Biglssue: A Realistic Bug Localization Benchmark

Anonymous ACL submission

Abstract

As machine learning tools progress, the in-
evitable question arises: How can machine
learning help us write better code? With
significant progress being achieved in natural
language processing with models like GPT-
3 and BERT, the applications of natural lan-
guage processing techniques to code is start-
ing to be explored. Most research has been fo-
cused on automatic program repair (APR), and
while the results on synthetic or highly filtered
datasets are promising, such models are hard
to apply in real-world scenarios because of un-
derperfoming bug localization techniques. We
propose Biglssue: a realistic bug localization
benchmark. The goal of the benchmark is two-
fold. We provide (1) a general benchmark with
a diversity of real and synthetic Java bugs and
(2) a motivation to improve bug localization
capabilities of models through attention to the
full repository context. With the introduction
of Biglssue, we hope to advance the state of
the art in bug localization, in turn improving
APR performance and increase its applicabil-
ity to the modern development cycle.

1 Introduction

Recent advances in natural language processing
(NLP) (Brown et al., 2020; Devlin et al., 2018; Liu
et al., 2019b) have increased interest in applying
NLP techniques to code understanding. With the
development of code encoders (Feng et al., 2020a;
Kanade et al., 2020), this task is becoming increas-
ingly more accessible and appealing. As research
has jumped ahead into the task of Automated Pro-
gram Repair (APR), the results have been not
been adequate. Although synthetic datasets have
largely been solved (see Section 2.1), models have
been surprisingly underperforming on real-world
datasets, many not even able to repair a quarter of
the bugs in the Defects4J benchmark(which bench-
mark?) (Lutellier et al., 2020). This is despite re-
search suggesting that current APR benchmarks

suffer from a lack of diversity (Durieux et al.,
2019). As a consequence, many APR models are
prone to overfitting to specific datasets (Mousavi
et al., 2020). Although interesting from an aca-
demic perspective, such tools would hardly be use-
ful in a real industrial scenario.

We posit that the three major limitations to APR
methods being used today are: (1) training to fix al-
ready located bugs rather than finding bugs and fix-
ing them, (2) the inability of models to take large
contexts into account, and (3) the reliance on in-
formation besides pure code. The first limitation
is straightforward: patches have limited context
outside of the lines immediately before and after
each patch. It has been shown that APR perfor-
mance improves significantly if a good fault local-
ization algorithm is used to detect buggy code lo-
cations (Durieux et al., 2019) (Liu et al., 2019a).
The second limitation prevents models from find-
ing bugs that depend on the context of the program.
Even for human readers many real-world bugs re-
quire a lot of program-specific context to be de-
tectable. One of the most popular code encoders
today (Feng et al., 2020a) only supports encoding
of sequences up to 512 tokens, not nearly enough
to process most Java files in real-world programs
(on average 7.5k tokens with the RoBERTa tok-
enizer (Liu et al., 2019b)). The third limitation fol-
lows from the fact that the most common method
for fault localization used today (SBFL) (Jones
and Harrold, 2005) is heavily reliant on test cases
exposing potentially buggy locations (see Section
2.2).

In order to advance the state of the art of both
BL (Bug Localization) and APR (Automatic Pro-
gram Repair) models, we introduce Biglssue. The
major contributions of Biglssue include:

* A large collection of confirmed real-world
bugs with line-level annotations. Each bug
has been reported by live users to the GitHub
Issues bug-tracking system and fixed via a

commit or pull request. The dataset contains
a total of 10,905 bugs sourced from 4,233
Java repositories.

* A very hard, long-sequence synthetic bug
dataset. Perturbations in real code collected
from GitHub are generated by InCoder (Fried
etal., 2022), a state of the art code generation
model.

* An empirical demonstration of the hardness
of the real benchmark as compared to a syn-
thetic dataset. Even with advanced synthetic
bug generation techniques, the performance
on real bugs of models trained on synthetic
data will not be adequate, which calls for fur-
ther research into realistic bug detection.

By providing a large and diverse dataset of syn-
thetic and real bugs from a multitude of projects
without any extra information outside of code, we
hope to push the direction of research towards line-
level long-context bug localization for better per-
formance on APR tasks.

2 Prior Art

2.1 Automatic Program Repair

Since bug localization is fundamentally related to
automatic program repair, we provide a brief sur-
vey of existing APR benchmarks and their draw-
backs.

Real-world Benchmarks The Defects4] dataset
(Just et al., 2014) has been widely used in auto-
matic program repair. It consists of 357 (835 is
version 2) bugs sourced from 10 (100) top open-
source Java projects. Bugs are manually reviewed
and each bug has at least 1 test case that exposes
the bug. APR methods, however, are not success-
ful enough on this real dataset for the models to be
useful in real-world applications. The most recent
state of the art model can only fix 67 out of 357
bugs (Yuan et al., 2022), while the two previous
state of the art models could only fix 44 (Lutellier
et al., 2020) and 57 (Jiang et al., 2021) bugs. This
is despite recent research that suggests APR meth-
ods are overperforming on Defects4] as compared
to other similar benchmarks (Durieux et al., 2019).
Bugs.jar (Saha et al., 2018) is a similar dataset but
with an expanded scope of 8 popular projects from
the Apache foundation.

iBugs (Dallmeier and Zimmermann, 2007)
presents a methodology of semi-automatic bug ex-

traction from repositories, and provides a concrete
dataset of applying the methodology to the AS-
PECTJ project. The method involves analyzing
commit logs for signs that indicate a bug fix, ex-
tracting the pre-commit and post-commit versions
of the repositories, and identifying test cases that
represent the bug-fix. However, this dataset is
fairly small and is only sourced from one reposi-
tory.

Another widely wused dataset is the
ManySStubs4J dataset (Karampatsis and
Sutton, 2020). It’s a collection of many “stupid"”
bugs mined from 100 (1,000) top open-source
Java repositories. The collection includes only
those changes where the change is a single line
of code and falls into one of pre-determined 16
categories of bugs. While convenient, it suffers
from a lack of complicated bugs and highly
selective criteria.

Learning-fixes (Tufano et al., 2018) is a collec-
tion of about 58,350 short methods mined from
GitHub. Each of the methods was semantically
idiomized and presented in the benchmark. The
main limitation of this dataset is that it’s a method-
level dataset: each bug should be identifiable and
fixable based on the context only present in that
particular method. For real bugs, this is usually
not the case.

DLFix (Li et al., 2020) is another dataset aimed
at APR tasks. The dataset consists of almost 5
million methods, enhanced with metadata, and the
corresponding fixed versions of the method for a
particular repository. While interesting for limited
cases, the method-level granularity as well as the
necessity of building metadata for each method
limits its usefulness, especially on longer methods.

Table 1 presents a comparison of existing APR
benchmarks.

Synthetic Benchmarks A natural way to deal
with the lack of data diversity in current real-
world benchmarks is to create synthetic bench-
marks by perturbing code. The simplest way to
create code perturbations is to apply rule-based
perturbations to a corpus of code (Kanade et al.,
2020) or via a static oracle (such as a linter) (Be-
rabi et al., 2021). Other datasets are generated via
a separate perturbation model. SPoC (Kulal et al.,
2019) uses a simple LSTM to generate lines of
code that might be potentially buggy. DeepDebug
(Drain et al., 2021) uses a more complicated model
trained on reversed git commits to generate syn-

thetic bugs. While attractive, there is significant
evidence that good performance on these bench-
marks does not translate to good performance on
real-life bugs (Durieux et al., 2019). We also per-
form experiments in Section 5 that suggests that
even good performance on sophisticated perturba-
tion datasets does not translate well to fixing real
bugs.

2.2 Using Existing Benchmarks for Bug
Localization

Fault localization and fault prediction on their own
have been severely understudied. According to
a recent survey (Zou et al., 2019) current fault
localization and prediction methods can’t even
localize half of the bugs in the Defects4] (Just
et al., 2014) dataset. The most widely used and
best-performing method for fault localization is
Spectrum-based fault localization (SBFL) (Jones
and Harrold, 2005). While elementary and sim-
ple to implement, it relies heavily on the quality
and quantity of test cases, especially for large pro-
grams (Keller et al., 2017). The lack of scalability
for this method motivates further research into the
problem of bug localization.

3 Biglssue Synthetic Dataset

3.1 Motivation

Evaluation of approaches towards bug localization
requires the construction of a dataset with known
ground-truth. One methodology to create such
dataset is to consider existing code and introduce
erroneous perturbations in the form of samples
drawn from a generative model. In prior art (Ku-
lal et al., 2019), synthetic perturbations have been
adopted on a function-level granularity with weak
generative models such as small LSTMs. The
underlying distribution of such synthetic dataset
may be quite dissimilar to the distribution of re-
alistic bugs, which occur in software engineering
(Durieux et al., 2019). To decrease this discrep-
ancy, in the following, we will advance this con-
cept to file-level data and sample perturbations
from a strong generative model.

Our synthetic dataset adopts the methodology
of gathering “real” code as observations and intro-
ducing synthetic perturbations in the observations.
Here, the perturbation is a rewrite of the origi-
nal sequence of code into a perturbed sequence
of code. In our approach, a portion of the origi-
nal code is “masked out” and a generative model

is recruited to “fill in” the masked out code. The
“filled in” portion of the code constitutes the syn-
thetic perturbation. The perturbation of the origi-
nal code is assumed to likely to contain “errors”.

While the above approach based on perturba-
tions may appear obvious and trivial, the construc-
tion of such datasets is challenging. This is due
to, (1) existing code is not guaranteed to be free
of errors, (2) the definition or ontology of an “er-
ror” or “bug” itself is non-trivial, (3) creating syn-
thetic perturbations which are difficult to discrimi-
nate from original observations and yet reflect the
distribution of “real” errors is hard.

Prior art addresses these issues by (1) reducing
the scope of the code to function or line-level, ef-
fectively reducing the span of code to n lines of
code (Kanade et al., 2020) (Yasunaga and Liang,
2020) (Yasunaga and Liang, 2021), (2) introduc-
ing heuristic perturbations rules or pre-defining
a set of categories in which “bugs” fall (Kanade
et al., 2020) (Drain et al., 2021), or (3) perturbing
a single line of code in simple programs (Yasunaga
and Liang, 2020) (Drain et al., 2021). While this
over-simplification is a reasonable first step, the
resulting dataset may be quite far from realistic er-
rors in the wild for which localization is deemed
“useful” to a practitioner.

Our work addresses (1) and (2) by doing away
with the notion of an “error” and instead shifting
the conceptual thinking towards the distributions
of “original” and “perturbed” observations. That
1s, our dataset is assumed to contain errors which
are not identified in the ground-truth labels. The
task of error localization is relaxed as the task of
localization of perturbations. This relaxation al-
lows us to consider file-level observations with-
out the need for a strict definition of an “error”.
Such relaxed definitions enable the construction of
a “sanity-check" dataset to easily identify bug lo-
calization potential in prospective models. In the
following, we will provide details on the creation
of such data-set and in particular address (3).

3.2 Dataset Construction

The underlying methodology of the creation of
this dataset is (1) gather large amounts of file-level
observations (i.e., real code), (2) to introduce syn-
thetic perturbations from a strong generative mod-
els such that discrimination of “original” and “per-
turbed” observation is non-trivial, (3) and relax the
task of “error localization” to the task of “pertur-

Dataset Size Granularity Bug Length Context # of Repos Filters
Biglssue 10,905 Line Multi-line Repository 4233 No
Defects4J(Just et al., 357 (835) Line Multi-line Repository 5 (17) No
2014)

Bugs.jar(Saha et al, 1158 Line Multi-line Repository 8 No
2018)

ManySStubs4] (Karam- 10,231 (63,923) Line Single-line Repository 100 (1000) Yes
patsis and Sutton, 2020)

iBugs (Dallmeier and 369 Line Multi-line Repository 1 No
Zimmermann, 2007)

Learning-Fixes (Tufano 58,350 Line Multi-line Method - No
et al., 2018)

DLFix (Li et al., 2020) 4,973,000 Method Multi-line Repository 8 No

Table 1: Comparison of Major Java Bug Detection Datasets.

bation localization”. In the following, we describe
the construction of such a dataset.

