
Under review as submission to TMLR

A Case for Library-Level k-Means Binning in Histogram
Gradient-Boosted Trees

Anonymous authors
Paper under double-blind review

Abstract

Modern Gradient Boosted Decision Trees (GBDTs) accelerate split finding with histogram-
based binning, which reduces complexity from O(N log N) to O(N) by aggregating gradients
into fixed-size bins. However, the predominant quantile binning strategy—designed to
distribute data points evenly among bins—may overlook critical boundary values that could
enhance predictive performance. In this work, we consider a novel approach that replaces
quantile binning with a k-means discretizer initialized with quantile bins, and justify the swap
with a proof showing how, for any L-Lipschitz function, k-means maximizes the worst-case
explained variance of Y obtained when treating each bin as an atomic unit. We test this swap
against quantile and uniform binning on 33 OpenML datasets plus synthetics that control for
modality, skew, and bin budget. Across 18 regression datasets, k-means shows no statistically
significant losses at the 5% level and wins in four cases—most strikingly a 55% MSE drop
on one particularly skewed dataset—even though k-means’ mean reciprocal rank (MRR) is
slightly lower (0.65 vs 0.72). On the 15 classification datasets the two methods are statistically
tied (MRR 0.70 vs 0.68) with gaps ≤0.2 pp. Synthetic experiments confirm consistently large
MSE gains—typically >20% and rising to 90% as outlier magnitude increases or bin budget
drops. We find that k-means keeps error on par with exhaustive (no-binning) splitting when
extra cuts add little value, yet still recovers key split points that quantile overlooks. As such,
we advocate for a built-in bin_method=k-means flag, especially in regression tasks and in
tight-budget settings such as the 32–64-bin GPU regime—because it is a "safe default" with
large upside, yet adds only a one-off, cacheable overhead (≈ 3.5s to bin 10M rows on one
Apple M1 thread).

1 Introduction

Gradient Boosted Decision Trees (GBDTs) are ensemble learning methods that have achieved state-of-the-art
results on a wide range of tasks. By iteratively fitting new decision trees to the "pseudo-residuals" of a
loss function, GBDTs combine many weak learners (e.g. individual decision trees) into a strong predictor
(Friedman, 2001). Since the seminal work of Friedman on gradient boosting, the technique has become a de
facto choice for structured data problems. Because GBDTs require only a twice-differentiable loss function,
they are especially useful for non-standard prediction problems, such as ranking or quantile regression (Burges,
2010). Modern implementations like XGBoost, LightGBM, and CatBoost have popularized GBDTs by offering
order-of-magnitude computational speed-ups with excellent accuracy (Chen & Guestrin, 2016) (Ke et al.,
2017) (Prokhorenkova et al., 2019). These systems have been widely adopted to win Kaggle and other ML
competitions, often outperforming deep learning on tabular data (Grinsztajn et al., 2022).

A key method for optimizing these algorithms is their use of histogram-based binning for splitting
continuous features. Traditional decision tree algorithms sort feature values to find split points, which is
computationally expensive (O(N log N) per feature initially, and O(N) for split-finding) and thus intractable
for large datasets. To allow training on datasets sometimes too large to fit into memory, modern GBDT
algorithms bucket continuous feature values into discrete bins and accumulate gradients per bin during
training. This approximation drastically reduces computation and memory overhead while maintaining
similar accuracy as exhaustive splitting. In particular, histogram-based models require only O(N) scans for

1

Under review as submission to TMLR

histogram building (and only O(# bins) for split-finding), with no sorting needed. Major state-of-the-art
algorithms, like XGBoost, LightGBM, and CatBoost, all use similar histogram-binning methods, though with
small differences in implementation. These innovations allow GBDTs to effectively scale to datasets with
millions or billions of instances.

In state-of-the-art histogram-based GBDT libraries, the default choice is quantile binning: thresholds are
placed so that every bin holds roughly the same number of observations, barring duplicate values. This
equal-frequency distribution is popular because it preserves the rank order of values and often yields split
quality comparable to those obtained by exhaustive-search algorithms. However, quantile binning can
sometimes mask rare but influential values. For example, in a sample of one million observations with one
thousand extreme outliers, a 255-bin quantile scheme would pool those outliers with ∼ 3000 ordinary points,
blunting a potentially important boundary.

A natural alternative is to utilize some method of unsupervised clustering to isolate important points prior to
training. One such example is via 1-D k-means clustering (Lloyd, 1982), which explicitly minimizes within-bin
variance and can place cuts at rare yet influential values. We therefore compare Lloyd–k-means clustering
with quantile initialization1 with quantile binning as well as uniform (equal-width) binning to characterize
the regimes—tail mass, multi-modality, and bin budget—under which each discretizer is preferable and to test
whether a simple k-means swap can boost accuracy without compromising training speed.

We find that uniform equal-width cuts seldom rival quantile, whereas k-means almost always draws level
with quantile and occasionally provides a marked boost. Across 18 real-world regression datasets, k-means
never performs worse than quantile at the 5% level and cuts MSE by more than half on the most skewed
case, though it has a slightly lower MRR (0.65 vs 0.72). When we repeat the sweep with the 63-bin budget
recommended for GPU training (Zhang et al., 2017), k-means posts four wins and raises its best-case drop to
68% MSE (Table 5), though quantile achieves two small (≤ 2%) wins. In 15 classification datasets quantile
and k-means are statistically tied (MRR 0.68 vs 0.7) with gaps ≤ 0.2pp–differences that are essentially
negligible. Synthetic regression benchmarks tell the same story: when outliers dominate or when bin budget
is low, k-means often cuts error by more than 20% and can reduce error by as much as 90% in some cases.
Taken together, our findings show that k-means stays within statistical noise of exhaustive splitting when the
bin budget is generous, yet often uncovers critical split points that quantile misses.

