′ ∈ G we define

D(g′µ, gµ) :=

d∑
i=1

d
(
g′

−1
g(i), g′

−1
g(i+ 1 mod d)

)
+

d∑
i=1

d
(
g−1g′(i), g−1g′(i+ 1 mod d)

)
,

where we are overloading g, g′ and e by using them as the elements of the permutation group and
also the mapping induced by the corresponding permutations. Now, we need to show that D(., .) is
indeed a shift invariant pseudometric. We start by showing that D(., .) is symmetric.

D(g′µ, gµ) =

d∑
i=1

d
(
g′

−1
g(i), g′

−1
g(i+ 1 mod d)

)
+

d∑
i=1

d
(
g−1g′(i), g−1g′(i+ 1 mod d)

)
=

d∑
i=1

d
(
g−1g′(i), g−1g′(i+ 1 mod d)

)
+

d∑
i=1

d
(
g′

−1
g(i), g′

−1
g(i+ 1 mod d)

)
= D(gµ, g′µ).

Next, we show that D(., .) is shift-invariant,

D(g′′g′µ, g′′gµ) =

d∑
i=1

d
(
(g′′g′)−1g′′g(i), (g′′g′)−1g′′g(i+ 1 mod d)

)
+

d∑
i=1

d
(
(g′′g)−1g′′g′(i), (g′′g)−1g′′g′(i+ 1 mod d)

)
=

d∑
i=1

d
(
g′

−1
g′′

−1
g′′g(i), g′

−1
g′′

−1
g′′g(i+ 1 mod d)

)
+

d∑
i=1

d
(
g−1g′′

−1
g′′g′(i), g−1g′′

−1
g′′g′(i+ 1 mod d)

)
=

d∑
i=1

d
(
g′

−1
g(i), g′

−1
g(i+ 1 mod d)

)
+

d∑
i=1

d
(
g−1g′(i), g−1g′(i+ 1 mod d)

))
= D(g′µ, gµ).

In the end, we prove the Triangle inequality for D(., .). In order to do so, we recall that 1
2D(g′′µ, gµ)

is the length of a tour C in the graph G endowed with metric d. Additionally, we designed the metric
d(., .) such that 1 ≤ d(u, v) ≤ 2.. Hence,

∑
(u,v)∈Cmax

d(u, v) ≤ 2|V | and |V | ≤
∑

(u,v)∈Cmax
d(u, v)
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Therefore, by terminology and multiple usage of this fact,

D(g′′µ, gµ) = 2
∑

(u,v)∈C

d(u, v)

≤ 2
∑

(u,v)∈Cmax

d(u, v)

≤ 4|V |

≤ 4
∑

(u,v)∈Cmin

d(u, v)

≤ D(g′′µ, g′µ) +D(g′µ, gµ),

where in the last line, we again exploited the fact that 1
2D(g′′µ, g′µ) and 1

2D(g′′µ, g′µ) are the length
of arbitrary tours in G, therefore their length is more than

∑
(u,v)∈Cmin

d(u, v). Putting all of these
pieces together, we showed that D(., .) is a shift invariant pseudometric.

To conclude the proof, given an instance of the Reward Metric TSP G equipped with a metric ρ(., .),
we form the scaled metric d(., .), the shift invariant pseudometric D(., .), finite group G, the set X ,
and the distribution µ = δG as above. By our construction, solution to the optimization problem,

sup
g∈G

D(µ, gµ)

is the maximum tour for the problem of Reward Metric TSP. Therefore, this optimization problem
for a specific choice of parameters is NP-complete.

Proposition E.1 (Hardness Result for Reward Metric TSP). Given a complete graph G, equipped with a
metric d, finding the maximum tour of the graph is NP-complete.

Proof. We prove this result by reduction to the problem of finding a Hamiltonian cycle problem.
Formally speaking, given a complete weighted graph G = (V,E), the question is whether this graph
has a Hamiltonian cycle or not. In order to build the reduction, we create a complete weighted graph
G′ = (V,E′), with the exact set of nodes as G but we assign weights d(., .) as follows.

• If an edge (u, v) ∈ E exists in the original graph G, we assign the weight d(u, v) = 2.

• If an edge (u, v) /∈ E doesn’t exist in the original graph G, we assign the weight d(u, v) = 1.

All the edges are positive and they satisfy the triangle inequality trivially. This G′ is a metric graph.
If the original graph G has a Hamiltonian cycle, then the Maximum Tour of the metric graph G′ has
the size 2|V |, otherwise the Maximum Tour of the metric graph G′ has a size strictly lower than 2|V |.
Therefore, the reduction is complete and since the problem of checking existence of a Hamiltonian
cycle is NP-complete, the Reward Metric TSP is also NP-complete.

