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ABSTRACT

Regularized reinforcement learning (RL), particularly the entropy-regularized kind,
has gained traction in optimal control and inverse RL. While standard unregularized
RL methods remain unaffected by changes in the number of actions, we show that
it can severely impact their regularized counterparts. This paper demonstrates the
importance of decoupling the regularizer from the action space: that is, to maintain
a consistent level of regularization regardless of how many actions are involved to
avoid over-regularization. Whereas the problem can be avoided by introducing a
task-specific temperature parameter, it is often undesirable and cannot solve the
problem when action spaces are state-dependent. In the state-dependent action
context, different states with varying action spaces are regularized inconsistently.
We introduce two solutions: a static temperature selection approach and a dynamic
counterpart, universally applicable where this problem arises. Implementing these
changes improves performance on the DeepMind control suite in static and dynamic
temperature regimes and a biological sequence design task.

1 INTRODUCTION

Regularized reinforcement learning (RL) (Geist et al., 2019) has gained prominence as a widely-
used framework for inverse RL (Rust, 1987; Ziebart et al., 2008; Fosgerau et al., 2013) and control
(Todorov, 2006; Peters et al., 2010; Rawlik et al., 2012; Van Hoof et al., 2015; Fox et al., 2016;
Nachum et al., 2017; Haarnoja et al., 2017; 2018; Garg et al., 2023). The added regularization can
help with robustness (Derman et al., 2021), having a policy that has full support (Rust, 1987), and
inducing a specific behavior (Todorov, 2006). However, we show that these methods are not robust to
changes in the action space. We argue that changing the action space should not change the optimal
regularized policy under the same change. For instance, changing the robot’s acceleration unit from
meters per second squared to feet per minute squared should not lead to a different optimal policy.
While Haarnoja et al. (2018)’s heuristic is a step in the right direction, we argue that the heuristic
does not reflect the structure of the action space, just the number of actions, and does not generalize
to other regularizers MDPs.

The key idea proposed here is to control the range of the regularizer by changing the temperature.
Indeed, by not changing the temperature, we demonstrate that we inadvertently regularize states with
different action spaces differently. We show that for regularizers that we call standard, which include
entropy, states with more actions are always regularized more than states with fewer actions. We
introduce decoupled regularizers, a class of regularizers that fit Geist et al. (2019)’s formalism and
have constant range. We show that we can convert any non-decoupled regularizer into a decoupled
one.

Our contribution is as follows. First, we propose a static temperature selection scheme that works for
a broad class of regularized Markov Decision Processes (MDPs), including entropy. Secondly, we
introduce an easy-to-implement dynamic temperature heuristic applicable to all regularized MDPs.
Finally, we show that our approach improves the performance on benchmarks such as the DeepMind
control suite (Tassa et al., 2018) and the drug design MDP of Bengio et al. (2021).
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2 PRELIMINARIES

A discounted MDP is a tuple (S,A,A, R, P, γ) where S represents the set of states,A is the collection
of all possible actions and A(s) represents the set of valid actions at state s. If |A(s)| is not constant
for all s ∈ S, we say that the MDP has state-dependent actions. The reward function, denoted by
R : S×A → R maps state-action pairs to real numbers. The transition function, P : S×A → ∆(S),
determines the probability of transitioning to the next state, where ∆(S) indicates the probability
simplex over the set of states S. Additionally, the discount factor, represented by γ ∈ (0, 1], is
included in our problem formulation.