To our knowledge, no open-source GBDT package (XGBoost, LightGBM, CatBoost) offers a k-means
discretizer, and the literature lacks any systematic test of alternative unsupervised binning schemes. We
therefore conduct the first large-scale benchmark (33 OpenML datasets plus controlled synthetics) and show
that this drop-in option can significantly cut regression MSE in skewed datasets or in low-bin scenarios
while adding only a one-off, cacheable preprocessing cost of ≈ 3.5 s to bin 10 M rows on a single Apple
M1 thread—making a bin_method=k -means flag an immediately actionable upgrade for commercial GBDT
libraries.

2 Related Work

In recent years, gradient-boosted decision trees (GBDTs) have become the dominant choice for large-scale
tabular prediction thanks to highly optimized "histogram" implementations that reduce time complexity from
O(N log N) to O(N) per feature by pre-binning continuous inputs. LightGBM introduced leaf-wise growth
together with GPU-friendly, histogram-based training to parallelize histogram-building and split-finding on
large datasets (Ke et al., 2017). XGBoost introduces a weighted quantile sketch to obtain approximate split
points that are ϵ-accurate even on distributed data (Chen & Guestrin, 2016). CatBoost further refines this
pipeline with ordered boosting and efficient handling of categorical features, yielding state-of-the-art accuracy
on many public benchmarks (Prokhorenkova et al., 2019). Scikit-learn, a package for easy application of ML
algorithms, recently added HistGradientBoosting as a re-implementation of these histogram algorithms for
GBDTs, providing a convenient baseline for academic comparisons (Pedregosa et al., 2018).

1Appendix D benchmarks two other globally-optimal discretizers, MILP-optimal (Navas-Palencia, 2022) and 1-D k-means
(Wang & Song, 2011). These methods either have unreasonable computational requirements or merge features down to ≤ 25
bins, significantly harming accuracy.

2

Under review as submission to TMLR

Although the histogram abstraction is now standard, the binning step itself has attracted surprisingly
little study. All three major libraries—XGBoost, LightGBM, and CatBoost—still build their histograms
from equal-frequency (quantile) cuts. Their main differences lie elsewhere: (1) XGBoost replaces the naïve
O(N log N) per-feature sort with a weighted quantile sketch—a streaming algorithm that yields ϵ-accurate
percentiles in O(N) time and sub-linear memory, allowing for distributed quantile binning (Chen & Guestrin,
2016); (2) LightGBM applies gradient-based one-side sampling (GOSS) after bins are formed, keeping rows
with large gradients to speed up tree growth (Ke et al., 2017); (3) CatBoost introduces ordered boosting and
specialized handling of categorical features (Prokhorenkova et al., 2019). Thus, despite diverse engineering
optimizations, the underlying assumption that equal-frequency bins are “good enough” remains largely
unchallenged.

Adaptive or data-driven binning has been explored in other settings. Early entropy-based cuts (Fayyad & Irani,
1993) and MDL-guided binning (Dougherty et al., 1995) found that supervised partitions improve decision-tree
and Naïve-Bayes accuracy over equal-width binning in classification settings. In federated settings, Ong
et al. (2020) begin with equal-mass bins and dynamically merge or split them using gradient entropy to
keep communication costs fixed. Our work is largely orthogonal to these settings: we study library-level,
unsupervised binning that can serve as the starting point for any histogram-GBDT pipeline, federated or
centralized2. Although k-means is unsupervised, its variance-minimizing objective lets it capture label-relevant
tails that equal-mass schemes often smooth over, thus recovering a portion of the gains previously attributed
only to supervised or adaptive methods.

In summary, while histogram GBDTs have matured along multiple engineering directions, the underlying
assumption that equal-frequency bins are universally adequate has remained largely unchallenged. Our work
provides the first systematic comparison between quantile, k-means and uniform binning on 33 real-world
tasks and a controlled synthetic suite, revealing areas where a simple k-means swap yields substantial accuracy
gains with negligible overhead.

3 Theoretical Motivation

Although our contribution is primarily empirical, we provide a short analysis showing that for any L-Lipschitz
target f , k-means binning maximizes the tightest possible lower bound on the explained variance of Y
obtained when treating each bin as an atomic unit.

Lemma 1 (Paired–difference identity). Let Z be a square-integrable random variable and let Z ′ d= Z be an
independent copy of Z. Then

V ar(Z) = 1
2E

[
(Z − Z ′)2]

(1)

Proof. By independence and identical distribution,

E
[
(Z − Z ′)2]

= (2)
E[Z2] + E[Z ′2]− 2E[Z Z ′] = (3)

2E[Z2]− 2
(
E[Z]

)2 = (4)
2V ar(Z) (5)

Dividing both sides by 2 yields (1)

Theorem 1. Let random variables (X, Y) with finite second moments satisfy a L-Lipschitz continuous model
Y = f(X) + ϵ with E[ϵ] = 0, ϵ ⊥⊥ X, V ar(ϵ) = σ2. Then, k-means binning chooses the bins which maximize
the tightest possible lower bound on the explained variance of Y.

Proof. Fixing integer K and measurable binning B as {B1, B2, ..., BK}, define πj = P(X ∈ Bj).

2However, we do conduct a small benchmarking experiment in Appendix D which includes a supervised binning method.

