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ABSTRACT

The vast quantity of strong galaxy—galaxy gravitational lenses expected by future large-scale surveys necessitates the development
of automated methods to efficiently model their mass profiles. For this purpose, we train an approximate Bayesian convolutional
neural network (CNN) to predict mass profile parameters and associated uncertainties, and compare its accuracy to that
of conventional parametric modelling for a range of increasingly complex lensing systems. These include standard smooth
parametric density profiles, hydrodynamical EAGLE galaxies, and the inclusion of foreground mass structures, combined with
parametric sources and sources extracted from the Hubble Ultra Deep Field. In addition, we also present a method for combining
the CNN with traditional parametric density profile fitting in an automated fashion, where the CNN provides initial priors
on the latter’s parameters. On average, the CNN achieved errors 19 & 22 percent lower than the traditional method’s blind
modelling. The combination method instead achieved 27 £ 11 per cent lower errors over the blind modelling, reduced further
to 37 & 11 per cent when the priors also incorporated the CNN-predicted uncertainties, with errors also 17 £ 21 per cent lower
than the CNN by itself. While the CNN is undoubtedly the fastest modelling method, the combination of the two increases
the speed of conventional fitting alone by factors of 1.73 and 1.19 with and without CNN-predicted uncertainties, respectively.
This, combined with greatly improved accuracy, highlights the benefits one can obtain through combining neural networks with
conventional techniques in order to achieve an efficient automated modelling approach.
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1 INTRODUCTION

The phenomenon of strong galaxy—galaxy lensing, whereby a
foreground galaxy strongly lenses a background galaxy, provides
a means of studying various physical properties of the Universe.
Measurements of the observed distortion allow for modelling of
the projected mass density profile of the foreground galaxy, which
contains information on the dark matter content and substructure
within the lens (Sonnenfeld et al. 2015; Shu et al. 2017; Kiing et al.
2018). Advancements have recently been made towards detecting this
substructure (Vegetti & Koopmans 2009; Vegetti et al. 2014; Hezaveh
et al. 2016; Bayer et al. 2018; Brehmer et al. 2019; Ritondale et al.
2019), with such properties aiding in galaxy evolution models (e.g.
Bolton et al. 2012).

Lensing maintains the surface brightness of sources, but the
resulting sheared and magnified images allow for the probing of
high-redshift source populations, especially if their original surface
brightness distributions can be reconstructed. With the addition of
redshift measurements, this too can provide valuable information on
galaxy evolution, and as such has received a recent surge in interest
(e.g. Dye et al. 2018; Lemon et al. 2018; McGreer et al. 2018;
Rubin et al. 2018; Salmon et al. 2018; Sharda et al. 2018; Shu et al.
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2018; Sharon et al. 2019; Collett & Smith 2020; Inoue et al. 2020;
Khullar et al. 2020). Reconstructing the unlensed morphology of a
source is possible if the mass profile of the lens is well constrained
(Warren & Dye 2003; Suyu et al. 2006; Nightingale, Dye & Massey
2018; Powell et al. 2021), and allows for a more in-depth study of
their properties, for example, their rotation curves (Dye et al. 2015;
Geach et al. 2018).

The projected mass profiles of the foreground lenses, when
combined with other methods such as galaxy rotation curves, may be
used to obtain approximate 3D (deprojected) mass density profiles.
Such profiles can be of use in testing General Relativity (Collett
et al. 2018) and cosmological models (Eales et al. 2015; Krywult
et al. 2017; Rana et al. 2017; Davies et al. 2018; Birrer et al. 2020;
Colago, Holanda & Silva 2020; Giani & Frion 2020; Luo et al.
2020; Shajib et al. 2020; Wang et al. 2020; Yang, Birrer & Hu
2020). Gravitational time delays and geometric path differences
between images, paired with variable sources such as quasars,
provide measurable time delays that can constrain the value of the
Hubble constant (H)) irrespective of the distances to or between the
galaxies (e.g. Bonvin et al. 2017; Suyu et al. 2017; Chen et al. 2018;
Birrer et al. 2019; Liao et al. 2019; Taubenberger et al. 2019; Birrer &
Treu 2020; Wong et al. 2020; Denzel et al. 2021; Li, Becker &
Dye 2021). Recently, there has been much work on extending this
to gravitationally lensed supernovae, whose standardizable absolute
brightnesses and well-understood light curves may provide far tighter
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constraints on Hy (Collett, Montanari & Risénen 2019; Oguri 2019;
Foxley-Marrable et al. 2020; Bag et al. 2021; Bayer et al. 2021).
There remains significant tension in the predicted value of the
Hubble constant between techniques focusing on early-universe and
late-universe physics (Freedman 2017; Mortsell & Dhawan 2018;
Bengaly, Clarkson & Maartens 2020; Pandey, Raveri & Jain 2020;
Vagnozzi 2020), with the modelling of larger strong lens catalogues
key to reducing the uncertainties in lensing estimates of Hj.

Surveys involved in identifying strong lenses have to date con-
firmed only hundreds, with most lying at low redshift. These include
the Sloan Lens ACS (SLACS) survey (Bolton et al. 2006), the
CFHTLS Strong Lensing Legacy Survey (SL2S; Cabanac et al.
2007), the Sloan WFC Edge-on Late-type Lens Survey (SWELLS;
Treu et al. 2011), the BOSS Emission-Line Lens Survey (BELLS;
Brownstein et al. 2011), and lenses found in the Dark Energy Survey
(Dark Energy Survey Collaboration et al. 2005). Upcoming surveys
are expected to remedy this, producing billions of galaxy images
containing tens of thousands of strong lensing systems (Collett
2015). These include the European Space Agency’s Euclid telescope
(Laureijs et al. 2011), and the Legacy Survey of Space and Time
(LSST) which will use the ground-based Vera C. Rubin Observatory
(formerly the Large Synoptic Survey Telescope, LSST; Ivezic et al.
2008). Euclid is due to launch in 2022 with the primary aim of
measuring the acceleration of the Universe up to a redshift of z =2
to study dark matter and dark energy, covering 15000 deg? over its
6 yr mission. LSST will begin science operations in 2023, covering
around 18 000 deg? in six bands (u, g, r, i, z, y) repeatedly over 10
yr, also studying dark matter and dark energy.

As a result, multiple automated methods have been developed
for rapidly and accurately identifying strong gravitational lenses.
Convolutional neural networks (CNNs) have seen extensive use in
this area (Jacobs et al. 2017; Lanusse et al. 2017; Petrillo et al.
2017; Schaefer et al. 2018; Davies, Serjeant & Bromley 2019;
Jacobs et al. 2019; Metcalf et al. 2019; Cafiameras et al. 2020; He
et al. 2020; Li et al. 2020; Huang et al. 2021), along with other
machine learning methods (Cheng et al. 2020), as these require
neither the spectroscopic data nor arbitrary geometric measurements
often employed by other techniques (e.g. Bom et al. 2017; Ostrovski
et al. 2017; Avestruz et al. 2019; Talbot et al. 2021). CNNs are a
subset of deep neural networks that have in recent years become
popular for handling large amounts of data, such as rapid feature
extraction and classification of images, and have seen a wide range
of applications in astronomy (e.g. Paillassa, Bertin & Bouy 2020;
Schuldt et al. 2020; Tohill et al. 2020; Wu & Peek 2020). Such
networks have been shown to be very effective at correctly identifying
thousands of lenses purely from images, and are able to do so
extremely quickly. However, this first requires the CNN to be trained
on many tens of thousands to hundreds of thousands of images; with
so few real images of gravitational lenses, these training sets must be
simulated instead. While lens detection has also seen the application
of citizen science (More et al. 2015; Sonnenfeld et al. 2020), there
may be little overlap between lenses identified by citizen science
and those by machine learning (Knabel et al. 2020), highlighting the
need for multiple approaches in order to obtain the most complete
sample.

Following identification of a lens system, mass modelling is
typically performed using parametric techniques. These obtain the
lens mass model parameters that best fit the observed image. Different
techniques have been developed for this purpose, for example those
that involve pixellated grids to reconstruct sources (Warren & Dye
2003; Vegetti & Koopmans 2009; Nightingale et al. 2018) or the use
of shapelets (Birrer, Amara & Refregier 2015; Birrer & Amara 2018).
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Modelling can often require time-consuming processes including
point spread function estimation, removal of the lens galaxy light,
and image masking prior to modelling; to circumvent some of this
initial processing these techniques now simultaneously fit both the
lens galaxy light and mass profile but at the expense of an even slower
modelling speed.

With CNNs successfully used for detecting lenses, they have
since been shown to provide a promising alternative method of lens
modelling. Hezaveh, Levasseur & Marshall (2017) demonstrated
this for the first time, training a combination of networks to predict
lens mass model parameters and applying them to simulated and real
Hubble Space Telescope (HST) images. A method of obtaining uncer-
tainties on these predictions was presented by Levasseur, Hezaveh &
Wechsler (2017), with the CNN now an approximate Bayesian neural
network (BNN). While the initial training took multiple days on a
GPU machine, when applied to test images they reported an increase
in lens modelling speed of several orders of magnitude compared
to parametric methods, demonstrating the potential application of
CNNs for this purpose. This was later extended for application to
interferometric observations (Morningstar et al. 2018), along with the
demonstration of machine learning to additionally reconstruct the
background source from CNN-predicted parameters (Morningstar
et al. 2019).