When solving a Markov Decision problem under the infinite horizon discounted setting, the aim
is to find a policy π(s) : S → ∆(A(s)) that maximizes the expected discounted return Vπ(s) ≜
E [

∑∞
t=0 γ

tR(st, At)|s0 = s] for all states. A fundamental result in dynamic programming states
that the value function Vπ⋆ for any stationary optimal policy π⋆ must satisfy the Bellman equations
(Bellman, 1954):

V (s) = max
πs∈∆(A(s))

Ea∼πs
[Q(s, a)] ∀s ∈ S,

where Q(s, a) is defined as R(s, a) + γEs′∼P (s,a)[V (s′)]. Regularized MDPs (Geist et al., 2019)
introduce a strictly convex regularizer Ω with temperature τ to regularize the policy as

V (s) = max
πs∈∆(A(s))

Ea∼πs
[Q(s, a)]− τΩ(πs) = Ω⋆

τ (Q(s, ·)),

such that Vπ(s) ≜ E [
∑∞

t=0 γ
t(R(St, At)−τΩ(π(·|s)))|S0 = s]. The optimal policy equals the

gradient of Ω⋆
τ (Geist et al., 2019). Replacing Ω by the negative entropy yields soft Q-learning

(SQL) as Ω⋆
τ is the log-sum-exp function at temperature τ (τ log

∑
a exp(Q(s, a)/τ)) and ∇Ω⋆

τ is
the softmax at temperature τ , π(a|s) ∝ exp(Q(s, a)/τ).

Whereas the proposed approach applies to all regularized MDPs, we focus on the case where −Ω is
the entropy. There are two main reasons for this choice. First, it is widely used (e.g. Ziebart et al.,
2008; Haarnoja et al., 2017). Second, it allows us to derive analytical bounds. Other alternatives
include Tsallis entropy (Lee et al., 2019).

3 GRAVITATION TOWARDS REGULARIZATION

To quantify the impact of a change in action space on regularization, we first define the range of a
regularizer.
Definition 1. The range of the regularizer Ω over the action space A, L(Ω, A) is supπ∈∆(A) Ω(π)−
minπ∈∆(A) Ω(π).

The range is sometimes used for analyzing regularized follow-the-leader algorithms (e.g., Theorem
5.2 Hazan et al., 2016), and its square is referred to as the diameter (Hazan et al., 2016). If the range
depends on the action space of the state, the propagation of the regularization by the Bellman equation
can have a compounding effect. Thus, the change in regularization affects not only the state itself
but all states that can reach it. Thus, balancing regularization and reward maximization in MDPs in
sequential decision-making processes is crucial. We show this using two small illustrative examples.
Example 1. (Bias due to |A(s)|) In the MDP shown in Figure 1a, with reward r on all transitions
starting at s1 and zero otherwise, the probability of taking the action a0 is 1

n+1 (where n+ 1 is the
number of paths) with no discounting.

Proof. The result follows from the definition of V. The value of s2 is τ log n, thus the probability of
taking the action a0 is exp r/τ

exp r/τ+exp (r+τ logn)/τ at temperature τ .

Example 2. (Bias due to loops) In the MDP shown in Figure 1b, with reward r on all transitions, the
probability of taking the action a0 is 1− n exp(r/τ), at temperature τ and no discounting.

Proof. The value of s1, V , equals τ log [n exp(r/τ + V/τ) + exp(r/τ)] or r − τ log(1 −
n exp(r/τ)). Thus, the probability of taking a0 is exp(r/τ)/ exp(V/τ) = 1 − n exp(r/τ). The
MDP diverges if 1 ≤ n exp(r/τ)
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Figure 1: Toy MDPs

These examples show a gravitation towards regularization. Concretely, with negative entropy, the
regularization at the states with larger action spaces is greater, resulting in a higher regularization
and higher reward to pass through those states. Thus, when we increase n, the probability of passing
through the state with n or n + 1 actions increases. However, the states should be regularized
consistently, and how much we regularize a state should not depend on its action space. One way of
measuring this quantity is the range defined in Definition 1. Indeed, we argue that the range should
not depend on the action space. This motivates our solution, which we call decoupled regularizers.

Despite the specificity of these examples, the same behavior can be observed more broadly with other
regularizers, including those in stochastic MDPs (Mai and Jaillet, 2020). To this end, we introduce
a general class of regularized MDPs that show a similar problem in Section 5. It is also important
to note that the discount factor was set to one for mathematical clarity, and including discounting
alleviates the risk of divergence but does not completely eliminate the problematic behavior. In the
following, we introduce our approach to address inconsistent regularization across action spaces.

