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Abstract

Recent advances in genomic sequencing have resulted in several thousands of full
genomes of pseudomonads, a genera of bacteria important in many science areas
ranging from biogeochemical cycling in the environment to bacterial pneumonia
in humans. With these high-quality data sets, combined with tens of thousands
of somewhat lower quality metagenomically assembled genomes, we create a
generative model for pseudomonad genomes. We present a GAN model that
generates gene family presence absence lists as a representation of a novel genome.
We also demonstrate that the discriminator of this model can be used as a binary
classifier to identify incorrect genomes with missing content. In the future, our
desired model can be used to generate genomes within a given set of parameters
such as, “Generate a genome that is root associated, drought resistant, salt tolerant
that will produce this natural product”.

1 Introduction

Synthetic biology is benefiting from the massive-scale DNA sequencing of natural (environmental
and host-associated) and industrial/laboratory-relevant microbial genomes. The rapidly expanding
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catalog of sequenced microbial genomes provides a wealth of information about gene and trait
content that can be used to design and produce synthetic organisms of high biotechnological and
medical value. Current research exploring lineage-specific gene family profiles typically uses a
pangenomics approach[13], but this workflow is not necessarily the most informative with respect
to synthetic organism design, because the rules for transforming a pangenome into a genome are
unknown. Despite the widespread interest in accurate design and production of artificial microbial
genomes, this remains a grand challenge for synthetic biology disciplines. In this work, we narrow
the problem to consider only the gene content.

Generative Adversarial Networks (GANs) are a potentially powerful method to approach artificial mi-
crobial genome design. Here we present a generative model trained on gene family presence/absence
profiles from the widespread (i.e. large host-range) bacterial Pseudomonas lineage to create artificial
gene presence/absence lists for analog genome constructs. From this basic model we can then build
toward the generation of complete genome sequences which include additional properties.

2 Methods

Genus level Pseudomonas genome data is sourced and downloaded from National Center for Biotech-
nology Information (NCBI)[8], licensed under a Creative Commons Attribution-ShareAlike 4.0
International License. The Genome Taxonomy Database (GTDB)[14] is used as a guide to identify
Pseudomonad nucleotide sequence genomes of interest. The analysis in this study is done on a
random subset of 3,000 of the 12K Pseudomonad genomes from NCBI. Analysis was performed
using compute resources from the DOE Systems Biology Knowledge Base(KBase)[1] and National
Energy Research Scientific Computing Center (NERSC).

2.1 Pangenome Analysis

The first step towards building the model is to perform a pangenome analysis. A pangenome is
the entire set of genes from all strains within a group. It can be understood as the union of all the
genomes of a group. The pangenome can be broken down into a "core pangenome" that contains
genes present in all genomes, a "shell pangenome" that contains genes present in two or more strains,
and a "cloud pangenome" that contains genes only found in a single strain [4, 5, 6]. Pangenome
analysis helps in understanding the genetic determinants of biological activity. To perform pangenome
analysis we use PPanGGOLiN [3], a Free Software suite used to create and manipulate prokaryotic
pangenomes from a set of genomic DNA sequences. We run the ppanggolin workflow by providing
a tsv-separated file, a list with first column being a unique genome name and the second column
being its path to the associated FASTA file(compressed fna file). The PPanGGoLin analysis on 3000
genomes was run using NERSC Perlmutter HPC system, around 450GB of memory was utilized
and took 13 hours to complete. PPanGGOLiN provides multiple outputs to describe a pangenome.
For the current study, we use the core, shell, cloud genes lists from the output partition folder and
gene_presence_absence.Rtab file.

2.2 Data Input

The data input to the model is a presence absence matrix extracted from gene_presence_absence.Rtab
file of PPanGGOLiN ouput, where the columns are the genomes used to build the pangenome, the
rows are the gene families. There is a 1 if the gene family is present in a genome, and 0 otherwise. For
the current analysis we are interested in finding the genes which are present in two or more genomes,
and hence we filter the presence absence matrix to contain only the core genes (genes present in all
the genomes) and shell genes (genes present in 10-95% of the genomes) and remove the cloud genes
(genes less than 10% occurrence). This matrix data to the model can be described as a 2D tensor with
genomes and their corresponding genes’ present/absent.