Since then, CNNs and similar networks have seen much use in
lens modelling, including source reconstruction (Chianese 2019;
Chianese et al. 2020), redshift and lens velocity dispersion estimation
(Bom et al. 2019), and the detection and modelling of dark matter
substructure (Brehmer et al. 2019; Alexander et al. 2020; Lin et al.
2020; Rivero & Dvorkin 2020; Varma, Fairbairn & Figueroa 2020;
Vernardos, Tsagkatakis & Pantazis 2020). Recent work by Maresca,
Dye & Li (2021) showed how CNNs could easily identify unphysical
source reconstructions outputted by semi-analytic parametric mod-
elling methods, allowing for an automated approach to dealing with
incorrect models. With regard to using CNNs to obtain parametric
lens mass profile parameters, Schuldt et al. (2021) focused on ground-
based imaging, leaving in foreground lens light and making use of
four filters to distinguish sources composed of Hubble Ultra-Deep
Field (HUDF; Beckwith et al. 2006) galaxies before examining how
well the CNN-predicted models translated into predicting time delays
and image positions. Park et al. (2021) applied an approximate BNN
to the modelling of time-delay lenses consisting of lensed active
galactic nuclei, combining results with simulated time delays for
H, inference across hundreds of such lenses. Wagner-Carena et al.
(2021) presented a hierarchical inference framework for such BNN
lens modelling to avoid biases introduced by differences between
training and test data sets. And Madireddy et al. (2019) presented a
pipeline for both lens detection and modelling, including denoising
and deblending (removing lens light), using multiple different deep
neural networks in a modular fashion that provided informative latent
spaces and uncertainties at each stage.

In Pearson, Li & Dye (2019), we investigated the practicalities
of using CNNs for lens modelling. First, we examined how such
networks cope when trained to model the lens mass profile without
prior removal of lens light, including an assessment of the impact
of assumed mass and light alignment during training. Secondly, we
quantified the gain in accuracy through using multiband imaging,
and compared both of these results to the case of modelling the mass
profile when the lens light was removed. The data sets used in Pearson
et al. (2019) were simulated to match the imaging characteristics of
both the Euclid telescope and LSST’s Vera C. Rubin Observatory, in
preparation for the large quantity of lenses that will be observed by
these large-scale surveys.
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In this paper, we seek to answer the the following: How well can
we expect CNNs (now approximate BNNs) to obtain lens mass model
parameters for increasingly realistic images? How do they compare
to conventional parameter-fitting techniques? What benefits arise
from a combination of machine learning and parametric modelling
methods and can the disadvantages of one be counteracted by the
other? While trained neural networks are much faster at modelling,
they are limited by the quality of their training data; mismatches
between these and real observations can make neural networks
less reliable than their conventional parameter-fitting counterparts.
For this work, we focus on the imaging characteristics of the
Euclid telescope only to avoid an excess of results, and compare
the CNN to the semilinear inversion technique of PYAUTOLENS
(Nightingale et al. 2018) as well as a combination of the two.
These modelling methods are tested on a range of increasingly
complex lensing systems, starting with smooth singular isothermal
ellipsoid (SIE) lenses and parametric sources before incorporating
real HUDF (Beckwith et al. 2006) source galaxies and CosmoDC2
(Korytov et al. 2019) line-of-sight (LOS) structure, and replacing
the foreground lenses with more complex power law mass profiles
or galaxies from the Evolution and Assembly of Galaxies and their
Environments (EAGLE) cosmological hydrodynamical simulation
suite (Crain et al. 2015; Schaye et al. 2015).

The paper is organized as follows: Section 2 gives the details of
the simulations used to produce the image data sets used for training
and testing. Section 3 provides an overview of the parameter-fitting
methods used in this paper: PYAUTOLENS and the CNN, including the
network’s architecture, uncertainties, and training. Section 4 presents
and compares the results from testing these methods on multiple
image data sets of increasing complexity, from simple parametric
lenses and sources to hydrodynamical EAGLE galaxy lenses with
real HUDF sources and LOS structure. The results are discussed in
Section 5 along with a conclusion of this work in Section 6.

2 GRAVITATIONAL LENS SIMULATION

In this section, we describe gravitational lens image simulations used
throughout this work. As the CNN used here is a form of supervised
machine learning, a large data set of images is required to train
the network before it can be applied to test images. This training
set contained parametric lens mass models and parametric source
light profiles, while the multiple test sets contained various profiles,
beginning parametrically before replacing these with more realistic
lenses and sources. Section 2.1 and Section 2.2 give details of the
simulated data sets used for training the network and testing the
modelling methods, respectively.

2.1 Training set

The data set of 100000 images used to train the CNN was generated
following the simulation method detailed in Pearson et al. (2019). As
the majority of strong gravitational lenses are early-type galaxies, for
the lens mass profile we adopt the SIE model (Kormann, Schneider &
Bartelmann 1994; Keeton 2001) commonly used as a good fit for
strong lens profiles, as well as its more general form, the power
law ellipsoid (Tessore & Metcalf 2015). The former has three main
mass model parameters (excluding the coordinates of the lens):
Einstein radius, orientation, and axis ratio. The latter has an additional
parameter, the power law slope, that allows for increased flexibility
but increases the complexity of the parameter space when modelling.
As such, the training set was generated twice, once with each mass
model, in order to produce one CNN trained to predict three SIE
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parameters and another for the four power law parameters. The
CNNs were otherwise identical in their training and architecture (see
Section 3.2). To ensure sufficient training across parameter space,
the data sets contained lenses with uniformly distributed parameters
selected from the following ranges: 0.2-3.2 arcsec, 0—-180°, 0.4—
1.0, and 1.5-2.5 for Einstein radii, orientations, axis ratios, and
slopes, respectively. The range of Einstein radii was motivated by the
distributions of lenses expected to be obtained by the Euclid survey
(Collett 2015). The lenses were assumed to be correctly centred, with
central positions following a normal distribution about the image
centre with a standard deviation of one pixel.

For the comparisons made in this work, all images were simulated
with the characteristics expected of the Euclid telescope’s VIS filter,
adopting its native pixel scale (0.1 arcsec pixel™!; Racca et al.
2016) and convolving the images with a Gaussian point spread
function with a full width at half-maximum of 0.17 arcsec. The
postage stamp images were fixed at 100 x 100 pixels based on the
distribution of expected Einstein radii. In addition to the sources
with parametric Sérsic profiles used in Pearson et al. (2019), the
training data set contained sources with Gaussian profiles as well
as complex sources made up of multiple Sérsic profiles, in order
to cover a wider range of morphologies. These Sérsic or Gaussian
profiles were generated with variable Sérsic indices and variances,
respectively, each making up 25 per cent of the training set while the
remaining 50 per cent contained multiple Sérsic profiles. Example
training images are shown in Fig. 1. To ensure the network would
not only be trained to cope with images containing highly magnified
sources, all source centroid positions were determined randomly
from a uniform distribution within the Einstein radius of the lens.

Based on trial data sets and work by Collett (2015), lens and source
redshifts were drawn from uniform distributions with upper limits
of Ziens = 2 and Zsouce = 6, and multiple detection criteria were
implemented to ensure strong gravitational lenses were produced.
Requirements included that the centre of the source must be multiply
imaged, with the counter image resolved, and that there was sufficient
magnification (upor > 3), tangential shearing (utorRe, source >
seeing), and signal-to-noise ratio (SNR > 20).

The sky background for Euclid VIS (Collett 2015; Niemi 2015)
was added along with shot noise, the expected read noise (five
electrons per readout), and dark current (two electrons per pixel per
second; Radeka et al. 2009). In addition to the lensed source, such
images initially contained light from the foreground lens, before
subtracting the true light profile convolved with the point spread
function to leave only shot noise residuals.

2.2 Test sets

The 1000-image data sets used for testing the CNN and PYAUTOLENS
were generated with the Pipeline for Images of Cosmological Strong
Lensing (PICS; Li et al. 2016). We made use of their selection of
HUDF (Beckwith et al. 2006) galaxies for high-resolution, high-
redshift sources, although we did not attempt to deconvolve these
sources for this work. These single-band test images had the same
size and imaging characteristics as the training set, but did not contain
any shot noise residuals of the lenses as the errors introduced by lens
removal depend on the technique used and are not the focus of this
work. The magnitudes and angular sizes of the HUDF source galaxies
were incorporated into the images, including the data set containing
parametric (Sérsic and Gaussian) light profiles. As such, lens and
source redshifts had the sole effect of changing the Einstein radii, so
for the purposes of the simulation redshifts were taken to be zjens =
0.5 and Zsource = 2.0, respectively, with Einstein radii set manually.
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Figure 1. Examples of the simulated images used to train the neural network. Top and middle rows contain Sérsic and Gaussian profile sources, respectively.
The bottom row contains complex sources made up of multiple Sérsic profiles. The data set was simulated to have the expected imaging characteristics of the

Euclid telescope’s VIS filter.