4 DECOUPLED REGULARIZERS

We note that in the following we can replace the sum with an integral in the continuous actions space.
We look at differential entropy and continuous actions in Section 7.
Definition 2. We call a regularizer Ω decoupled if the range of Ω is constant over all action
spaces A(s) for all valid states s. For any non-decoupled regularizer Ω̂ at state s, Ω(π), defined as
Ω̂(π)/L(Ω̂,A(s)) is the decoupled version of Ω̂

Concretely, the value of a regularized MDP at state s is given by
V (s) = Ω⋆

τ (Q(s, ·)), (1)
which we propose to replace with

V (s) = Ω⋆
τ/|L(Ω,A(s))|(Q(s, ·)). (2)

We give the range of some commonly used regularizers on discrete actions in Table 1. Note that in the
Tsallis case, q is often set to 2. While there are no known analytical solutions for the convex conjugate
of Tsallis entropy, when q = 2, it can be solved efficiently (Michelot, 1986; Hazan et al., 2016;
Duchi et al., 2008). We further note that the convex conjugate of KL with the uniform distribution
(denoted U ) is sometimes called mellowmax (Asadi and Littman, 2017). The relationship between
mellowmax and KL divergence was first shown in Geist et al. (2019). The range for the negative
entropy regularizer is log |A(s)|, which equals the logarithm of the number of actions. Thus the
effective temperature is τ/ log |A(s)| as the minimum discrete entropy is zero. Entropy divided by
maximum entropy is called efficiency (Alencar, 2014).

5 STANDARD REGULARIZERS AND THE DRIFT IN RANGE

We now look at a general class of regularizers over discrete action spaces.
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H(π) KL(π∥U) negative Tsallis entropy

Ω(π)
∑

a∈A(s) π(a|s) log π(a|s)
∑

a∈A(s) π(a|s) log
(
π(a|s)/ 1

|A(s)|

)
k

q−1

(∑
a∈A(s) π(a|s)q − 1

)
Ω⋆(Q(s, ·)) τ log

∑
a∈A(s) exp(Q(s, a)/τ) τ log

(
1

|A(s)|
∑

a∈A(s) exp(Q(s, a)/τ)
)

∇Ω⋆
τ ((s, ·))

exp(Q(s, a)/τ)∑
a∈A(s) exp(Q(s, a)/τ)

exp(Q(s, a)/τ)∑
a∈A(s) exp(Q(s, a)/τ)

supπ∈∆(A(s)) Ω(π) 0 log |A(s)| 0

minπ∈∆(A(s)) Ω(π) − log |A(s)| 0 k
q−1

(
1

|A(s)|q − 1
)

L(Ω,A(s)) log |A(s)| log |A(s)| k
q−1

(
1− 1

|A(s)|q

)
Table 1: Different values at state s. Empty cells indicate no known analytical solution.

Definition 3. We call a regularizer in the form Ω(πs) = g(
∑

a f(πs(a))) for a strictly convex
function f and a strictly monotonically increasing function g a standard regularizer. We assume that
Ω(π) is strictly convex to be compatible with regularized MDPs.

We chose this form because it is easy to reason about yet general enough to encapsulate many
regularizers, including entropy and Tsallis entropy. The regularizer is invariant to permutation and
naturally extends itself to higher dimensions.

In addition, we include one regularity assumption.

Assumption 1. (Symmetry) we assume that f(0) and f(1) are equal to 0.

We now show that under Assumption 1 the supremum is constant.

Lemma 1. Under Assumption 1, the supremum of the regularizer is equal to the limit of the regularizer
at a deterministic distribution (i.e., only one action has non-zero probability, and the others have zero
probability).

Proof. The supremum of f is at 0 and 1. By convexity, at any other point between 0 and 1, f is
smaller than 0. By strict convexity ∀0<p<1f(p) < pf(1) + (1− p)f(0) = 0

Assumption 1 helps us identify the supremum of the regularizer and show that it is constant. However,
it is possible that Lemma 1 holds even if Assumption 1 does not. For instance, the maximum negative
Tsallis entropy is always zero.