3

Under review as submission to TMLR

For regression, we have that the explained variance of a given binning B is
K∑

j=1
πj

(
E[Y |X ∈ Bj]− E[Y]

)2
= (6)

V arj

(
E[Y |X ∈ Bj]

)
= (7)

V ar(Y)− Ej [V ar(Y |X ∈ Bj)] (8)

By the law of total variance. Since Y and X are fixed before bin choice, the explained variance is maximized
when Ej [V ar(Y |X ∈ Bj)] is minimized. Using Lemma 1 and the L-Lipschitz property of f, we have that

V ar(Y |X ∈ Bj) = (9)
1
2E[(Y − Y ′)2|X ∈ Bj] = (10)

1
2E[(f(X)− f(X)′ + ϵ− ϵ′)2|X ∈ Bj] = (11)

1
2E[(f(X)− f(X)′)2|X ∈ Bj] + σ2 ≤ (12)

L2

2 E[(X −X ′)2|X ∈ Bj] + σ2 = (13)

L2V ar(X|X ∈ Bj) + σ2 (14)

Consequently,

Ej

[
V ar(Y | X ∈ Bj)

]
≤ Ej

[
L2V ar(X | X ∈ Bj) + σ2]

= L2Ej [V ar(X|X ∈ Bj)] + σ2

Since k-means minimizes Ej [V ar(X|X ∈ Bj)], it minimizes this upper bound and therefore maximizes a
lower bound on the explained variance of Y. Since this bound is strict when y = βX (proof in Appendix A),
this is the tightest possible lower bound on the explained variance of Y.

Since exact k-means binning is impractical for large datasets3, in Section 4 we replace it with Lloyd’s algorithm
via scikit-learn, which offers a fast heuristic approximation to the exact k. We find that this theoretical
justification carries over when using Lloyd’s algorithm on real-world datasets, with k-means binning often
obtaining the lowest realized error.

4 Experiments

We evaluate our discretizers on 33 OpenML tasks and a suite of controlled synthetic benchmarks. An
anonymised reproducibility package—source code, logs, and result tables—is provided for reviewers (see the
Links section).

4.1 Real-world benchmarks

4.1.1 Methodology

Datasets. To ensure replicable results we evaluate our models on the OpenML (Vanschoren et al., 2014)
benchmark suite described in Grinsztajn et al. (2022) (study_id 336 for regression, 337 for classification),
dropping one task from each track (Higgs, Zurich Delays) due to computational constraints. The remaining
18 regression and 15 classification tasks span 103–106 instances and 2–420 numeric features. Appendix B
lists observations and features for each dataset.

3Appendix D presents a brief benchmark of the 1-D dynamic-programming formulation of optimal k-means (Wang & Song,
2011). The method’s computational cost is so high that it becomes impractical for histogram-based GBDTs, offering no realistic
speed–accuracy advantage over Lloyd’s algorithm.

4

Under review as submission to TMLR

Binning schemes. We compare three discretizers: quantile (LightGBM default), uniform (equal-width),
k-means (Lloyd with quantile seeding). Unless noted otherwise, all binning schemes use B = 255 bins (the
common default in LightGBM and scikit-learn, among others).4 We also compare these discretizers with a
naive "exhaustive search" approach that checks all possible split points without binning. In Appendix D,
we present a brief benchmark of two further binning schemes and show that neither achieves an attractive
speed–accuracy trade-off.

Learners and tuning. Commercial-grade libraries such as LightGBM, XGBoost, and CatBoost apply
additional preprocessing layers—e.g. LightGBM’s exclusive-feature bundling, or XGBoost’s weighted quantile
sketch (Ke et al., 2017) (Chen & Guestrin, 2016). These steps are re-executed even when the input has already
been pre-binned to 255 distinct values, producing a second, library-specific histogram that blurs the effect we
wish to measure. To isolate the contribution of the external discretizer itself, we therefore run all main-paper
experiments with scikit-learn’s vanilla GradientBoostingRegressor/Classifier, where the model consumes
our bins exactly as supplied. In a supplementary run with XGBoost (Appendix F)—configured to bypass its
internal quantile sketch—we observed similar results on representative regression datasets, suggesting that
the choice of baseline model does not influence our conclusions.

For every (dataset, binning, learner) triple we run a 30-trial RandomizedSearchCV with 5-fold CV on hyper-
parameters shown in Appendix C. Each experiment is repeated over 20 random train/test splits (80/20)
to estimate variability.

Compute resources. All real-world experiments were conducted on an academic slurm cluster, on 48-core
Intel Xeon Platinum 8268 CPUs @ 2.90 GHz. The experiments ran in 120h wall-clock, doing 1792 core-hours
of work, and peaking at 7.7GB memory. Additional exploratory runs on the same cluster amounted to no
more than 10k CPU-hours (≈ 6 × the final sweep), as confirmed from Slurm accounting over the project
period.

Metrics and statistics. We report mean squared error (MSE) for regression and ROC-AUC for classification.
Regression MSE values span several orders of magnitude, so each row of our results table presents them in
scientific notation with the common exponent factored out on the left of the dataset name (e.g. "Brazilian
Houses (10−3)"). This keeps the numeric columns directly comparable across datasets.

For each dataset, we compute a custom mean-reciprocal-rank (MRR, ↑ is better): for each dataset the
three histogram methods (exhaustive search excluded) are ranked; the reciprocal rank is then averaged over
datasets.

Paired two-sided t-tests (n=20 splits) compare the top-ranked discretizer with the runner-up (exhaustive
search excluded) on each dataset. All resulting p-values are jointly adjusted with the Benjamini–Hochberg
procedure (Benjamini & Hochberg, 1995); cells that stay significant at the α = 0.05 level after this correction
are marked **.