PICS also allowed for the inclusion of LOS structure through full
ray-tracing of small light cones covering lens caustics, with light
cones from the semi-analytic model CosmoDC2 (Korytov et al.
2019) based on the Outer Rim cosmological N-body simulation
(Heitmann et al. 2019). 1000 of these small light cones were selected
from within the field of view of the semi-analytic catalogue, each
containing a primary lens often residing in a galaxy group, with up
to 100 LOS galaxies between the observer and source. Test data sets
were produced for a range of increasingly complex lensing systems,
examples of which are shown in Fig. 2:

(i) SIE lenses 4 simple parametric source profiles

(ii) SIE lenses + HUDF sources, with and without LOS structure

(iii) Power law lenses + HUDF sources, with and without LOS
structure

(iv) EAGLE galaxy lenses + HUDF sources, with and without
LOS structure

For the SIE lens mass profiles, their parameter distributions
followed those determined by PICS to be the main haloes in each
CosmoDC2 light cone, with resulting Einstein radii, orientations, and
axis ratios distributed within the ranges 1.3-2.6 arcsec, 0-180°, and
0.4-1.0, respectively. The power law lenses used the same distribu-
tion of lens parameters, with the addition of slope values randomly
selected from a uniform distribution in the range 1.5-2.5, in line
with the CNN training data. These main halo lenses were on average
more massive, and therefore produced larger Einstein radii, than the
majority of those expected by the Euclid survey. However, for this
work these masses were not changed from the CosmoDC2 values as,
where possible, we wished to maintain the halo masses and positions
along the LOS for realistic ray-tracing through the light cones.

The EAGLE galaxy lenses were selected from the EAGLE galaxy
catalogue by calculating the Einstein radius of each galaxy from
their halo mass (assuming redshifts of zje,s = 0.5 and zZgource = 2.0)
and selecting 1000 of those with Einstein radii within the range 0.5—
5.0 arcsec. This resulted in a sample of galaxies whose Einstein radii
were naturally distributed between 0.5 and 3.2 arcsec. The parameters
used as the true values for the results in Section 4.4 therefore followed
different distributions than those of the CosmoDC?2 haloes, although
orientations and axis ratios were limited to the same ranges. They
were obtained using PICS by performing a least squares fit to their

known convergence maps (computed from the EAGLE particle data),
weighted by the square root of these maps, and supplying SIE mass
profiles as the curve-fitting function. The same process was also
used to obtain parameters for the data sets containing LOS structure,
fitting either an SIE or power law mass profile.

While the CNN and PYAUTOLENS only examine the observed
images, the inclusion of LOS structure increases the observed
Einstein radius compared to that of a solitary foreground lens. To
eliminate such biases in the results, rather than using the Einstein
radii of the foreground lenses as the true values, we instead measured
the observed Einstein radii of each lensing system using the same
convergence map fitting process as discussed previously.

3 LENS MODELLING METHODOLOGY

This section details the techniques used to model the simulated
lenses. These involve the conventional parametric parameter-fitting
approach of PYAUTOLENS, the CNN, and the combination of the
two. Details of PYAUTOLENS are given in Section 3.1, while the
architecture, uncertainty estimation, and training of the CNN are
given in Section 3.2, followed by the combination method in
Section 3.3.

3.1 PYAUTOLENS

To compare the CNN with conventional parameter-fitting, we
made use of the semilinear inversion method of PYAUTOLENS!
(Nightingale et al. 2018). This software simultaneously models the
foreground lens and background source for strongly lensed systems
in a Bayesian framework, and can do so using arange of configuration
options including modelling on a square or adaptive Voronoi grid,
regularization, and applying different source plane weightings such
as weighting by source brightness. The result of modelling is a x>
statistic of the differences between the observed and model images,
used to calculate the Bayesian evidence. By repeatedly updating
the parameters, this evidence is then maximized over a series of
modelling iterations in an attempt to obtain the set of parameter

Thttps://github.com/Jammy2211/PyAutoLens
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Figure 2. Examples of the simulated images produced from PICS software, used to test the different mass modelling methods. Top row: examples containing
SIE lenses with parametric source profiles, with four Sérsic sources followed by four Gaussian sources. Second row: examples containing SIE lenses with
HUDF sources, with the last four containing LOS structure. Third row: examples containing power law lenses with HUDF sources, with the last four containing
LOS structure. Bottom row: examples containing EAGLE galaxy lenses with HUDF sources, with the last four containing LOS structure. The data sets were
simulated to have the expected imaging characteristics of the Euclid telescope’s VIS filter.

values that correspond to the global maximum (and hence the global
minimum in x> space). For this work, the background source was
reconstructed on a Voronoi grid that adapted to the lens magnification
with constant regularization. The inversion process was initialized
using the input priors on the mass profile, a regularization prior, and
a prior controlling the number of pixels in the source reconstruction.
Each pixel in the image plane was sub-gridded into 4 sub-pixels for
ray-tracing calculations, with images masked by fitting an annulus
to significant image pixels; for more information see Section 3.2 of
Marescaetal. (2021). For an optimizer, PYAUTOLENS used the Multi-
Nest Bayesian inference tool (Feroz, Hobson & Bridges 2009) for
Markov chain Monte Carlo (MCMC) sampling of parameter space,
run in constant efficiency mode with a sampling efficiency of 0.4.

PYAUTOLENS requires priors for the mass model parameters which
are normally set manually by human inspection of the lensed image,
with the widths of the bounds of the priors set relatively arbitrarily.
Automated modelling was required for this work, and so PYAU-
TOLENS was initialized using priors set either blindly or using CNN-
predicted values (see Section 3.3). For the former, before modelling,
priors for Einstein radii were approximated by fitting a circle to image
pixels above a 3¢ threshold, using uniform weights. This eased the
fitting process while still leaving it fully automated, so remained a
fair comparison to the other automated modelling methods.

3.2 Convolutional neural networks

The following section details the CNN used throughout this work. Its
architecture, along with an overview of how such networks work, is
given in Section 3.2.1. Section 3.2.2 details how uncertainties were
obtained on the CNN’s predicted values in order for it to become an
approximate BNN, and Section 3.2.3 discusses how the network was
trained.

MNRAS 505, 4362-4382 (2021)

3.2.1 Architecture

For mass model parameter estimation, the network used in this work
contains over 4 million trainable weights and biases, featuring six
convolutional layers, six dropout layers, four pooling layers, and
two fully connected layers, as shown in Fig. 3. Convolutional layers
convolve the input with a series of kernels, as described above, with
the biases and weights of each kernel optimized through training.
These layers have manually tuneable hyperparameters such as the
number and size of the kernels, and through experimentation it was
found that six convolutional layers with the kernel sizes given in
the figure provided the best efficiency (in terms of accuracy and
training time) for this work. We chose a stride of one and incorporated
zero-padding to maintain the image size through the convolution.
The activation function used throughout is the Rectified Linear Unit
(ReLU; Nair & Hinton 2010), which acts non-linearly on the nodes
such that any negative values are set to zero.

Dropout (Srivastava et al. 2014) is applied after each convolu-
tional layer (see Section 3.2.2), after which batch normalization is
performed, which normalizes the output of these layers to increase
the stability of the network. The pooling layers used in this work
are max-pooling, which output new arrays containing the maximum
values of each two-by-two-sized region of the input (with a stride
of two), and are hence used to decrease the size of the input. This
allows later network layers to examine larger, more abstract features
while also reducing computation time. There is also a ‘flatten’ layer
used in this network that converts the three-dimensional data into a
one-dimensional vector. This is passed to the fully connected layers,
whose nodes are each connected to every node in the preceding
layer, which are used to identify relationships in the data that the
convolutional layers cannot.

The final layer of the network is the output layer. The network
predicts values for the parameters of a lens mass model fitted to
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50x50x32 25x25x64 25x25x64 12x12x128 6x6x128 4608 512 Output
Conv (7x7)  Conv (5x5) Conv (7x7)  Conv (11x11)  Conv (5x5) Conv (3x3) Fully Fully
Dropout Dropout Dropout Dropout Dropout Dropout Connected  Connected
BatchNorm  BatchNorm  BatchNorm BatchNorm BatchNorm  BatchNorm
Pooling Pooling Pooling Pooling Flatten

Figure 3. Structure of the CNN used in this work, showing the input image and the output of each block of layers. In total there are six convolutional layers, each
with dropout and batch normalization, four max-pooling layers and two fully connected layers. A ‘flatten’ layer is also included to connect the multidimensional
data to the 1D fully connected layer, and ReLU activation is used throughout. Numbers given above or beside each output are the output shapes. The types of
layers in each block are given underneath, along with the kernel sizes (in pixels) used. Further details can be found at the end of Section 3.2.1.

the lensed image; for an SIE lens the predicted parameters are the
Einstein radius and the two components of complex ellipticity, given
as
1—gq? 1—q% .

e1=TqZCOSZ¢,e2=qusm2¢, nH
where ¢ and ¢ are the orientation and axis ratio of the mass profile,
respectively. When fitting the lens with a power law profile, the slope
parameter n is also predicted. To improve the network’s performance,
the inputs are pre-processed; the input images are all intensity scaled
so the counts in each pixel lie in the range 0-1, and the training
parameters to be predicted are all rescaled to lie in the same ranges
as each other, between 0 and 10. The parameters predicted by the
CNN are then rescaled back again for calculating accuracy values,
with complex ellipticity converted to the orientation and axis ratio of
the lens mass profile.

To evaluate the performance of the network during training, a
cost function is required that gives a measure of the difference
between the CNN’s predictions and the true values. This is often
taken to be the mean squared error of the predicted mass model
parameters compared to their true values. However, the inclusion
of an approximate Bayesian framework for uncertainty predictions
necessitates that another form of cost function be used throughout
this work (see Section 3.2.2).