Observations In order to obtain large quantities
of observations for the learning and evaluation of
localization models, the proposed dataset is a com-
pilation of public, non-personal information from
GitHub consisting of permissively licensed Java
code in October 2021. In particular, we gathered
8 million repositories between January 2014 and
October 2021 annotated with at least 1 star and
considered the subset of contained files containing
Java code. The files must have an average length
of < 100 characters and a maximum line length of
1,000. Files where > 90% of the characters are
decimal or hexadecimal digits are also removed.
Finally, exact duplicates based on their SHA-256
hash are removed, which amounts to a substantial
portion of the raw data due to forks and copies
of repositories. The resulting data-set comprises
96.56 GB of raw text.

Perturbations For realistic perturbations, we re-
sort to a method known as “inpainting” for im-
ages or “infilling” for the textual domain. That
is, a portion of a giving observation is occluded
(or masked out). Then, the occlusion is recon-
structed or “filled in” by a sample drawn from a
generative model conditional on the non-occluded
context. Recently, auto-regressive causal language
models (Brown et al., 2020) have demonstrated to
excel at this task for which the prompt may be
treated as context and the auto-regressive sample
conditional on the prompt as the in-painting while
preserving the statistical regularities of the train-
ing data. However, the joint distribution over to-
kens is usually factorized in a left-to-right order

over time, for which the causal mask constraints
the infill samples to only take past context into
account, but not future tokens. In our case of
sampling realistic perturbations at random spans
within a given observation, we wish to take both
the code before and after the masked out span to
be taken account, so that file-level consistency re-
mains. To address this issue, we recruit an auto-
regressive sampler which re-arranges the input se-
quence and associated causal masking such that
sampling is conditional on both past and future
context (Du et al., 2022) (Fried et al., 2022). To
further reduce the gap between “real” and “per-
turbed” sequences, we chose a large scale lan-
guage model, InCoder (Fried et al., 2022) with
1 billion parameters, and lowered the temperature
of auto-regressive nucleus sampling to 0.8. This
temperature value was selected by manual experi-
mentation. Equipped with such sampler, a random
span in the observation is removed and infilled
with a sample drawn from the InCoder model. The
length of the span is drawn from a uniform distri-
bution with minimum length of 64 tokens and max-
imum length of 128 tokens. The generated sample
is constrained to at most the length of the span.

To further improve the quality of perturbations,
we recruit rejection sampling from the InCoder
model for which drawn samples not satisfying the
formal grammar of the programming language are
rejected. Specifically, we (1) reject any files which
are not syntactically correct', (2) reject files con-
taining less than 2,048 tokens, (3) reject pertur-
bations for which 10 attempts of infill sampling

'To verify syntactical correctness of Java programs, we
recruit the JAVALANG library: https://github.com/
c2nes/javalang.

https://github.com/c2nes/javalang
https://github.com/c2nes/javalang

(with a minimum span length of 64 and maximum
number of tokens of 128) did not result in a syntac-
tically correct perturbation, (4) reject samples for
which the Levenshtein distance between the unper-
turbed and perturbed sequence is smaller than 64
tokens or larger than 192 tokens to reject samples
which are highly similar to the original sequence.

>

Task Our proposed “perturbation localization’
task can be expressed in the form of a binary clas-
sification for which each line is labelled as either
“original” or “perturbed”. As such, the ground-
truth labels indicate whether the line is a sub-
sequence of the observation or was (potentially
partially) perturbed by the sampler. Each file con-
tains at most one such perturbation. The length
of the input sequence is limited to at most 8,192
tokens under the RoBERTa tokenizer (Liu et al.,
2019b) with at most 512 lines per file.

3.3 Dataset Examples and Artifacts

Some samples from the synthetic dataset are pre-
sented in Appendix E, and all artifact details can
be found in Appendix A.

4 Biglssue Realistic Benchmark

4.1 Motivation

Based on our observations about existing bench-
marks from Section 2, we concluded that a new
benchmark is needed to push the state of the art for-
ward. Therefore, we created a benchmark that pri-
oritized quantity over perceived quality, and one
that focused specifically on NL-based line-level
bug localization.

For this benchmark, we defined a line as
“buggy" if it has been removed or modified in the
issue patch. This allows us to avoid using tests as
the ground truth for bugs in code. This definition
also fits well with the usage of code encoders such
as CodeBERT (Feng et al., 2020a) for line-level
classification, as demonstrated in Section 5.

4.2 Benchmark Construction

First, we considered Java GitHub repositories cre-
ated between January 2014 and October 2021. In
order to ensure that we only filter out repositories
that were intended for some form of public use,
we only examined repositories with at least 1 star.
We further filtered down the repositories to only
those repositories that had GitHub Issues enabled
and had licenses permitting use of their code (full

list of licences is available in Appendix C). That
gave us 4, 233 repositories.

Using the GitHub API we filtered through
closed issues on these repositories. We only
used public, non-personal information available
through the API. In order to select issues that cor-
responded to bug fixes on that particular repos-
itory, we selected issues that either contained
“bug”, “fix", or “fixed" as separate words in the
title and the body of the issue. We also included
issues that contained the label “bug". We looked at
issues with a corresponding “close" event, and we
looked at the commit that was attached to the latest
"close" event. This gave us a dataset of 23, 924 to-
tal closed issues. We further filter only those bugs
that affect one Java file without test code. That
yields 10, 905 bugs.

To verify the validity of our filters, we manually
verified 100 sample issues. We manually verified
the validity of 84 of the issues. A detailed break-
down can be found in Appendix D.

Similarly to iBugs (Dallmeier and Zimmer-
mann, 2007), to identify buggy lines we examine
the data from the hunks in the diff. If a line is (1)
removed from the source file and (2) is not an im-
port line (lines that begin with import ...),it
is marked as buggy. In cases were hunks are exclu-
sively adding code, we mark the two lines in the
source before and after the change as buggy. Pro-
cessing added code is not always straightforward:
sometimes the added chunk is an outsourced piece
of code from a different method. However, this
simplification to the process was done to account
for added code while minimizing potential impact
of simply outsourced chunks.

Test-running frameworks Many of the bench-
marks presented above use tests either as assis-
tance in bug fixing or as a method of filtering bugs.
We do not consider testing frameworks and tests
as a criteria for whether a commit is a bug or
not. Firstly, it was recently shown that unit tests
on their own do not guarantee less failures inside
the code (Chioteli et al., 2021) which implies that
there are even more bugs inside the code that are
not exposed by tests. Secondly, because we would
be severely limiting the diversity and scope of our
benchmark by forcing issues to include an expos-
ing test case.

4.3 Benchmark Examples and Artifacts

Some samples from the synthetic dataset are pre-
sented in Appendix F, and all artifact details can
be found in Appendix A.

5 Synthetic vs Realistic Bug Detection

In this Section, we conduct a preliminary analy-
sis of the hardness of the Biglssues benchmark.
Since the sequence length exceeds the limitations
of most pre-trained language models on code, we
recruit mean pooling to construct simple baselines.
We hypothesize that although the realistic data
is much harder than the synthetic dataset, using
long-context encoders in addition to synthetic pre-
training will help increase performance.

5.1 Hypothesis

The proposed Biglssue benchmark contains two
variants: (1) synthetic rewrites of real code sam-
pled from a strong generative model, (2) realistic
rewrites of real code based on the commits associ-
ated with a closed issue in GitHub.

Recall, for (1) a recent large language model
was recruited as sampler which, compared to prior
art, not only is of significant size under scaling
laws, but furthermore alters the causal masking
such that future tokens can be taken into account
as context. We argue that these synthetic rewrites
are non-trivial to detect compared to prior art.

However, our hypothesis is that localization of
real bugs is still a significantly harder task, which
requires substantial research to be solved. While
local, trivial bugs do not require context to be
localized, harder non-local bugs can often only
be resolved when taking the entire file, a set of
imported files, or the entire repository into ac-
count. Pre-training on synthetic data as well as
long-context encoders will increase performance
on realistic data.

5.2 Model

Our architecture partitions a long input sequence
of 8,192 tokens into shorter sub-sequences, com-
putes contextualized vectors for each chunk us-
ing a bi-directional encoder model, combines the
contextualized vectors into 512 latent vectors with
mean-pooling, and finally projects those vectors to
logits for line-level binary classification.

Consider a sequence x = (zg,1,...,x,) of
input tokens with length n = 8,192. To ad-
dress the issue (2) of large n, we partition =

into m = 16 equally sized chunks Z; with 7 €
{0,...,15} each containing 512 tokens. To con-
textualize the embedding vector of the tokens, we
recruit the pre-trained bi-directional encoder f,
(such as CodeBERT (Feng et al., 2020b)), and
compute f(Z;) for each partition 7. Then, the
contextualized partitions are concatenated & =
(f(Zo), f(Z1),--., f(Zm)). Torestore global posi-
tion information, we apply additive sinusoidal po-
sitional embeddings to Z. A layer of self-attention
integrates the information across partitions bound-
aries. Mean-pooling is applied to £ with a win-
dow length such that the resulting sequence of la-
tent vectors matches the maximum number of 512
lines. A standard linear projection maps each of
the line-level latent vectors to logits for binary
classification. The resulting model is fine-tuned
with binary cross entropy as objective function.

The appeal of the proposed model is to lever-
age the representations learned by a strong back-
bone model and the simplicity in handling vari-
able length including line breaks in the input se-
quence. CodeBERT (Feng et al., 2020b) has
demonstrated strong empirical performance on
down-stream tasks so that the learned representa-
tions should be well suited for bug localization. To
demonstrate the utility of long context for code un-
derstanding, we also use the standard Longformer
(Beltagy et al., 2020) as an encoder. The mapping
of contextualized vectors to latent vectors allows
for variable length input sequences and avoids spe-
cial treatment of new line characters. The align-
ment from lines of the input sequence to latent
vectors for classification is implicitly learned by
supervision.

5.3 Findings

To evaluate the hardness of the artifical and re-
alistic Biglssue benchmark, the aforementioned
model is trained on both datasets. Training details
can be found in Appendix B.

Table 2 summarizes the binary classification
performance in terms of recall, precision and F1-
score for three baseline models with CodeBERT
encoder: (1) A random classifier for which the
line-level predictions are modeled as a Bernoulli
random variable per line with probability p = 0.5,
(2) a mean-pooling based model for which the self-
attention layer between latent vectors is omitted,
(3) a mean-pooling based model including self-
attention between latent vectors.

T s T +
Model Recall Precision F1
Synthetic ~ Realistic Synthetic ~ Realistic Synthetic ~ Realistic
Random 49.58 50.99 2.68 0.96 5.08 1.88
Pooling 93.48 69.43 8.89 2.16 16.24 4.17
Pooling-Attn 95.37 64.66 26.93 1.84 42.00 3.58

Table 2: Comparison of the binary classification accuracy under various baselines: (1) Random Bernoulli classifier
with p = 0.5, (2) Mean pooling model, (3) Mean pooling model with self-attention between latent vectors.

T . . 1T 4
Model Training Recall Precision F1
Synthetic ~ Realistic Synthetic ~ Realistic Synthetic Realistic
Longformer-4096 Synthetic 98.49 42.98 22.62 3.74 36.79 6.88
Longformer-512 Synthetic 97.54 46.44 18.78 3.94 31.50 7.27
Longformer-4096 Real 73.28 75.40 5.92 2.65 10.96 5.12
Longformer-512 Real 81.28 88.68 5.95 2.46 11.09 4.79

Table 3: Comparison of Longformer Models. The numbers show that synthetic training is a suitable proxy task for
realistic bug detection compared to exclusively realistic training and the advantages of long-context on synthetic

data.

For the synthetic dataset, the mean-pooling
model including self-attention with a Fl-score
of 42.00 significantly improves over the random
Bernoulli baseline with 5.08. Self-attention to in-
tegrate information across latent vectors improves
the score by nearly 26 points, which may indicate
that attention across the partitioning of 512 tokens
is crucial. One may assume with further improve-
ments in modeling, the synthetic dataset is solv-
able.

