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Abstract

Adversarial training is arguably the most popular way to provide empirical robustness
against specific adversarial examples. While variants based on multi-step attacks incur
significant computational overhead, single-step variants are vulnerable to a failure mode
known as catastrophic overfitting, which hinders their practical utility for large pertur-
bations. A parallel line of work, certified training, has focused on producing networks
amenable to formal guarantees of robustness against any possible attack. However, the
wide gap between the best-performing empirical and certified defenses has severely limited
the applicability of the latter. Inspired by recent developments in certified training, which
rely on a combination of adversarial attacks with network over-approximations, and by the
connections between local linearity and catastrophic overfitting, we present experimental
evidence on the practical utility and limitations of using certified training towards empirical
robustness. We show that, when tuned for the purpose, a recent certified training algorithm
can prevent catastrophic overfitting on single-step attacks, and that it can bridge the gap
to multi-step baselines under appropriate experimental settings. Finally, we present a
conceptually simple regularizer for network over-approximations that can achieve similar
effects while markedly reducing runtime.

1 Introduction

The discovery of adversarial examples (Biggio et al., 2013; Szegedy et al., 2014; Goodfellow et al., 2015),
semantic invariant perturbations that induce high-confidence misclassifications in neural networks, has led
to the development of a variety of adversarial attacks (Moosavi-Dezfooli et al., 2016; Carlini & Wagner,
2017) and empirical defenses (Papernot et al., 2016; Cisse et al., 2017; Tramèr et al., 2018). Adversarial
training (Madry et al., 2018) is undeniably the most successful empirical defense, owing to its efficacy and
conceptual simplicity. Employing a robust optimization perspective, Madry et al. (2018) train using the loss
incurred at the point returned by a multi-step attack, named PGD. The large cost of PGD-based adversarial
training ushered in the development of less expensive techniques (Shafahi et al., 2019). However, single-
step attacks (Goodfellow et al., 2015), were shown to suffer from a phenomenon known as Catastrophic
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Overfitting (CO) (Wong et al., 2020), under which they display a vulnerability to multi-step attacks whilst
preserving strong robustness to single-step attacks. It was shown that CO can be mitigated at no additional
cost through strong noise (de Jorge et al., 2022) for smaller perturbations, yet stronger attack models require
the addition of explicit regularizers based on local linearity (Andriushchenko & Flammarion, 2020; Rocamora
et al., 2024). Indeed, strong links between lack of local linearity and CO exist (Ortiz-Jimenez et al., 2023).

While empirical robustness to strong attack suites Croce & Hein (2020) is understood to be sufficient for many
practical use-cases, a network could still be vulnerable to stronger and unseen attacks, casting doubts over
its suitability for safety-critical contexts. In light of this, a variety of techniques to formally verify network
robustness have been designed (Katz et al., 2017; Bunel et al., 2018; Ehlers, 2017; Tjeng et al., 2019; Lomuscio
& Maganti, 2017). In spite of significant improvements over the last years (Bunel et al., 2020b; Wang et al.,
2021; Ferrari et al., 2022), neural network verification techniques still face significant scaling challenges. As
a result, a series of works have devised so-called certified training schemes, which produce networks more
amenable to formal verification by enforcing small network over-approximations (Gowal et al., 2018; Mirman
et al., 2018; Zhang et al., 2020; Wong & Kolter, 2018; Xu et al., 2020). Remarkably, a particularly inexpensive
over-approximation based on Interval Bound Propagation (IBP) has emerged as a crucial technique in the
area (Jovanović et al., 2022; Mao et al., 2024b). Indeed, the current state-of-the-art in certified training
relies on a combination of adversarial attacks and IBP, greatly improving performance over a variety of
settings (Müller et al., 2023; Mao et al., 2023). Some of these techniques were formalized into the notion of
expressive losses, capable of interpolating between attacks and over-approximations (De Palma et al., 2024b).

On popular vision benchmarks, there is often a wide gap between the best-reported empirical robustness
across networks and adversarial training algorithms, and the best-reported certified robustness across
certified training schemes (Croce & Hein, 2020; Jovanović et al., 2022; De Palma et al., 2024b). As a result,
the latter are typically understood to improve verifiability at the expense of empirical robustness. Intrigued
by the versatility of recent certified training algorithms and by the links between local linearity and small
network over-approximations, we present a comprehensive empirical study on the applicability of recent
certified training techniques towards empirical robustness, leading to the following contributions:

• We systematically show for the first time that, when explicitly tuned for the purpose, a multiplicative
expressive loss named Exp-IBP (De Palma et al., 2024b) can effectively prevent CO on setups common in
the single-step adversarial training literature (§5.1). Under a limited subset of these settings, it can match
or overcome the performance of some multi-step adversarial training baselines (PGD-5) while exclusively
relying on single-step attacks and enforcing large verifiability.

• We show that the relative empirical robustness of Exp-IBP improves on shallower networks and longer
training schedules, demonstrating that pure IBP outperforms a strong multi-step adversarial training
baseline (PGD-10) for large perturbation radii on CIFAR-10 (§5.2).

• We present a conceptually simple proxy for the IBP loss, named ForwAbs, which can be computed at
the cost of a single network evaluation (§3.3). When used as a regularizer, ForwAbs can prevent CO
and improve the robustness of single-step attacks while significantly reducing overhead compared to
expressive losses.

We believe our work demonstrates both the potential and the limitations of using current certified training
techniques towards empirical robustness, paving the way for further developments in this direction. Code
is available at https://github.com/sergedurand/CertifiedTraining4EmpiricalRobustness.