4.1.2 Results

Tables 2a and 2b report mean test-set scores averaged over 20 random 80:20 splits, with per-dataset winners
flagged by paired t-tests, as described in section 4.1.1.

• Regression (18 tasks) k-means attains the best mean-reciprocal rank (0.75) versus 0.60 for quantile
and 0.48 for equal-width. In the majority of datasets, the two best discretizers (usually quantile
and k-means) are statistically tied. Neither quantile nor uniform outperform k-means at the 5%
level on any dataset. However, k-means wins outright in 3 datasets, most strikingly by 55%, on
the Brazilian Houses dataset. Its other wins range from 1-2%. Brazilian Houses is especially
unique, because it contains the most highly skewed input dataset (averaged by column) among those
in the benchmark. In addition, the extreme predictor values (e.g. high property tax) coincide with
extreme target values (rent price), so isolating these points is crucial. In section 4.2, we conducted
in-depth analysis into this relationship between k-means performance and highly-skewed data.

4Appendix E reports an ablation at the GPU-recommended budget of B = 63, as described in Zhang et al. (2017).

5

Under review as submission to TMLR

Zhang et al. (2017) recommend using a budget of B = 63 when training GBDTs on a GPU; in
Appendix E, we rerun the regression suite to analyze this scenario. Under this tighter budget,
k-means now holds an 8% lead on CPU Act and widens its lead on Brazilian Houses to 66%,
while quantile gains a statistically significant 2.5% lead on Superconduct and a 0.5% lead on
Diamonds.

• Classification (15 tasks). Quantile and k-means achieve virtually identical MRR (0.68 vs. 0.70).
Quantile attains statistically significant wins on two datasets (5% level), while k-means claims none;
however, even in those two cases the advantage is at most 0.2 pp—practically negligible.
Notably, the effect of k-means is much smaller for classification than it is for regression. The core
difference is that baseline classification losses are bounded, whereas squared-error in regression grows
without limit. When many distinct, widely spaced numeric values fall into the same bin, a tree must
assign them a single prediction. In regression that prediction is their mean, so any extreme value
in the bin incurs a squared error that grows with its distance from the mean; a few such outliers
can dominate the total MSE. In binary classification, collapsing diverse values has a softer effect:
the tree assigns the bin a single class-probability. For a given bin, the worst accuracy it can give
is 0.5 (predicting majority class for all), and the worst log-loss is ln 2 (predicting 0.5 for all) - both
fixed, finite penalties that do not explode with feature magnitude. Thus isolating rare, label-relevant
extreme points with k-means dramatically lowers regression MSE but nudges classification metrics
by only a few hundredths.

We also pre-binned three representative regression datasets with either quantile or our k-means cuts (B = 255)
and trained XGBoost using its exact (i.e. exhaustive) tree builder. As Appendix F shows, k-means retains
existing ties while reducing MSE on Brazilian Houses by 64%, confirming the lift translates unchanged to
a mainstream GBDT engine when using exhaustive no-histogram methods.

These patterns–large gains when label-relevant tails exist or when bin budget is low–suggest histogram
resolution and outlier mass are the controlling factors. We investigate those mechanisms systematically via
the synthetic suite in section 4.2.

4.2 Synthetic diagnostics

We complement the real-world benchmarks with a controlled suite of five synthetic studies that probe exactly
when k-means binning beats equal-frequency cuts. All runs share the same generator (Alg. 1) which computes
a target as the sum of 3 columns combined with Gaussian noise and allows independent control of outlier
mass, outlier magnitude, multi-modality, bin budget B, and sample size n. We split the dataset into 80/20
train-test and run scikit-learn’s GradientBoostingRegressor. We keep the scikit-learn defaults (100 trees,
learning-rate = 0.01) for consistency, and simply raise the depth to 5 and set subsample = 0.8 to give the
model adequate capacity and standard stochastic regularization without masking the binning effects.

Each cell in Figs. 1–2 reports the mean relative MSE reduction

∆% = 100×MSEquantile −MSEk-means

MSEquantile

over 50 i.i.d. dataset/split draws (stars mark cells where the two methods perform statistically significantly
different at the 95% confidence level, after performing a Benjamini–Hochberg false-discovery-rate correction).
Quantile statistically ties or loses to k-means across all of our experiments, with losses as high as 90% in
certain cases.

Compute Resources. All synthetic experiments were executed on a MacBook Pro (Apple M1 Pro, 8
threads, 16 GB RAM, macOS 15.0). They completed in about 1.55 hours of wall-clock time, used roughly 4.6
core-hours in total, and never exceeded 0.5 GB of memory. Preliminary experiments roughly tripled this
compute cost. These compute costs are essentially negligible in comparison to the much larger compute
requirements of testing on real-world benchmarks.