E.2. Proof of Theorem 3

Theorem 3 (Probabilistic approximation (formal version of Theorem 1)). Let X be a complete metric
space and P(X ) denote the space of (Borel) probability measures on X . Let G be a compact topological group
acting continuously on X . Consider a shift-invariant probability metric D : P(X )× P(X ) → R. Then,

Eg[D(µ, gµ)] ≤ sup
g∈G

D(µ, gµ) ≤ 4Eg[D(µ, gµ)],

where expectation is taken w.r.t. left Haar (uniform) measure over the group G.

Proof. First, note that

Eg[D(µ, gµ)] ≤ sup
g∈G

D(µ, gµ),
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for each g ∈ G. Therefore, we focus of the proof of the other inequality. Fix a probability measure
µ ∈ P(X ). Let

g⋆ := argmax
g∈G

D(µ, gµ).

Note that such g⋆ ∈ G exists according to the compactness of G. Define the following function

∆(g) := D(µ, gµ), ∀g ∈ G.

Note that for any g1, g2 ∈ G, we have

∆(g1g2) = D(µ, (g1g2)µ)

≤ D(µ, g1µ) +D(g1µ, (g1g2)µ)

= ∆(g1) +D(g1µ, (g1g2)µ),

using the triangle inequality for the metric D. Now, note that D is shift-invariant, meaning that we
have

D(g1µ, (g1g2)µ) = D(µ, g2µ) = ∆(g2).

Therefore, we conclude that

∆(g1g2) ≤ ∆(g1) + ∆(g2), ∀g1, g2 ∈ G.

In other words, the function ∆ is sub-linear. Now specify the above inequality to g1 = g−1 and
g2 = gg⋆ for an arbitrary g ∈ G to get

∆(g⋆) ≤ ∆(g−1) + ∆(gg⋆)

= ∆(g) + ∆(gg⋆), ∀g ∈ G. (13)

In above, we used ∆(g) = ∆(g−1) which holds from the shift-invariance of D. Now define the
following set:

A :=

{
g ∈ G : ∆(g) ≥ 1

2
∆(g⋆)

}
⊆ G.

Define

g⋆A :=

{
g⋆g ∈ G : g ∈ A

}
.

Note that according to Equation (13), for each g ∈ G, either g ∈ A or g ∈ g⋆A. In other words,
G = A ∪ g⋆A. Let α denote the left Haar measure on G. Then, we conclude that

α(A) + α(g⋆A) ≥ α(A ∪ g⋆A) = α(G) = 1.

However, α(A) = α(g⋆A) since α is the Haar measure. This means that α(A) ≥ 1

2
. Therefore, we

conclude

Eg∼α[D(µ, gµ)] = Eg∼α[∆(g)]

≥ α(A)
∆(g⋆)

2

≥ ∆(g⋆)

4

=
1

4
sup
g∈G

D(µ, gµ),

which completes the proof.

Remark E.2. The proof we presented here works for pseudometric, i.e., even if D is not definite, as
we only used the triangle inequality and the symmetry of D.
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E.3. Proof of Theorem 6

Theorem 6. Consider Algorithm 1 ran on n samples from a G-invariant probability measure µ. Then, the
probability of a Type I error (i.e., incorrectly rejecting the invariance) is bounded as

P
(
H1|H0

)
= P

(
max
g∈S

ĉg > c
∣∣∣ µ is G-invariant

)
≤ |S| exp

(
− nc2

128c21

)
,

where c1 := supx∈X K(x, x). Moreover, the Type II error, which is the probability of incorrectly accepting a
non-invariant measure using Algorithm 1, approaches zero as the sample size increases. Quantitatively, for
any probability measure µ ∈ P(X ) such that KMaxIC(µ) ≥ 2c′ > cℓ(S)2, we have

P
(
H0|H1

)
= P

(
max
g∈S

ĉg ≤ c
∣∣∣ µ is not G-invariant

)
≤ exp

(
−

n
(

2c′

ℓ(S)2 − c
)2

128c21

)
.

Proof. First, we focus on the first inequality. Note that using the union bound

P
(
H0|H1

)
≤ |S|max

g∈S
P
(
ĉg > c

∣∣∣ µ is G-invariant
)
.