2 Background

We will use the following notations: a for a scalar, A for sets, A for matrices, x for a vector and xi for its
i-th component. We will furthermore use Ja, bK for integer ranges, while denoting by minx f(x) the vector
given by the entry-wise minimization over the vector function f , by Proj(x, A) the Euclidean projection of x
onto A, and by |A| the entry-wise absolute value of A. Finally, 1 stands for a vector whose entries are all 1.
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2.1 Adversarial Robustness

Let fθ : Rd → Rk be a neural network parameterized by θ. Given an input x ∈ Rd and a label y ∈ J0, k − 1K
from a k-way classification dataset (x, y) ∼ D, fθ is said to be locally robust on x if, given a set of allowed
perturbations C(x) ⊆ Rd:

x′ ∈ C(x) =⇒ arg max
i

fθ(x′)i = y. (1)

In other words, the network is robust if the predicted label for x is invariant to perturbations in C(x). In
the following, we will focus on ℓ∞ balls of radius ϵ: C(x) = Bϵ(x) := {x′ : ||x′ − x||∞ ≤ ϵ}.

Given a surrogate loss L for classification, typically cross-entropy, the problem of training a network satisfying
equation (1) for all (x, y) ∼ D, fθ can be formulated as a robust optimization problem (Madry et al., 2018):

min
θ

[
E

(x,y)∈D
L∗(fθ, Bϵ(x); y)

]
, where L∗(fθ, Bϵ(x); y) := max

x′∈Bϵ(x)
L(fθ(x′), y).

Computing the worst-case loss L∗(fθ, Bϵ(x); y) exactly is not feasible at training time as, owing to the non-
linearity of the network activations, it involves computing the global optimum of a non-concave optimization
problem. In the case of piecewise-linear networks, this was shown to be NP-complete (Katz et al., 2017).
The worst-case loss is hence commonly replaced by different approximations depending on the training goal.

2.2 Training for Empirical Robustness: Adversarial Training

Adversarial attacks are heuristic algorithms, typically based on gradient-based local maximization (Madry
et al., 2018) or random search (Andriushchenko et al., 2020), that provide lower bounds to L∗(fθ, Bϵ(x); y).
Let us denote by xadv,A the output of running an attack A on fθ for the perturbation set Bϵ(x). A network
is deemed to be empirically robust to A for (x, y) if arg maxi fθ(xadv,A)i = y. When training for empirical
robustness, L∗(fθ, Bϵ(x); y) is replaced by the so-called adversarial loss:

Ladv(fθ, Bϵ(x); y) := L(fθ(xadv,A), y),

which is a lower bound to L∗(fθ, Bϵ(x); y). One of the most popular and effective adversarial training
algorithms employs the PGD attack (Madry et al., 2018) at training time. Starting from a random uniform
input in Bϵ(x), PGD iteratively steps using the sign of the network input gradient sign (∇xL(fθ(x), y)),
projecting back to Bϵ(x) after every iteration. Owing to the large cost of training with multi-step PGD, a
series of works have focused on designing effective single-step alternatives (Shafahi et al., 2019; Wong et al.,
2020; de Jorge et al., 2022). Among them is FGSM (Goodfellow et al., 2015), which systematically lands on a
corner of the perturbation space: xadv,FGSM = x + ϵ sign (∇xL(fθ(x), y)). FGSM was shown to suffer from
a failure mode known as catastrophic overfitting (Wong et al., 2020), under which the network’s robustness to
PGD attacks rapidly drops to ≈ 0%. Wong et al. (2020) empirically demonstrate that catastrophic overfitting
can be prevented at moderate ϵ values if using a random uniform input in Bϵ(x) as a FGSM starting point
and increasing the step size from η = ϵ to η = 1.25ϵ (RS-FGSM). de Jorge et al. (2022) propose to sample
uniformly from a larger set than the target model (typically, B2ϵ(x)), using a step size of η = ϵ, and by
removing RS-FGSM’s projection onto Bϵ(x) after the step. The resulting attack, named N-FGSM, attains
non-negligible PGD robustness at larger ϵ without incurring any additional cost with respect to RS-FGSM,
and acts as an implicit loss regularization (de Jorge et al., 2022). Nevertheless, explicit regularizers, often
enforcing local linearity (Andriushchenko & Flammarion, 2020; Rocamora et al., 2024) are needed to further
mitigate CO against stronger attacks.

2.3 Training for Verified Robustness: Certified Training

As described in $2.2, the notion of empirical robustness is specific to a given attack A. However,
fθ(xadv,A)i = y does not necessarily imply that equation (1) holds, as the network may still be vulner-
able to a more effective or unseen attack A′. Formal verification provides a stronger, attack-independent,
notion of robustness. A network fθ is said to be certifiably robust for (x, y) if and only if the difference
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between the ground truth logit fθ(x′)y and the other logits is positive for all x′ ∈ Bϵ(x):

min
i

{
z

Bϵ(x),y
fθ

:= min
x′∈Bϵ(x)

[
zfθ

(x, y) := (fθ(x′)y − fθ(x′))
]}

i

≥ 0. (2)

Assuming the use of a loss function L that is translation invariant with respect to the network output (Wong
et al., 2020), such as cross-entropy, then L∗(fθ, Bϵ(x); y) = L

(
−z

Bϵ(x),y
fθ

, y
)

. As for L∗(fθ, Bϵ(x); y)

(see §2.1), computing the exact optimal logit differences z
Bϵ(x),y
fθ

is computationally infeasible. However,
given lower bounds zBϵ(x),y

fθ
≤ z

Bϵ(x),y
fθ

to the optimal logit differences, we can conclude that fθ is certifiably
robust if mini

(
zBϵ(x),y

fθ

)
i

≥ 0. We will henceforth call a NN verifier any method to compute the above lower
bounds. Given an efficient verifier, and assuming that the loss is monotonically increasing for all the network
outputs except the one associated with the ground truth, networks can be trained for certified robustness
by using the loss induced by the lower bounds to the logit differences (Wong & Kolter, 2018; Zhang et al.,
2020), which upper bounds the worst-case loss:

Lver(fθ, Bϵ(x); y) := L
(

−zBϵ(x),y
fθ

, y
)

≥ L∗(fθ, Bϵ(x); y). (3)

Networks trained via Lver(fθ, Bϵ(x); y) feature tight zBϵ(x),y
fθ

lower bounds by design. We will focus on the
least expensive bounding algorithm: IBP (Mirman et al., 2018; Gowal et al., 2018). When used for training,
IBP outperforms tighter relaxations as it results in better-behaved loss functions (Jovanović et al., 2022).

