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ABSTRACT

Classifier-Free Guidance (CFG) is a critical technique for enhancing the sample
quality of visual generative models. However, in autoregressive (AR) multi-modal
generation, CFG introduces design inconsistencies between language and visual
content, contradicting the design philosophy of unifying different modalities for vi-
sual AR. Motivated by language model alignment methods, we propose Condition
Contrastive Alignment (CCA) to facilitate guidance-free AR visual generation with
high performance and analyzes its theoretical connection with guided sampling
methods. Unlike guidance methods that alter the sampling process to achieve the
ideal sampling distribution, CCA directly fine-tunes pretrained models to fit the
same distribution target. Experimental results show that CCA can significantly
enhance the guidance-free performance of all tested models with just one epoch
of fine-tuning (∼1% of pretraining epochs) on the pretraining dataset, on par with
guided sampling methods. This largely removes the need for guided sampling in
AR visual generation and cuts the sampling cost by half. Moreover, by adjusting
training parameters, CCA can achieve trade-offs between sample diversity and
fidelity similar to CFG. This experimentally confirms the strong theoretical connec-
tion between language-targeted alignment and visual-targeted guidance methods,
unifying two previously independent research fields.
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Figure 1: CCA significantly improves guidance-free sample quality for AR visual generative models
with just one epoch of fine-tuning on the pretraining dataset.

1 INTRODUCTION

Witnessing the scalability and generalizability of autoregressive (AR) models in language domains,
recent works have been striving to replicate similar success for visual generation (Esser et al., 2021;
Lee et al., 2022). By quantizing images into discrete tokens, AR visual models can process images
using the same next-token prediction approach as Large Language Models (LLMs). This approach is
attractive because it provides a potentially unified framework for vision and language, promoting
consistency in reasoning and generation across modalities (Team, 2024; Xie et al., 2024).

Despite the design philosophy of maximally aligning visual modeling with language modeling
methods, AR visual generation still differs from language generation in a notable aspect. AR visual
generation relies heavily on Classifier-Free Guidance (CFG) (Ho & Salimans, 2022), a sampling
technique unnecessary for language generation, which has caused design inconsistencies between
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the two types of content. During sampling, while CFG helps improve sample quality by contrasting
conditional and unconditional models, it requires two model inferences per visual token, which
doubles the sampling cost. During training, CFG requires randomly masking text conditions to learn
the unconditional distribution, preventing the simultaneous training of text tokens (Team, 2024).

In contrast to visual generation, LLMs rarely rely on guided sampling. Instead, the surge of LLMs’
instruction-following abilities has largely benefited from fine-tuning-based alignment methods (Schul-
man et al., 2022). Motivated by this observation, we seek to study: “Can we avoid guided sampling
in AR visual generation, but attain similar effects by directly fine-tuning pretrained models?”

In this paper, we derive Condition Contrastive Alignment (CCA) for enhancing visual AR performance
without guided sampling. Unlike CFG which necessitates altering the sampling process to achieve a
more desirable sampling distribution, CCA directly fine-tunes pretrained AR models to fit the same
distribution target, leaving the sampling scheme untouched. CCA is quite convenient to use since
it does not rely on any additional datasets beyond the pretraining data. Our method functions by
contrasting positive and negative conditions for a given image, which can be easily created from the
existing pretraining dataset as matched or mismatched image-condition pairs. CCA is also highly
efficient given its fine-tuning nature. We observe that our method achieves ideal performance within
just one training epoch, indicating negligible computational overhead (∼1% of pretraining).

In Sec. 4, we highlight a theoretical connection between CCA and guided sampling techniques
(Dhariwal & Nichol, 2021; Ho & Salimans, 2022). Essentially these methods all target at the same
sampling distribution. The distributional gap between this target distribution and pretrained models is
related to a physical quantity termed conditional residual (log p(x|c)

p(x) ). Guidance methods typically
train an additional model (e.g., unconditional model or classifier) to estimate this quantity and enhance
pretrained models by altering their sampling process. Contrastively, CCA follows LLM alignment
techniques (Rafailov et al., 2023; Chen et al., 2024a) and parameterizes the conditional residual
with the difference between our target model and the pretrained model, thereby directly training a
sampling model. This analysis unifies language-targeted alignment and visual-targeted guidance
methods, bridging the gap between the two previously independent research fields.

We apply CCA to two state-of-the-art autoregressive (AR) visual models, LLamaGen (Sun et al.,
2024) and VAR (Tian et al., 2024), which feature distinctly different visual tokenization designs.
Both quantitative and qualitative results show that CCA significantly and consistently enhances the
guidance-free sampling quality across all tested models, achieving performance levels comparable
to CFG (Figure 1). We further show that by varying training hyperparameters, CCA can realize a
controllable trade-off between image diversity and fidelity similar to CFG. This further confirms their
theoretical connections. We also compare our method with some existing LLM alignment methods
(Welleck et al., 2019; Rafailov et al., 2023) to justify its algorithm design. Finally, we demonstrate
that CCA can be combined with CFG to further improve performance.

Our contributions: 1. We take a big step toward guidance-free visual generation by significantly
improving the visual quality of AR models. 2. We reveal a theoretical connection between alignment
and guidance methods. This shows that language-targeted alignment can be similarly applied to
visual generation and effectively replace guided sampling, closing the gap between these two fields.