With the supremum being g(0), we now calculate the minimum regularizer.

Lemma 2. The minimum regularization is achieved under the uniform policy.

Proof. We proceed with a proof by contradiction. Suppose that the minimum is a nonuniform policy.
Since the uniform policy is in the convex hull of all permutations of that policy, by strict convexity
and symmetry, it has a lower value than the supposed minimum and thus is contradictory.

We now show that the minimum of the regularizer, attained at the uniform policy, is decreasing in the
number of actions.

Lemma 3. The minimum regularization decreases with the number of actions.

Proof. By strict convexity, we have that f(0) > f(x) + f ′(x)(0− x). By Assumption 1, we have
that xf ′(x) − f(x) and as a consequence f ′(x)/x − f(x)/x2, the gradient of f(x)/x, is always
positive. This implies that minimum regularization decreases as x = 1/n decreases.

Equipped with these three lemmas, we can now show that the range grows with the number of actions.

Theorem 1. The range of standard regularizers grows with the number of actions.
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Proof. While the minimum grows as per Lemma 3, the supermum stays the same per Lemma 1, and
the range hence grows with the number of actions.

Remark 1. This result holds for any regularizer invariant to permutation, and its supremum is constant.
The standard form guarantees permutation invariance. For instance, the range of negative Tsallis
entropy also grows with the number of actions.
Remark 2. We have made no comment on the rate at which the range grows. For instance, the range
of Tsallis entropy grows to 1, and thus, the range of negative Tsallis entropy does not grow as fast as
negative entropy with respect to the number of action spaces.

6 VISITING DECOUPLED MAXIMUM ENTROPY RL

In this section, we review decoupled maximum entropy RL, revisit the examples provided in Section 3,
and show that decoupling improves the convergence of undiscounted entropy regularized MDPs.

Algorithm 1 Decoupled SQL

Sample s from P0

if decoupled then
τ ′ ← τ/ log |A(s)|

else
τ ′ ← τ

end if
while true do

Sample action a ∈ A(s) with probability exp(Q(s, a)/τ ′)/
∑

a′∈A(s) exp(Q(s, a′)/τ ′)

Play action a and observe s′, r
if decoupled then

τ ′ ← τ/ log |A(s′)|
end if
Q(s, a)← r + τ ′ log

∑
a′∈A(s′) exp(Q(s′, a′)/τ ′)

s← s′

end while

First, we provide an example of a tabular implementation in Algorithm 1. The conditional shows the
changes needed to decouple SQL.

Next, we revisit the MDP in Figure 1a. Using decoupled SQL, we get that the probability of
action a0 constant as the value of s2 is τ/ log n log(n exp(0 log n/τ) = τ when regularizing by
decoupled entropy. The value of s1 is τ/ log 2 log [exp(r log 2/τ) + exp(r log 2/τ + τ log 2/τ)] or
r + τ/ log 2 log 3. The probability of taking action a0 is equal to exp(r log 2/τ − V (s1) log 2/τ) or
1/3.

The state s1 of the MDP in Figure 1b will be at temperature τ/ log(n+ 1); thus, if r is less than −1,
it will not diverge. The probability of taking the action a0 is 1− n exp(r log n/τ), which is strictly
decreasing in r and has a root at r equal to −1; thus, the regularized Bellman equation converges
below that threshold. The improved convergence of the MDP in Figure 1b using decoupled entropy
motivates the following more general result.
Proposition 1. In maximum entropy undiscounted inverse reinforcement learning with determin-
istic dynamics like Ziebart et al. (2008) or Fosgerau et al. (2013), decoupled entropy guarantees
convergence if the maximum reward is less than −τ .

Proof. If
∑

a∈A(s) expR(s, a)/τ < 1, a solution always exists (Mai and Frejinger, 2022, Remark 2).
Since exp(R(s, a) log n/τ) < 1/n, the model always has a solution.