2.3.1 IBP

IBP is a method to over-approximate neural network outputs based on the application of interval arith-
metics (Sunaga, 1958; Moore, 1966) onto the functions composing the neural architecture. As such, it
can be easily applied onto general computational graphs (Xu et al., 2020). For ease of presentation, let
us assume that fθ is a n-layer feed-forward neural network, with layer j ∈ J1, n − 1K composed of an
affine operation followed by a monotonically increasing element-wise activation function σ such as ReLU,
xj = σ

(
W ixj−1 + bi

)
, and a final affine layer: fθ =

(
W nxn−1 + bn

)
. In this case, we can compose the logit

differences and the last layer into a single affine layer: zfθ
(x, y) =

(
W̃ nxn−1 + b̃n

)
. Then, for perturbation

Bϵ(x0), IBP computes zBϵ(x),y
fθ

through the following procedure, which iteratively derives lower and upper
bounds l̂k and ûk to the outputs of the k-th affine layer:

zBϵ(x),y
fθ

= 1
2 W̃ n

(
l̂n−1 + ûn−1

)
− 1

2 |W̃ n|
(

ûn−1 − l̂n−1
)

+ b̃n, where:
[

l̂1 = W 1x0 − ϵ
∣∣W 1∣∣ 1 + b1

û1 = W 1x0 + ϵ
∣∣W 1∣∣ 1 + b1

]
, l̂j = 1

2 W j
(

σ
(

l̂j−1
)

+ σ
(
ûj−1))

− 1
2 |W j |

(
σ

(
ûj−1)

− σ
(

l̂j−1
))

+ bj

ûj = 1
2 W j

(
σ

(
l̂j−1

)
+ σ

(
ûj−1))

+ 1
2 |W j |

(
σ

(
ûj−1)

− σ
(

l̂j−1
))

+ bj

 ∀ j ∈ J2, n − 1K .

(4)
We will henceforth write l

Bϵ(x),y
fθ

for the lower bounds to the logit differences obtained through equation (4),
and LIBP(fθ, Bϵ(x); y) := L

(
−l

Bϵ(x),y
fθ

, y
)

for the associated loss.

2.3.2 Hybrid Methods

A network trained via the IBP loss LIBP(fθ, Bϵ(x); y) can be easily verified to be robust using the same
bounds employed for training. However, the relative looseness of the over-approximation from equation (4)
results in a significant decrease in standard performance. For ReLU networks, which are the main focus
of this work, the availability of more effective verifiers based on branch-and-bound (Henriksen & Lomuscio,
2021; Wang et al., 2021; Ferrari et al., 2022) post-training has motivated the development of alternative
techniques. A series of methods have shown that combination of adversarial training with network over-
approximations (Balunovic & Vechev, 2020; Fan & Li, 2021; De Palma et al., 2022; Mao et al., 2023) can
yield strong verifiability via branch-and-bound while reducing the impact on standard performance. In
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particular, Müller et al. (2023) proposed to compute the IBP loss over a tunable subset of Bϵ(x) containing
adversarial examples, yielding favorable trade-offs between standard performance and certified robustness
via branch-and-bound-based methods. De Palma et al. (2024b) introduced the notion of loss expressivity,
defined as the ability of a loss function to spawn a continuous range of trade-offs between the adversarial and
the IBP losses, showing that expressive losses obtained through convex combinations between an adversarial
and an over-approximation component lead to state-of-the-art certified robustness.

While past work in certified training has designed and deployed these algorithms to maximize certified
robustness, empirical robustness through strong attacks (Croce & Hein, 2020) remains the most adopted
metric owing to the lack of scalability and to the looseness of network verifiers. Noting the potential
versatility of recent hybrid certified training schemes, this work systematically investigates whether they can
be employed towards improving empirical robustness.

3 Certified Training for Empirical Robustness

Recent certified training techniques (§2.3.2) have demonstrated that the ability to precisely control the tight-
ness of network over-approximations while preserving an adversarial training component is crucial to maxi-
mize certified robustness across experimental setups. We hypothesize that this versatility can be alternatively
leveraged towards improving the empirical robustness of the adversarial training schemes on top of which
they are applied, providing experimental evidence in §5. This section details the certified training algorithms
employed in the experimental study. We begin with a motivating example (§3.1), then study the qualitative
behavior of existing methods in settings of interest (§3.2), and conclude by presenting a conceptually simple
regularizer designed to mimic the effect of IBP-based training while reducing the associated overhead (§3.3).

3.1 Motivating Example

8 16 24
Epsilon

105

106

IB
P 

Lo
ss

N-FGSM
PGD-5
PGD-10

N-FGSM
PGD-5
PGD-10

Figure 1: IBP loss of adversarial training
schemes on CIFAR-10, setup from table 1.