6

Under review as submission to TMLR

Dataset Name Quantile Uniform k-means Exhaustive
Regression (MSE)
cpu_act (100) 5.043 5.094 4.965 5.092
pol (101) 3.337 3.337 3.337 3.347
elevators (10−6) 4.861 4.842 4.862 4.881
wine_quality (10−1) 4.096 4.089 4.128 4.117
Ailerons (10−8) 2.518 2.526 2.523 2.519
houses (10−2) 5.274 5.358 5.283 5.292
house_16H (10−1) 3.338 3.674 3.415 3.262
diamonds (10−2) 5.458 5.602 5.464 5.459
Brazilian_houses (10−3) 5.382 20.272 2.433∗∗ 2.156
Bike_Sharing_Demand (103) 9.697 9.697 9.697 9.694
nyc-taxi-green-dec-2016 (10−1) 1.553 1.959 1.522∗∗ 1.320
house_sales (10−2) 3.183 3.217 3.175 3.206
sulfur (10−4) 4.649 4.698 4.663 4.779
medical_charges (10−3) 6.686 7.153 6.600∗∗ 6.584
MiamiHousing2016 (10−2) 2.259 2.291 2.264 2.309
superconduct (102) 1.012 1.036 1.015 1.038
yprop_4_1 (10−4) 9.457 9.481 9.464 9.474
abalone (100) 4.775 4.788 4.767 4.759
Regression MRR 0.72 0.43 0.65
Classification (ROC AUC)
credit 0.857 0.827 0.857 0.857
electricity 0.950∗∗ 0.918 0.948 0.960
covertype 0.933∗∗ 0.931 0.932 0.931
pol 0.999 0.999 0.999 0.999
house_16H 0.951 0.947 0.951 0.950
MagicTelescope 0.931 0.931 0.931 0.930
bank-marketing 0.886 0.886 0.886 0.886
MiniBooNE 0.983 0.967 0.983 0.982
eye_movements 0.705 0.709 0.709 0.718
Diabetes130US 0.647 0.647 0.647 0.647
jannis 0.868 0.867 0.868 0.867
default-of-credit-card-clients 0.781 0.779 0.781 0.780
Bioresponse 0.861 0.859 0.860 0.858
california 0.967 0.962 0.967 0.966
heloc 0.798 0.798 0.798 0.798
Classification MRR 0.68 0.41 0.70

Table 1: Summary of quantile, uniform, and k-means binning on 33 real-world regression and classification
datasets.

7

Under review as submission to TMLR

(1) Varying outlier mass and magnitude. Figure 1a fixes a single Gaussian mode and varies the fraction
of outliers (0–5%) against their scale β, drawing each outlier from an exponential tail with scale parameter
β ∈ {5, 10, 15, 20}. With just 1% outliers, k-means outperforms quantile by more than 50% regardless of
outlier scale, though the gain increases with scale (at 20σ, the gain is 75%). Gains slightly plateau as the tail
fraction nears 5%, suggesting that the most extreme advantages stem from a smaller, label-relevant tail–as
"outliers" fill a greater portion of the dataset, quantile tends to isolate them more effectively, though still not
as well as k-means does.

(2,3) Multi-modality. Figure 1b fixes the outlier mass at 1% and varies the number of density modes
against the outlier scale β. Although we expected k-means to perform better on multi-modal data, by isolating
each mode, we instead see small, if any, improvements as the number of modes increase. This suggests that
isolating outliers is more important to a GBDT’s performance than isolating modes, even when modes are
well-separated. Regardless, when outliers exist, the k-means gain remains large (40-80%) for all mode counts,
rising with β; even with 10 well-separated peaks a 20σ tail still yields 70%+ error reduction.

Figure 1c keeps the tail magnitude fixed (β = 5) and increases both the mode count and the outlier fraction.
We see a similar pattern here as in experiment (1): as outliers constitute a larger fraction of the dataset, the
k-means gap decreases as quantile already allocates bins to the larger tail. At the bottom row, when there
are no outliers, we see confirmation that with B = 255, quantile isolates tails of multiple normal distributions
as effectively as k-means does.

Together, experiments (2)–(3) show that multi-modality has little effect on the k-means gap, neither providing
a benefit to k-means nor diluting existing gaps in the presence of outliers.

(4) Sample size. Figure 2a varies the effective histogram resolution by increasing the sample size while
keeping B = 255. With no outliers, the two methods perform within 3%. However, with even 1% outliers,
bin budget comes into play; when each bin contains 64-128 observations, the data are quantized coarsely and
k-means cuts error by nearly 90%. This gap collapses (though, still exists) as the binner quantizes data more
smoothly.

(5) Bin Budget B. Conversely, Fig. 2b fixes the sample size while varying the number of bins. Here, the
binning methods differ even without outliers; k-means outperforms quantile on a pure normally-distributed
dataset by 43% when using only 16 bins. With significant outliers, we see similar results as in experiment
(4); k-means outperforms quantile by nearly 90% when outliers constitute 1-5% with 16-32 bins. The top row
(100% “outliers") corresponds to a data set drawn entirely from an exponential distribution. Despite its heavy
right-hand tail, it behaves similar to the pure-Gaussian case—especially once the bin budget exceeds about
64—indicating that k-means’ advantage is triggered by the presence of a small, label-relevant tail alongside a
dense bulk, not by heavy-tailedness per se.

Key take-aways from the synthetic suite.

1. Safe default. Even in the pure-Gaussian settings (0% outliers) k-means never statistically under-
performs and sometimes improves MSE by 2–3%, thanks to slightly finer cuts in the sparse tails that
quantile assigns a single bin.

2. Huge upside when a small tail drives the target. With only 1% of samples lying 10–20σ above
the bulk, k-means cuts error by 50–90% (experiments 1–3), and the gain remains large even when
that tail co-exists with up to twenty well-separated modes.

3. Most valuable at coarse histograms. Even in low-skew datasets, k-means can outperform
quantile when the bin budget is tight (32-64 bins or ∼ 80-120 observations per bin in experiments
4-5); as cells hold fewer samples, the two schemes converge. Thus k-means binning is especially useful
whenever memory or pass constraints force a low-resolution histogram.