7 AUTOMATIC TEMPERATURE FOR REGULARIZED MDPS

Haarnoja et al. (2018) proposed adding a lower bound on the entropy of the policy to find the right
temperature. Concretely, they propose using the constraint H(π(·|s)) ≥ H̄(A(s)) for some function
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H̄ to the Bellman equation. They propose using the dual of the aforementioned constraint as the
temperature leading to Algorithm 2. We note that we parametrize τ , the dual variable and temperature,
in terms of its logarithm so that it stays positive. While this change deviates from Haarnoja et al.
(2018)’s notation, it better reflects their actual implementation.

Algorithm 2 Soft actor-critic’s update

s is sampled from P0

while 1 do
a is sampled from π(·|s)
s′ is sampled by playing a
θ ← θ − λ∇θJQ(θ) ▷ Update critic (3a)
ϕ← ϕ− λ∇ϕJπ(ϕ; τ) ▷ Update policy (3b)
log τ ← log τ + λ∇log τJlog τ (log τ ; H̄(A(s)) ▷ Update temperature (3c)
s← s′

end while

JQ(θ) = Ea′∼π(·|s′)[(Qθ(s, a)− (r + γQθ(s
′, a′)− τ log πϕ(a

′|s′))] (3a)

Jπ(θ) = Ea∼π(·|s)[τ log πϕ(a|s)−Qθ(s, a)] (3b)

Jlog τ (log τ ;A(s)) = τEa∼π(·|s)[− log π − H̄(A(s))] (3c)

Haarnoja et al. (2018) propose using the negative dimensions of the actions as the target entropy. So
if the action is a vector in Rn, H̄ is −n. Their proposed solution has two downsides: First, there is
no reason that the same heuristic would be meaningful if another regularizer, for instance, if Tsallis
entropy, was used. Second, Haarnoja et al. (2018)’s heuristic does not reflect the action space. Both
of these points are easy to illustrate; if the action space is a real number from -5e-3 to 5e-3, the
maximum entropy is -2, which would be lower than Haarnoja et al. (2018)’s heuristic, and make
the problem infeasible. It is important to stress that τ will grow to infinity if the target entropy H̄ is
infeasible.

To remedy these, we propose a H̄ inspired by the range of the regularizer Ω. Concretely, we argue
that

Ω(π(·|s))− sup
π′∈∆(A(s))

Ω(π′) ≤ −αL(Ω;A(s)) (4)

should hold for some constant α between 0 and 1. Setting α to 0 is equivalent to disabling the
constraint, and setting α to one results in π becoming the minimum regularized (or maximum
entropy) policy. Translating (4) back to entropy yields

H(π(·|s)) ≥ αH(U) + (1− α)H(V ), (5)

where U is the uniform and V is the minimum reasonable entropy policy a policy should have. We
need to define V as the minimum entropy policy as it is not defined for differential entropy. We note
again that setting α to one yields the uniform and α to zero yields the minimum entropy policy. Note
that H(U) is the logarithm of the volume of the action space, i.e., the logarithm of the integral of the
unit function over the action space. We discuss choosing α in the next section.

8 EXPERIMENTS

In this section, we provide three sets of experiments: a toy MDP where the number of actions is a
parameter, a set of experiments on the DeepMind Control suite (Tassa et al., 2018), and lastly, the
drug design MDP of Bengio et al. (2021).

8.1 A TOY MDP

To illustrate the importance of temperature normalization, we propose a toy MDP where the number
of actions is a parameter. The state s is an n dimension vector in the natural non-zero numbers
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such that si ≤ m for all i ∈ {1, . . . , n} for some m. Each action increases or decreases one of the
elements of s. Doing an action that would invalidate the state (for instance, make elements of s zero)
does not change the state. The agent starts at state [1, 1, . . . , 1]. The agent receives a −1 reward for
every time step that it has not reached the goal point [m,m, . . . ,m]. The episode terminates after
reaching the goal point. When n = 2, the MDP is a grid where the agent starts a the bottom left
corner and receives a negative reward as long as it has not reached the top right corner. The agent
can only move to neighboring states but not diagonal ones. We display the expected time to exit
with γ = 0.99 and τ = 0.4 in Figure 2. The time to exit of SQL becomes very large for n > 6.
It is important to stress that if the temperature is less than 1, decoupled SQL cannot diverge by
Proposition 1. We also note that we have to set the temperature very low so that the SQL does not
diverge at five dimensions, and thus, the decoupled version is fairly close to the shortest path. This
example illustrates two main points: First, it highlights the importance of decoupling regularizers
across benchmarks. Indeed, setting a unique temperature for all n yields suboptimal behavior as the
agent gains more regularization in higher dimension spaces, and the balance between reward and
regularization is broken. Second, it highlights the improved convergence properties of decoupled
entropy.