In order to motivate our empirical study, we show that
multi-step attacks, which typically exhibit superior ro-
bustness at the expense of training time, are associated to
smaller network over-approximations, as measured by the
IBP loss. Figure 1, which is associated to the experimen-
tal setup from table 1, shows that the IBP loss indeed de-
creases with the number of attack steps. Furthermore, it
shows two distinct qualitative trends: for N-FGSM, which
is prone to CO (causing the large experimental variabil-
ity), the IBP loss increases with the perturbation radius.
On the other hand, LIBP(fθ, Bϵ(x); y) decreases with ϵ
for PGD-5 and PGD-10. Indeed, multi-step attacks yield
networks that are more locally linear compared to single-
step attacks (Andriushchenko & Flammarion, 2020; Rocamora et al., 2024; Ortiz-Jimenez et al., 2023), which
in turn results in tighter zBϵ(x),y

fθ
bounds and hence smaller network over-approximations. In this work, we

investigate whether directly controlling zBϵ(x),y
fθ

via certified training can benefit empirical robustness.

3.2 Expressive Losses

For a fixed verifier and attack algorithm, an expressive loss Lα(fθ, Bϵ(x); y) can interpolate from the adversar-
ial loss Ladv(fθ, Bϵ(x); y) to the worst-case loss over-approximation Lver(fθ, Bϵ(x); y) by continuously increas-
ing a parameter α, the over-approximation coefficient, from 0 to 1. Formally (De Palma et al., 2024b, Defi-
nition 3.1), assuming that IBP is the verifier of choice: Lα(fθ, Bϵ(x); y) is monotonically increasing and con-
tinuous with respect to α, L0(fθ, Bϵ(x); y) = Ladv(fθ, Bϵ(x); y), L1(fθ, Bϵ(x); y) = LIBP(fθ, Bϵ(x); y), and:

Ladv(fθ, Bϵ(x); y) ≤ Lα(fθ, Bϵ(x); y) ≤ LIBP(fθ, Bϵ(x); y) ∀ α ∈ [0, 1].

As shown by De Palma et al. (2024b) expressive losses include SABR (Müller et al., 2023) and three loss
functions defined through convex combinations: CC-IBP, MTL-IBP and Exp-IBP. We found MTL-IBP,
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Figure 2: IBP certified robustness attained by MTL-IBP and Exp-IBP on the PreActResNet18 training
setup from de Jorge et al. (2022). Validation results on CIFAR-10 under perturbations of ϵ = 8/255.

CC-IBP and SABR to display similar behaviors in the settings of interest: we refer the interested reader
to appendix A for additional details. For simplicity and brevity, we will hence focus on MTL-IBP and
Exp-IBP in the remainder of this work. The former consists of a convex combination of the adversarial and
IBP losses. Exp-IBP, instead, performs the loss convex combination in a logarithmic space.

Definition 3.1 The MTL-IBP and Exp-IBP losses are defined as follows:

LMTL-IBP
α (fθ, Bϵ(x); y) := (1 − α)Ladv(fθ, Bϵ(x); y) + αLIBP(fθ, Bϵ(x); y),
LExp-IBP

α (fθ, Bϵ(x); y) := Ladv(fθ, Bϵ(x); y)(1−α)LIBP(fθ, Bϵ(x); y)α.
(5)

Expressive losses for certified robustness In order to maximize certified accuracy (defined as the share of
inputs verified to be robust) and stabilize training, previous work (Müller et al., 2023; De Palma et al.,
2024b) deployed the losses in equation (5) under a specific set of conditions. First, shallow architectures,
such as the popular 7-layer CNN-7 (Shi et al., 2021; Müller et al., 2023; Mao et al., 2023; De Palma et al.,
2024b) (see appendix), which, aided by specialized initialization and regularization (Shi et al., 2021), contain
the growth of the IBP bounds over consecutive layers. Second, relatively long training schedules featuring
gradient clipping, a warm-up phase of standard training, and a ramp-up phase during which the perturbation
radius used to compute both the attack and the IBP bounds is gradually increased from 0 to the target value
ϵ. Finally, relatively large values of α to reduce the magnitude of the bounds zBϵ(x),y

fθ
on the logit differences.

In this context, all the expressive losses from equation (5) display a similar qualitative behavior, attaining
roughly the same certified robustness (De Palma et al., 2024b).

Qualitative differences in adversarial training setups In adversarial training, overhead is often a major
concern (Shafahi et al., 2019). Indeed, works on single-step adversarial training typically rely on deeper
networks and shorter training schedules to maximize empirical robustness while minimizing runtimes.
A common setting, which we reproduce in §5.1 because of its prevalence in the catastrophic overfitting
literature, involves a PreactResNet18 (He et al., 2016) trained with a cyclic learning rate and without any
gradient clipping, ramp-up (except on SVHN) nor warm-up (Andriushchenko & Flammarion, 2020; Wong
et al., 2020; de Jorge et al., 2022). Owing to the exploding IBP loss at initialization (see appendix D.6) and
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(a) 18 layers; αMTL-IBP = 10−5.
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(c) 2 layers; αMTL-IBP = 3 × 10−2.

Figure 3: Sensitivity of the expressive losses on a toy network of varying depth, with αExp-IBP = 10−1.
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to the specific training hyper-parameters, pure IBP training is not directly applicable to this setup. In order
to study the behavior of expressive losses in this context, we tuned MTL-IBP and Exp-IBP to maximize
IBP-based verifiability on CIFAR-10 under perturbations of radius ϵ = 8/255, using N-FGSM to generate
xadv,A. Figure 2 shows that MTL-IBP is unable to attain non-negligible certified accuracy via IBP in this
context. On the other hand, Exp-IBP reaches almost 20% IBP certified accuracy, highlighting a significant
qualitative difference in behavior. In order to gain further insight on this, we plot the sensitivity of the
two expressive losses on two toy networks where the magnitude of the IBP bounds is controlled through
a scalar parameter w (see appendix B.1). Figure 3 shows that on the deeper network the MTL-IBP loss
either flattens onto Ladv(fθ, Bϵ(x); y) at large IBP loss values (small α), or explodes with the IBP bounds,
resulting in unstable training behavior (larger α). On the other hand, Exp-IBP can tuned so as to be able to
drive LIBP(fθ, Bϵ(x); y) to very small values without exploding at larger w values. On the shallow network,
instead, for which the IBP bounds are significantly smaller, MTL-IBP can be tuned to display roughly
the same behavior as Exp-IBP for smaller LIBP(fθ, Bϵ(x); y) without taking overly large loss values within
the considered parameter range. We believe this explains their homogeneous behavior in training setups
designed to prevent large IBP bounds, such as those typically employed in the certified training literature.