For the realistic benchmark, however, both of
the mean-pooling baselines performed better than
random. The extra layer of attention did not add
any improvement. Both models tend to have high
recall values, but precision is especially low for the
realistic benchmark.

To test the effect of longer-context encoders, we
replaced the encoder in our Mean-Pooling with At-
tention model with a Longformer (Beltagy et al.,
2020) that is capable of handling sequences up to
4096 tokens. Instead of chunking the sequence
into 16 chunks of 512, we chunked it into 2
chunks of 4096. We trained a Longformer-4096
token Mean-Pooling with Attention model. We
also trained the same model solely on realistic
data. The results after 50,000 steps of training
are presented in Table 3. The results on syn-
thetic data suggest that longer-context encoders
significantly improve performance. Furthermore,
a model trained on synthetic data gives better re-

sults on realistic data than a model trained exclu-
sively on realistic data. This suggests that syn-
thetic pre-training on simpler bugs helps the model
detect more complicated bugs in real bugs. While
the 512-chunked model performed better than the
4096-chunked model on realistic data, the differ-
ence cannot be described as significant due to low
precision values.

As hypothesized, real bug detection is a much
harder challenge than synthetic data. However, us-
ing longer contexts and pre-training on synthetic
data improves the results on realistic benchmarks.
It is our hope that this finding spurs research to-
wards the modeling of long contexts to approach
the task of real bug detection.

6 Conclusion

We propose a new benchmark to be used in assess-
ing line-level bug localization models. The diver-
sity and size of the dataset aim to provide a mea-
sure with realistic difficulty, encouraging larger
context BL modeling that doesn’t rely on project
test suites. We also provide a synthetically gener-
ated benchmark, and show that although the per-
turbations can be sophisticated and borderline re-
alistic, success on synthetically generated datasets
does not transfer to realistic benchmarks.

We hope that our contributions inspire and push
future research into realistic, long-context, NLP-
based bug localization techniques. Advances in

this area would bring automatic program repair to
a state that would be useful and transformative to
the modern software development process.

References

Iz Beltagy, Matthew E Peters, and Arman Cohan.
2020. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150.

Berkay Berabi, Jingxuan He, Veselin Raychev, and
Martin Vechev. 2021. Tfix: Learning to fix cod-
ing errors with a text-to-text transformer. In Interna-
tional Conference on Machine Learning, pages 780-

791. PMLR.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Efstathia Chioteli, loannis Batas, and Diomidis Spinel-
lis. 2021. Does unit-tested code crash? a case study
of eclipse. In 25th Pan-Hellenic Conference on In-
formatics, pages 260-264.

Valentin Dallmeier and Thomas Zimmermann. 2007.
Extraction of bug localization benchmarks from
history. In Proceedings of the twenty-second
IEEE/ACM international conference on Automated
software engineering, pages 433-436.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Dawn Drain, Colin B Clement, Guillermo Serrato, and
Neel Sundaresan. 2021. Deepdebug: Fixing python
bugs using stack traces, backtranslation, and code
skeletons. arXiv preprint arXiv:2105.09352.

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding,
Jiezhong Qiu, Zhilin Yang, and Jie Tang. 2022. Glm:
General language model pretraining with autoregres-
sive blank infilling. In Proceedings of the 60th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 320-
335.

Thomas Durieux, Fernanda Madeiral, Matias Martinez,
and Rui Abreu. 2019. Empirical review of java pro-
gram repair tools: A large-scale experiment on 2,141
bugs and 23,551 repair attempts. In Proceedings
of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pages
302-313.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, et al. 2020a. Codebert: A

pre-trained model for programming and natural lan-
guages. arXiv preprint arXiv:2002.08155.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, et al. 2020b. Codebert: A
pre-trained model for programming and natural lan-
guages. arXiv preprint arXiv:2002.08155.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida
Wang, Eric Wallace, Freda Shi, Ruiqi Zhong, Wen-
tau Yih, Luke Zettlemoyer, and Mike Lewis. 2022.
Incoder: A generative model for code infilling and
synthesis. arXiv preprint arXiv:2204.05999.

Nan Jiang, Thibaud Lutellier, and Lin Tan. 2021. Cure:
Code-aware neural machine translation for auto-
matic program repair. In 2021 IEEE/ACM 43rd
International Conference on Software Engineering
(ICSE), pages 1161-1173. IEEE.

James A Jones and Mary Jean Harrold. 2005. Em-
pirical evaluation of the tarantula automatic fault-
localization technique. In Proceedings of the 20th
IEEE/ACM international Conference on Automated
software engineering, pages 273-282.

René Just, Darioush Jalali, and Michael D Ernst. 2014.
Defects4j: A database of existing faults to enable
controlled testing studies for java programs. In Pro-
ceedings of the 2014 International Symposium on
Software Testing and Analysis, pages 437-440.

Aditya Kanade, Petros Maniatis, Gogul Balakrishnan,
and Kensen Shi. 2020. Learning and evaluating con-
textual embedding of source code. In International
Conference on Machine Learning, pages 5110-5121.
PMLR.

Rafael-Michael Karampatsis and Charles Sutton. 2020.
How often do single-statement bugs occur? the
manysstubs4j dataset. In Proceedings of the 17th In-
ternational Conference on Mining Software Reposi-
tories, pages 573-577.

Fabian Keller, Lars Grunske, Simon Heiden, Antonio
Filieri, Andre van Hoorn, and David Lo. 2017. A
critical evaluation of spectrum-based fault localiza-
tion techniques on a large-scale software system. In
2017 IEEE International Conference on Software
Quality, Reliability and Security (ORS), pages 114—
125. IEEE.

Sumith Kulal, Panupong Pasupat, Kartik Chandra,
Mina Lee, Oded Padon, Alex Aiken, and Percy S
Liang. 2019. Spoc: Search-based pseudocode to
code. Advances in Neural Information Processing
Systems, 32.

Yi Li, Shaohua Wang, and Tien N Nguyen. 2020. DI-
fix: Context-based code transformation learning for
automated program repair. In Proceedings of the
ACM/IEEE 42nd International Conference on Soft-
ware Engineering, pages 602-614.

Kui Liu, Anil Koyuncu, Tegawendé F Bissyandé,
Dongsun Kim, Jacques Klein, and Yves Le Traon.
2019a. You cannot fix what you cannot find! an
investigation of fault localization bias in benchmark-
ing automated program repair systems. In 2019 12th
IEEE conference on software testing, validation and
verification (ICST), pages 102-113. IEEE.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Thibaud Lutellier, Hung Viet Pham, Lawrence Pang,
Yitong Li, Moshi Wei, and Lin Tan. 2020. Coconut:
combining context-aware neural translation models
using ensemble for program repair. In Proceedings
of the 29th ACM SIGSOFT international symposium
on software testing and analysis, pages 101-114.

S Amirhossein Mousavi, Donya Azizi Babani, and
Francesco Flammini. 2020. Obstacles in fully au-

tomatic program repair: A survey. arXiv preprint
arXiv:2011.02714.

Ripon K Saha, Yingjun Lyu, Wing Lam, Hiroaki
Yoshida, and Mukul R Prasad. 2018. Bugs. jar: a
large-scale, diverse dataset of real-world java bugs.
In Proceedings of the 15th international conference
on mining software repositories, pages 10—13.

Michele Tufano, Cody Watson, Gabriele Bavota, Mas-
similiano Di Penta, Martin White, and Denys Poshy-
vanyk. 2018. An empirical investigation into learn-
ing bug-fixing patches in the wild via neural ma-
chine translation. In Proceedings of the 33rd
ACM/IEEE International Conference on Automated
Software Engineering, pages 832—837.

Michihiro Yasunaga and Percy Liang. 2020. Graph-
based, self-supervised program repair from diagnos-
tic feedback. In International Conference on Ma-
chine Learning, pages 10799-10808. PMLR.

Michihiro Yasunaga and Percy Liang. 2021. Break-
it-fix-it: Unsupervised learning for program repair.
In International Conference on Machine Learning,
pages 11941-11952. PMLR.

Wei Yuan, Quanjun Zhang, Tieke He, Chunrong
Fang, Nguyen Quoc Viet Hung, Xiaodong Hao,
and Hongzhi Yin. 2022. Circle: Continual re-
pair across programming languages. arXiv preprint
arXiv:2205.10956.

Daming Zou, Jingjing Liang, Yingfei Xiong,
Michael D Ernst, and Lu Zhang. 2019. An
empirical study of fault localization families and
their combinations. IEEE Transactions on Software
Engineering, 47(2):332-347.

A Data Description, Hosting Details, and
Data Access

We publish the training, evaluation, and validation
sets for the synthetic data. We also publish
the realistic benchmark. These items can be
accessed in a Google Cloud Storage bucket at
https://console.cloud.google.com/

storage/browser/bigissue-research.
All materials are released under the MIT License.

Realistic Pre-training data For the realistic
Pooling and Pooling-Attention models, we created
a pre-training dataset similar to other projects. We
select Java GitHub repositories with 5 stars or
more, we clone the main branch of the repository,
while only downloading files under 2 megabytes.
We then filter the commits that include the words
"error", "bug", "fix", "issue", "mistake", "incor-
rect", "fault", "defect", "flaw", or "type", us-
ing standard practice in ManySStubs4] project
(Karampatsis and Sutton, 2020) . Since our mod-
els are designed only for single-file bug localiza-
tion, we take each modified file and apply the la-
beling procedure described in the paper to gener-
ate the examples and labels. We truncate files at
8192 tokens in the same manner as in (Feng et al.,
2020a). In total, we get about 195 GB of data to
use for pre-training.

B Training Details

We train all of our models on a single pod with 16
A100 GPUs. For models with the CodeBERT en-
coder, we optimized the model with a linear sched-
ule AdamW (Loshchilov and Hutter, 2017) opti-
mizer, with a starting learning rate of Se-5, and
10, 000 warmup steps. We train over 50,000 steps
with a batch size of 8. For models with the Long-
former encoder, we optimized with a linear sched-
ule AdamW optimizer, starting learning rate of 3e-
5, and 1000 warmup steps.

We provide the full training
https://anonymous.4open.science/
r/BigIssue-8EE2/.

code at

Model Checkpoints We provide the model
checkpoints for the Pooling and Pooling-Attention
models trained on realistic data in the GitHub
repository
science/r/BigIssue-8EE2/.

https://anonymous.4open.

10

C Data Collection Ethical Statement

We did not collect any personal information from
the GitHub API. We only collect commit informa-
tion and data inside the commits, without taking
into the account the origin or the user profile of
the user making the changes.

We also present here the list
cences that we use in our paper:
//anonymous . 4open.science/r/
BigIssue-8EE2/licences.txt

of li-
https:

D Realistic Bug Analysis

We’ve analyzed the quality of our selection pro-
cess by sampling 100 random issues. This will
allow other researchers to use this method with
greater flexibility in licensing. We analyzed them
based on three criteria: (a) whether the issue rep-
resents a valid bug (b) whether the fix represents
a valid fix for the bug and (c) whether the fix de-
pends on code conventions or APIs, and is there-
fore identifiable by a human with adequate knowl-
edge of the above. The last criteria is to ensure
possible identifiability by a model: if a bug is only
marked as such because of outside software crite-
ria, there is no reasonable way a model can learn
that bug pattern.
In total, we have collected:

e 84 valid issues.

3 issues that did not represent valid bugs.
3 issues were the fixes did not fix the bugs.
2 issues that were not subject to analysis.

8 issues that are not identifiable without out-
side context.

Each item in the following list represents an is-
sue considered for our dataset and is identified by
the corresponding link to the github issue. We pre-
cede invalid issues with "*" for clarity.

1. *-https://github.com/gsantner/
markor/issues/314 - Valid bug, but the
fix doesnt address the issue. In fact the issue
persists despite the issue being closed.