8.2 DEEPMIND CONTROL
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Figure 2: Episode length at different di-
mensions of the hypergrid problem.

The maximum entropy in the DeepMind control (DMC)
benchmark is n log(2β), where n is the number of actions
and β is chosen such that the actions are in the −β to β
range. In the first experiment, we fix the temperature to
0.25. The test rewards over the training, shown in Figure 3,
do not worsen and can, in many instances, improve com-
pared to the non-decoupled version. We provide the full
experiments in Appendix B. While the model is sensitive
to changes in action space, the gain in performance can
still be observed across different values of β. In addition
to analyzing how changes in reward scale change the per-
formance as Henderson et al. (2018) suggests, we argue
that it is also important to analyze how the performance
changes in response to changes to the action space and range. We note that we do not use any scale
invariant optimizer or loss function and that reaching full invariance to changes in action scale is
beyond the scope of this work.

We now focus on the dynamic temperature setting. We chose α ≈ 0.77 to get similar results as
Haarnoja et al. (2018) when the actions are in the [−1, 1] range, this is our recommended default. Oth-
erwise, the alternative is finding the optimal α as one would with the temperature as the interpretation
is similar, the higher α, the higher the final temperature will be.

As shown in Figure 4b, Haarnoja et al. (2017)’s heuristic becomes infeasible, leading to very
high temperatures. High temperatures, in turn, lead to learning failure. Figure 4c shows similar
performance as the temperature is extremely low for both models.

8.3 COMPARISON WITH GENERATIVE FLOW NETWORKS

Our final experiment involves the drug design by fragments of Bengio et al. (2021). In this MDP,
an agent adds fragments, collections of atoms, to other fragments to build a molecule (we refer
to Jin et al., 2018, for a more detailed description of the representation). The agent can end the
episode when the state is a valid molecule, making the horizon finite but random. Each molecule
is represented as a tree, and each fragment is a node in this tree. Each tree corresponds to a unique
and valid molecule. GFlowNets (GFN) aims to sample molecules proportionally to some proxy that
predicts reactivity with some material (Bengio et al., 2021). The goal is not to find only one molecule
with a high reward but a diverse set of molecules with high rewards. As such, our main metric, other
than high reward, is the number of modes or molecules that have a low similarity to other modes. We
find the set of modes by iterating over the list of generated molecules and adding molecules that are
not similar to any existing mode to that set.
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Figure 3: Test reward on the DMC benchmark with τ = 0.25. The X axis is the number of iterations
divided by 1e6.
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0 1

500

1000
BallInCupCatch

0 1
500

1000
CartpoleBalance

0 1
0

500

FingerTurnHard

0 1
0

500
HopperStand

0 1
0

500

PointMassEasy

0 1
0

1000
ReacherHard

(c) Actions in [−4, 4].

Figure 4: Test reward on the DMC benchmark with automatic temperature. The x-axis is the number
of iterations divided by 1e6.