3.2.2 Uncertainties

Standard CNNs for regression problems can be trained to predict
values, yet there is no way of reliably obtaining uncertainties on
such values. However, work by Gal & Ghahramani (2016a, b)
and Kendall & Gal (2017) has seen the incorporation of Bayesian
statistics into neural networks, in which a trained network’s weights
can vary according to a probability distribution rather than remaining
fixed, allowing for such a network to obtain posterior probabilities
and hence overall uncertainties. Levasseur et al. (2017) have since
applied this to create an approximate Bayesian CNN framework for
strong lens modelling, involving the use of variational inference. For
completeness, we include here the key information and equations,
and leave the bulk of the theory to that paper.

In variational inference, a variational distribution g(w) over a set
of unobserved weights w is used to approximate the posterior p(w|X,
Y) of the weights given training data (X, Y). In Levasseur et al.
(2017), they choose a form of g(w) such that sampling from it is
equivalent to performing dropout over network weights. Introduced

by Srivastava et al. (2014), dropout is the process of randomly
‘dropping’ nodes (setting them to zero) temporarily for each forward
pass through the network during training. This stops the network
from becoming too reliant on certain pathways in order to prevent
it from overfitting to its training data. After training, performing
inference using the approximated posterior predictive distribution,
pOlx, X, Y) = p(y|x, w)g(w)dw, for a set of test data (x, y) can
be done by approximating this integral with a Monte Carlo (MC)
integral, through repeatedly passing each test image through the
network and using dropout during festing (MC dropout) to sample
from the approximate parameter posterior. This sampling thus gives
a measure of the epistemic uncertainty (how well the network has
been trained).

The other type of uncertainty to be obtained is the aleatoric
uncertainty, which describes errors coming from the input data itself,
such as the noise level of images. This is achieved through the
modification of the network’s cost function, choosing its form to
be the negative of a Gaussian log-likelihood

1 1
— ﬁ = ; E Hypred,k - ylrue,kH2 eXp(_sk) + Eska (2)

Where ypreq, & and yuue, « are the predicted and true values of parameter
k for a given training image, and s, = log o is the log-variance. oy
represents the aleatoric uncertainty of each parameter, and due to its
presence in both terms it is optimized through training and can be
outputted for each image fed through the network. We train using the
log-variance rather than o itself in order to avoid potential division
by zero and to improve numerical stability. Through this process, the
CNN can now be trained to output both predictions of the parameter
values and predictions of their associated aleatoric uncertainties.
Using the MC dropout method, these are then added in quadrature
with epistemic uncertainties to give the overall measure of the CNN’s
uncertainty for a given image.

3.2.3 Training

To train the network, 100000 images were fed into the network in
batches of 100, along with a validation set of 10000 images. These
images were 100 x 100-pixel ‘postage stamp’ cut-outs of lenses, and
featured a range of source types in order for the network to cope with
the wide range of realistic sources (see Section 2.1). Two CNNs were
trained: one to predict parameters for SIE lenses and a second for
power law lenses. They featured the same architecture (with one extra
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Figure 4. Coverage probabilities when fine-tuning dropout during CNN training to ensure appropriately sized predicted uncertainties. Top and bottom rows
show results for the CNN trained to predict SIE parameters (0, ¢, ¢) and power law parameters (O, ¢, g, n), respectively, indicated by the smaller bars. Average
coverage probabilities are given as the wider bars, and for the ideal case would reach each dashed line representing 68.3, 95.5, and 99.7 per cent coverage. Left:
example results from using incorrect dropout rates. Right: results from using fine-tuned dropout rates.

output for the power law slope) and used the negative log-likelihood
cost function from Section 3.2.2. For network optimization, the best
results were obtained using a learning rate of le-3 with the Nadam
optimizer (Dozat 2015), which is a combination of methods based
on the stochastic gradient descent algorithm.

The CNN was run on a GPU machine, allowing for much faster
processing; training over 150 epochs on 100000 images took less
than two hours, while testing on thousands of images took on the
order of a few seconds to minutes depending on the number of repeats
performed to obtain uncertainties from dropout during testing. For
the results presented in this work each image was tested 100 times
to give a good level of accuracy in a manageable amount of time.

In order for the CNN to predict suitable uncertainties, the dropout
rate must be fine-tuned. After training with a given dropout rate,
the CNN was tested on 10000 images covering parameter space
with the same imaging characteristics as the training set. Coverage
probabilities were obtained for each parameter; these give the fraction
of the test set whose predicted values lie within a given confidence
interval of the true value. These confidence intervals are determined
based on the predicted 1o uncertainties, also scaled up to 20 and
30 intervals. Hence, the ideal case would consist of 68.3 percent
of predictions lying within the 1o confidence interval, and so on.
Fine-tuning was achieved through repeated training and testing with
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different dropout rates in order to achieve the above, with a final
dropout rate of 5 percent (i.e. a keep rate of 95 percent). Some
example coverage probabilities are given in Fig. 4.

3.3 PYAUTOLENS + CNN

The parametric fitting of PYAUTOLENS can model the lens and source
to a high degree of accuracy, but to do so requires a large amount
of time and computing power as well as the manual effort of setting
priors on the parameters. These are factors we would like to reduce, as
they currently limit its applicability to the quantity of strong galaxy—
galaxy lenses that future surveys will discover. PYAUTOLENS can be
crudely automated by setting priors to cover parameter space rather
than basing them on human inspection (‘blind” modelling), however
this results in a drop in accuracy and further increased modelling
time. In addition, the widths of the priors can present problems —
if the bounds are too narrow, the software may not converge to the
correct solution, while too large bounds result in many more iterations
before a solution is obtained. Even then, wide bounds on the priors
can result in the software converging on parameters that represent
overmagnified or undermagnified solutions rather than recovering
the true parameters (Maresca et al. 2021).
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On the other hand, a trained CNN provides a much faster,
computationally inexpensive, and automated alternative, but requires
a sufficiently large and realistic training set in order to avoid
underfitting or overfitting to the data. Given this, the CNN may
not always be able to reach the high accuracy that PYAUTOLENS
can achieve with human inspection, but for the automated blind
modelling required by PYAUTOLENS to cope with future surveys the
CNN can provide a more efficient and accurate method. Additionally,
CNN predictions can act as priors for PYAUTOLENS, with such a
combination of methods removing the need for human inspection
and allowing for slower, yet still automated, accurate modelling to
deal with more complex lenses.

PYAUTOLENS initializes lens model parameters by randomly
sampling from a series of user-defined prior distributions which
can be uniform or Gaussian. When setting up, these are typically
manually selected based on a visual inspection of the lensed image.
Automation of this process would require either generous uniform
priors to ensure that no parameters are disallowed during fitting, or a
means of making an estimation of a narrower set of priors. Since the
CNN can now predict values for mass model parameters extremely
quickly, this opens up the possibility of using these to inform the
priors for PYAUTOLENS. Not only this, but the uncertainties that the
CNN predicts can be used as the 1o bounds, now using a Gaussian
prior distribution (centred on the CNN’s predicted parameters) rather
than a uniform one.

Such a combination of CNNs and conventional parametric mod-
elling can help alleviate the shortfalls that each method faces
individually: CNN accuracy is limited by the quality of the training
set, which ideally would feature non-parametric source and lens
profiles for many hundreds of thousands of images, and without
these the network may struggle with more complex lensing systems.
Meanwhile, conventional parametric modelling does not require
training, and as such offers a more flexible means of modifying the
lensing model, e.g. changing the mass profile and the easy addition
of components such as external shear. However, this modelling can
take a large number of iterations before converging on a solution,
and may require repeat modelling attempts.

Together, CNNs can vastly simplify the search over parameter
space for parametric modelling methods and can additionally prevent
methods using semilinear inversion, like PYAUTOLENS, from falling
into local minima, especially when using CNN uncertainties to
reduce the size of prior parameter space. Hence this combination
may lead to a fully automated pipeline that can obtain accurate results
over short time-scales for application to large samples of lenses.

4 RESULTS

In this section, the performance of the CNN is compared to that of
PYAUTOLENS modelling blindly (PyAL (blind)) for a range of test
cases with increasing complexity. In addition, both are compared to
combinations of the two techniques, in which the CNN predictions
are used as priors for PYAUTOLENS. The first (PyAL + CNN) uses
uniform priors of arbitrary width that are centred on the CNN-
predicted model parameters. The second (PyAL + CNN (10)) uses
Gaussian priors centred on these parameters with the CNN-predicted
lo uncertainties acting as the prior widths; see Section 3.3. We also
tried setting the prior widths to twice the 1o uncertainties reported by
the CNN in case the uncertainties were underpredicted for the more
complex test sets, but overall the results were worse than passing the
unmodified uncertainties and as such are not included in this paper.
The uniform prior distributions of PyAL (blind) covered parameter
space for all parameters except Einstein radius, which instead used
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40.2 arcsec bounds centred on the approximated Einstein radii; see
Section 3.1. For the PyAL 4+ CNN method, the bounds were 0.2
arcsec, £40°, £0.1, and 0.2 for Einstein radius, orientation, axis
ratio, and slope, respectively.