2 BACKGROUND

2.1 AUTOREGRESSIVE (AR) VISUAL MODELS

Autoregressive models. Consider data x represented by a sequence of discrete tokens x1:N :=
{x1, x2, ..., xN}, where each token xn is an integer. Data probability p(x) can be decomposed as:

p(x) = p(x1)

N∏
n=2

p(xn|x<n). (1)

AR models thus aim to learn pϕ(xn|x<n) ≈ p(xn|x<n), where each token xn is conditioned only
on its previous input x<n. This is known as next-token prediction (Radford et al., 2018).

Visual tokenization. Image pixels are continuous values, making it necessary to use vector-
quantized tokenizers for applying discrete AR models to visual data (Van Den Oord et al., 2017;

2
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Esser et al., 2021). These tokenizers are trained to encode images x into discrete token sequences
x1:N and decode them back by minimizing reconstruction losses. In our work, we utilize pretrained
and frozen visual tokenizers, allowing AR models to process images similarly to text.

2.2 GUIDED SAMPLING FOR VISUAL GENERATION

Despite the core motivation of developing a unified model for language and vision, the AR sampling
strategies for visual and text contents differ in one key aspect: AR visual generation necessitates a
sampling technique named Classifier-Free Guidance (CFG) (Ho & Salimans, 2022). During inference,
CFG adjusts the sampling logits ℓsample for each token as:

ℓsample = ℓc + s(ℓc − ℓu), (2)

where ℓc and ℓu are the conditional and unconditional logits provided by two separate AR models,
pϕ(x|c) and pϕ(x). The condition c can be class labels or text captions, formalized as prompt tokens.
The scalar s is termed guidance scale. Since token logits represent the (unnormalized) log-likelihood
in AR models, Ho & Salimans (2022) prove that the sampling distribution satisfies:

psample(x|c) ∝ pϕ(x|c)
[
pϕ(x|c)
pϕ(x)

]s
. (3)

At s = 0, the sampling model becomes exactly the pretrained conditional model pϕ. However,
previous works (Ho & Salimans, 2022; Podell et al., 2023; Chang et al., 2023; Sun et al., 2024) have
widely observed that an appropriate s > 0 is critical for an ideal trade-off between visual fidelity and
diversity, making training another unconditional model pϕ necessary. In practice, the unconditional
model usually shares parameters with the conditional one, and can be trained concurrently by
randomly dropping condition prompts c during training.

Other guidance methods, such as Classifier Guidance (Ho & Salimans, 2022) and Energy Guidance
(Lu et al., 2023) have similar effects of CFG. The target sampling distribution of these methods can
all be unified under Eq. 3.

2.3 DIRECT PREFERENCE OPTIMIZATION FOR LANGUAGE MODEL ALIGNMENT

Reinforcement Learning from Human Feedback (RLHF) is crucial for enhancing the instruction-
following ability of pretrained Language Models (LMs) (Schulman et al., 2022; OpenAI, 2023).
Performing RL typically requires a reward model, which can be learned from human preference data.
Formally, the Bradley-Terry preference model (Bradley & Terry, 1952) assumes.

p(xw ≻ xl|c) :=
er(c,xw)

er(c,xl) + er(c,xw)
= σ(r(c,xw)− r(c,xl)), (4)

where xw and xl are respectively the winning and losing response for an instruction c, evaluated
by human. r(·) represents an implicit reward for each response. The target LM πθ should satisfy
πθ(x|c) ∝ µϕ(x|c)er(c,x)/β to attain higher implicit reward compared with the pretrained LM µϕ.

Direct Preference Optimization (Rafailov et al., 2023) allows us to directly optimize pretrained LMs
on preference data, by formalizing rθ(c,x) := β log πθ(x|c)− β logµϕ(x|c):

LDPO
θ = −E{c,xw≻xl} log σ

(
β log

πθ(xw|c)
µϕ(xw|c)

− β log
πθ(xl|c)
µϕ(xl|c)

)
. (5)

DPO is more streamlined and thus often more favorable compared with traditional two-stage RLHF
pipelines: first training reward models, then aligning LMs with reward models using RL.

3 CONDITION CONTRASTIVE ALIGNMENT

Autoregressive visual models are essentially learning a parameterized model pϕ(x|c) to approximate
the standard conditional image distribution p(x|c). Guidance algorithms shift the sampling policy
psample(x|c) away from p(x|c) according to Sec. 2.2:

psample(x|c) ∝ p(x|c)
[
p(x|c)
p(x)

]s
. (6)

3
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At guidance scale s = 0, sampling from psample(x|c) = p(x|c) ≈ pϕ(x|c) is most straightforward.
However, it is widely observed that an appropriate s > 0 usually leads to significantly enhanced
sample quality. The cost is that we rely on an extra unconditional model pϕ(x) ≈ p(x) for sampling.
This doubles the sampling cost and causes an inconsistent training paradigm with language.

In this section, we derive a simple approach to directly model the same target distribution psample using
a single AR model psample

θ . Specifically, our methods leverage a singular loss function for directly
optimizing pretrained models pϕ(x|c) ≈ p(x|c) to become psample

θ (x|c) ≈ psample(x|c). Despite
having similar effects as guided sampling, our approach does not require altering the sampling process.
We theoretically derive our method in Sec. 3.1 and discuss its practical implementation in Sec. 3.2.