Maximizing empirical accuracy As seen in figure 2, expressive losses can pay a large price in empirical
accuracy compared to α = 0 (pure N-FGSM, in this case) when α is tuned to tighten the IBP bounds. One
may hence conclude that certified robustness is at odds with empirical accuracy. In section §5 we instead
show that, when α is tuned for the purpose, expressive losses can result in increased empirical robustness.

3.3 ForwAbs

Expressive losses require the computation of IBP bounds l
Bϵ(x),y
fθ

using the procedure in equation (4), whose
cost roughly corresponds to two network evaluations (also called forward passes): one using the original
network, the other employing the absolute value of the network weights. This overhead on top of adversarial
training is negligible only when xadv,A are computed via multi-step attacks. We here study less expensive
yet conceptually simple ways to control the IBP bounds when single-step attacks are instead employed.

The gap between the lower and upper bounds after the k-th affine layer, which we denote by
δk := (ûk − l̂k), can be employed as a measure of the tightness of the IBP bounds (Shi et al., 2021).
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Figure 4: IBP loss over epochs (left), box plots (10 runs)
for the training time of an epoch (right), setup as figure 2.

For ReLU networks, δk can be
upper bound by |W k|δk−1 ≥
|W k|(σ(ûk−1) − σ(l̂k−1)). This up-
per bound coincides with δk in the case
of Deep Linear Networks (DLNs), for
which σ(a) = a, or if the ReLUs are
passing (l̂k ≥ 0). We propose to employ
δ̄n, which we define as the (looser)
upper bound to δn obtained through
repeated use of the |W k|δk−1 bound, as
a regularizer for the IBP loss. The δ̄n

term can be computed at the cost of a
single forward pass through an auxiliary
network with σ(a) = a where each affine layer gk(a) = W ka + b is replaced by hk(a) = |W |ka. We call
the resulting method ForwAbs (Forward pass in Absolute value).

Definition 3.2 The ForwAbs loss takes the following form:

LForwAbs
λ (fθ, Bϵ(x); y) := Ladv(fθ, Bϵ(x); y) + λ

(
1T δ̄n

)
,

where: δ̄1 = δ1 = 2ϵ|W 1|1, δ̄k = |W k|δ̄k−1 ∀ k ∈ J2, nK .
(6)

In order to demonstrate the empirical correlation between the ForwAbs term δ̄n and the IBP bounds
l
Bϵ(x),y
fθ

, figure 4 presents the results of a ForwAbs-trained network, where the λ coefficient is tuned to
minimize the IBP bounds in the same setup as figure 2. In spite of its simplicity and of its significantly
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smaller runtime overhead, ForwAbs can drive the IBP loss to roughly the same values attained by MTL-IBP.
Furthermore, the final LIBP(fθ, Bϵ(x); y) attained by ForwAbs is significantly lower than those associated
to N-FGSM. Strong ℓ1 regularization over the weights (with regularization coefficient λℓ1 = 0.04) fails to
achieve a comparable effect, demonstrating that the behavior of ForwAbs is not merely a consequence of
small ℓ1 norms of the network weights.

4 Related Work

We here provide an overview of closely-related work across certified and adversarial training.

4.1 Neural Network Verification and Certified Training

As outlined in §2.3, a neural network verifier computes lower bounds to the worst-case logit differences
z

Bϵ(x),y
fθ

. Given its centrality to state-of-the-art certified training schemes (§2.3.2), we have focused on
the inexpensive IBP algorithm (§2.3.1). However, a significant number of verifiers exist, for which tighter
lower bounds are typically associated with larger overhead. One line of work, inspired by abstract inter-
pretation (Cousot & Cousot, 1977) builds abstract domains over-approximating the neural network (Singh
et al., 2018; 2019b). Lower bounds can be also obtained by solving linear programs replacing network non-
linearities with convex relaxations (Ehlers, 2017; Anderson et al., 2020; Tjandraatmadja et al., 2020; Singh
et al., 2019a), potentially through dual formulations (Wong & Kolter, 2018; Dvijotham et al., 2018; Bunel
et al., 2020a; De Palma et al., 2021; 2024a). Alternatively, a series of fast verifiers relies on back-propagating
linear bounds through the network (Zhang et al., 2018; Xu et al., 2021; Wang et al., 2021). Tight bounds
can be plugged in within a branch-and-bound framework (Bunel et al., 2018; 2020b) to yield a verifier that
solve the verification problem in equation (2) exactly for piece-wise linear networks, with state-of-the-art
complete verifiers often relying on a combination of linear bound propagation with dual bounds (Ferrari
et al., 2022; Zhang et al., 2022b). Earlier certified training schemes (Gowal et al., 2018; Wong & Kolter,
2018; Zhang et al., 2020; Mirman et al., 2018; Shi et al., 2021) typically rely on linear bound propagation
or IBP to create a loss function for certified training using equation (3). (Boopathy et al., 2021) present
SingleProp: a regularizer which, computed at the cost of a single network evaluation and applied on top of
the clean network loss, trades certified robustness for computational efficiency. As described in §2.3.2, many
later schemes combine IBP bounds from equation (4) with adversarial training, attaining better certified ro-
bustness when using branch-and-bound post-training. We here rely on expressive losses (§3.2) owing to their
versatility and state-of-the-art performance, and on ForwAbs (§3.3), a conceptually-simpler alternative to
SingleProp which we add on adversarial losses to enhance empirical robustness. Finally, while we focus on ℓ∞
certified training schemes applicable to ReLU networks and based on deterministic lower bounds to z

Bϵ(x),y
fθ

,
alternative techniques include randomized methods (Cohen et al., 2019), Lipschitz regularization (Huang
et al., 2021), and ad-hoc architectures (Xu et al., 2022; Zhang et al., 2022a).