. https://github.com/ReplayMod/
ReplayMod/issues/422 - Valid bug,
valid fix for the bug, bug is identifiable
through similar usage of code around the
buggy area.

https://console.cloud.google.com/storage/browser/bigissue-research
https://console.cloud.google.com/storage/browser/bigissue-research
https://console.cloud.google.com/storage/browser/bigissue-research
https://anonymous.4open.science/r/BigIssue-8EE2/
https://anonymous.4open.science/r/BigIssue-8EE2/
https://anonymous.4open.science/r/BigIssue-8EE2/
https://anonymous.4open.science/r/BigIssue-8EE2/
https://anonymous.4open.science/r/BigIssue-8EE2/
https://anonymous.4open.science/r/BigIssue-8EE2/
https://anonymous.4open.science/r/BigIssue-8EE2/licences.txt
https://anonymous.4open.science/r/BigIssue-8EE2/licences.txt
https://anonymous.4open.science/r/BigIssue-8EE2/licences.txt
https://anonymous.4open.science/r/BigIssue-8EE2/licences.txt
https://anonymous.4open.science/r/BigIssue-8EE2/licences.txt
https://github.com/gsantner/markor/issues/314
https://github.com/gsantner/markor/issues/314
https://github.com/gsantner/markor/issues/314
https://github.com/ReplayMod/ReplayMod/issues/422
https://github.com/ReplayMod/ReplayMod/issues/422
https://github.com/ReplayMod/ReplayMod/issues/422

. https://github.com/lingochamp/
FileDownloader/issues/855 - Valid
bug, valid one-line fix for the file, bug is
identifiable because ‘model.status‘ is being
set in almost all action methods of this class.

. https://github.com/
danielCantwell/Fit-Friend/
issues/3 - Valid bug, valid fix. Bug is
identifiable by the fact that the variables used
in that particular area of code are not used at
all.

. https://github.com/OpenJEVis/
JEVis/issues/1699 - Valid bug, valid
fix. Bug is an edge case if the JEVis samples
are not sampled at a regular interval. Bug
is identifiable because of similarities in
time-series interactions.

. https://github.com/TechReborn/
TechReborn/issues/549 - Valid bug,
valid fix. Bug is identifiable because (a) a lot
of values are hard-coded and (b) some of the
variables did not follow the human logic of
what a minecraft operator is supposed to do
(e.g. not checking if there is any space in the
output container for more items to go to).

. https://github.com/
milaboratory/mixcr/issues/509
- Valid bug, valid fix, although there are
extraneous style fixes. The style fix is that
whenever the percentage is being used, the
text for the log must be written as percent
used . This follows a pattern from other
places in this repository. The bug is that the
percentages can sometimes be over 100

L * - https://github.com/
Angry-Pixel/The-Betweenlands/
issues/895 - Valid bug, and valid fix,
but the bug is not generally identifiable
by humans without external context. The
minecraft bug suggests that a certain item
has to be not repairable, but from the code
alone there seems to be no suggestion that
this item should be unrepairable.

. https://github.com/VazkiiMods/
Quark/issues/2920 - Valid bug, valid
fix. Identifiable by humans if they have
knowledge and context about the Create
library that cannot accept FakePlayers as

11

10.

11.

12.

13.

14.

15.

16.

17.

players when performing operations on the
world.

https://github.com/15knots/

cmakedeclipse/issues/26 - Valid
bug, valid fix. The essence of the bug is that
certain build directories might be deleted
outside of Eclipse, and that needs to be
handled by the code, which is a common
safeguard that code needs to implement.

https://github.com/
TheThirdOne/JSoftFloat/issues/
1 - Valid bug, valid fix. This bug should be
identifiable with knowledge of floating-point
arithmetic calculations.

https://github.com/ververica/
flink-cdc-connectors/issues/
326 - Valid bug, valid fix. To identify this
bug, one must need to know that a certain
parameter in the config can be null. In
particular, if there is no pre-defined database
history ID, one must be set.

https://github.
com/spring-cloud/
spring—cloud-sleuth/issues/
333 - Valid bug, valid fix. Bug is identfiable
based on existing usage from other Callable
services, where the class is frequently used
as a wrapper for calls.

https://github.com/
tango-controls/rest-server/
issues/192 - Valid bug, valid fix. Iden-
tifiable with knowledge of the TANGO API
specification.

https://github.com/
guillaume-alvarez/
ShapeOfThingsThatWere/issues/7
- Valid bug, valid fix. The issue is that the
camera movement logic is tied to frame-
processing, and if that pattern is known then
the bug is identifiable.

https://github.
com/spring-cloud/
spring—cloud-config/issues/
128 - Valid bug, valid fix. Bug identifiable
by common environment loading patterns.

https://github.
com/BentoBoxWorld/

https://github.com/lingochamp/FileDownloader/issues/855
https://github.com/lingochamp/FileDownloader/issues/855
https://github.com/lingochamp/FileDownloader/issues/855
https://github.com/danielCantwell/Fit-Friend/issues/3
https://github.com/danielCantwell/Fit-Friend/issues/3
https://github.com/danielCantwell/Fit-Friend/issues/3
https://github.com/danielCantwell/Fit-Friend/issues/3
https://github.com/danielCantwell/Fit-Friend/issues/3
https://github.com/OpenJEVis/JEVis/issues/1699
https://github.com/OpenJEVis/JEVis/issues/1699
https://github.com/OpenJEVis/JEVis/issues/1699
https://github.com/TechReborn/TechReborn/issues/549
https://github.com/TechReborn/TechReborn/issues/549
https://github.com/TechReborn/TechReborn/issues/549
https://github.com/milaboratory/mixcr/issues/509
https://github.com/milaboratory/mixcr/issues/509
https://github.com/milaboratory/mixcr/issues/509
https://github.com/Angry-Pixel/The-Betweenlands/issues/895
https://github.com/Angry-Pixel/The-Betweenlands/issues/895
https://github.com/Angry-Pixel/The-Betweenlands/issues/895
https://github.com/Angry-Pixel/The-Betweenlands/issues/895
https://github.com/Angry-Pixel/The-Betweenlands/issues/895
https://github.com/VazkiiMods/Quark/issues/2920
https://github.com/VazkiiMods/Quark/issues/2920
https://github.com/VazkiiMods/Quark/issues/2920
https://github.com/15knots/cmake4eclipse/issues/26
https://github.com/15knots/cmake4eclipse/issues/26
https://github.com/15knots/cmake4eclipse/issues/26
https://github.com/TheThirdOne/JSoftFloat/issues/1
https://github.com/TheThirdOne/JSoftFloat/issues/1
https://github.com/TheThirdOne/JSoftFloat/issues/1
https://github.com/TheThirdOne/JSoftFloat/issues/1
https://github.com/TheThirdOne/JSoftFloat/issues/1
https://github.com/ververica/flink-cdc-connectors/issues/326
https://github.com/ververica/flink-cdc-connectors/issues/326
https://github.com/ververica/flink-cdc-connectors/issues/326
https://github.com/ververica/flink-cdc-connectors/issues/326
https://github.com/ververica/flink-cdc-connectors/issues/326
https://github.com/spring-cloud/spring-cloud-sleuth/issues/333
https://github.com/spring-cloud/spring-cloud-sleuth/issues/333
https://github.com/spring-cloud/spring-cloud-sleuth/issues/333
https://github.com/spring-cloud/spring-cloud-sleuth/issues/333
https://github.com/spring-cloud/spring-cloud-sleuth/issues/333
https://github.com/spring-cloud/spring-cloud-sleuth/issues/333
https://github.com/spring-cloud/spring-cloud-sleuth/issues/333
https://github.com/tango-controls/rest-server/issues/192
https://github.com/tango-controls/rest-server/issues/192
https://github.com/tango-controls/rest-server/issues/192
https://github.com/tango-controls/rest-server/issues/192
https://github.com/tango-controls/rest-server/issues/192
https://github.com/guillaume-alvarez/ShapeOfThingsThatWere/issues/7
https://github.com/guillaume-alvarez/ShapeOfThingsThatWere/issues/7
https://github.com/guillaume-alvarez/ShapeOfThingsThatWere/issues/7
https://github.com/guillaume-alvarez/ShapeOfThingsThatWere/issues/7
https://github.com/guillaume-alvarez/ShapeOfThingsThatWere/issues/7
https://github.com/spring-cloud/spring-cloud-config/issues/128
https://github.com/spring-cloud/spring-cloud-config/issues/128
https://github.com/spring-cloud/spring-cloud-config/issues/128
https://github.com/spring-cloud/spring-cloud-config/issues/128
https://github.com/spring-cloud/spring-cloud-config/issues/128
https://github.com/spring-cloud/spring-cloud-config/issues/128
https://github.com/spring-cloud/spring-cloud-config/issues/128
https://github.com/BentoBoxWorld/TwerkingForTrees/issues/9
https://github.com/BentoBoxWorld/TwerkingForTrees/issues/9
https://github.com/BentoBoxWorld/TwerkingForTrees/issues/9
https://github.com/BentoBoxWorld/TwerkingForTrees/issues/9

18.

19.

20.

21.

22.

23.

24,

25.

TwerkingForTrees/issues/9 -
Valid bug, valid fix. Identifiable by minecraft
logic of not allowing players to modify
blocks outside of world border.

https://github.com/requery/

requery/issues/63 - Valid
bug, wvalid fix: known issue in
SQLite https://stackoverflow.

com/questions/28385069/

sgliteopenhelper-setwriteaheadloggingenabled-causes—an—-error-log-line.
27.

* - https://github.com/
mpcjanssen/ubiquitous—-capture/
issues/4 - Valid bug, valid fix. Not
idenfitiable because this is fundamentally a
UX bug.

https://github.com/assert]j/
assertj-vavr/issues/141 - Valid
bug, valid fix. Identifiable based on other
patterns in the same repository.

https://github.com/
smartdevicelink/sdl_java_
suite/issues/53 - Valid issue, valid fix.
Identifiable through other similar patterns in
similar code in the repository.

https://github.com/
darcy-framework/
darcy-webdriver/issues/30 -
Valid bug, valid fix. Identifiable through
other similar patterns in similar code in the
repository.

* - https://github.com/
AlexFalappa/nb-springboot/
issues/167 - Valid bug, valid fix.
identifiable.

Not

https://github.com/
GabrielOlvH/Carrier/issues/2

- Valid issue, fix not permanent, but does
indeed correctly point to the location of the
problem. The problem, broadly speaking,
is caused by the fact that the Wolf entity is
different from all of the other entities, and
therefore calling updateHolding method
on it will cause issues.

https://github.com/AgriCraft/
AgriCraft/issues/82 - Valid issue,
valid fix. Its logic that is identifiable by

12

26.

28.

29.

30.

31.