3.1 ALGORITHM DERIVATION

The core difficulty of directly learning psample
θ is that we cannot access datasets under the distribution

of psample. However, we observe the distributional difference between psample(x|c) and p(x|c) is
related to a simple quantity that can be potentially learned from existing datasets. Specifically, by
taking the logarithm of both sides in Eq. 6 and applying some algebra, we have1:

1

s
log

psample(x|c)
p(x|c)

= log
p(x|c)
p(x)

, (7)

of which the right-hand side (i.e., log p(x|c)
p(x) ) corresponds to the log gap between the conditional

probability and unconditional probability for an image x, which we term as conditional residual.

Our key insight here is that the conditional residual can be directly learned through contrastive
learning approaches (Gutmann & Hyvärinen, 2012), as sated below:

Theorem 3.1 (Noise Contrastive Estimation, proof in Appendix A). Let rθ be a parameterized model
which takes in an image-condition pair (x, c) and outputs a scalar value rθ(x, c). Consider the loss
function:

LNCE
θ (x, c) = −Ep(x,c) log σ(rθ(x, c))− Ep(x)p(c) log σ(−rθ(x, c)), (8)

where σ(·) is the standard logistic function: σ(w) := 1/(1 + e−w).

Given unlimited model expressivity for rθ, the optimal solution for minimizing LNCE
θ satisfies

r∗θ(x, c) = log
p(x|c)
p(x)

. (9)

Now that we have a tractable way of learning rθ(x, c) ≈ log p(x|c)
p(x) , the target distribution psample can

be jointly defined by rθ(x, c) and the pretrained model pϕ. However, we would still lack an explicitly
parameterized model psample

θ if rθ(x, c) is another independent network. To address this problem, we
draw inspiration from the widely studied alignment techniques in language models (Rafailov et al.,
2023) and parameterize rθ(x, c) with our target model psample

θ (x|c) and pϕ(x|c) according to Eq. 7:

rθ(x, c) :=
1

s
log

psample
θ (x|c)
pϕ(x|c)

. (10)

Then, the loss function becomes

LCCA
θ = −Ep(x,c) log σ

[1
s
log

psample
θ (x|c)
pϕ(x|c)

]
− Ep(x)p(c) log σ

[
− 1

s
log

psample
θ (x|c)
pϕ(x|c)

]
. (11)

During training, psample
θ is learnable while pretrained pϕ is frozen. psample

θ can be initialized from pϕ.

This way we can fit psample with a single AR model psample
θ , eliminating the need for training a separate

unconditional model for guided sampling. Sampling strategies for psample
θ are consistent with standard

language model decoding methods, which unifies decoding systems for multi-modal generation.

1We ignore a normalizing constant in Eq. 7 for brevity. A more detailed discussion is in Appendix B.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

…

{𝑥2, 𝑐1}

{𝑥3, 𝑐1}

{𝑥𝐾 , 𝑐1}

{𝑥1, 𝑐2}

{𝑥3, 𝑐2}

{𝑥𝐾 , 𝑐2}

{𝑥1, 𝑐3}

{𝑥2, 𝑐3}

{𝑥𝐾 , 𝑐3}

{𝑥1, 𝑐𝐾}

{𝑥2, 𝑐𝐾}

{𝑥3, 𝑐𝐾}

{𝑥𝐾 , 𝑐𝐾}

𝑥1

𝑥2

𝑥3

𝑥𝐾

…

𝑐1
<Cat>

𝑐2
<Dog>

𝑐3
<Bird>

𝑐𝐾
<Van>

{𝑥1, 𝑐1}

{𝑥2, 𝑐2}

{𝑥3, 𝑐3}
…

max
𝜃

log 𝜎 log
𝑝𝜃 ȁ𝑥 𝑐

𝑝𝜙 ȁ𝑥 𝑐

log 𝜎 log
𝑝𝜃
𝑝𝜙

log 𝜎 − log
𝑝𝜃
𝑝𝜙

s

max
𝜃

init

{𝑥1 , 𝑐1} {𝑥1 , 𝑐1} {𝑥1 , 𝑐1}𝑥1

𝑥2

𝑥3

𝑥𝑁

…

𝑐1
<Cat>

𝑐2
<Dog>

𝑐3
<Bird>

𝑐𝑁
<Van>

{𝑥1 , 𝑐1}

… … … …

…

…

…

…
(b) AR model likelihood

Negative data

Positive data

(a) Training batch (c) Alignment loss

…
𝑝 𝑥

𝑝
𝑐 𝑝 𝑥, 𝑐

𝑝 𝑥 𝑝 𝑐

Figure 2: An overview of the CCA method. Given a training batch of K <image, label> pairs,
CCA treats these as positive samples, and generates K negative samples by randomly assigning a
negative label from K − 1 remaining labels for each image. CCA then fine-tunes pretrained models
by contrasting positive and negative data using an alignment loss. Pseudo code in Appendix D.

3.2 PRACTICAL ALGORITHM

Figure 2 illustrates the CCA method. Specifically, implementing Eq. 11 requires approximating
two expectations: one under the joint distribution p(x, c) and the other under the product of its two
marginals p(x)p(c). The key difference between these distributions is that in p(x, c), images x and
conditions c are correctly paired. In contrast, x and c are sampled independently from p(x)p(c),
meaning they are most likely mismatched.