4.2 Adversarial Training and Catastrophic Overfitting

For simplicity, this work focuses on the widely popular multi-step PGD training (Madry et al., 2018).
Nevertheless, multiple variants have been designed to improve its performance (Zhang et al., 2019; Wang
et al., 2019; Liu et al., 2021; Xu et al., 2023). Multi-step PGD is coupled with random search within
AutoAttack (Croce & Hein, 2020), a strong attack suite that has become the standard way to reliably
evaluate empirical robustness. It was noted that adversarial training is prone to overfitting with respect to
empirical robustness, a phenomenon known as robust overfitting (Rice et al., 2020), with specialized remedies
including smoothing methods (Chen et al., 2020) and techniques linked to a game-theoretical interpretation
of the phenomenon (Wang et al., 2024). In this work, we are rather concerned with catastrophic overfitting,
a thoroughly-studied (Vivek & Babu, 2020; Park & Lee, 2021; Li et al., 2022; Tsiligkaridis & Roberts, 2022)
failure mode associated with one-step adversarial training, and which can be reduced without any additional
cost by the appropriate addition of noise to the attacks (Wong et al., 2020; de Jorge et al., 2022): see
§2.1. Other techniques include explicit regularizers on the loss smoothness (Sriramanan et al., 2020; 2021),
dynamically varying the attack step size (Kim et al., 2021), or selectively zeroing some coordinates of the
attack step (Golgooni et al., 2023): these are all outperformed by the noise-based N-FGSM (de Jorge et al.,
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2022). Regrettably, even N-FGSM suffer from catastrophic overfitting at larger perturbation radii. Better
robustness at large ϵ, albeit at additional cost, can be obtained by promoting the local linearity of the network,
which is closely-linked with catastrophic overfitting (Ortiz-Jimenez et al., 2023): GradAlign (Andriushchenko
& Flammarion, 2020) aligns the input gradients of clean and randomly perturbed samples, ELLE (Rocamora
et al., 2024) by enforcing a simple condition on two random samples from the perturbation set and their
convex combination. Recent alternatives to attain large-ϵ robustness include hindering the generation of
adversarial examples with a larger loss than the clean input (Lin et al., 2023), or the use of adaptive weight
perturbations (Lin et al., 2024). In section 5.1 we systematically investigate, to the best of our knowledge for
the first time, whether catastrophic overfitting on settings from the above literature can be instead mitigated
through certified training techniques.

4.3 Empirical Robustness of Certified Training

Previous works have reported, explicitly or implicitly, on the empirical robustness of certified training
schemes deployed to maximize certified robustness. Except for De Bartolomeis et al. (2023), whose main
conclusions focus on the inferior empirical robustness of the certified training schemes they considered
compared to a multi-step baseline, complying with the folklore in the area, empirical robustness was not
the main focus of these works.

Gowal et al. (2018) showed that IBP can attain larger empirical robustness than adversarial training baselines
on relatively shallow networks for MNIST with ϵ ∈ {0.3, 0.4} and for CIFAR-10 with ϵ = 8/255 when using
long training schedules. In contrast with their main claims, similar results, albeit using inconsistent training
schedules and optimizers across methods, are presented in De Bartolomeis et al. (2023, appendix B). A very
recent work (Mao et al., 2024a) reports further analogous results, showing that a series of certified train-
ing schemes tuned to maximize certified accuracy outperform multi-step PGD on MNIST with ϵ = 0.3 and
CIFAR-10 with ϵ = 8/255. Nevertheless, given the gap between the best empirical and certified defenses across
various setups (Croce & Hein, 2020; Jovanović et al., 2022; De Palma et al., 2024b), certified training schemes
are commonly understood to be at odds with empirical accuracy. Expanding on the above results and com-
plementing §5.1, section 5.2 studies whether techniques from §3, when explicitly tuned for the purpose, can
improve empirical robustness compared to multi-step PGD on larger perturbation radii, different datasets,
and shorter training schedules. Detailed comments on the relationship between the results in §5.2 and those
from Gowal et al. (2018); De Bartolomeis et al. (2023); Mao et al. (2024a) are provided in appendix E.

Literature results offer partial insights into the relationship between CO and certified training schemes. First,
pure IBP (α = 1 in equation (5)), which lacks any adversarial training component, is trivially immune to
CO. However, it is not applicable to all training setups (see §3.2) and typically reduces robustness compared
to lower α values (see §2.3.2), on which we hence focus. Second, the results from De Palma et al. (2024b),
which tune expressive losses for branch-and-bound certified robustness, do not display CO on benchmarks
from the certified training literature. This is in spite of the fact that they mainly compute Ladv(fθ, Bϵ(x); y)
via a weak one-step attack, a modified RS-FGSM with η ≥ 2ϵ, that was shown to display CO on CIFAR-10
with ϵ = 8/255 on a different network and training schedule (Wong & Kolter, 2018, appendix C). As reported
in De Palma et al. (2024b, appendix G.9), where performance is shown to be relatively unchanged under a
more effective one-step attack (standard RS-FGSM), these results point to the lack of CO for the employed
setups. Nevertheless, it is unclear from the original experiments whether α = 0 would display CO for those
experimental settings and, hence, whether expressive losses prevent it. In §5.1, we systematically investigate
CO on settings popular in the relevant single-step adversarial training literature: deeper networks, different
underlying attacks and datasets, shorter training schedules, and larger perturbation radii. Appendix E com-
plements this by presenting a study on the occurrence and prevention of CO within setups from De Palma
et al. (2024a). Furthermore, we show that the empirical robustness of trained models from the literature
compares negatively with the results in §5.2, highlighting the importance of tuning α for empirical robustness.