8

Under review as submission to TMLR

(a) (1) Single-mode data: outlier scale β (cols) vs.
outlier fraction (rows)

(b) (2) Fixed outlier freq. 1%; outlier scale β (cols) vs.
multi-modality (rows)

(c) (3) Fixed outlier scale β = 5σ; outlier freq. (cols)
vs. multi-modality (rows)

Figure 1: Synthetic experiments 1–3: relative MSE reduction (∆%) of k-means over quantile binning. Each
cell averages 50 runs; greener is better.

5 Computational Efficiency

Before training a model, GBDT packages that utilize histogram-binning discretize each continuous feature
into a small fixed budget of bins (B =255 as default for CPU training in many packages). Once the edges are
set, tree growing scans bins rather than individual samples, so the cost of computing split gains falls from
O(n) to O(B) for every discretizer—quantile, equal-width, or our k-means. The model training complexity is
therefore identical; the only extra work is the one-off bin-construction pass. Because discretization happens
before model training, libraries can offer caching of bin edges if users plan to run multiple models on the
same training set – for example, if they are conducting a hyperparameter search.

Figure 3 benchmarks the bin-construction pass on a single-thread Apple M1 for uniformly distributed data
ranging from 104 to 107 rows. Equal-width and quantile curves remain close across the range, suggesting
essentially equivalent big-O time complexity and constant factor. k-means with quantile seeding follows the
same slope but with a higher intercept: on ten million rows quantile finishes in 2s, whereas k-means requires

9

Under review as submission to TMLR

Figure 2: Synthetic experiments 4–5: effect of histogram resolution. Left: variable sample size at fixed bin
budget. Right: variable bin budget at fixed sample size.

5.5s; at one million rows the gap is a mere 0.3s. We considered testing k-means binning with k-means++
initialization, but found a significant increase in time complexity with no performance improvements. We
note that quantile, uniform, and quantile-seeded k-means all take less than a third the time as training itself.
In addition, as the cost to bin is incurred once and can be cached, the extra ≈ 3.5 seconds on large datasets
are negligible in practice—especially relative to the strong error reduction we observe on skewed regression
tasks.

Figure 3: Wall-clock time to bin/train a model on a single continuous feature on a single M1 CPU thread
(log–log scale).

6 Conclusion

This work revisited a seemingly innocuous design choice that underlies all modern histogram-based GBDT
implementations: how should one place the bin boundaries? Our systematic study across 33 real-world
tasks, a five-factor synthetic suite, and a new lower-bound theorem, shows that the long-standing default of
equal-frequency cuts is not sacrosanct.

10

Under review as submission to TMLR

We find that, in datasets with small, label-relevant tails, or in scenarios with low bin budgets, k-means can
cut error significantly, sometimes by more than half. In particular, we find that k-means matches exhaustive
splitting in benign cases and consistently outperforms quantile whenever tails or tight bin budgets make
histograms too coarse.

Because training time after binning is identical for all binning methods, the only extra cost is a one-off,
cacheable preprocessing pass—essentially negligible at roughly 3.5s for 10M rows on a single Apple M1 thread.

In short, today’s "one-size-fits-all" quantile cuts leave easy accuracy on the table. A single new op-
tion—bin_method=k-means—would cost nothing at training time, remain fully backward-compatible, and
yield double-digit accuracy gains in common scenarios with skewed targets or tight bin budgets, such as the
32–64-bin GPU setting.

We therefore recommend that mainstream GBDT libraries expose a bin_method=k-means option and adopt
it as the default whenever the bin budget is constrained, as on GPUs.

7 Limitations and Future Work

We deliberately ran our study with scikit-learn’s "vanilla" histogram GBDT, eliminating all library-specific
preprocessing. A small replica (found in Appendix F) using XGBoost’s exact method shows the same pattern,
but a full integration into production pipelines—e.g. LightGBM’s exclusive-feature bundling, XGBoost’s
quantile sketch, CatBoost’s ordered targets—remains an engineering task for future work. Our results
therefore speak most directly to library maintainers, who can offer a bin_method=k-means flag once these
code paths are updated.

As shown throughout, k-means outperforms quantile most when datasets have a small, label-relevant tail
or when bin budget is tight. If the tail information can already be reconstructed from other features, or if
the target changes sharply at unknown boundaries inside a dense bulk (e.g. a normally distributed predictor
with a step change at x = µ), the advantage shrinks considerably. Likewise, if users have access to large bin
budgets, they should expect to see smaller gaps between k-means and quantile binning.

11

Under review as submission to TMLR

References
Yoav Benjamini and Yosef Hochberg. Controlling the false discovery rate: A practical and powerful approach

to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological), 57(1):289–300, 1995.
ISSN 00359246. URL http://www.jstor.org/stable/2346101.

Christopher J. C. Burges. From ranknet to lambdarank to lambdamart: An overview. 2010. URL
https://api.semanticscholar.org/CorpusID:397316.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16, pp. 785–794. ACM,
August 2016. doi: 10.1145/2939672.2939785. URL http://dx.doi.org/10.1145/2939672.2939785.

James Dougherty, Ron Kohavi, and Mehran Sahami. Supervised and unsupervised discretization of continuous
features. In International Conference on Machine Learning, 1995. URL https://api.semanticscholar.
org/CorpusID:2527609.

Usama M. Fayyad and Keki B. Irani. Multi-interval discretization of continuous-valued attributes for
classification learning. In International Joint Conference on Artificial Intelligence, 1993. URL https:
//api.semanticscholar.org/CorpusID:18718011.

Jerome H. Friedman. Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29:
1189–1232, 2001. URL https://api.semanticscholar.org/CorpusID:39450643.