In practice, we rely solely on the pretraining dataset to estimate LCCA
θ . Consider a batch of K data

pairs {x, c}1:K . We randomly shuffle the condition batch c1:K to become cneg
1:K , where each cneg

k
represents a negative condition of image xk, while the original ck is a positive one. This results in
our training batch {x, c, cneg}1:K . The loss function is

LCCA
θ (xk, ck, c

neg
k ) = − log σ

[
β log

psample
θ (xk|ck)
pϕ(xk|ck)

]
︸ ︷︷ ︸

relative likelihood for positive conditions ↑

−λ log σ
[
− β log

psample
θ (xk|cneg

k )

pϕ(xk|cneg
k )

]
︸ ︷︷ ︸

relative likelihood for negative conditions ↓

, (12)

where β and λ are two hyperparameters that can be adjusted. β replaces the guidance scale parameter
s, while λ is for controlling the loss weight assigned to negative conditions. The learnable psample

θ is
initialized from the pretrained conditional model pϕ, making LCCA

θ a fine-tuning loss.

We give an intuitive understanding of Eq. 12. Note that log σ(·) is monotonically increasing. The
first term of Eq. 12 aims to increase the likelihood of an image x given a positive condition, with a
similar effect to maximum likelihood training. For mismatched image-condition data, the second
term explicitly minimizes its relative model likelihood compared with the pretrained pϕ.

We name the above training technique Condition Contrastive Alignment (CCA) due to its contrastive
nature in comparing positive and negative conditions with respect to a single image. This naming
also reflects its theoretical connection with Noise Contrastive Estimation (Theorem 3.1).

4 CONNECTION BETWEEN CCA AND GUIDANCE METHODS

As summarized in Table 1, the key distinction between CCA and guidance methods is how to model
log p(x|c)

p(x) , which defines the distributional gap between the target psample(x|c) and p(x|c) (Eq. 7).

In particular, Classifier Guidance (Dhariwal & Nichol, 2021) leverages Bayes’ Rule and turn
log p(x|c)

p(x) into a conditional posterior:

log
p(x|c)
p(x)

= log p(c|x)− log p(c) ≈ log pθ(c|x)− log p(c),

5
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Method Classifier Guidance Classifier-Free Guidance Condition Contrastive Alignment

Modeling of log p(x|c)
p(x) log pθ(c|x)− log p(c) log pϕ(x|c)− log pθ(x) β[log psample

θ (x|c)− log pϕ(x|c)]

Training loss maxθ Ep(x,c) log pθ(c|x) maxθ Ep(x) log pθ(x) minθ LCCA
θ in Eq. 11

Sampling policy log pϕ(x|c) + s log pθ(c|x) (1 + s) log pϕ(x|c)− s log pθ(x) log psample
θ (x|c)

Extra training cost ∼9% of learning pϕ ∼10% of learning pϕ ∼1% of pretraining pϕ

Sampling cost ×1.3 ×2 ×1

Applicable area Diffusion Diffusion & Autoregressive Autoregressive

Table 1: Comparison of CCA (ours) and guidance methods in visual generative models.

where p(c|x) is explicitly modeled by a classifier pθ(c|x), which is trained by a standard classification
loss. p(c) is regarded as a uniform distribution. CFG trains an extra unconditional model pθ(x) to
estimate the unknown part of log p(x|c)

p(x) :

log
p(x|c)
p(x)

≈ log pϕ(x|c)− log pθ(x).

Despite their effectiveness, guidance methods all require learning a separate model and a modified
sampling process compared with standard autoregressive decoding. In comparison, CCA leverages
Eq. 7 and models log p(x|c)

p(x) as

log
p(x|c)
p(x)

≈ β[log psample
θ (x|c)− log pϕ(x|c)],

which allows us to directly learn psample
θ instead of another guidance network.

Although CCA and conventional guidance techniques have distinct modeling methods, they all target
at the same sampling distribution and thus have similar effects in visual generation. For instance, we
show in Sec. 5.2 that CCA offers a similar trade-off between sample diversity and fidelity to CFG.

5 EXPERIMENTS

We seek to answer the following questions through our experiments:

1. How effective is CCA in enhancing the guidance-free generation quality of pretrained AR
visual models, quantitatively and qualitatively? (Sec. 5.1)

2. Does CCA allow controllable trade-offs between sample diversity (FID) and fidelity (IS)
similar to CFG? (Sec. 5.2)

3. How does CCA perform in comparison to alignment algorithms for LLMs? (Sec. 5.3)
4. Can CCA be combined with CFG to further improve performance? (Sec. 5.4)

5.1 TOWARD GUIDANCE-FREE AR VISUAL GENERATION

Base model. We experiment on two families of publicly accessible AR visual models, LlamaGen
(Sun et al., 2024) and VAR (Tian et al., 2024). Though both are class-conditioned models pretrained
on ImageNet, LlamaGen and VAR feature distinctively different tokenizer and architecture designs.
LlamaGen focuses on reducing the inductive biases on visual signals. It tokenizes images in the
classic raster order and adopts almost the same LLM architecture as Llama (Touvron et al., 2023a).
VAR, on the other hand, leverages the hierarchical structure of images and tokenizes them in a multi-
scale, coarse-to-fine manner. VAR adopts a GPT-2 architecture but tailors the attention mechanism
specifically for visual content. For both works, CFG is a default and critical technique.