Fix a group element g ∈ G. Let aij = 2K(xi, xj) − 2K(xi, gxj) for each i, j ∈ [n]. Note that
ĉg = 2

n(n−1)

∑n
i,j=1
i ̸=j

aij . Assuming that µ is G-invariant, one has E[aij ] = 0 for any i ̸= j. Therefore

P
(
ĉg > c

∣∣∣ µ is G-invariant
)
= P

(
2

n(n− 1)

n∑
i,j=1
i ̸=j

aij > c

)
.

Using standard tail bounds on U-statistics [62, Example 2.23], we know that the right-hand side of
the above is upper bounded by exp

(
− nc2

128c21

)
, since |aij | ≤ 4c1. This completes the proof of the first

inequality.

Now, we prove the second inequality. Assume that KMaxIC(µ) ≥ 2c′. Define cg = E[ĉg] for each
g ∈ G. Let g⋆ ∈ argmaxg∈G ∥(gµ)H − µH∥2H. According to the assumption, there exists a sequence
gi ∈ S, i ∈ [k], with k ≤ ℓ(S), such that g⋆ = g1g2 . . . gk. Then, we have√

KMaxIC(µ) = ∥(g⋆µ)H − µH∥H
= ∥(g1g2 . . . gkµ)H − µH∥H
≤ ∥(g1µ)H − µH∥H + ∥(g1g2 . . . gkµ)H − (g1µ)H∥H
=

√
cg1 + ∥(g2 . . . gkµ)H − µH∥H,

where the last step follows from the shift-invariance of the chosen kernel. Therefore, by induction,
we conclude that

KMaxIC(µ) = ∥(g⋆µ)H − µH∥2H ≤ ℓ(S)2 max
g∈S

cg.

By assumption, KMaxIC(µ) ≥ 2c′, which means that there exists ĝ ∈ S such that cĝ ≥ 2c′/ℓ(S)2.
Thus, by specifying to ĝ ∈ S we have

P
(
H0|H1

)
= P

(
max
g∈S

ĉg ≤ c
∣∣∣ µ is not G-invariant

)
≤ P

(
ĉĝ ≤ c

∣∣∣ µ is not G-invariant
)

= P
(

2

n(n− 1)

n∑
i,j=1
i ̸=j

aij ≤ c

)
,
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where E[aij ] = cĝ ≥ 2c′/ℓ(S)2. Thus, similar to the proof of the previous part and using standard
tail bound on U-statistics, we conclude the desired result.

E.4. Proof of Theorem 7

Theorem 7. Consider a PDS kernel K : X ×X → R, where X ⊆ Rd is a closed subset, and let G ⊆ O(d) be
an orthogonal subgroup acting on X . Assume that K(x, ·) : X → R is an r-Lipschitz function with respect
to the norm ∥ · ∥2 on Rd, for each x ∈ X . Let S ⊆ G be a generating set for G with ℓ(G) < ∞, and let Ŝ be a
γ-covering of S.

Then, when applying Algorithm 1 via Ŝ to test invariance to G, the probability of a Type I error (i.e., incorrectly
rejecting the invariance) is bounded as

P
(
H1|H0

)
= P

(
max
g∈Ŝ

ĉg > c
∣∣∣ µ is G-invariant

)
≤ |Ŝ| exp

(
− nc2

128c21

)
,

where c1 := supx∈X K(x, x). Moreover, the Type II error, which is the probability of incorrectly accepting
a non-invariant measure using Algorithm 1, approaches zero as the sample size increases. Specifically, for
any probability measure µ ∈ P(X ) with Ex∼µ[∥x∥2] ≤ b such that KMaxIC(µ) ≥ 3c′ > cℓ(S)2 + 2rbγ,
we have

P
(
H0|H1

)
= P

(
max
g∈Ŝ

ĉg ≤ c
∣∣∣ µ is not G-invariant

)
≤ exp

−
n
(

3c′

ℓ(S)2 − 2rγb− c
)2

128c21

 .

Proof. We note that the first inequality follows similarly to the proof of Theorem 6. Thus, we focus
on the proof of the second inequality.

We follow the same notation and arguments as in the proof of Theorem 6 to conclude that there
exists ĝ ∈ S such that cĝ ≥ 3c′/ℓ(S)2. Now, note that we have

|cg − cĝ| = 2|E[(K(x′, gx)−K(x′, ĝx))]|
≤ 2rE[∥(g − ĝx)∥2]
≤ 2r∥g − ĝ∥opE[∥x∥2]
= 2rb∥g − ĝ∥op.

Therefore, using that ĝ ∈ S and Ŝ is a γ-covering of S, we conclude that there exists g′ ∈ Ŝ such that
cg′ ≥ 3c′/ℓ(S)2 − 2rγb. The rest of the proof follows similarly to the proof of Theorem 6. We are
done.
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