In Sections 4.1 and 4.2, the modelling techniques are applied
to simulated images containing SIE lenses, with parametric (Sérsic
and Gaussian) and real HUDF sources, respectively. In the case of
HUDF sources, results are compared for lenses with and without
LOS structure, and this is repeated for the case of power law lenses
in Section 4.3. In Section 4.4, the techniques are instead applied
to simulated images with complex lenses in the form of galaxies
obtained from the EAGLE hydrodynamical simulation, again with
HUDF sources and for those with and without LOS structure.

Throughout the remainder of this paper, we quantify the error
on predicted lens model parameters by the 68 percent confidence
interval computed from the distributions of differences between true
and predicted parameter values across the test image set. In our
previous work we referred to this 68 per cent confidence interval as
a parameter’s ‘uncertainty’, however in this work we hereafter refer
to this as a parameter’s ‘error’ to avoid confusion with the CNN’s
predicted 1o uncertainties.

4.1 SIE lenses + parametric sources

We began by testing for any inherent biases or differences between
the modelling methods, having them model 1000 images with SIE
lenses and parametric sources. Half contained Sérsic sources, while
the other contained Gaussian sources. Results are presented in Fig. 5
as distributions of the differences between predicted values and
true values for each mass model parameter. Fractional differences
are used for Einstein radius and axis ratio. Table 1 gives the
68 per cent confidence intervals of these distributions. Scatter plots
of predictions against true values are given in Fig. 6, including
the CNN’s predicted 1o uncertainties. It is clear from the results
that the CNN’s predicted uncertainties are of an appropriate size
and accurately reflect its errors; the large uncertainties in some
orientation values are expected as they occur for round lenses with no
well-defined orientation. It is worth noting that the CNN errors are
significantly lower than those presented in Pearson et al. (2019); this
is primarily due to doubling the size of the training set, which now
also contains a greater variety of lensing systems. The incorporation
of dropout and uncertainty prediction into the network architecture,
along with testing on lenses with generally larger Einstein radii (and
hence more available information), also serve to increase network
accuracy.

The CNN by itself achieves a higher accuracy than that of
PYAUTOLENS for axis ratio, but lower accuracies for the other
parameters. Despite the significantly lower peaks for Einstein ra-
dius and orientation the CNN has far fewer outliers, as shown
in Fig. 6, resulting in similar overall errors. However, for
all mass model parameters the combination of the two methods
does significantly better than PYAUTOLENS modelling blindly, with
PyAL + CNN (lo) achieving 3644 percent lower errors than
PyAL (blind). There is also a notable benefit to including the CNN’s
predicted 1o uncertainties in the priors of PYAUTOLENS, with 12—
17 per cent lower errors for PyAL + CNN (lo) compared to PyAL
+ CNN. While there are biases observed in the distributions towards
underpredicting or overpredicting parameters, the magnitudes of
these biases are of the order <0.2 percent for Einstein radius
and <1 percent for axis ratio, and so have negligible impact on
modelling.
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Figure 5. Distribution of the differences between predicted SIE mass
model parameters and their true values for a test data set of 1000 images
containing parametric sources: 500 with Sérsic sources and 500 with Gaussian
sources. From top to bottom: Einstein radius, orientation, and axis ratio
of the lens mass profile. Einstein radius and axis ratio results presented
as fractional differences. The distributions shown are those for the CNN
(blue), PYAUTOLENS modelling blindly (orange), PYAUTOLENS using CNN
predictions as priors (green), and PYAUTOLENS using CNN predictions and
1o uncertainties as priors (red).

Table 1. SIE lenses + parametric sources. The 68 percent confidence
intervals on predicted parameters for each modelling method, computed from
the distributions of differences between true and predicted parameter values
across 1000 test images.

Method 6 (arcsec) ¢ (©) q

CNN 0.0090 4.92 0.018
PyAL (blind) 0.0089 4.44 0.027
PyAL 4+ CNN 0.0065 2.81 0.021
PyAL 4 CNN (lo) 0.0055 247 0.017
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Figure 6. Comparison of predicted SIE lens parameters with the true values
for test data sets of 1000 images containing SIE lenses and parametric (Sérsic
and Gaussian) sources. From top to bottom: Einstein radius, orientation, and
axis ratio of the lens mass profile.

4.2 SIE lenses + HUDF sources

The next set of testing involved examining the impact of both using
real HUDF sources in place of simple parametric sources, and
incorporating additional structure along the LOS. Results for images
without LOS structure are presented in Figs 7 and 9, and those with
LOS structure in Figs 8 and 10, following the same format as before.
68 per cent confidence intervals are given in Table 2.

We first examine the results for images without LOS structure. In
general, the accuracies for all modelling have dropped compared to
testing on images with parametric sources, as expected. As with the
previous test set containing parametric sources, the CNN accuracy
is lower for Einstein radius and orientation and higher for axis
ratio when compared to PYAUTOLENS blind modelling. Likewise,
we again see the combination of the two techniques performing
significantly better than either of them separately, with PyAL + CNN

20z 11dy 2| U0 1sanB Aq $85/829/29E/E/S0G/2I01E/SEIUW/W0d"dNODILSPED.//:SA)lY WO} PAPEOjUMOQ



120

100 1

o
o

60

Number Density

40+

20+

0+ T ! - T
-0.03 -0.02 -0.01 0.00 0.01 0.02 0.03
(BE, predicted — 9E, t‘rue)/eE, true

=== CNN

0.20 PyAL (blind)
—— PyAL + CNN
= PyAL + CNN (10)

o
A
u

Number Density
o
Al
o

0.054

-15 -10 -5 0 5 10 15
¢predicted - ¢rrue (degrees)

—
o
o

7.5

Number Density

5.0+ /

2.51

0.0 —
-0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20
(Qpredicted - Qtrue)/qnue

Figure 7. Distribution of the differences between predicted SIE mass model
parameters and their true values for test data sets of 1000 images containing
HUDF sources, without LOS structure. The distributions follow the same
format as Fig. 5.

(1o) errors 31-39 percent lower than PyAL (blind). In Fig. 9,
there are a notable number of axis ratio values that PyAL (blind)
significantly underpredicts that the other methods do not. These
scattered outliers generally correspond to the likewise underpredicted
Einstein radii, and appear in the later test results as well. They do
not correlate to any specific lensing configurations, but are instead
likely due to poor initializations in parameter space, and as such do
not appear for the CNN and CNN-assisted methods.

For images with LOS structure, results are similar to those above
except for a general decrease in accuracy for all results, with errors
increasing by factors of 2.2, 8.2, and 2.3 on average for Einstein
radius, orientation, and axis ratio, respectively. This is to be expected
as the inclusion of extra mass along the LOS serves generally to
increase the complexity of the lensing system compared to smooth
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Figure 8. Distribution of the differences between predicted SIE mass model
parameters and their true values for test data sets of 1000 images containing
HUDF sources, with LOS structure. The distributions follow the same format
as Fig. 5.

parametric profiles, making the resulting images more difficult to
model. As detailed in Section 2.2, to obtain the ‘true’ parameters for
these images we fitted an SIE model convergence to the convergence
of the combined SIE profile and LOS structure. It is worth noting
however that the CNN was not trained on images containing HUDF
sources or LOS structure, so while the drop in its accuracy is expected
it still performs sufficiently well as an automated modelling method.

The CNN now achieves the highest accuracy for Einstein radii,
with errors 10 per cent lower than PyAL + CNN (1o), but the latter
method continues to give the best results for orientation and axis ratio.
For these parameters, the differences between the distributions are
reduced compared to the results for images without LOS structure.
As such, compared to PyAL (blind) the errors are reduced by
9-28 percent, 11-17 percent, and 16-21 percent for the CNN,
PyAL + CNN, and PyAL + CNN (lo), respectively. For the latter
method, incorporating the CNN’s predicted 1o uncertainties in the
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Figure 9. Comparison of predicted SIE lens parameters with the true values
for test data sets of 1000 images containing SIE lenses and HUDF sources,
without LOS structure. From top to bottom: Einstein radius, orientation, and
axis ratio of the lens mass profile.

priors of PYAUTOLENS now reduces errors by 3—-10 percent over
PyAL + CNN, compared with 13—15 percent for images without
LOS structure. For both images with and without LOS structure,
CNN-predicted uncertainties seen in Figs 9 and 10 continue to
accurately reflect the CNN’s errors for the vast majority of lenses, but
for those containing LOS structure there are significantly more with
greatly underpredicted uncertainties, due to not being represented in
the CNN’s training set.

4.3 Power law lenses + HUDF sources

The same tests as Section 4.2 were repeated for power law lenses.
For this, the same CNN architecture and training process was used
but now training and testing on images containing lenses with power
law mass profiles instead of SIE profiles. Otherwise the training and
testing was identical to that of Section 4.2. As such, the power
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Figure 10. Comparison of predicted SIE lens parameters with the true values
for test data sets of 1000 images containing SIE lenses and HUDF sources,
with LOS structure. From top to bottom: Einstein radius, orientation, and axis
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Table 2. SIE lenses + HUDF sources. The 68 per cent confidence intervals
on predicted parameters for each modelling method, computed from the
distributions of differences between true and predicted parameter values
across 1000 test images.