Training setup. We leverage CCA to finetune multiple LlamaGen and VAR models of various sizes
on the standard ImageNet dataset. The training scheme and hyperparameters are mostly consistent
with the pretraining phase. We report performance numbers after only one training epoch and find

6
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Model
w/o Guidance w/ Guidance

FID↓ IS↑ Precision↑ Recall↑ FID↓ IS↑
D

iff
us

io
n ADM (Dhariwal & Nichol, 2021) 7.49 127.5 0.72 0.63 3.94 215.8

LDM-4 (Rombach et al., 2022) 10.56 103.5 0.71 0.62 3.60 247.7
U-ViT-H/2 (Bao et al., 2023) – – – – 2.29 263.9
DiT-XL/2 (Peebles & Xie, 2023) 9.62 121.5 0.67 0.67 2.27 278.2
MDTv2-XL/2 (Gao et al., 2023) 5.06 155.6 0.72 0.66 1.58 314.7

M
as

k MaskGIT (Chang et al., 2022) 6.18 182.1 0.80 0.51 – –
MAGVIT-v2 (Yu et al., 2023) 3.65 200.5 – – 1.78 319.4
MAGE (Li et al., 2023) 6.93 195.8 – – – –

A
ut

or
eg

re
ss

iv
e VQGAN (Esser et al., 2021) 15.78 74.3 – – 5.20 280.3

ViT-VQGAN (Yu et al., 2021) 4.17 175.1 – – 3.04 227.4
RQ-Transformer (Lee et al., 2022) 7.55 134.0 – – 3.80 323.7
LlamaGen-3B (Sun et al., 2024) 9.38 112.9 0.69 0.67 2.18 263.3

+CCA (Ours) 2.69 276.8 0.80 0.59 – –
VAR-d30 (Tian et al., 2024) 5.25 175.6 0.75 0.62 1.92 323.1

+CCA (Ours) 2.54 264.2 0.83 0.56 – –

Table 2: Model comparisons on class-conditional ImageNet 256× 256 benchmark.

LlamaGen (w/o Guidance) LlamaGen + CCA (w/o G.) LlamaGen (w/ CFG)
IS=64.7 IS=384.6 IS=404.0

VAR (w/o Guidance) VAR + CCA (w/o G.) VAR (w/ CFGv2)
IS=154.3 IS=350.4 IS=390.8

Figure 3: CCA and CFG can similarly enhance the sample fidelity of AR visual models. The base
models are LlamaGen-L (343M) and VAR-d24 (1.0B). We use s = 3.0 for CFG, and β = 0.02, λ =
104 for CCA. Figure 7 and Figure 8 contain more examples.

this to be sufficient for ideal performance. We fix β = 0.02 in Eq. 12 and select suitable λ for
each model. Image resolutions are 384× 384 for LlamaGen and 256× 256 for VAR. Following the
original work, we resize LlamaGen samples to 256× 256 whenever required for evaluation.
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Figure 4: CCA can achieve similar FID-IS trade-offs to CFG by adjusting training parameter λ.

Model FID↓ IS sFID↓ Precision Recall
LlamaGen-L 19.00 64.7 8.78 0.61 0.67

+DPO 61.69 30.8 44.98 0.36 0.40
+Unlearn 12.22 111.6 7.99 0.66 0.64
+CCA 3.43 288.2 7.44 0.81 0.52

Model FID↓ IS sFID↓ Precision Recall
VAR-d24 6.20 154.3 8.50 0.74 0.62

+DPO 7.53 232.6 19.10 0.85 0.34
+Unlearn 5.55 165.9 8.41 0.75 0.61
+CCA 2.63 298.8 7.63 0.84 0.55

Table 3: Comparision of CCA and LLM alignment algorithms in visual generation.

Experimental results. We find CCA significantly improves the guidance-free performance of all
tested models (Figure 1), evaluated by metrics like FID (Heusel et al., 2017) and IS (Salimans et al.,
2016). For instance, after one epoch of CCA fine-tuning, the FID score of LlamaGen-L (343M)
improves from 19.07 to 3.41, and the IS score from 64.3 to 288.2, achieving performance levels
comparable to CFG. This result is compelling, considering that CCA has negligible fine-tunning
overhead compared with model pretraining and only half of sampling costs compared with CFG.

Figure 3 presents a qualitative comparison of image samples before and after CCA fine-tuning.
The results clearly demonstrate that CCA can vastly improve image fidelity, as well as class-image
alignment of guidance-free samples.

Table 2 compares our best-performing models with several state-of-the-art visual generative models.
With the help of CCA, we achieve a record-breaking FID score of 2.54 and an IS score of 276.8
for guidance-free samples of AR visual models. Although these numbers still somewhat lag behind
CFG-enhanced performance, they demonstrate the significant potential of alignment algorithms to
enhance visual generation and indicate the future possibility of replacing guided sampling.

5.2 CONTROLLABLE TRADE-OFFS BETWEEN DIVERSITY AND FIDELITY

A distinctive feature of CFG is its ability to balance diversity and fidelity by adjusting the guidance
scale. It is reasonable to expect that CCA can achieve a similar trade-off since it essentially targets
the same sampling distribution as CFG.

Figure 4 confirms this expectation: by adjusting the λ parameter for fine-tuning, CCA can achieve
similar FID-IS trade-offs to CFG. The key difference is that CCA enhances guidance-free models
through training, while CFG mainly improves the sampling process.

It is worth noting that VAR employs a slightly different guidance technique from standard CFG, which
we refer to as CFGv2. CFGv2 involves linearly increasing the guidance scale s during sampling,
which was first proposed by Chang et al. (2023) and found beneficial for certain models. The FID-IS
curve of CCA more closely resembles that of standard CFG. Additionally, the hyperparameter β also
affects CCA performance. Although our algorithm derivation shows that β is directly related to the
CFG scale s, we empirically find adjusting β is less effective and less predictable compared with
adjusting λ. In practice, we typically fix β and adjust λ. We ablate β in Appendix C.