It is beyond the scope of this work to properly introduce GFNs; we therefore simply state that
they train policies to sample terminal states in proportion to an unnormalized distribution. Bengio
et al. (2021) imposes four constraints on the MDP: there should only be one initial state, each state
is reachable from the initial states, no state is reachable from itself, and the transition function
is deterministic. Lastly, Bengio et al. (2021) assumes knowledge about the inverse dynamics.
Concretely, for every state s′ they assume they have the list of all states s that can reach s′, i.e.,
{s|∃a ∈ A(s)s.t.P(s′|s, a) > 0}. These assumptions are not always easy to satisfy. For instance,
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Figure 5: The left plot is the median reward of each batch. The right is the number of modes found.
The shaded area shows the interquartile range, and the heavy line shows the interquartile mean.

undoing actions is not trivially possible with these assumptions. We use trajectory balance for the
GFN loss (Malkin et al., 2022). For algorithm parity, we use path consistency learning (Nachum
et al., 2017) as our SQL loss. We note that we use a static temperature.

The results in Figure 5 show the median reward and number of modes found. Indeed, the median
reward of decoupled SQL is higher than SQL and GFN through training. The left subplot shows that
decoupled SQL finds many high-quality modes. While SQL over-regularizes states with more actions,
leading to a policy that prefers to pass through these hub states with many actions, decoupled SQL
does not have this problem. This result alone highlights the need for decoupling in the state-dependent
action setting.

9 CONCLUSION

In this paper, we argued that the amount we regularize should not depend on the action space. For
example, we should not have to change the temperature of our regularized MDPs when we change
the units of our robots. To illustrate our point, we introduced standard regularizers, which include
entropy. We showed that standard regularizers increase how much they regularize with the number of
actions. We proposed that the range should not depend on the action space and introduced decoupled
regularizers as regularizers whose range is constant. We showed that we can obtain decoupled
regularizers from normal regularizers by dividing them by their range. While instead of decoupling,
we can change the temperature manually, we argue that it is often not desirable for benchmarks and
cannot solve the problem in the state-dependent action setting. We emphasize the broad applicability
of our findings; both the static and dynamic temperature schemes work for all regularized MDPs.

Perhaps most notably, our research has achieved unprecedented results in the domain of drug design.
This is especially significant as Bengio et al. (2021) did not include SQL in their results as they
mentioned it was too unstable and inherently prefers larger molecules. However, we found that our
decoupled regularizers with PCL resolved both issues, serving as the critical, missing component.
The innate simplicity of SQL, adaptability in environments characterized by cycles, and independence
from inverse dynamics, the need to know which states can reach another state that is fundamental to
GFNs, accentuate its appeal, and underscore its suitability for MDPs.

Our proposed method works regardless of the chosen regularizers but we only justified its use for
standard regularizers; of course, not all regularizers are standard. For instance, π⊤Aπ for strictly
positive definite matrix A is only standard if A is the identity matrix. We posit that the same approach
we took here might be insightful in that there may exist a function similar to the range that should
be kept constant by transforming the regularizer. Lastly, while we moved closer to regularized
scale-independent RL by introducing regularized RL models that are not sensitive to changes in
action space, we believe there is more work to be done on the optimization side of the problem to
enhance the scale invariance properties further.
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Figure 6: DMC test reward with the action scale set to 0.25. Static temperature.
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Figure 7: DMC test reward with the action scale set to 0.5. Static temperature.

A REPRODUCIBLITY

All code is hosted at https://anonymous.4open.science/r/decoupled_sql-5CAB/
and https://anonymous.4open.science/r/decoupled_gfn-8589.

B EXTENDED DEEPMIND CONTROL EXPERIMENTS

We define our minimum entropy distribution V as a uniform distribution over a 1e− 3 range. We
argue that for practical purposes, any distribution with such a low is deterministic for all intents and
purposes.
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Figure 8: DMC test reward with the action scale set to 1. Static temperature.
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Figure 9: DMC test reward with the action scale set to 2. Static temperature.
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Figure 10: DMC test reward with the action scale set to 4. Static temperature.
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Figure 11: DMC test reward with the action scale set to .1. Dynamic temperature.
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Figure 12: DMC test reward with the action scale set to .25. Dynamic temperature.
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Figure 13: DMC test reward with the action scale set to 1. Dynamic temperature.
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Figure 14: DMC test reward with the action scale set to 4. Dynamic temperature.
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