Method 0 F (arcsec) @ (°) q
Without LOS structure

CNN 0.013 6.10 0.029
PyAL (blind) 0.013 4.22 0.038
PyAL 4+ CNN 0.010 3.02 0.030
PyAL + CNN (lo) 0.009 2.57 0.026
With LOS structure

CNN 0.021 30.7 0.067
PyAL (blind) 0.029 33.8 0.077
PyAL + CNN 0.026 28.0 0.068
PyAL + CNN (lo) 0.023 27.1 0.065
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Figure 13. Comparison of predicted power law lens parameters with the
true values for test data sets of 1000 images containing power law lenses and
HUDEF sources, without LOS structure. From top to bottom: Einstein radius,
orientation, and axis ratio of the lens mass profile.
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Figure 14. Comparison of predicted power law lens parameters with the
true values for test data sets of 1000 images containing power law lenses
and HUDF sources, with LOS structure. From top to bottom: Einstein radius,
orientation, and axis ratio of the lens mass profile.

¥20z Mdy g1 uo 1s8nb Aq $85/829/29EF/€/G0G/3I01E/SBIUW/WOD dNO"olwapeoe//:sdly wolj pepeojumoq



Table 3. Power law lenses + HUDF sources. The 68 per cent confidence
intervals on predicted parameters for each modelling method, computed from
the distributions of differences between true and predicted parameter values
across 1000 test images. The final column contains the confidence intervals
for the power law slope parameter.

Method 6 (arcsec) ¢ (°) q n
Without LOS structure

CNN 0.050 7.37 0.083 0.27
PyAL (blind) 0.065 6.53 0.106 0.29
PyAL + CNN 0.049 2.63 0.080 0.25
PyAL + CNN (lo) 0.029 2.50 0.062 0.20
With LOS structure

CNN 0.070 32.2 0.093 0.19
PyAL (blind) 0.091 44.1 0.143 0.26
PyAL + CNN 0.068 34.1 0.096 0.19
PyAL + CNN (lo) 0.060 32.1 0.091 0.18

Table 4. EAGLE galaxy lenses + HUDF sources. The 68 per cent confi-
dence intervals on predicted parameters for each modelling method, computed
from the distributions of differences between true and predicted parameter
values across 1000 test images.

Method 6 (arcsec) ¢ (°) q
Without LOS structure

CNN 0.035 8.70 0.108
PyAL (blind) 0.064 19.56 0.170
PyAL + CNN 0.044 9.12 0.116
PyAL + CNN (lo) 0.034 8.12 0.119
With LOS structure

CNN 0.046 12.6 0.114
PyAL (blind) 0.070 23.8 0.157
PyAL + CNN 0.060 15.4 0.121
PyAL + CNN (lo) 0.043 12.4 0.114

law slope parameter n was also predicted by the network along with
its associated 1o uncertainty. 68 percent confidence intervals are
given in Table 3. Figs 11 and 13 present results for images without
LOS structure, while Figs 12 and 14 present those containing LOS
structure, following the same format as before.

The difficulty of predicting slope values is highlighted in Figs 13
and 14, with the highest accuracy achieved using PyAL 4+ CNN (1o)
despite significant scatter remaining in both plots of slope values.
Because of this complication, the results for other parameters are
generally worse than for images containing SIE lenses, with errors
increasing by factors of 1.2-2.9 and 1.1-4.2 for test sets with and
without LOS structure, respectively. Einstein radii and axis ratios
are predominantly affected, especially when modelling with PyAL
(blind) whose results contain many more greatly underpredicted axis
ratios regardless of the presence of LOS structure. This is a reflection
of the overall degeneracy observed between slope and axis ratio
(which in turn affects Einstein radius predictions); for increasing true
slope values, predicted slopes in general go from overpredicted to
underpredicted, while the opposite occurs for axis ratio predictions.
These trends are reversed for increasing true axis ratios. While the
scatter in power law results is larger than that of SIE lenses, the
uncertainties predicted by the CNN remain in general an accurate
reflection of its errors for both lenses with and without LOS structure.
These uncertainties appear to be slightly underpredicted for axis
ratios, primarily for the large scatter seen at lower axis ratio values,
while uncertainties for slope values appear generally underpredicted.
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For the test set without LOS structure, comparisons between
modelling methods remain similar to before, with errors of PyAL
+ CNN (1o) 5-39 per cent lower than those of PyAL + CNN, and
32-62 percent lower than those of PyAL (blind). Meanwhile, the
CNN by itself achieves errors comparable to PyAL (blind), from
19 per cent lower to 13 per cent larger. With regard to the orientation
results seen in Fig. 11, the CNN predictions are generally more
scattered compared to PyAL (blind). However, while the results of
the latter are for the most part centrally concentrated close to the true
values, some are clearly offset by around +90°. For PyAL + CNN
and PyAL + CNN (lo) some of the outlying predictions remain,
but these combinations of methods shift the majority of them back
towards the true values, decreasing overall errors.

With LOS structure, the CNN and PyAL + CNN (1o) methods,
respectively, reduce errors by 23-35 percent and 27-36 percent
compared to PyAL (blind). Similar to the test set containing SIE
lenses and LOS structure, the difference between the CNN and
PyAL + CNN (lo) methods is smaller than for images without
LOS structure, with the latter method obtaining only 0.3—14 per cent
lower errors over the former compared to the 28-66 percent im-
provement obtained for images without LOS structure. Likewise,
the incorporation of 1o uncertainties now only reduces errors by
5-12 per cent over modelling with PyAL + CNN. The differences
in results for images with LOS structure compared to those without
are less prominent than those for SIE lenses: now, errors increase
by factors of 1.6, 9.2, and 1.3 for Einstein radius, orientation, and
axis ratio, respectively, while errors in the slope actually decrease by
18 per cent. The modelling methods appear to generally overpredict
slope values (i.e. more point-like lenses) in Fig. 13, so the addition
of LOS structure away from the central lens may allow the modelling
to predict sufficiently lower slope values so as to slightly decrease the
overall error in these results. The overpredicting of slope values is
unlikely to have arisen from differences in their training and testing
distributions as both were uniform and sampled between the same
bounds.

4.4 EAGLE lenses + HUDF sources

The next stage involved testing on simulated images that contained
more complex lenses, i.e. those that do not follow an analytical
profile. One set of 1000 test images contained lensing galaxies
taken from the EAGLE hydrodynamical simulations and the other
was identical apart from the addition of LOS structure as applied
previously for the parametric lenses. The known convergence maps
of these lenses were fitted with SIE mass profiles in order to obtain
the best-fit ‘true’ parameter values, before modelling the lensed
images with an SIE mass profile using the previous methods. Figs 15
and 16 show the resulting accuracies of the different modelling
methods, with corresponding scatter plots in Figs 17 and 18 and
errors presented in Table 4, in the same format as previous results.
It should be noted that the EAGLE galaxy lenses modelled in
this section have smaller Einstein radii on average than in previous
sections (see Section 2.2), producing more pixellated arcs. The
modelling methods are therefore expected to produce higher errors
for all parameters as a result, on top of the difficulty in modelling
more complex mass profiles; for example, see Pearson et al. (2019)
for CNN error as a function of Einstein radius. However, examining
the results for lenses with Einstein radii above 1.3 arcsec, in line with
previous test sets, such lenses continue to exhibit much larger errors
than those seen in Section 4.2, more similar in magnitude to the rest
of the EAGLE galaxy data set. As such, it appears the dominant
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Figure 15. Distribution of the differences between predicted SIE mass model
parameters and their true values for test data sets of 1000 images containing
EAGLE galaxy lenses with HUDF sources, without LOS structure. The
distributions follow the same format as Fig. 5.

source of error in these results arises from the complex foreground
galaxies rather than the smaller Einstein radii.

Without LOS structure, the CNN achieves 36-55 per cent lower
errors than PyAL (blind) despite the complex lenses in this test
set. The PyAL + CNN (1o) method gives similar results, with 30—
58 percent lower errors than PyAL (blind). However, this method
no longer outperforms the other CNN methods for all parameters:
For Einstein radius and orientation, PyAL + CNN (lo) achieves
11-22 per cent and 27 per cent lower errors compared to PyAL +
CNN and the CNN, respectively, but for axis ratio the PyAL + CNN
and CNN methods instead achieve 2.7 and 9.6 per cent lower errors
than PyAL 4+ CNN (1o). However, this may simply be due to the
large scatter observed in Fig. 17, especially for axis ratio which is
often underpredicted by the modelling methods. This is likely caused
by two factors: (i) the complex foreground galaxies produce fewer
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Figure 16. Distribution of the differences between predicted SIE mass
model parameters and their true values for test data sets of 1000 images
containing EAGLE galaxy lenses with HUDF sources, with LOS structure.
The distributions follow the same format as Fig. 5.