2.3 Model

To build the generative model we use the Wasserstein GAN-Gradient Penalty method. Generative
adversarial networks (GANs) [9] are a powerful class of generative modeling subjectively regarded as
producing better samples than other methods [10]. GANs have two neural networks playing against
each other where one, the generator, learns to generate reasonable data as training and the other, the
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discriminator, learns to distinguish the generator’s fake data from real data. The generated instances
become negative training examples for the discriminator. Instead of using a discriminator to classify
or predict the probability of generated data as being real or fake, we use WGAN which changes the
discriminator model with a critic that scores the realness or fakeness of a given data using Wasserstein
loss [7]. The WGAN gradient penalty method [11] is used in order to ensure model convergence
and stability. The network architecture is designed based on the recommendations dealing with
optimization using larger matrix data [15] with a sequence of densely connected layers having 214

neurons in each layer, around 70% of the input genes size (22843 core + shell genes), generator input
latent vector of size 212 shown in Fig.1. The input dataset is a gene presence-absence matrix of 3000

a) Critic

(b) Generator

Figure 1: WGAN Model for Pseudomonad genomes

genomes with 22843 core and shell genes. We train on randomly selected 80% of the dataset with a
batch size of 64. The Adam optimizer with a learning rate of 0.0002, beta_1 of 0.5 and beta_2 of
0.9 are utilized. In the WGAN model, as the critic model must be updated more than the generator
model, we update it 3 times more than the generator. The model is trained for 50 epochs on AMD
EPYC 7763 CPUs.

3 Results

To evaluate the performance of the models, we first test the generator for the percentage of core genes
present in their gene presence absence lists. These gene presence absence lists of the genomes have a
median of 73% of the required core genes which can be shown in a clustermap in Fig. 2, with number
of genomes on the y-axis and core genes on the x-axis. Next, we test the critic model on unseen test
genomes, which are the 20% data split before training. The critic model predicted 598 genomes as
real among 600 test genomes showing 99% accuracy. When we evaluate the critic using synthetic
incorrect genomes created by removing the core genes, the model was only able to rightly predict
1 as incorrect out of the 4 incorrect genomes. This result on the incorrect genomes is obvious as
the critic was trained only on the fake data generated by the generator but was not pre-trained with
the fake data from the input source. Hence, we plan to further train the model with a combination
of real and incorrect genomes and test the critic on a larger number of incorrect genomes. From
these observations we can say that the model has performed fairly well on generating gene presence
absence matrices with 73% accuracy and the critic has identified 99% of the real genomes.

4 Conclusion

In this work, we present three results: the calculated Pseudomonad bacteria pangenome, a generative
model to identify incorrect genomes, and generated gene family presence/absence lists for artificial
genomes. This research contributes to finding incomplete gene complements of low-quality genomes
(e.g. metagenomically assembled genomes) as well as the study of gene functions and positional
information by introducing a novel method for tackling this problem. Despite restricting the input
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Figure 2: Generator ouptut evaluation

features to only gene presence/absence, the model is apparently able to learn enough of the gene
covariance structure to make artificial gene lists. The model can accurately predict real genomes,
which has immediate applications in the assessment of genomes constructed from metagenomic
sequencing (MAGs) which can often be incomplete or chimeric[12, 2]. Given the performance of
our current model using only gene presence/absence, we believe that incorporation of additional
biologically-significant gene features will significantly improve the model. Ultimately, our goal
is to create a model capable of generating genomes with desired characteristics, this will require
augmenting our gene level features, such as functions and position; multi gene modules or operons
and pathways; and organism level trait annotations, will make the generative model significantly
more informative. However, even the most basic of these features, gene function and position, are
not straightforward to assign, extract or encode into the feature tables. Gene functional annotation is
imprecise and because bacterial genomes are often highly fragmented, even the ordering of genes on
the chromosome is not known. Higher level features, such as organismal traits and traits that emerge
under specific environmental interactions are very heterogenous and incomplete from most genomes,
which introduce additional challenges which may require development of new methods. Despite
these challenges, we believe that this work represents a solid foundation to build towards designer
genomes.
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