32.

humans by looking at the variable names and
intended usage.

https://github.com/
rasmus-saks/aken—-ajalukku/
issues/65 - Valid issue, valid fix. Identifi-
able based on the context of the application,
the fact that this is actually a walking tour,
therefore the mode on google maps should
be for walking rather than driving.

https://github.com/
CJIMinecraft0l/DoubleSlabs/
issues/81 - Valid issue, valid fix. Fix is
identifiable in principle, but a lot of context
about how minecraft slabs interact is needed.

https://github.com/
hzi-braunschweig/
SORMAS—-Project/issues/6832 -
Valid issue, valid fix. Bug is identifiable, the
start date is replaced with Enddate in some
cases on records.

https://github.com/
MachinePublishers/
jBrowserDriver/issues/67 - Valid
issue, valid fix. The bug is identifiable in
the long context and with knowledge of the
general cookie-creation pattern. The problem
is that the domain for the cookie is not set,
so its not being used by the web-driver on
repeat visits to a website.

https://github.com/
release-engineering/
pom—manipulation—-ext/issues/
240 - Valid issue, valid fix. This one just
fixes an NPE, but it does contain a lot of
style/whitespace changes.

https://github.com/
Angry-Pixel/The-Betweenlands/
issues/948 - Valid bug, valid fix. This
one is in principle identifiable with knowl-
edge of the pattern in minecraft servers to
have different types of blocks that constitute
a single entity (a door in this case).

https://github.com/ehcache/
ehcache3/issues/2638 - Valid bug,
valid fix. Bug is straightforward and
identifiable.

https://github.com/BentoBoxWorld/TwerkingForTrees/issues/9
https://github.com/requery/requery/issues/63
https://github.com/requery/requery/issues/63
https://github.com/requery/requery/issues/63
https://stackoverflow.com/questions/28385069/sqliteopenhelper-setwriteaheadloggingenabled-causes-an-error-log-line
https://stackoverflow.com/questions/28385069/sqliteopenhelper-setwriteaheadloggingenabled-causes-an-error-log-line
https://stackoverflow.com/questions/28385069/sqliteopenhelper-setwriteaheadloggingenabled-causes-an-error-log-line
https://stackoverflow.com/questions/28385069/sqliteopenhelper-setwriteaheadloggingenabled-causes-an-error-log-line
https://stackoverflow.com/questions/28385069/sqliteopenhelper-setwriteaheadloggingenabled-causes-an-error-log-line
https://github.com/mpcjanssen/ubiquitous-capture/issues/4
https://github.com/mpcjanssen/ubiquitous-capture/issues/4
https://github.com/mpcjanssen/ubiquitous-capture/issues/4
https://github.com/mpcjanssen/ubiquitous-capture/issues/4
https://github.com/mpcjanssen/ubiquitous-capture/issues/4
https://github.com/assertj/assertj-vavr/issues/141
https://github.com/assertj/assertj-vavr/issues/141
https://github.com/assertj/assertj-vavr/issues/141
https://github.com/smartdevicelink/sdl_java_suite/issues/53
https://github.com/smartdevicelink/sdl_java_suite/issues/53
https://github.com/smartdevicelink/sdl_java_suite/issues/53
https://github.com/smartdevicelink/sdl_java_suite/issues/53
https://github.com/smartdevicelink/sdl_java_suite/issues/53
https://github.com/darcy-framework/darcy-webdriver/issues/30
https://github.com/darcy-framework/darcy-webdriver/issues/30
https://github.com/darcy-framework/darcy-webdriver/issues/30
https://github.com/darcy-framework/darcy-webdriver/issues/30
https://github.com/darcy-framework/darcy-webdriver/issues/30
https://github.com/AlexFalappa/nb-springboot/issues/167
https://github.com/AlexFalappa/nb-springboot/issues/167
https://github.com/AlexFalappa/nb-springboot/issues/167
https://github.com/AlexFalappa/nb-springboot/issues/167
https://github.com/AlexFalappa/nb-springboot/issues/167
https://github.com/GabrielOlvH/Carrier/issues/2
https://github.com/GabrielOlvH/Carrier/issues/2
https://github.com/GabrielOlvH/Carrier/issues/2
https://github.com/AgriCraft/AgriCraft/issues/82
https://github.com/AgriCraft/AgriCraft/issues/82
https://github.com/AgriCraft/AgriCraft/issues/82
https://github.com/rasmus-saks/aken-ajalukku/issues/65
https://github.com/rasmus-saks/aken-ajalukku/issues/65
https://github.com/rasmus-saks/aken-ajalukku/issues/65
https://github.com/rasmus-saks/aken-ajalukku/issues/65
https://github.com/rasmus-saks/aken-ajalukku/issues/65
https://github.com/CJMinecraft01/DoubleSlabs/issues/81
https://github.com/CJMinecraft01/DoubleSlabs/issues/81
https://github.com/CJMinecraft01/DoubleSlabs/issues/81
https://github.com/CJMinecraft01/DoubleSlabs/issues/81
https://github.com/CJMinecraft01/DoubleSlabs/issues/81
https://github.com/hzi-braunschweig/SORMAS-Project/issues/6832
https://github.com/hzi-braunschweig/SORMAS-Project/issues/6832
https://github.com/hzi-braunschweig/SORMAS-Project/issues/6832
https://github.com/hzi-braunschweig/SORMAS-Project/issues/6832
https://github.com/hzi-braunschweig/SORMAS-Project/issues/6832
https://github.com/MachinePublishers/jBrowserDriver/issues/67
https://github.com/MachinePublishers/jBrowserDriver/issues/67
https://github.com/MachinePublishers/jBrowserDriver/issues/67
https://github.com/MachinePublishers/jBrowserDriver/issues/67
https://github.com/MachinePublishers/jBrowserDriver/issues/67
https://github.com/release-engineering/pom-manipulation-ext/issues/240
https://github.com/release-engineering/pom-manipulation-ext/issues/240
https://github.com/release-engineering/pom-manipulation-ext/issues/240
https://github.com/release-engineering/pom-manipulation-ext/issues/240
https://github.com/release-engineering/pom-manipulation-ext/issues/240
https://github.com/release-engineering/pom-manipulation-ext/issues/240
https://github.com/release-engineering/pom-manipulation-ext/issues/240
https://github.com/Angry-Pixel/The-Betweenlands/issues/948
https://github.com/Angry-Pixel/The-Betweenlands/issues/948
https://github.com/Angry-Pixel/The-Betweenlands/issues/948
https://github.com/Angry-Pixel/The-Betweenlands/issues/948
https://github.com/Angry-Pixel/The-Betweenlands/issues/948
https://github.com/ehcache/ehcache3/issues/2638
https://github.com/ehcache/ehcache3/issues/2638
https://github.com/ehcache/ehcache3/issues/2638

33.

34.

35.

36.

37.

38.

39.

40.

https://github.com/
thingsboard/thingsboard/
issues/3992 - Valid bug, valid
fix. The essence is that the method
getDeviceTypes should call the /de-
vices/types api endpoint rather than /devices.
Should be identifiable based on semantic
context.

https://github.com/vert-x3/
vertx-config/issues/20 - Valid
bug, valid fix. The bug is easily identifiable
because (a) Vertx is often used in code, and
(b) the host variable is left unused despite
being declared, and there is only one logical
place where it can be potentially used.

https://github.com/metarhia/
jstp-java/issues/24 - Valid bug,
valid fix. The bug is identifiable given
context about the ExecutionHandler
class.

* - https://github.com/
Cassiobsk8/Industrial_Renewal/
issues/126 - Valid bug, valid fix. This
bug is difficult to identify because (a) the fix
is to override a particular method of the class
and (b) its not obvious that there can be an
obstruction with bunk beds..

https://github.com/Tamaized/
AoV/issues/13 - Valid bug, valid fix.
Contains some whitespace additions in
addition to bug fix. Bug related to a certain
config option not being used, its identifiable
through semantic understanding of the code.

* - https://github.com/PyvesB/
advanced-achievements/issues/
172 - Valid bug, valid fix. The bug is hard
to identify, because it requires context about
brewing stand operations.

https://github.com/eclipse/
vorto/issues/442 - Valid bug, valid
fix. The issue is identifiable by the fact that
resource id is hardcoded to O rather than
the resourceld variable provided. Also se-
mantically identifiable. Contains whitespace
changes as well.

https://github.com/hsyyid/
AdminShop/issues/5 - Valid bug, valid
fix. Identifiable bug.

13

41.

42.

43.

44.

45.

46.

47.

48.

* - https://github.com/
labhackercd/edm/issues/5 -
Valid bug, unsure if valid fix. The bug
has little information, and the crash that
the bug reports does not seem to be iden-
tifiable from the code alone (maybe its
device-dependent, but the pattern used
that is considered buggy is widely recom-
mended, see https://stackoverflow.
com/questions/2422562/

how-to-change-theme-for-alertdialog)i

https://github.com/
Haptic-Apps/Slide/issues/655 -
Valid bug, valid fix. A run-time exception
from a method should be catched.

* - https://github.com/
PortuguesDoSeculoXXI/
PortuguesDoSeculoXXI/issues/48
- Unsure, hard to ascertain, there is a lot of
text in portuguese

https://github.com/OpenJEVis/
JEVis/issues/840 - Valid bug, valid fix.
Although the text is in German, the bug is
about processing a list of items into a menu
rather than just one. This is not a new feature,
since the items to be processed were always
packaged in a variable-length list.

https://github.
com/commons—app/
apps—android-commons/issues/
587 - Valid bug, valid fix. Links need to be
sanitized.

https://github.com/twizmwazin/
CardinalPGM/issues/86 - Valid bug,
valid fix. A map cycle schedule was only
set when time was under 5 seconds, so the
scheduling needed to be moved out of that
particular if statement.

* - https://github.com/
assemblits/eru/issues/100 -
Not a valid bug. The change is just a change
to the title of an alert to set it to a class
name rather than a generic connection failure
message.

https://github.com/
MachinePublishers/
jBrowserDriver/issues/21 - Valid

https://github.com/thingsboard/thingsboard/issues/3992
https://github.com/thingsboard/thingsboard/issues/3992
https://github.com/thingsboard/thingsboard/issues/3992
https://github.com/thingsboard/thingsboard/issues/3992
https://github.com/thingsboard/thingsboard/issues/3992
https://github.com/vert-x3/vertx-config/issues/20
https://github.com/vert-x3/vertx-config/issues/20
https://github.com/vert-x3/vertx-config/issues/20
https://github.com/metarhia/jstp-java/issues/24
https://github.com/metarhia/jstp-java/issues/24
https://github.com/metarhia/jstp-java/issues/24
https://github.com/Cassiobsk8/Industrial_Renewal/issues/126
https://github.com/Cassiobsk8/Industrial_Renewal/issues/126
https://github.com/Cassiobsk8/Industrial_Renewal/issues/126
https://github.com/Cassiobsk8/Industrial_Renewal/issues/126
https://github.com/Cassiobsk8/Industrial_Renewal/issues/126
https://github.com/Tamaized/AoV/issues/13
https://github.com/Tamaized/AoV/issues/13
https://github.com/Tamaized/AoV/issues/13
https://github.com/PyvesB/advanced-achievements/issues/172
https://github.com/PyvesB/advanced-achievements/issues/172
https://github.com/PyvesB/advanced-achievements/issues/172
https://github.com/PyvesB/advanced-achievements/issues/172
https://github.com/PyvesB/advanced-achievements/issues/172
https://github.com/eclipse/vorto/issues/442
https://github.com/eclipse/vorto/issues/442
https://github.com/eclipse/vorto/issues/442
https://github.com/hsyyid/AdminShop/issues/5
https://github.com/hsyyid/AdminShop/issues/5
https://github.com/hsyyid/AdminShop/issues/5
https://github.com/labhackercd/edm/issues/5
https://github.com/labhackercd/edm/issues/5
https://github.com/labhackercd/edm/issues/5
https://stackoverflow.com/questions/2422562/how-to-change-theme-for-alertdialog)
https://stackoverflow.com/questions/2422562/how-to-change-theme-for-alertdialog)
https://stackoverflow.com/questions/2422562/how-to-change-theme-for-alertdialog)
https://stackoverflow.com/questions/2422562/how-to-change-theme-for-alertdialog)
https://stackoverflow.com/questions/2422562/how-to-change-theme-for-alertdialog)
https://github.com/Haptic-Apps/Slide/issues/655
https://github.com/Haptic-Apps/Slide/issues/655
https://github.com/Haptic-Apps/Slide/issues/655
https://github.com/PortuguesDoSeculoXXI/PortuguesDoSeculoXXI/issues/48
https://github.com/PortuguesDoSeculoXXI/PortuguesDoSeculoXXI/issues/48
https://github.com/PortuguesDoSeculoXXI/PortuguesDoSeculoXXI/issues/48
https://github.com/PortuguesDoSeculoXXI/PortuguesDoSeculoXXI/issues/48
https://github.com/PortuguesDoSeculoXXI/PortuguesDoSeculoXXI/issues/48
https://github.com/OpenJEVis/JEVis/issues/840
https://github.com/OpenJEVis/JEVis/issues/840
https://github.com/OpenJEVis/JEVis/issues/840
https://github.com/commons-app/apps-android-commons/issues/587
https://github.com/commons-app/apps-android-commons/issues/587
https://github.com/commons-app/apps-android-commons/issues/587
https://github.com/commons-app/apps-android-commons/issues/587
https://github.com/commons-app/apps-android-commons/issues/587
https://github.com/commons-app/apps-android-commons/issues/587
https://github.com/commons-app/apps-android-commons/issues/587
https://github.com/twizmwazin/CardinalPGM/issues/86
https://github.com/twizmwazin/CardinalPGM/issues/86
https://github.com/twizmwazin/CardinalPGM/issues/86
https://github.com/assemblits/eru/issues/100
https://github.com/assemblits/eru/issues/100
https://github.com/assemblits/eru/issues/100
https://github.com/MachinePublishers/jBrowserDriver/issues/21
https://github.com/MachinePublishers/jBrowserDriver/issues/21
https://github.com/MachinePublishers/jBrowserDriver/issues/21
https://github.com/MachinePublishers/jBrowserDriver/issues/21
https://github.com/MachinePublishers/jBrowserDriver/issues/21

49.