smooth, well-defined arcs than those trained on by the CNN, and (ii)
the axis ratios of these galaxies can change as a function of radius,
with the modelling methods only given final lensed images and hence
probe only a part of the whole convergence map used by the separate
fitting method to obtain the ‘true’ values. Regardless of the presence
of LOS structure, both Figs 17 and 18 show that for these complex
EAGLE galaxy lenses the CNN underpredicts its uncertainties for all
three parameters, with uncertainties barely visible for Einstein radii
and clearly not representing the full scatter of the results. As such,
were these uncertainties to better represent the errors, PyAL + CNN
and PyAL + CNN (1o) may have achieved higher accuracies.
Finally, for the test set containing LOS structure, PyAL 4+ CNN
(1o) achieves the lowest errors for all parameters, but there is again
little difference between its and the CNN’s results, with PyAL +
CNN (lo) errors only 0.4-7 per cent lower than the CNN. As such
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for test data sets of 1000 images containing EAGLE galaxy lenses and
HUDF sources, without LOS structure. From top to bottom: Einstein radius,
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their improvements over PyAL (blind) are almost identical, with
PyAL + CNN (lo) and CNN errors 28-48 percent and 2847
lower than PyAL (blind), respectively. There is still a benefit to
incorporating the CNN'’s predicted 1o uncertainties, which reduce
errors by 6-28 percent over those of PyAL 4+ CNN. Due to the
large amount of scatter in these results caused by modelling the
EAGLE galaxy lenses, the presence of LOS structure has only a
minor impact on the results, with errors that are factors of 1.3, 1.5,
and 1.0 larger than for images without LOS structure for Einstein
radius, orientation, and axis ratio, respectively. With LOS structure,
errors for the EAGLE galaxy lenses are factors of 2.2, 0.5, and
1.8 larger than those of SIE lenses with LOS structure for Einstein
radius, orientation, and axis ratio, respectively, compared to factors
of 3.9, 3.1, and 4.2 when both test sets do not contain this extra
structure.
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Figure 18. Comparison of predicted SIE lens parameters with the true values
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4.5 Modelling speed

We now consider the speed by which the different modelling
methods can obtain the lens parameters seen in the previous results.
Distributions of the time taken to model each lens using each
modelling method are shown in Fig. 19, for three of the test data
sets: SIE lenses with HUDF sources, SIE lenses with HUDF sources
and LOS structure, and EAGLE galaxy lenses with HUDF sources
and LOS structure. Distributions for the CNN by itself are not shown
as for a single lens the time taken is almost instant.

It is clear from the figure that the incorporation of the CNN helps
quicken PYAUTOLENS’ modelling for all three test data sets, although
nowhere near as fast as the CNN by itself. Compared to PyAL (blind),
PyAL + CNN increases modelling speeds by mean factors of 1.34,
1.08, and 1.14 for the three test data sets (1.19 on average), while
PyAL 4 CNN (lo) increases modelling speeds by mean factors of
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Figure 19. Distributions of the time taken for PYAUTOLENS to model each
of the lenses making up a given test set when modelling blindly, with the
CNN predictions as priors, and with the CNN predictions and uncertainties
as priors. As the trained CNN can model lenses by itself almost instantly, its
modelling times are not included here. From top to bottom: test sets consist
of SIE lenses with HUDF sources, SIE lenses with HUDF sources and LOS
structure, and EAGLE galaxy lenses with HUDF sources and LOS structure.

1.56, 1.37, and 2.25 (1.73 on average). A significant improvement
is obtained by incorporating the CNN’s predicted uncertainties,
especially for the EAGLE galaxy lenses; while all methods show
some cases of lenses taking a long time to model, PyAL + CNN
(1o) has far fewer of these outliers, which themselves are generally
much shorter than those of the other methods. This improvement
arises from applying better priors on parameter space which allow
PYAUTOLENS to converge faster and prevents it from falling into
local minima that would give inaccurate parameter values. The use
of MultiNest by PYAUTOLENS means that the closer it gets to the
correct solution, the greater the number of samples that reach its
acceptance threshold. This in turn quickens MultiNest’s Markov
chain Monte Carlo (MCMC) sampling, further increasing the speed at
which PYAUTOLENS can reach the solution. Hence, starting in more
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optimal regions of parameter space can greatly quicken modelling. It
is worth noting that the CNN-predicted uncertainties for the EAGLE
galaxy lenses were generally underpredicted; while such priors for
PYAUTOLENS may quicken modelling when centred on local or
global minima, they are more likely to result in incorrect predictions.
Additionally, those not centred on minima would greatly slow the
modelling process, and so should more suitable priors be obtained
for the EAGLE galaxy lenses, both the accuracy and modelling speed
of PyAL 4+ CNN (1o) may be increased.

For the automated approach used in this work, only a single run of
PYAUTOLENS is performed for each image, whereas conventionally
not only would each image be inspected by eye beforehand, but some
modelling may converge on incorrect values and hence require re-
initializing with modified priors, further increasing modelling time
and the need for human inspection. The CNN alone provides a
much more rapid automated modelling than the combination method,
suitable to handle large data sets, while the slower yet still automated
PyAL 4 CNN (lo) approach would be well suited to model more
complex lenses for which large uncertainties are predicted by the
CNN.

5 DISCUSSION

We have compared the modelling accuracy of CNNs with that
of PYAUTOLENS’ semilinear inversion technique when applied in
an automated manner to thousands of simulated images of strong
galaxy—galaxy lenses. These images were divided into sets of
increasing complexity, from parametric lenses and sources to EAGLE
galaxy lenses with HUDF sources and LOS structure, and included
modelling both SIE and power law mass profiles. In addition, we ex-
amined a promising way to combine both the CNN and PYAUTOLENS
modelling methods, incorporating CNN-predicted parameter values
and uncertainties into the priors of PYAUTOLENS, in order to create an
automated method that is faster and more accurate than PY AUTOLENS
would be by itself.

5.1 Modelling accuracy

When presented with images containing SIE lenses and parametric
sources, all methods reach very high accuracies, with errors below
0.010 arcsec, 5°, and 0.03 for Einstein radius, orientation, and axis
ratio, respectively. This remains the case when the sources are
replaced by HUDF galaxies, with errors still below 0.014 arcsec,
7°, and 0.04, respectively. The CNN and PyAL (blind) achieve
comparable accuracies on average for both of these data sets, however
the combination of the two lead to significantly lower errors, with
PyAL + CNN (lo) errors 37 per cent lower than PyAL (blind) on
average across the two data sets. This incorporation of uncertainties
improves upon PyAL + CNN by an average of 15 per cent.

Compared to SIE mass profiles, the modelling of power law
profiles results in an expected decrease in accuracy, with errors from
0.03t00.07 arcsec, 2.5t07.4°,0.06t0 0.11, and 0.2 to 0.3 for Einstein
radius, orientation, axis ratio, and slope, respectively (factors of 1.1
to 4.2 times larger than SIE profile modelling). While the scatter in
slope predictions remain large for all modelling methods, there are
notable improvements made through the combination of methods,
with PyAL + CNN (lo) decreasing errors by 5-39, 28—66, and 32—
62 per cent compared to PyAL + CNN, the CNN, and PyAL (blind),
respectively.

The CNN was not trained on images containing LOS structure, nor
to predict external convergence or shear, and hence the introduction
of significant LOS structure somewhat complicates the results. Errors
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increase by factors of 2.2-8.2 for SIE lenses and by 1.3-9.2 for power
law lenses, the largest of which are for orientation values, although
for the latter images the slope error actually decreases slightly. The
differences between PyAL + CNN (lo) and the CNN are greatly
reduced, however both significantly continue to improve upon PyAL
(blind), reaching 27-36 percent and 23-35 percent lower errors,
respectively.

The similarity between these methods continues for the data
set containing EAGLE galaxy lenses. Without LOS structure,
PyAL + CNN (lo) and the CNN, respectively, achieve 30—
58 percent and 36-55 percent lower errors compared to PyAL
(blind). With LOS structure, they give almost identical improve-
ments: 28—48 percent and 28—47 per cent, respectively. As shown,
methods involving the CNN continue to give significantly better
results than PyAL (blind), despite the CNN not training on such
lenses or LOS structure. However, compared to the SIE lenses, errors
for all methods increase on average by factors of 3.1 to 4.2, with
Einstein radii, orientations, and axis ratios, respectively, predicted
with errors of 0.03-0.06 arcsec, 8-20°, and 0.10 to 0.17. Given the
fairly large scatter as a result of the EAGLE galaxies, the addition of
LOS structure has a reduced effect, increasing errors on average by
factors of 1.0 to 1.5.

While the CNN was not trained on images containing LOS struc-
ture or EAGLE galaxies, such images actually result in the highest
improvement over PyAL (blind). This could be because the iterative
method that PYAUTOLENS employs to navigate parameter space is
more sensitive to the inclusion of these complex structures than
the CNN’s instantaneous approach when applied in an automated
fashion. The introduction of LOS structure and EAGLE galaxy lenses
leads to a decrease in the difference between PyAL + CNN (lo)
and the CNN. However, due to a lack of sufficient training in these
areas, the CNN-predicted uncertainties also appear to be increasingly
underpredicted for axis ratios and slopes. Hence, were these to be
corrected through further training or otherwise, for example through
the incorporation of the unbiased hierarchical inference of Wagner-
Carena et al. (2021), PyAL 4+ CNN (lo) could produce a more
pronounced increase in accuracy over the CNN for these complex
lenses.

5.2 Modelling speed

In addition to an increase in accuracy, the combination of methods
results in faster modelling times than PYAUTOLENS by itself. Com-
pared to PyAL (blind), modelling speeds are increased on average by
factors of 1.19 and 1.73 using PyAL + CNN and PyAL + CNN (lo),
respectively. The priors used in the latter help to reduce the number
of outlier lenses that would otherwise take much longer to model,
providing a more consistent modelling time. It should be noted that
for automation, PYAUTOLENS is only performing a single run for
each image; conventionally, human inspection would be used to set
these priors, which if incorrect would lead to PYAUTOLENS falling
into local minima and require re-initializing the modelling, further
slowing the process. Incorporating CNN predictions therefore takes
the place of human inspection, automating the modelling process to
deal with upcoming survey data.