5.3 CAN LLM ALIGNMENT ALGORITHMS ALSO ENHANCE VISUAL AR?

Intuitively, existing preference-based LLM alignment algorithms such as DPO and Unlearning
(Welleck et al., 2019) should also offer improvement for AR visual models given their similarity to
CCA. However, Table 3 shows that naive applications of these methods fail significantly.
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Figure 5: The impact of training parameter λ on the performance of CCA+CFG.
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Figure 6: Integration of CCA+CFG yields improved performance over CFG alone.

DPO. As is described in Eq. 5, one can treat negative image-condition pairs as dispreferred data
and positive ones as preferred data to apply the DPO loss. We ablate βd ∈ {0.01, 0.1, 1.0, 10.0}
and report the best performance in Table 3. Results indicate that DPO fails to enhance pretrained
models, even causing performance collapse for LlamaGen-L. By inspecting training logs, we find
that the likelihood of the positive data continuously decreases during fine-tuning, which may explain
the collapse. This phenomenon is a well-observed problem of DPO (Chen et al., 2024a; Pal et al.,
2024), stemming from its focus on optimizing only the relative likelihood between preferred and
dispreferred data, rather than controlling likelihood for positive and negative image-condition pairs
separately. We refer interested readers to Chen et al. (2024a) for a detailed discussion.

Unlearning. Also known as unlikelihood training, this method maximizes log pθ(x|c) through
standard maximum likelihood training on positive data, while minimizing log pθ(x|cneg) to unlearn
negative data. A training parameter λu controls the weight of the unlearning loss. We find that with
small 0.01 ≤ λu ≤ 0.1, Unlearning provides some benefit, but it is far less effective than CCA. This
suggests the necessity of including a frozen reference model.

5.4 INTEGRATION OF CCA AND CFG

If extra sampling costs and design inconsistencies of CFG are not concerns, could CCA still be
helpful? A takeaway conclusion is yes: CCA+CFG generally outperforms CFG (Figure 6), but it
requires distinct hyperparameter choices compared with CCA-only training.

Implementation. After pretraining the unconditional AR visual model by randomly dropping
conditions, CFG requires us to also fine-tune the unconditional model during alignment. To achieve
this, we follow previous approaches by also randomly replacing data conditions with [MASK] tokens
at a probability of 10%. These unconditional samples are treated as positive data during CCA training.
We provide pseudo-code in Appendix D.

Comparison of CCA-only and CCA+CFG. They require different hyperparameters. As shown
in Figure 5, a larger λ is typically needed for optimal FID scores in guidance-free generation. For
models optimized for guidance-free sampling, adding CFG guidance does not further reduce the FID
score. However, with a smaller λ, CCA+CFG could outperform the CFG method.
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6 RELATED WORKS

Visual generative models. Generative adversarial networks (GANs) (Goodfellow et al., 2014;
Brock et al., 2018; Karras et al., 2019; Kang et al., 2023) and diffusion models (Ho et al., 2020;
Song & Ermon, 2019; Song et al., 2020; Dhariwal & Nichol, 2021; Kingma & Gao, 2024) are
representative modeling methods for visual content generation, widely recognized for their ability to
produce realistic and artistic images (Sauer et al., 2022; Ho et al., 2022; Ramesh et al., 2022; Podell
et al., 2023). However, because these methods are designed for continuous data like images, they
struggle to effectively model discrete data such as text, limiting the development of unified multimodal
models for both vision and language. Recent approaches seek to address this by integrating diffusion
models with language models (Team, 2024; Li et al., 2024; Zhou et al., 2024). Another line of works
(Chang et al., 2022; 2023; Yu et al., 2023; Xie et al., 2024; Ramesh et al., 2021; Yu et al., 2022)
explores discretizing images (Van Den Oord et al., 2017; Esser et al., 2021) and directly applying
language models such as BERT-style (Devlin et al., 2018) masked-prediction models and GPT-style
(Radford et al., 2018) autoregressive models for image generation.

Language model alignment. Different from visual generative models which generally enhance
sample quality through sampling-based methods (Dhariwal & Nichol, 2021; Ho & Salimans, 2022;
Zhao et al., 2022; Lu et al., 2023), LLMs primarily employ training-based alignment techniques
to improve instruction-following abilities (Touvron et al., 2023b; OpenAI, 2023). Reinforcement
Learning (RL) is well-suited for aligning LLMs with human feedback (Schulman et al., 2017; Ouyang
et al., 2022). However, this method requires learning a reward model before optimizing LLMs, leading
to an indirect two-stage optimization process. Recent developments in alignment techniques (Rafailov
et al., 2023; Cai et al., 2023; Azar et al., 2024; Ethayarajh et al., 2024; Chen et al., 2024a; Ji et al.,
2024) have streamlined this process. They enable direct alignment of LMs through a singular
loss. Among all LLM alignment algorithms, our method is perhaps most similar to NCA (Chen
et al., 2024a). Both NCA and CCA are theoretically grounded in the NCE framework (Gutmann &
Hyvärinen, 2012). Their differences are mainly empirical regarding loss implementations, particularly
in how to estimate expectations under the product of two marginal distributions.