50.

51.

52.

53.

54.

55.

56.

bug, valid fix. The issue is that cookies come
in a lot of formats, and not all of them were
supported by jBrowser.

https://github.com/
lucas—-tulio/server—-simulator/
issues/6 - The bug is valid, fix invalid.

https://github.
com/spring-cloud/
spring—-cloud-netflix/issues/
1724 - Valid bug, valid fix. The property
for preferIPAddress was not taken into
account. The config is needed to be able to
identify this issue.

https://github.com/Col-E/
Recaf/issues/344 - Valid bug, valid fix.
The previous version replaced all $ in a class
name with ., but only the last one needs to
be replaced by convention.

https://github.com/
plan-player—-analytics/Plan/
issues/1313 - Valid bug, valid fix. The
front-end called the wrong endpoint, and the
backend was adjusted so that the front-end
was calling the correct endpoint to get a list
of players for a server.

* - https://github.com/
cabaletta/baritone/issues/330 -
Not really a bug, more like an extra feature.
Also has the enhancement tag.

https://github.com/sosy—-lab/

java—common-lib/issues/19 - Valid
bug, valid fix. The problem was that one of
the iterators in a method that returned sorted
list of two collections wasnt fully exhausted.

https://github.com/Cactiw/
Timetable/issues/4 - Valid bug, valid
fix. The issue was that an update task wasnt
put into an async call, and therefore caused
issues downstream. Putting it in async fixes
the issue.

https://github.com/
jooby-project/jooby/issues/
1489 - Valid bug, valid fix. Pretty easily
identifiable that the factory is closed rather
than the session that was just checked in the
surrounding if statement.

14

57.

58.

59.

60.

61.

62.

63.

https://github.com/Gaming32/
ArrayV-v4.0/issues/43 - Valid bug,
valid fix. Method that obviously should have
been synchronized based on surrounding
code wasn’t synchronized.

https://github.com/Zedd7/
ZHorse/issues/25 - Valid bug, valid
fix. The duplicate horse is not assigned
a name, so when deleting it the message
should display the original horsess name.

https://github.
com/neocdj-contrib/

neod j—apoc—-procedures/issues/
303 - Valid bug, valid fix. The issue is that
two nodes cannot have the same main key,
and when merging two nodes the previous
node was not deleted therefore causing an
exception. The solution is that the properties
of the source node should be stored, the
source node deleted, and then the properties
of the source node have to loaded into the
target node from the stored variable.

https://github.com/mikepenz/
CrossfadeDrawerLayout/issues/
15 - Valid bug, valid fix. The bug is that
when opening/closing the drawer, the state
is not necessarily updated. The fix is to
override the appropriate methods to update
state. Identifiable by the common pattern
of state updates when calling certain parent
class methods.

https://github.com/wultra/
powerauth-webflow/issues/345 -
Valid bug, valid fix. The issue is that the
message of the logger wasnt aligned with the
exception being caught. There are also some
whitespace changes added in the commit.

https://github.com/TeamLapen/
Vampirism/issues/333 - Valid bug,
valid fix. Off-by-one error, identifiable by
knowing about minecraft item stacks as well
as generally looking around the code.

https://github.com/
home-climate—control/dz/
issues/144 - Valid bug, valid fix.
Authentication parameters passed to the bean
were not actually set when creating the bean.
Bug is identifiable.

https://github.com/lucas-tulio/server-simulator/issues/6
https://github.com/lucas-tulio/server-simulator/issues/6
https://github.com/lucas-tulio/server-simulator/issues/6
https://github.com/lucas-tulio/server-simulator/issues/6
https://github.com/lucas-tulio/server-simulator/issues/6
https://github.com/spring-cloud/spring-cloud-netflix/issues/1724
https://github.com/spring-cloud/spring-cloud-netflix/issues/1724
https://github.com/spring-cloud/spring-cloud-netflix/issues/1724
https://github.com/spring-cloud/spring-cloud-netflix/issues/1724
https://github.com/spring-cloud/spring-cloud-netflix/issues/1724
https://github.com/spring-cloud/spring-cloud-netflix/issues/1724
https://github.com/spring-cloud/spring-cloud-netflix/issues/1724
https://github.com/Col-E/Recaf/issues/344
https://github.com/Col-E/Recaf/issues/344
https://github.com/Col-E/Recaf/issues/344
https://github.com/plan-player-analytics/Plan/issues/1313
https://github.com/plan-player-analytics/Plan/issues/1313
https://github.com/plan-player-analytics/Plan/issues/1313
https://github.com/plan-player-analytics/Plan/issues/1313
https://github.com/plan-player-analytics/Plan/issues/1313
https://github.com/cabaletta/baritone/issues/330
https://github.com/cabaletta/baritone/issues/330
https://github.com/cabaletta/baritone/issues/330
https://github.com/sosy-lab/java-common-lib/issues/19
https://github.com/sosy-lab/java-common-lib/issues/19
https://github.com/sosy-lab/java-common-lib/issues/19
https://github.com/Cactiw/Timetable/issues/4
https://github.com/Cactiw/Timetable/issues/4
https://github.com/Cactiw/Timetable/issues/4
https://github.com/jooby-project/jooby/issues/1489
https://github.com/jooby-project/jooby/issues/1489
https://github.com/jooby-project/jooby/issues/1489
https://github.com/jooby-project/jooby/issues/1489
https://github.com/jooby-project/jooby/issues/1489
https://github.com/Gaming32/ArrayV-v4.0/issues/43
https://github.com/Gaming32/ArrayV-v4.0/issues/43
https://github.com/Gaming32/ArrayV-v4.0/issues/43
https://github.com/Zedd7/ZHorse/issues/25
https://github.com/Zedd7/ZHorse/issues/25
https://github.com/Zedd7/ZHorse/issues/25
https://github.com/neo4j-contrib/neo4j-apoc-procedures/issues/303
https://github.com/neo4j-contrib/neo4j-apoc-procedures/issues/303
https://github.com/neo4j-contrib/neo4j-apoc-procedures/issues/303
https://github.com/neo4j-contrib/neo4j-apoc-procedures/issues/303
https://github.com/neo4j-contrib/neo4j-apoc-procedures/issues/303
https://github.com/neo4j-contrib/neo4j-apoc-procedures/issues/303
https://github.com/neo4j-contrib/neo4j-apoc-procedures/issues/303
https://github.com/mikepenz/CrossfadeDrawerLayout/issues/15
https://github.com/mikepenz/CrossfadeDrawerLayout/issues/15
https://github.com/mikepenz/CrossfadeDrawerLayout/issues/15
https://github.com/mikepenz/CrossfadeDrawerLayout/issues/15
https://github.com/mikepenz/CrossfadeDrawerLayout/issues/15
https://github.com/wultra/powerauth-webflow/issues/345
https://github.com/wultra/powerauth-webflow/issues/345
https://github.com/wultra/powerauth-webflow/issues/345
https://github.com/TeamLapen/Vampirism/issues/333
https://github.com/TeamLapen/Vampirism/issues/333
https://github.com/TeamLapen/Vampirism/issues/333
https://github.com/home-climate-control/dz/issues/144
https://github.com/home-climate-control/dz/issues/144
https://github.com/home-climate-control/dz/issues/144
https://github.com/home-climate-control/dz/issues/144
https://github.com/home-climate-control/dz/issues/144

64.

65.

66.

67.

68.

69.

70.

71.

https://github.com/kontalk/
androidclient/issues/1264 - Valid
bug, valid fix. The problem is that the push
notification service would not be started as
a foreground service and the system would
kill it after 15 seconds. The fix is to start it in
the foreground before. Identifiable because
this is a common pattern in messaging
applications.

https://github.com/BetonQuest/
BetonQuest/issues/734 - Valid bug,
valid fix. The problem is that the method
used previously to detect entity deaths in
Minecraft was sub-optimal, and it was
replaced by a better method that was seen
in a different minecraft plugin. Identifiable
with knowledge of the spigot library usage
patterns.

https://github.com/jmockit/
jmockitl/issues/98 - Valid bug, valid
fix. The problem is that sometimes types that
should be null are not mocked as null
objects. The fix addresses these cases with
cascading types. Bug is identifiable with
knowledge mocking patterns.

* - https://github.com/
Freeyourgadget/Gadgetbridge/
issues/529 - Invalid issue that has been
deleted.

https://github.com/
scenerygraphics/sciview/
issues/181 - Valid bug, valid fix.
One needs to call setSize on the panel
before displaying it, and the fix addresses
that.

https://github.com/ramack/
ActivityDiary/issues/153 - Valid
bug, valid fix. Identifiable through app
context.

https://github.com/
decarbonization/android-fonz/
issues/26 - Valid bug, valid fix. Type
mismatch in settings crashed the app. Identi-
fiable from android property conventions.

https://github.com/ICIJ/
datashare/issues/41 - Valid bug,
valid fix. Fix the ISO code representations of

15

72.

73.

74.

75.

76.

7.

78.

languages by a) adding more enums and b)
using both isol and iso2 codes to identify a
language. Should be easily identifiable since
both isol and iso2 parameters are passed in.

https://github.com/twizmwazin/
CardinalPGM/issues/645 - Valid bug,
valid fix. The fix is to use a more high-level
API provided by the library in question, and
simplify the existing code dramatically and
add support for detecting TNT damage and
account for points. Should be identifiable
given the whole library context.

* - https://github.com/
manoelcampos/cloudsimplus/
issues/368 - Valid bug, valid fix. This is
an issue that would be hard to identify since
its configuration/resource usage based, and
depends on system parameters a lot.

* - https://github.com/almosr/
android-svg-code—-render/
issues/67 - Valid bug, valid fix. Not iden-
tifiable due to the bug being in templating.

https://github.com/dcmi4che/
dcmi4chee-arc-1light/issues/523

- Valid bug, valid fix. When a study is
deleted, the number of studies that patients
of this study participated in has to be de-
creased. Identifiable with understanding of
relationship between patients and studies.