PYAUTOLENS has a range of configuration options, but while these
can lead to obtaining precise fits it can also be time-consuming to
choose the best options. In addition, PYAUTOLENS requires a high-
end PC to run at the speeds shown here. Meanwhile, the CNN need
only run on a GPU machine for training, taking less than two hours
for 100000 training images, and while testing the CNN using a
GPU machine will speed up modelling, it is not required. While

Lens modelling: BNNs and parametric fitting

4379

the neural network alone can be rapidly trained and applied to
images, its combination with PYAUTOLENS provides a slower yet
fully automated method of obtaining more accurate results, suitable
for applications to lenses that the CNN alone may struggle to model.
As such, the CNN would be suitable to handle large samples of
upcoming lenses, but should large uncertainties be predicted by the
network, the modelling may be passed to PyAL + CNN (lo) to
refine the predictions.

5.3 Modelling difficulties and limitations

The simulated lenses used in Sections 4.1 to 4.3 have a higher average
Einstein radius than that expected from lenses detected by Euclid.
The impact on CNN performance for smaller Einstein radii is detailed
in Pearson et al. (2019), with less available information increasing
errors for all parameters. From examining the results in the test sets
as functions of Einstein radii we found no significant deviation in the
relative accuracies between the modelling methods. Additionally,
in Section 4.4 the increase in error for the EAGLE galaxy lenses
was found to be dominated by these complex foreground galaxies
rather than the smaller average Einstein radii. Hence, parametric
lens mass profiles with smaller image separations are expected to
produce slightly higher errors than for the data sets in Sections 4.1 to
4.3, but the relative errors between modelling methods would remain
consistent.

Compared to SIE profiles, all modelling methods struggle with
power law profiles due to the inherent difficulty in accurately mea-
suring slope values, leading to slight biasing towards overpredicting
Einstein radii and underpredicting axis ratios. Results are mostly
unbiased for SIE mass profiles, however for a significant number
of lenses PyAL (blind) underpredicts Einstein radii and axis ratios,
which generally correlate with one another, leading to a large scatter
of outliers. These outliers are not present for the other modelling
methods, suggesting that the CNN is more reliable in its predictions,
which when incorporated into PYAUTOLENS help it initialize closer
to the correct solution in parameter space.

For both mass profiles, the incorporation of significant LOS struc-
ture makes modelling challenging, which for this work is equivalent
to that of a lens often residing within a galaxy group with many tens
of galaxies along the LOS. Replacing the parametric profiles of the
lenses with hydrodynamical EAGLE galaxies also serves to increase
difficulty, with these complex lenses producing fewer smooth, well-
defined arcs than those trained on by the CNN, which can increase
the degeneracy between axis ratio and orientation when modelling
(Mukherjee et al. 2018). These lenses also in general have smaller
Einstein radii than the parametric lenses, corresponding to more
pixellated arcs and reduced information available for modelling.
Additionally, the large errors seen in axis ratios for the EAGLE
galaxy lenses can be attributed to how these values often change
as a function of radius. This, along with many lenses containing
significant substructure in their convergence maps, especially when
combined with LOS structure, prove difficult to reliably fit in order
to obtain the parameter values used as ‘true’ values for this work.

One aspect of consideration in this work is the source-lens align-
ment, i.e. the distribution of doubles and non-doubles (quads, rings)
within the data sets. While doubles are expected to dominate the
catalogues of future surveys, such images are in general more difficult
to model. In this work, a lower limit on magnification was used to
ensure lensed images were being generated; this focused on sources
in higher regions of magnification, resulting in only around 30 to
40 per cent of test images containing doubles. As such, we examined
how the performance of the modelling methods varied by analysing
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100 doubles and 100 non-doubles in the test set containing SIE
lenses and HUDF sources. On average across the modelling methods,
errors in Einstein radii and axis ratios for doubles were factors of
2.1 and 1.9 times larger than non-doubles (1.5 and 1.3 times larger
than the combined 200-image data set), respectively. Meanwhile,
orientation errors for doubles were on average a factor of 0.8 times
that of non-doubles (and were almost unchanged compare to the
combined data set), likely because the set of non-doubles contained
near-complete Einstein rings. However, while the modelling errors
differed between doubles and non-doubles, the relative accuracies
between the modelling methods remained broadly similar.

While the image data sets used throughout this work have
contained only lensing systems, future real data sets may inadver-
tently contain non-lenses if the image classification process is not
perfected. The expectation is that attempting to model non-lenses
with PYAUTOLENS will produce poor evidence values which would
indicate a problem with the modelling. However, the uncertainties
predicted by the CNN may be of little use in this regard; while it
is possible that they may increase for non-lenses due to a lack of a
preferred lensing model, the CNN was not trained on such images
and so their impact remains unknown without further testing. This,
along with retraining the CNN on both lenses and non-lenses to
ensure appropriate predicted uncertainties, is beyond the scope of
this work and instead left for future investigation.

Likewise, the performance of the modelling methods may be
impacted by how well light is masked or subtracted from the lens and
companions in the field of view, which would require future work; for
example, methods of denoising and deblending lens and source light
have been developed by Madireddy etal. (2019). The test images here
assumed perfect light subtraction for all but the background source
galaxy, although the impact of CNN performance when tested on
images containing lens light was investigated in Pearson et al. (2019).
PyAutoLens has been designed to accommodate masked images,
while much of the impact of masking on CNN performance would
be remedied through appropriate training. If residuals were present
from incorrect masking or subtraction, PyAutoLens may struggle
to fit the source light profile, as would the CNN if not trained on
such imperfections. However, given sufficient CNN training in these
areas, it is likely that the conclusions presented here would remain
approximately unchanged.

6 SUMMARY

Strong gravitational lensing can be used to study galaxy evolution,
probe high-redshift source populations, and constrain cosmological
models. However, the complicated process of modelling these
lenses has previously necessitated the use of techniques such as
the parametric parameter-fitting of PYAUTOLENS, which are often
relatively slow and require manual inspection. With the advent of
large-scale surveys soon to observe tens of thousands of strong lenses,
automated techniques will be required to model these lenses quickly
and efficiently. As aresult, this has driven the use of machine learning,
especially CNNss, to recover lens mass model parameters extremely
quickly once trained.

In this work, we trained an approximate Bayesian CNN to predict
strong gravitational lens mass model parameters and compared its
accuracy to that of the semilinear inversion technique of PYAU-
TOLENS, when applied automatically to a range of increasingly
complex lensing systems. These included parametric SIE and power
law lens mass profiles, EAGLE galaxy lenses, and LOS structure.
In addition, we also combined these modelling methods together,
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with CNN predicted values and uncertainties acting as priors for
PYAUTOLENS.

Across the data sets and lens parameters, the CNN errors are
19 = 22 per cent lower than PyAL (blind) on average. Hence, for the
majority of cases, the CNN results are on par with or exceed those of
PYAUTOLENS, whose modelling is not typically automated, instead
requiring manual inspection of images to obtain suitable priors. The
combination of these two methods when using just CNN-predicted
values as priors, PyAL 4 CNN, improves upon PyAL (blind),
achieving 27 £ 11 percent lower errors across the parameters.
However, it is frequently matched or exceeded by the CNN, with
average errors only 4 + 23 per cent lower than the network. While
the CNN is by far the quickest modelling approach, this combination
enhances the modelling speed of PYAUTOLENS, increasing it by a
factor of 1.19 over PyAL (blind).

A substantial improvement is obtained when the CNN-predicted
uncertainties are also incorporated into PYAUTOLENS’ priors,
PyAL + CNN (lo). These uncertainties act to better constrain
the prior distributions which help PYAUTOLENS to avoid local
minima and converge faster on the correct solution. With these
included, this combination of the two methods produces significantly
higher accuracies than either one separately: PyAL + CNN (lo)
reduces errors on average by 37 & 11 per cent across the parameters
compared to PyAL (blind), 17 & 21 per cent compared to the CNN,
and 13 £ 9 percent compared to PyAL + CNN. Additionally,
PyAL + CNN (lo) outperforms PyAL (blind) in all tests, as well
as the CNN in the majority of cases. It also gives the highest
PYAUTOLENS modelling speeds, increasing upon PyAL (blind) by
a factor of 1.73 on average across the test sets. It should be noted
that for the more complex lensing systems these uncertainties are
often underpredicted, so should these be corrected an even greater
improvement may be achieved.

The CNN’s modelling speed makes it well suited for large
catalogues of lenses, and given the many thousands of upcoming
strong lens observations such a network can very quickly pre-
dict accurate values and uncertainties for the majority of cases.
While its accuracy in this work can rival that of the combination
method for some lenses, it is limited by the complications and
artefacts encountered in real data. Until the CNN can be trained
on sufficiently realistic Euclid survey data, the PyAL 4+ CNN (lo)
combination provides a promising alternative automated modelling
method. Those challenging for the CNN to model produce larger
CNN uncertainties, which can then be passed to PYAUTOLENS to
verify and refine predictions. This combination of methods acts as a
fully automated pipeline that can achieve accurate results far quicker
than conventional modelling. Rather than keeping them separate, this
work highlights the importance of considering the combination of
machine learning with conventional approaches in order to gain the
benefits of both.
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