Visual alignment. Motivated by the success of alignment techniques in LLMs, several studies
have also investigated aligning visual generative models with human preferences using RL (Black
et al., 2023a; Xu et al., 2024) or DPO (Black et al., 2023b; Wallace et al., 2023). For diffusion
models, the application is not straightforward and must rely on some theoretical approximations, as
diffusion models do not allow direct likelihood calculation, which is required by most LLM alignment
algorithms (Chen et al., 2024b). Moreover, previous attempts at visual alignment have primarily
focused on enhancing the aesthetic quality of generated images and necessitate a different dataset
from the pretrained one. Our work distinguishes itself from prior research by having a fundamentally
different optimization objective (replacing CFG) and does not rely on any additional data input.

7 CONCLUSION

In this paper, we propose Condition Contrastive Alignment (CCA) as a fine-tuning algorithm for
AR visual generation models. CCA can significantly enhance the guidance-free sample quality
of pretrained models without any modification of the sampling process. This paves the way for
further development in multimodal generative models and cuts the cost of AR visual generation by
half in comparison to CFG. Our research also highlights the strong theoretical connection between
language-targeted alignment and visual-targeted guidance methods, facilitating future research of
unifying visual modeling and language modeling.

REPRODUCIBILITY

We provide experimental details in Appendix E. We submit our source code in the supplementary
material. Code and model weights will be publicly accessible upon publication.
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w/o Guidance +CCA (w/o Guidance) w/ CFG Guidance

Figure 7: Comparison of LlamaGen-L samples generated with CCA or CFG.
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w/o Guidance +CCA (w/o Guidance) w/ CFG Guidance

Figure 8: Comparison of VAR-d24 samples generated with CCA or CFG.
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A THEORETICAL PROOFS

In this section, we provide the proof of Theorem 3.1.
Theorem A.1 (Noise Contrastive Estimation ). Let rθ be a parameterized model which takes in an
image-condition pair (x, c) and outputs a scalar value rθ(x, c). Consider the loss function:

LNCE
θ (x, c) = −Ep(x,c) log σ(rθ(x, c))− Ep(x)p(c) log σ(−rθ(x, c)). (13)

Given unlimited model expressivity for rθ, the optimal solution for minimizing LNCE
θ satisfies

r∗θ(x, c) = log
p(x|c)
p(x)

. (14)

Proof. First, we construct two binary (Bernoulli) distributions:

Qx,c := { p(x, c)

p(x, c) + p(x)p(c)
,

p(x)p(c)

p(x, c) + p(x)p(c)
} = { p(x|c)

p(x|c) + p(x)
,

p(x)

p(x|c) + p(x)
}

P θ
x,c := { erθ(x,c)

erθ(x,c) + 1
,

1

erθ(x,c) + 1
} = {σ(rθ(x, c)), 1− σ(rθ(x, c))}

Then we rewrite LNCE
θ (x, c) as

LNCE
θ (x, c) = −Ep(x,c) log σ(rθ(x, c))− Ep(x)p(c) log σ(−rθ(x, c))

= −
∫ [

p(x, c) log σ(rθ(x, c)) + p(x)p(c) log σ(−rθ(x, c))
]
dxdc

= −
∫ [

(p(x, c) + p(x)p(c))
]

[ p(x, c)

p(x, c) + p(x)p(c)
log σ(rθ(x, c)) +

p(x)p(c)

p(x, c) + p(x)p(c)
log

[
1− σ(rθ(x, c))

]]
dxdc

=

∫ [
(p(x, c) + p(x)p(c))

]
H(Qx,c, P

θ
x,c)dxdc

=

∫ [
(p(x, c) + p(x)p(c))

][
DKL(Qx,c∥P θ

x,c) +H(Qx,c)
]
dxdc

Here H(Qx,c, P
θ
x,c) represents the cross-entropy between distributions Qx,c and P θ

x,c. H(Qx,c) is
the entropy of Qx,c, which can be regarded as a constant number with respect to parameter θ. Due to
the theoretical properties of KL-divergence, we have

LNCE
θ (x, c) =

∫ [
(p(x, c) + p(x)p(c))

][
DKL(Qx,c∥P θ

x,c) +H(Qx,c)
]
dxdc

≥
∫ [

(p(x, c) + p(x)p(c))
]
H(Qx,c)dxdc

constantly hold. The equality holds if and only if Qx,c = P θ
x,c, such that

σ(rθ(x, c)) =
erθ(x,c)

erθ(x,c) + 1
=

p(x, c)

p(x, c) + p(x)p(c)

rθ(x, c) = log
p(x, c)

p(x)p(c)
= log

p(x|c)
p(x)
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B THEORETICAL ANALYSES OF THE NORMALIZING CONSTANT

We omit a normalizing constant in Eq. 7 for brevity when deriving CCA. Strictly speaking, the target
sampling distribution should be:

psample(x|c) = 1

Z(c)
p(x|c)[p(x|c)

p(x)
]s,

such that
1

s
log

psample(x|c)
p(x|c)

= log
p(x|c)
p(x)

−1

s
logZ(c).

The normalizing constant Z(c) ensures that psample(x|c) is properly normalized, i.e.,∫
psample(x|c)dx = 1. We have Z(c) =

∫
p(x|c)[p(x|c)p(x) ]sdx = Ep(x|c)[

p(x|c)
p(x) ]s.