*-https://github.com/BCA-Team/
Buildcraft-Additions/issues/
356 - Valid bug, valid fix. Minecraft
lasers fired underwater get stuck. The fix
implements the logic of dissipating the laser
once it hits lava or water. Not identifiable
without knowing in-app logic about lasers
and expected behavior upon hitting water or
lava.

https://github.
com/TotalHamman/
BetterBlockExchanger/issues/7
- Valid bug, valid fix. The app was reading
state from the previous state during a swap
rather than the current state, causing an NPE.

https://github.com/
BasicAirData/GPSLogger/issues/
132 - Valid bug, valid fix. The contents of a

https://github.com/kontalk/androidclient/issues/1264
https://github.com/kontalk/androidclient/issues/1264
https://github.com/kontalk/androidclient/issues/1264
https://github.com/BetonQuest/BetonQuest/issues/734
https://github.com/BetonQuest/BetonQuest/issues/734
https://github.com/BetonQuest/BetonQuest/issues/734
https://github.com/jmockit/jmockit1/issues/98
https://github.com/jmockit/jmockit1/issues/98
https://github.com/jmockit/jmockit1/issues/98
https://github.com/Freeyourgadget/Gadgetbridge/issues/529
https://github.com/Freeyourgadget/Gadgetbridge/issues/529
https://github.com/Freeyourgadget/Gadgetbridge/issues/529
https://github.com/Freeyourgadget/Gadgetbridge/issues/529
https://github.com/Freeyourgadget/Gadgetbridge/issues/529
https://github.com/scenerygraphics/sciview/issues/181
https://github.com/scenerygraphics/sciview/issues/181
https://github.com/scenerygraphics/sciview/issues/181
https://github.com/scenerygraphics/sciview/issues/181
https://github.com/scenerygraphics/sciview/issues/181
https://github.com/ramack/ActivityDiary/issues/153
https://github.com/ramack/ActivityDiary/issues/153
https://github.com/ramack/ActivityDiary/issues/153
https://github.com/decarbonization/android-fonz/issues/26
https://github.com/decarbonization/android-fonz/issues/26
https://github.com/decarbonization/android-fonz/issues/26
https://github.com/decarbonization/android-fonz/issues/26
https://github.com/decarbonization/android-fonz/issues/26
https://github.com/ICIJ/datashare/issues/41
https://github.com/ICIJ/datashare/issues/41
https://github.com/ICIJ/datashare/issues/41
https://github.com/twizmwazin/CardinalPGM/issues/645
https://github.com/twizmwazin/CardinalPGM/issues/645
https://github.com/twizmwazin/CardinalPGM/issues/645
https://github.com/manoelcampos/cloudsimplus/issues/368
https://github.com/manoelcampos/cloudsimplus/issues/368
https://github.com/manoelcampos/cloudsimplus/issues/368
https://github.com/manoelcampos/cloudsimplus/issues/368
https://github.com/manoelcampos/cloudsimplus/issues/368
https://github.com/almosr/android-svg-code-render/issues/67
https://github.com/almosr/android-svg-code-render/issues/67
https://github.com/almosr/android-svg-code-render/issues/67
https://github.com/almosr/android-svg-code-render/issues/67
https://github.com/almosr/android-svg-code-render/issues/67
https://github.com/dcm4che/dcm4chee-arc-light/issues/523
https://github.com/dcm4che/dcm4chee-arc-light/issues/523
https://github.com/dcm4che/dcm4chee-arc-light/issues/523
https://github.com/BCA-Team/Buildcraft-Additions/issues/356
https://github.com/BCA-Team/Buildcraft-Additions/issues/356
https://github.com/BCA-Team/Buildcraft-Additions/issues/356
https://github.com/BCA-Team/Buildcraft-Additions/issues/356
https://github.com/BCA-Team/Buildcraft-Additions/issues/356
https://github.com/TotalHamman/BetterBlockExchanger/issues/7
https://github.com/TotalHamman/BetterBlockExchanger/issues/7
https://github.com/TotalHamman/BetterBlockExchanger/issues/7
https://github.com/TotalHamman/BetterBlockExchanger/issues/7
https://github.com/TotalHamman/BetterBlockExchanger/issues/7
https://github.com/BasicAirData/GPSLogger/issues/132
https://github.com/BasicAirData/GPSLogger/issues/132
https://github.com/BasicAirData/GPSLogger/issues/132
https://github.com/BasicAirData/GPSLogger/issues/132
https://github.com/BasicAirData/GPSLogger/issues/132

79.

80.

81.

82.

83.

84.

85.

86.

variable on which a switch was conditioned
could be potentially null, and that caused an
NPE.

https://github.com/0OfficeDev/
ews—Jjava-api/issues/8 - Valid bug,
valid fix. The bug is identifiable by the fact
that there is an used variable, and the only
place where it can be reasonably used is in a
method override of a method inherited from
the parent class.

https://github.com/dcmdche/
dcm4chee—arc-light/issues/
1180 - Valid bug, valid fix. The problem
is that the program assigns the type of a
SOP instance not according to the DICOM
specification. Knowledge of the DICOM
specification is necessary to identify the bug.

https://github.com/LMBishop/
Quests/issues/281 - Valid bug, valid
fix. The problem is that player quests are not
restored to the player object once the player
joined the server. Identifiable with common
quest/server patterns.

* - https://github.com/
danielricci/solitaire/issues/
90 - Valid bug, invalid fixes.

https://github.com/hv0905/
SchoolStoryCollection/issues/2
- Valid bug, valid fix, identifiable by human.

https://github.com/
davidcorbin/mygcc—api/issues/
21 - Valid bug, valid fix. The issue is that
when processing an image the code searches
for the last occurrence of .jpg, but this cannot
be found and throws an error if the image
URL is uppercase.

https://github.com/Tamaized/
AoV/issues/104 - Valid bug, valid fix.
The issue is that a player can just hop in and
out of bed to recharge certain abilities, but
in reality they need to fully sleep in the bed
for that. Identifiable bug because this is a
common pattern (you need to actually sleep)
in many minecraft games.

https://github.com/
Electroblob77/Wizardry/issues/

16

87.

88.

89.

90.

91.

92.

93.

513 - Valid bug, valid fix. The fix consists
of using the stream and filter apis to avoid
removing items from a list that can be
concurrently modified. Identifiable with
knowledge of concurrency mechanisms.

https://github.com/tsandmann/
ct-sim/issues/ 62 - Valid bug (because
the code does not correspond to the docu-
mentation comments), valid fix. Interestingly
the documentation is in German.

https://github.com/voxelwind/
voxelwind/issues/33 - Valid bug,
valid fix. The problem is that the project
implements a server for Minecraft: Pocket
Edition, and it doesnt fully comply with
the API contract, in particular with respect
to the yaw parameters that clients pass in.
Identifiable with knowledge of the API.

https://github.com/phrack/
ShootOFF/issues/651 - Valid bug,
valid fix. Wrong class was used to test
if a shot color matched certain constants.
Identifiable.

*-https://github.com/rmichela/
GiantTrees/issues/31 - Not really a
bug, this just implements mechanisms that si-
lence warnings if certain resource files do not
exist.

https://github.com/
sriharshachilakapati/
SilenceEngine/issues/38 - Valid
bug, valid fix. If the vertices for a certain
polygon are cleared, some parameters are
set to maximum and minimum infinity, and
some downstream methods throw errors. Fix
is modification of these methods to account
for cases when vertices are 0.

https://github.com/lsfusion/
platform/issues/164 - Valid bug,
valid fix. The method would not account
for ftp files that did not exist, and the
modification allows the method to handle
non-existent ftp files as well.

https://github.
com/spring-cloud/

spring-cloud-sleuth/issues/
1816 - Valid bug, valid fix. The sleuth

https://github.com/OfficeDev/ews-java-api/issues/8
https://github.com/OfficeDev/ews-java-api/issues/8
https://github.com/OfficeDev/ews-java-api/issues/8
https://github.com/dcm4che/dcm4chee-arc-light/issues/1180
https://github.com/dcm4che/dcm4chee-arc-light/issues/1180
https://github.com/dcm4che/dcm4chee-arc-light/issues/1180
https://github.com/dcm4che/dcm4chee-arc-light/issues/1180
https://github.com/dcm4che/dcm4chee-arc-light/issues/1180
https://github.com/LMBishop/Quests/issues/281
https://github.com/LMBishop/Quests/issues/281
https://github.com/LMBishop/Quests/issues/281
https://github.com/danielricci/solitaire/issues/90
https://github.com/danielricci/solitaire/issues/90
https://github.com/danielricci/solitaire/issues/90
https://github.com/danielricci/solitaire/issues/90
https://github.com/danielricci/solitaire/issues/90
https://github.com/hv0905/SchoolStoryCollection/issues/2
https://github.com/hv0905/SchoolStoryCollection/issues/2
https://github.com/hv0905/SchoolStoryCollection/issues/2
https://github.com/davidcorbin/mygcc-api/issues/21
https://github.com/davidcorbin/mygcc-api/issues/21
https://github.com/davidcorbin/mygcc-api/issues/21
https://github.com/davidcorbin/mygcc-api/issues/21
https://github.com/davidcorbin/mygcc-api/issues/21
https://github.com/Tamaized/AoV/issues/104
https://github.com/Tamaized/AoV/issues/104
https://github.com/Tamaized/AoV/issues/104
https://github.com/Electroblob77/Wizardry/issues/513
https://github.com/Electroblob77/Wizardry/issues/513
https://github.com/Electroblob77/Wizardry/issues/513
https://github.com/Electroblob77/Wizardry/issues/513
https://github.com/Electroblob77/Wizardry/issues/513
https://github.com/tsandmann/ct-sim/issues/62
https://github.com/tsandmann/ct-sim/issues/62
https://github.com/tsandmann/ct-sim/issues/62
https://github.com/voxelwind/voxelwind/issues/33
https://github.com/voxelwind/voxelwind/issues/33
https://github.com/voxelwind/voxelwind/issues/33
https://github.com/phrack/ShootOFF/issues/651
https://github.com/phrack/ShootOFF/issues/651
https://github.com/phrack/ShootOFF/issues/651
https://github.com/rmichela/GiantTrees/issues/31
https://github.com/rmichela/GiantTrees/issues/31
https://github.com/rmichela/GiantTrees/issues/31
https://github.com/sriharshachilakapati/SilenceEngine/issues/38
https://github.com/sriharshachilakapati/SilenceEngine/issues/38
https://github.com/sriharshachilakapati/SilenceEngine/issues/38
https://github.com/sriharshachilakapati/SilenceEngine/issues/38
https://github.com/sriharshachilakapati/SilenceEngine/issues/38
https://github.com/lsfusion/platform/issues/164
https://github.com/lsfusion/platform/issues/164
https://github.com/lsfusion/platform/issues/164
https://github.com/spring-cloud/spring-cloud-sleuth/issues/1816
https://github.com/spring-cloud/spring-cloud-sleuth/issues/1816
https://github.com/spring-cloud/spring-cloud-sleuth/issues/1816
https://github.com/spring-cloud/spring-cloud-sleuth/issues/1816
https://github.com/spring-cloud/spring-cloud-sleuth/issues/1816
https://github.com/spring-cloud/spring-cloud-sleuth/issues/1816
https://github.com/spring-cloud/spring-cloud-sleuth/issues/1816

library was interfering with openfeigns
circuitbreaker capabilities, the fix was to
conditionally create the feign bean only if
circuitbreaker was disabled. Identifiable by
humans.

94. https://github.com/vinaygaba/

CreditCardView/issues/13 - Valid
bug, valid fix. The issue is that the setter
methods did not modify the actual state of

the class. Easily identifiable by humans.

95. https://github.com/AludraTest/
aludratest/issues/36 - Valid bug,
valid fix. Identifiable with context of the

Selenium library.

96. https://github.com/VazkiiMods/
Quark/issues/3374 - Valid bug, valid
fix. Simple fix to fix the formatting of chat

events in certain cases of item links.

97. https://github.com/Tamaized/

AoV/issues/93 - Valid bug, valid fix.
The problem is that casting the furious howl
spell should only apply to a selected target.
Identifiable through other examples of spells

cast on a specific target in the library.

98. https://github.com/
spring-projects/
spring-boot-data—geode/
issues/55 - Valid bug, valid fix. Identifi-

able with knowledge of Spring beans.

99. https://github.com/twizmwazin/
CardinalPGM/issues/657 - Valid bug,
valid fix. Identifiable through Bukkit/game
conventions: the game sets player metadata,

but doesnt remove it on match end.

100. https://github.com/rundeck/

rundeck-cli/issues/43 - Valid bug,
valid fix. Annotation text doesnt align with
documentation about command line option

usage in the rest of the code.

E Synthetic Dataset Samples

E.1 Example of InCoder perturbation

We present an example of a sample perturbation
generated by the InCoder model in Figure 1. The
original observation is on the left-hand side, and
the perturbed observation is on the right-hand side.

17

Remarkably, both sequences appear to be syn-
tactically correct code. The auto-repressive sam-
pler took future tokens into account. For ex-
ample, the type resolution of the object map
may be resolved by the return signature of the
function public static ChainMap<...>
which was not masked out and the invocation of
map.put (...). While the original code iter-
ates over the list of objects obj, the perturbed
code only considers the first element of the list,
if the list contains a single element. Whether the
rewrites constitute a "bug" depends on the defini-
tion of the term, as earlier discussed. However,
given the context one can argue that the rewritten
implementation seems less probable to follow the
underlying intent.