5 Experimental Study

We now present the results of our experimental study on the utility of certified training schemes towards
empirical robustness. Appendices B to D report omitted details and supplementary experiments.
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(c) IBP loss for ϵ = 8/255.
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(d) IBP loss for ϵ = 24/255.

Figure 5: The use of certified training techniques on top of FGSM can prevent CO for PreActResNet18 on
the CIFAR-10 test set under perturbations of ϵ = 8/255 and ϵ = 24/255.

5.1 Preventing Catastrophic Overfitting

This section experimentally demonstrates that, on settings from the single-step adversarial training literature,
Exp-IBP and ForwAbs can prevent CO when applied on top of single-step attacks.

5.1.1 FGSM

Experimental setting The seminal work from Wong et al. (2020) established that FGSM, which is arguably
the most vulnerable single-step attack, suffers from CO on CIFAR-10 from as early as ϵ = 8/255. Therefore,
assessing whether MTL-IBP, Exp-IBP and ForwAbs can be used to prevent CO when FGSM is used to
generate the adversarial point xadv,A is a crucial qualitative test. We consider two settings: ϵ = 8/255, and
the much harder ϵ = 24/255. In line with the single-step adversarial training literature (Andriushchenko &
Flammarion, 2020; de Jorge et al., 2022; Rocamora et al., 2024) and section 3, we focus on PreactResNet18,
trained via a cyclic learning rate schedule for 30 epochs. We run the three algorithms with a varying degree
of regularization on their over-approximation tightness, plotting for each method the successful runs (i.e.,
preventing CO) having the smallest α and λ values (see appendix C.3).

Results Figure 5 shows that, on both setups, all the three considered certified training schemes can prevent
CO. For ϵ = 8/255, the empirical robustness of FGSM to multi-step attacks suddenly drops to near-0 roughly
mid-way through training (as shown in appendix D.3, this corresponds to a sudden spike in training FGSM
accuracy), and is already null at epoch 3 for ϵ = 24/255 (while displaying large FGSM accuracy). Differently
from MTL-IBP and ForwAbs, in this setting Exp-IBP can only prevent CO while enforcing extremely
low IBP loss values, resulting in non-negligible IBP accuracies on both ϵ = 8/255 and ϵ = 24/255. This is
associated to a smaller empirical robustness than the other certified training methods on ϵ = 8/255, but not
on ϵ = 24/255, where Exp-IBP outperforms the other algorithms also in empirical robustness. In both cases,
ForwAbs attains very similar IBP losses to MTL-IBP at the end of training.

In conformity with the relevant literature, this work mainly focuses on ReLU networks. Nevertheless, in
order to demonstrate their wider applicability, appendix D.8 shows that MTL-IBP, Exp-IBP, and ForwAbs
can all prevent CO on a modified PreactResNet18 that employs a SoftPlus activation function.
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(b) Box plots (10 runs) for the training time of a single
epoch, estimated on a 80% subset of the training set.

Figure 6: Certified training techniques can prevent CO for N-FGSM when training PreactResNet18 on
CIFAR-10, overcoming the robustness of PGD-5 for ϵ = 24/255 while incurring less overhead.

5.1.2 N-FGSM

Experimental setting As explained in §2.2 and §4, the addition of noise on top of FGSM can mitigate CO at
lower perturbation radii without any overhead. However, previous single-step adversarial training work (Lin
et al., 2023; 2024; Rocamora et al., 2024) showed that even the state-of-the-art in noise-based single-step
adversarial training, N-FGSM, becomes vulnerable when ϵ is larger. In order to complement the results of
figure 5, we now consider a more realistic setting where certified training schemes rely on adversarial points
xadv,A generated through N-FGSM, investigating the empirical robustness cost of preventing CO at large ϵ
values from the literature (Rocamora et al., 2024). As for the FGSM experiments, we use PreactResNet18
with a 30-epoch cyclic training schedule. In these experiments we use empirical robustness to AutoAttack
(AA) as the main performance criterion, and tune MTL-IBP, Exp-IBP and ForwAbs to maximize it on a
holdout validation set, with ϵ = 24/255 for CIFAR-10 and CIFAR-100, and with ϵ = 12/255 for SVHN. As
reported in appendix D.4, this tuning criterion will take a relatively heavy toll on standard performance.
Nevertheless, §5.3 shows that, if desired, different tuning criteria may yield better trade-offs between clean
and empirical robust accuracies. We then retrain on the full training set with the same chosen value for all
the considered perturbation radii, reporting the test-set AA accuracy (and IBP accuracy when non-null). For
this network, on CIFAR-100 and SVHN, we found the single-seed tuning employed in the rest of the paper to
be a poor marker of final performance. Figure 7 reports values tuned to maximize mean validation PGD-50
accuracy on 5 seeds while preventing CO. Figure 6b shows an estimate of the training cost of each algorithm,
computed on a single epoch on 80% of the CIFAR-10 training set: see appendix D.2 for further details.

12 16 20 24
Epsilon

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

AA
 A

cc
.