To mitigate the additional effects introduced by Z(c), in our practical algorithm, we introduce a new
training parameter λ to bias the optimal solution for Noise Contrastive Estimation. Below, we present
a result that is stronger than Theorem 3.1.
Theorem B.1. Let λc > 0 be a scalar function conditioned only on c. Consider the loss function:

LNCE
θ (x, c) = −Ep(x,c) log σ(rθ(x, c))− λcEp(x)p(c) log σ(−rθ(x, c)). (15)

Given unlimited model expressivity for rθ, the optimal solution for minimizing LNCE
θ satisfies

r∗θ(x, c) = log
p(x|c)
p(x)

− log λc. (16)

Proof. We omit the full proof here, as it requires only a redefinition of the distributions Qx,c from
the proof of Theorem A.1:

Qx,c := { p(x, c)

p(x, c) + λcp(x)p(c)
,

λcp(x)p(c)

p(x, c) + λcp(x)p(c)
} = { p(x|c)

p(x|c) + λcp(x)
,

λcp(x)

p(x|c) + λcp(x)
}

Then we can follow the steps in the proof of Theorem A.1 to arrive at the result.

If let λc := Z(c)
1
s =

[
Ep(x|c)[

p(x|c)
p(x) ]s

] 1
s , we could guarantee the convergence of psample

θ to psample.
However, in practice estimating Z(c) could be intricately difficult, so we formalize λc as a training
parameter, resulting in our practical algorithm in Eq. 12.

C ADDITIONAL EXPERIMENTAL RESULTS

We provide more image samples to compare CCA and CFG in Figure 7 and Figure 8.

We illustrate the effect of training parameter β on the FID-IS trade-off in Figure 9. Overall, β affects
the fidelity-diversity trade-off similar to λ and the CFG method.

50 100 150 200 250 300 350 400
IS

5

10

15

FI
D

Model
CCA (adjusting )
CCA (adjusting )
CFG (adjusting s)

Figure 9: Effect of varying β of CCA for the LlamaGen-L model. In our CCA experiments, we either
fix λ = 1e3 and ablate β ∈ [2, 5e− 3] (from left to right) or fix β = 0.02 and ablate λ ∈ [0, 1e4]. In
our CFG experiments, we ablate s ∈ [0, 3].
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Figure 10: Training curves of CCA for LlamaGen-L model (β = 0.02, λ = 300). Left: CCA loss.
Right: Relative likelihood log pθ(x|c)

pϕ(x|c) for positive and negative data during training.

D PSEUDO CODE

Algorithm 1 CCA
Input: Pretraining dataset {x, c}, pretrained AR model pϕ, target model pθ. Initialize θ = ϕ
For each gradient step do

Sample K data pairs {x, c}1:K from the dataset as positive samples // p(x, c)
Randomly shuffle c1:K to become cneg

1:K and form negative samples {x, cneg}1:K . // p(x)p(c)
If CCA+CFG then

For each label ck in c1:K and cneg
1:K do

Replace ck with ∅ with a probability of 10% // Random masking
Lθ = 0
For For each data {xk, ck} in training batch {x, c}1:K and {x, cneg}1:K do

Lθ = Lθ − log σ
[
β log

p
sample
θ

(xk|ck)
pϕ(xk|ck)

]
if {xk, ck} is positive sample or ck = ∅

Lθ = Lθ − λ log σ
[
− β log

p
sample
θ

(xk|ck)
pϕ(xk|ck)

]
if {xk, ck} is negative sample and ck ̸= ∅

θ ← θ − η∇θLθ (Eq. 12)

We provide an example of training curves for CCA in Figure 10.

E TRAINING HYPERPARAMETERS

Table 4 reports hyperparameters for chosen models in Figure 1 and Figure 6. Other unmen-
tioned design choices and hyperparameters are consistent with the default setting for LlamaGen
https://github.com/FoundationVision/LlamaGen and VAR https://github.
com/FoundationVision/VAR repo. All models are fine-tuned for 1 epoch on the ImageNet
dataset. We use a mix of NVIDIA-H100, NVIDIA A100, and NVIDIA A40 GPU cards for training.

Type LlamaGen VAR

Model B L XL XXL 3B d16 d20 d24 d30
Size 111M 343M 775M 1.4B 3.1B 310M 600M 1.0B 2.0B

CCA β 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
CCA λ 1000 300 1000 1000 500 50 50 100 1000
CCA+CFG β 0.1 0.02 0.1 0.1 0.1 - - - -
CCA+CFG λ 1 1 1 1 1 - - - -
Learning rate 1e-5 1e-5 1e-5 1e-5 1e-5 2e-5 2e-5 2e-5 2e-5
Dropout? Yes Yes Yes Yes Yes None Yes Yes Yes
Batch size 256 256 256 256 256 256 256 256 256

Table 4: Hyperparameter table.

All our reported models are trained individually for each hyperparameter. However, we note that
hyperparameters like λ and β can serve as input for our target AR visual model using existing
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distillation techniques (Meng et al., 2023) so that we can tune them only during inference. This
way CCA can allow test-time flexibility just like CFG. We present an initial result conditioning the
LlamaGen-L model on parameter λ in Table 5. In order to additionally condition on an extra scalar
input λ, we use the same embedding method as the one used by DiT (Peebles & Xie, 2023) and directly
add the λ embedding on the class token embeddings. We randomly sample λ ∈ [e0, e9 ≈ 10000]
during. The model is trained for 3 epochs.

Inference-time λ 10 100 300 (Chosen) 1000 3000 10000
FID 7.23 4.18 3.59 3.73 4.12 5.33
IS 153.1 218.8 256.2 277.5 307.7 341.2

Table 5: Performance for different inference-time λ values. For reference, the pretrained LlamaGen
model has an IS of 64.3 and an FID of 19.07. After CCA finetuning with fixed λ = 300, the finetuned
model has an IS 288.2 of and FID of 3.43.
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