E.2 Synthetic Samples with Explanations

In this section we provide a few samples of bugs
generated in the second revision of the synthetic
dataset as well as brief explanations of the pertur-
bations in Figures 2, 3, and 4. The red lines mark
lines affected by the perturbations.

In Sample 1 (2), the bug is obviously intro-
duced because the password string is being printed
out into STDOUT. This is valid Java code, bug
a significant deviation from secure coding prac-
tices. The code in Sample 2 (3) endless recur-
sion loop call. The code in Sample 3 (4) is from a
Spring app that controls a Planet API. Every time
a call to addPlanet API is made, the API re-
turns HttpStatus.BAD_REQUEST every time
regardless of whether the operation succeeded or
not.

F Realistic Benchmark Samples

In order to show the necessity for long-context
language models for bug localization, we demon-
strate an example of a bug that is highly dependent
on external context outside of the scope of the file
where the bug is located. The issue ? in question
is related to a bug in a software project Catnip that
provides a Discord® API wrapper in Java. The bug
is that the Java plugin uses java.awt.Color*
to store Color parameter for embeds. This class
stores not only the RGB bits of the color, but also
8 extra alpha bits, constituting a 64 bit representa-
tion of each color. However, the Discord API only

*https://github.com/mewna/catnip/issues/105
3https://discord.com

*https://docs.oracle.com/javase/7/docs/api/java/awt/Color.html

https://github.com/vinaygaba/CreditCardView/issues/13
https://github.com/vinaygaba/CreditCardView/issues/13
https://github.com/vinaygaba/CreditCardView/issues/13
https://github.com/AludraTest/aludratest/issues/36
https://github.com/AludraTest/aludratest/issues/36
https://github.com/AludraTest/aludratest/issues/36
https://github.com/VazkiiMods/Quark/issues/3374
https://github.com/VazkiiMods/Quark/issues/3374
https://github.com/VazkiiMods/Quark/issues/3374
https://github.com/Tamaized/AoV/issues/93
https://github.com/Tamaized/AoV/issues/93
https://github.com/Tamaized/AoV/issues/93
https://github.com/spring-projects/spring-boot-data-geode/issues/55
https://github.com/spring-projects/spring-boot-data-geode/issues/55
https://github.com/spring-projects/spring-boot-data-geode/issues/55
https://github.com/spring-projects/spring-boot-data-geode/issues/55
https://github.com/spring-projects/spring-boot-data-geode/issues/55
https://github.com/spring-projects/spring-boot-data-geode/issues/55
https://github.com/spring-projects/spring-boot-data-geode/issues/55
https://github.com/twizmwazin/CardinalPGM/issues/657
https://github.com/twizmwazin/CardinalPGM/issues/657
https://github.com/twizmwazin/CardinalPGM/issues/657
https://github.com/rundeck/rundeck-cli/issues/43
https://github.com/rundeck/rundeck-cli/issues/43
https://github.com/rundeck/rundeck-cli/issues/43

package com.github.yt. mybatis. utils;

import com. github.yt.base.exception.BaseErrorException;
import org.apache.commons.lang3.StringUtils;
import java.lang.reflect.Field;

public class BeanUtils {

public static ChainMap<String ,
getValueMap (Object ... objs) {
try {

ChainMap<String ,

new ChainMap<>();
for (Object obj : objs) {

if (null == obj) {
continue ;

Object>

Object> map =

}

for (Class<?> ¢ obj.getClass () ;
c.getSuperclass ()) |

for (Field field : c.getDeclaredFields())

Object.

class!= ¢; ¢ =

(
field.setAccessible (true);
Object value = field.get(obj);
if (null value) {
continue ;

}
if (field.getType().isAssignableFrom (
String.class) && StringUtils.isEmpty ((String) value)) {
continue ;
}
map. put(field.getName (), value);
}
}
return map;
} catch (Exception e) {
throw new BaseErrorException("Object to Map
convert Error", e);

}

Original observation.

package com.github.yt.mybatis. utils;

import com. github.yt.base.exception.BaseErrorException;
import org.apache.commons.lang3.StringUtils;

import java.lang.reflect.Field;

public class BeanUtils {

public static ChainMap<String ,
getFieldMap (Object... objs) {

Object>

ChainMap<String ,
new ChainMap<String ,
try {
if (objs != null && objs.length ==
Object obj = objs[0];
for(Class<?> ¢ obj.getClass () ;
c.getSuperclass ()) {
for (Field field

Object> map
Object >();

D {

Object.class

= ¢; ¢
: c.getDeclaredFields ())

field.setAccessible (true);
Object value field.get(obj);
if (null == value) {

continue ;

)
if (field.getType().isAssignableFrom (
String.class) && StringUtils .isEmpty ((String) value)) {
continue ;
}
map. put(field .getName (), value);
}
}
return map;
} catch (Exception e) {
throw new BaseErrorException("Object to Map
convert Error", e);

}

Perturbed observation.

Figure 1: Sampled perturbation introduces a non-trivial rewrite, which may be considered as a “bug”. Left: Original
Java code iterates over a given list of objects (green highlight). Right: Perturbed Java code only considers the first
object in the list, if the list contains precisely one element (red highlight).

accepts 48 bit representations of colors. The fix,
therefore, consists of masking out the first 8 bits
of the color representation of java.awt.Color
and passing that into the APIL. The fixing hunk is
shown in Figure 5.

For a human to be able to understand and iden-
tify this issue, they need to know about the Dis-
cord API, the common patterns of calling the Dis-
cord API, the peculiarities of color representations
in the java.awt.Color class, and how to per-
form bit operations. We present an piece of code >
available online that demonstrates calling the dis-
cord APIL. This code passes in a color for the em-
bed frame as a 48-bit digit (Figure 6). Examples
like this in training or in the context are necessary
for the model to have a chance at locating this bug.
Without the context, even a human observer can-
not reliably mark this as buggy code.

Shttps://discordjs.guide/popular-
topics/embeds.html#embed-preview

18

@Override
protected AwuthenticationInfo doGetAuthenticationInfo (
AuthenticationToken token) throws
AuthenticationException {

System.out. println ("====");

// token

String realname = (String)token. getPrincipal ();

/1
User user = null;
try {
user = userService.findObjectByName (realname);

} catch (Exception el) {
// TODO Auto-generated catch block
el.printStackTrace ();

)
if (user == null) {
return new SimpleAuthenticationInfo("!", false
. getName () ;
}
1/

String password = getPasswordEncoder () .
encodeToString (user. getPassword ())
System.out. println (""+password) ;

// AuthenticationInfo

// activeUser

ActiveUser activeUser = new ActiveUser();
activeUser.setRealname (user. getRealname ());
activeUser.setPhone (user.getPhone());
activeUser.setValid (user.getValid());

//System.out.println (""+activeUser);

11 -

/1 AuthenticatingRealm credentialsMatcher !

SimpleAuthenticationInfo info =

new SimpleAuthenticationInfo (activeUser ,

password , credentialsSalt , getName());

SecurityUtils . getSubject ().getSession () .
setAttribute ("currentUser" ,user);

return info;

}

Figure 2: Revised Synthetic Dataset Sample 1

public class LazyFragment extends Fragment {

protected LayoutInflater inflater;
private View contentView ;

private Context context;

private ViewGroup container;

@Override
public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState);

context = getActivity ().getApplicationContext();
}
@Override
public View onCreateView(LayoutInflater inflater ,
ViewGroup container , Bundle savedInstanceState) {
this.inflater = inflater:
this.container = container;
onCreateiew (inflater , container, savedInstanceState
)3
return contentView ;
}
@Override
public void onDestroyView () {
super.onDestroyView () ;
contentView = null;
container = null;
inflater = null;
}

Figure 3: Revised Synthetic Dataset Sample 2

19

@Controller
@RequestMapping (value =
@CrossOrigin(origins = "=
// @CrossOrigin(origins = "http ://localhost:4200")
public class PlanetController {

"fapi”)

// private PlanetService planetService; I DONT HAVE A

SERVICE AT THE MOMENT

private PlanetRepo planetRepo;

public PlanetController (PlanetRepo planetRepo) {
super () ;
this.planetRepo = planetRepo;

)

// @RequestMapping (value = "/getPlanets", method =
RequestMethod .GET)

@GetMapping (value = "/getPlanets") //These are identical
in configuration. http ://localhost:8080/SpringMVC/mvc/

api/getPlanets

public @ResponseBody List<Planet> getAllPlanets (){
return planetRepo.selectAll ()

}

@GetMapping (value = "/getPlanetsWithParam", produces="
application/json", params = {"id"}) //http://localhost

:8080/SpringMVC/mve/ api/getPlanetsWithParam?id=2
public ResponseEntity <Planet> getPlanetById(int id) {

return new ResponseEntity <Planet >(planetRepo.

selectPlanetById (id), HttpStatus .INSUFFICIENT_STORAGE) ;

@ResponseStatus (value = HttpStatus .ALREADY_REPORTED)
@GetMapping (value = "/getPlanetWithUrl/{num}")
public @ResponseBody Planet getPlanetByldTwo (@PathVariable
("num") int id) {
return planetRepo.selectPlanetBylId(id);

@ResponseStatus (value = HttpStatus .BAD_REQUEST)

@PostMapping (value = "/addPlanet")

public @ResponseBody String addPlanet(@RequestBody Planet
incomingPlanet) {
/s
This method is executed when the user requests to add

a new planet to
* the database.

* The default
incoming JSON
and treat it
In our example, we would expect this
the incoming JSON does NOT HAVE all the
provide just default values.
#/
planetRepo.insert(incomingPlanet);

behavior for MVC is to ignore the

like if it were a GET request.
request to If
fields , it will

return "Success";

}

@GetMapping (value = "/allTheHeaders")

public ResponseEntity <String > allHeaders (@RequestHeader
Map<String , String > allHeaders){

//THIS IS NOTHING TO DO WITH MVC

// This is from Collections (Week 1)
for (Entry<String , String> entry: allHeaders.entrySet())
{

System.out. println (entry.getKey () + "\t" + entry.
getValue ());
}

HttpHeaders responseHeader = new HttpHeaders();

responseHeader . set ("Name", "Bobby");
responseHeader.set("superSecrets", "=

return new ResponseEntity <String >("Success",
responseHeader , HttpStatus .FORBIDDEN) ;

Figure 4: Revised Synthetic Dataset Sample 3

@CheckReturnValue
public EmbedBuilder color(@Nullable final Color color) {
if (color != null) {
this.color = color.getRGB();
// Mask off the alpha bits
this.color = color.getRGB() & 0xO0FFFFFF;
}

return this;

Figure 5: Hunk from sample issue from Catnip. This
bug demonstrates the need for more context than file-
level information.

const exampleEmbed = new EmbedBuilder ()
.setColor (0x0099FF)
.setTitle (’Some title ”)
.setURL ("’ https :// discord.js.org/’”)
.setAuthor ({ name: ’Some name’,
iconURL: ’https ://i.imgur.com/AfFp7pu.png
url: ’https ://discord.js.org’ })
.setDescription(’Some description here’)
.setThumbnail (* https ://1i.imgur.com/AfFp7pu.png’)
.addFields (

{ name: ’Regular field title ’, value: ’Some value
here’ },

{ name: ’\u200B’, value: ’\u200B° },

{ name: ’Inline field title ’, value: ’Some value
here ', inline: true },

{ name: ’“Inline field title *, value: ’Some value
here ’ inline: true },
.addFields ({ name: ’Inline field title ’, value: ’Some
value here’, inline: true })

.setImage (" https ://i.imgur.com/AfFp7pu.png’)
.setTimestamp ()

.setFooter({ text: ’Some footer text here’, iconURL:
https ://i.imgur.com/AfFp7pu.png’ });

Figure 6: Example of calling the Discord API with
a RGB (24-bit) color representation while RGBA (32-
bit) is expected