Léo Grinsztajn, Edouard Oyallon, and Gaël Varoquaux. Why do tree-based models still outperform deep
learning on tabular data?, 2022. URL https://arxiv.org/abs/2207.08815.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu.
Lightgbm: A highly efficient gradient boosting decision tree. In I. Guyon, U. Von Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_
files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf.

S. Lloyd. Least squares quantization in pcm. IEEE Transactions on Information Theory, 28(2):129–137,
1982. doi: 10.1109/TIT.1982.1056489.

Guillermo Navas-Palencia. Optimal binning: mathematical programming formulation, 2022. URL https:
//arxiv.org/abs/2001.08025.

Yuya Jeremy Ong, Yi Zhou, Nathalie Baracaldo, and Heiko Ludwig. Adaptive histogram-based gradient
boosted trees for federated learning, 2020. URL https://arxiv.org/abs/2012.06670.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Andreas Müller, Joel Nothman, Gilles Louppe, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot,
and Édouard Duchesnay. Scikit-learn: Machine learning in python, 2018. URL https://arxiv.org/abs/
1201.0490.

Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and Andrey Gulin.
Catboost: unbiased boosting with categorical features, 2019. URL https://arxiv.org/abs/1706.09516.

Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. Openml: networked science in
machine learning. ACM SIGKDD Explorations Newsletter, 15(2):49–60, June 2014. ISSN 1931-0153. doi:
10.1145/2641190.2641198. URL http://dx.doi.org/10.1145/2641190.2641198.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni
Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett,
Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric
Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold,

12

Under review as submission to TMLR

Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro,
Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for
Scientific Computing in Python. Nature Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

H Wang and M Song. Ckmeans.1d.dp: Optimal k-means clustering in one dimension by dynamic programming.
The R journal, 3(2):29–33, 2011.

Huan Zhang, Si Si, and Cho-Jui Hsieh. Gpu-acceleration for large-scale tree boosting, 2017. URL https:
//arxiv.org/abs/1706.08359.

13

Under review as submission to TMLR

A Proof of Strictness for Linear Model

We begin the proof as in Section 3, with the additional assumption that Y = βX + ϵ. In particular, the proof
remains the same up until (12), wherein it continues as follows:

1
2E[(f(X)− f(X)′)2|X ∈ Bj] + σ2 = (15)

L2

2 E[(βX − βX ′)2|X ∈ Bj] + σ2 = (16)

β2V ar(X|X ∈ Bj) + σ2 (17)

Consequently,

Ej

[
V ar(Y | X ∈ Bj)

]
= Ej

[
β2V ar(X | X ∈ Bj) + σ2]

= β2Ej [V ar(X|X ∈ Bj)] + σ2

Since k-means binning minimizes E[V ar(X|X ∈ Bj)], it also maximizes the explained variance of Y obtained
when treating all bins as atomic units.

B Dataset Description

The following table describes observations and features from each dataset. For a given dataset, we calculate
the skew by averaging the skew of each of the X columns. These datasets range from 103 − 106 observations,
and up to 400+ features.

Dataset Skew #Obs #Feat
cpu_act 5.40 8 192 22
pol 4.78 15 000 27
elevators -0.60 16 599 17
wine_quality 1.36 6 497 12
Ailerons 0.60 13 750 34
houses 2.23 20 640 9
house_16H 6.14 22 784 17
diamonds 1.03 53 940 7
Brazilian_houses 30.23 10 692 9
Bike_Sharing_Demand 0.06 17 379 7
nyc-taxi-green-2016 2.56 581 835 10
house_sales 2.40 21 613 16
sulfur -0.03 10 081 7
medical_charges 5.02 163 065 4
MiamiHousing2016 0.93 13 932 14
superconduct 0.67 21 263 80
yprop_4_1 -0.29 8 885 43
abalone 0.62 4 177 8
zurich_transport 1.00 5 465 575 9

(a) Regression datasets

Dataset Skew #Obs #Feat
credit 20.17 16 714 11
electricity 12.07 38 474 8
covertype 0.28 566 602 11
pol 5.34 10 082 27
house_16H 5.78 13 488 17
MagicTelescope 0.58 13 376 11
bank-marketing 3.65 10 578 8
MiniBooNE -11.68 72 998 51
Higgs 1.56 940 160 25
eye_movements 3.18 7 608 21
Diabetes130US 5.48 71 090 8
jannis -0.22 57 580 55
default-credit-card 5.55 13 272 21
Bioresponse 6.95 3 434 420
california 19.56 20 634 9
heloc -0.32 10 000 23

(b) Classification datasets

Table 2: Dataset characteristics. Boldface marks the datasets excluded from the final benchmark due to
computational limits.

14

Under review as submission to TMLR

C Hyper-parameter Search Space

Before tuning, we draw each trial’s configuration from the distributions in Table 3. Thirty trials give a good
trade-off between search cost and performance.

Table 3: Randomized search space for GradientBoostingRegressor. Each of the 30 trials in
RandomizedSearchCV draws one value from every distribution. Distributions follow scipy.stats (Vir-
tanen et al., 2020) notation: uniform(loc, scale) samples from [loc, loc + scale].

Hyper-parameter Distribution / range
Estimators randint(20, 300)
Learning rate loguniform(10−3, 0.5)
Max depth randint(3, 6)
Subsample uniform(0.5, 0.5)
Max features uniform(0.5, 0.5)

D Small Benchmark for Alternative Binners

Although the body of the paper focuses on quantile, uniform and Lloyd–k-means, we ran a miniature
benchmark to gauge the price of more optimal schemes. In particular, we compared

• MILP–optimal regression binning (Navas-Palencia, 2022),

• 1-D k-means solved by dynamic programming (Wang & Song, 2011), and

• the two fast baselines (quantile and Lloyd–k-means).

Given the extended training time of 1-D k-means, we restricted the test to a small (Abalone, 4 177× 8) and
a medium (Diamonds, 53 940× 7) dataset. All runs use the hyper-parameter grid in Appendix C. Binning
time is reported per split; the full 30× 5 CV grid therefore costs 150× the numbers shown.

Binning Method Abalone (0.22s to train) Diamonds (1.82s to train)
Binning time (s) MSE (100) Binning time (s) MSE (10−2)

Quantile 0.003 4.76 0.03 5.30
k-means 0.028 4.65 0.39 5.36
MILP 0.161 5.42 0.19 8.80
1-D k-means optimal 0.559 4.73 6.75 5.31

Table 4: Wall-clock preprocessing time (single M1 thread) and test MSE for two representative datasets.
Average time to train GBDT on pre-binned data is listed next to each dataset’s name.

Take-away.

MILP-optimal runs in a reasonable time but often merges features down to ≤ 25 bins, hurting accuracy; DP
k-means matches Lloyd on error but is >15x slower (and >2x slower than training itself). Therefore, neither
option is competitive for large-scale histogram GBDT training.

E Real-world Benchmark with Low Bin Budget

To understand the effect of bin budget on real-world datasets, we conducted equivalent experiments as
described in section 4.1 with B = 63. We chose this value because it is the recommended bin size for training
GBDTs on a GPU as described by Zhang et al. (2017). Note specifically the new gaps in the CPU Act and
Pol datasets (10% and 2.7% respectively), and the even larger gap on Brazilian Houses (68%). Quantile
now wins on two datasets, by < 3%.

15

Under review as submission to TMLR

Table 5: Summary of quantile, uniform, and k-means binning on 18 real-world regression datasets, with bin
budget B = 63. Values with ∗∗ imply statistical significance over the second-best method at p = 0.05, after
application of Benjamini–Hochberg across all real-world benchmarks.

Dataset Name Quantile Uniform k-means Exhaustive
Regression (MSE)
cpu_act (100) 5.579 5.416 5.140∗∗ 5.092
pol (101) 3.483 3.556 3.421 3.347
elevators (10−6) 4.936 4.927 4.859∗∗ 4.881
wine_quality (10−1) 4.142 4.168 4.114 4.117
Ailerons (10−8) 2.529 2.525 2.510 2.519
houses (10−2) 5.451 6.030 5.409∗∗ 5.292
house_16H (10−1) 3.419 3.881 3.398 3.262
diamonds (10−2) 5.501∗∗ 5.810 5.526 5.459
Brazilian_houses (10−3) 6.507 34.465 2.222∗∗ 2.156
Bike_Sharing_Demand (103) 9.694 9.693 9.675 9.694
nyc-taxi-green-dec-2016 (10−1) 1.767 2.268 1.763 1.320
house_sales (10−2) 3.195 3.322 3.189 3.206
sulfur (10−4) 5.089 4.627 4.589 4.779
medical_charges (10−3) 7.365 13.980 6.737∗∗ 6.584
MiamiHousing2016 (10−2) 2.267 2.312 2.289 2.309
superconduct (101) 9.931∗∗ 10.825 10.193 10.383
yprop_4_1 (10−4) 9.425 9.432 9.435 9.474
abalone (100) 4.775 4.837 4.790 4.759
Regression MRR 0.59 0.39 0.85

F Re-running Representative Datasets on XGBoost

To confirm that our experiments carry over to commercial GBDT algorithms, we compared our k-means
binner with quantile and uniform on three representative regression datasets. We find that k-means ties once
again on CPU Act and Superconduct, while achieving even greater wins on Brazilian Houses.

Table 6: Summary of binning methods (B = 255) on three real-world representative regression datasets using
XGBoost’s exact (exhaustive) method. Values with ∗∗ imply statistical significance over the second-best
method at p = 0.05, after application of Benjamini–Hochberg across all real-world benchmarks.

Dataset Name Quantile Uniform k-means Exhaustive
Regression (MSE)
cpu_act (100) 5.047 5.204 5.454 5.631
Brazilian_houses (10−3) 4.555 19.303 1.655∗∗ 1.639
superconduct (102) 1.003 1.038 1.014 1.032

G Synthetic-Data Generator

Algorithm 1 shows the procedure used to create the five diagnostic suites discussed in section 4.2. We set
dist = 4, so adjacent Gaussian modes overlap by roughly 2.5% of their mass—enough to avoid empty bins yet
still preserve distinct peaks.

16

Under review as submission to TMLR

Algorithm 1 MakeSynth(nobs, nfeat, nmodes, dist, pout, β)
1: ▷ Generate input matrix X
2: for j ← 1 to nfeat do
3: for i← 1 to nobs do
4: Draw mode index mi ∼ Uniform{1, . . . , nmodes}.
5: Set mean µmi

from linspace(0, dist ∗ (nmodes − 1), nmodes).
6: Xij ∼ N (µmi , 1).
7: end for
8: ▷ Standardize features and inject outliers
9: µj ← mean(X:j)

10: σj ← std(X:j)
11: for i← 1 to nobs do
12: Xij ← Xij−µj

σj

13: With prob. pout replace Xij ← Xij + Exp(β)
14: end for
15: end for
16: ▷ Generate linear target with small noise
17: yi ←

∑nfeat
j=1 Xij + εi, εi ∼ N (0, 0.12)

18: return (X, y)

17