ForwAbs
MTL-IBP
Exp-IBP
N-FGSM

ForwAbs
MTL-IBP
Exp-IBP
N-FGSM

(a) CIFAR-100

6 8 10 12
Epsilon

0.0

0.1

0.2

0.3

0.4

0.5

0.6

AA
 A

cc
ur

ac
y

ForwAbs
MTL-IBP
Exp-IBP
N-FGSM

ForwAbs
MTL-IBP
Exp-IBP
N-FGSM

(b) SVHN

Figure 7: When training PreactResNet18, certified training techniques can prevent CO on CIFAR-100,
albeit decreasing the average empirical robustness for perturbation radii they were not tuned for. N-FGSM
does not display CO for SVHN on the same network: ForwAbs results nevertheless in minor average empirical
robustness improvements, while MTL-IBP induces CO at ϵ = 12/255 (means and 95% CIs over 5 runs).
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Results Figure 6 shows that all the three considered algorithms can prevent CO for CIFAR-10, resulting
in significantly larger robustness than N-FGSM on both ϵ = 20/255 and ϵ = 24/255. While certified training
schemes pay a large price in empirical robustness for ϵ = 12/255, they remarkably attain stronger AA robust-
ness than PGD-5 for ϵ = 24/255 with reduced runtime. Furthermore, for ϵ ≥ 20/255 Exp-IBP yields an IBP
accuracy comparable to the average AA accuracy of N-FGSM. As shown in Figure 7, CIFAR-100 and SVHN
display instead worse trade-offs. While MTL-IBP, Exp-IBP and ForwAbs all prevent CO on CIFAR-100 for
ϵ ≥ 20/255, as visible from the reduced confidence intervals, they do so at a large cost in average empirical
robustness for ϵ < 24/255. On the SVHN experiments, N-FGSM never suffers from CO. ForwAbs results in
relatively small yet consistent performance improvements, while improvements from Exp-IBP are negligible.
Remarkably, MTL-IBP fails to drive the IBP loss sufficiently low (cf. figure 21c) and appears to be more
vulnerable to CO than N-FGSM at ϵ = 12/255. We ascribe this to the extreme sensitivity of MTL-IBP in
the considered setup, linked to the qualitative properties of its loss on deeper networks described in §3.2
(see figure 3). We exclude MTL-IBP from the rest of the empirical study owing to this failure case. While
the primary goal of this work is to study the utility of certified training schemes for empirical robustness
(as opposed to outperforming the state-of-the-art in single-step adversarial training), a comparison with
ELLE (Rocamora et al., 2024), a recent state-of-the-art regularizer, is presented in appendix D.7 for refer-
ence purposes. On CIFAR-10, MTL-IBP, Exp-IBP and ForwAbs all match or outperform ELLE in terms
of AA accuracy for ϵ ≥ 20/255, highlighting their particularly strong performance on easier datasets. On the
other hand, on CIFAR-100 ELLE significantly outperforms certified training techniques at all perturbation
radii. We refer the reader to appendix D.7 for a more detailed discussion.

In conclusion of this section, we point out that the empirical robustness costs on lower perturbation radii
can be mitigated by separately tuning α and λ on them (for instance, the performance of N-FGSM can be
trivially preserved via α = λ = 0): we refer the reader to §5.3 for results supporting this. Nevertheless,
optimizing performance on lower ϵ is out of the scope of this experiment.

5.2 Bridging the Gap to Multi-Step Adversarial Training

We here demonstrate that the gap between certified training techniques based on single-step attacks and
multi-step baselines can be reduced by training on shallower networks and with longer schedules, in some set-
tings outperforming PGD-10 in empirical robustness without employing an adversarial training component.

5.2.1 Cyclic training schedule

Experimental setting We replicate the cyclic-schedule experiments from figures 6 and 7 on two shallower
networks without skip connections. As in figures 6 and 7, xadv,A for certified training methods is generated
via N-FGSM. First, we consider CNN-7, a 7-layer convolutional network from the certified training litera-
ture (Shi et al., 2021; Müller et al., 2023; Mao et al., 2023; De Palma et al., 2024b). Then, to study the
impact of network depth, we also provide results on a 5-layer version, named CNN-5 (see appendix C.3.1).
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Figure 8: When training CNN-7 and CNN-5 on CIFAR-10, ForwAbs and Exp-IBP prevent CO while displaying
stronger empirical robustness than PGD-5 for ϵ ≥ 20/255, and matching PGD-10 for CNN-5 at ϵ = 24/255.
AutoAttack (solid lines) and IBP (dashed) accuracies are reported (means and 95% CIs for 5 runs).
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Figure 9: When training CNN-7 and CNN-5 for CIFAR-100, ForwAbs and Exp-IBP display better performance
trade-offs than on the deeper PreActResNet18 but still fail to improve on multi-step attacks. AutoAttack
(solid lines) and IBP (dashed) accuracies are reported (means and 95% CIs for 5 runs).

We tune Exp-IBP and ForwAbs to maximize AA accuracy for ϵ = 24/255 on a validation set for each dataset
and network, using the tuned value for all considered ϵ. As discussed in §5.1 and reported in appendix D.4,
this negatively impact the networks standard performance: while this is not the focus of these experiments,
better robustness-accuracy trade-offs may be obtained using different tuning criteria (see §5.3).

Results Figure 8 demonstrates that both ForwAbs and Exp-IBP outperform PGD-5 in empirical robustness
for ϵ ≥ 20/255 on both CNN models, with ForwAbs preserving AA accuracy at lower epsilons, and Exp-IBP
attaining significant IBP accuracy (at least as large as PGD-5’s AA accuracy for ϵ ≥ 20/255). The gap
to PGD-10 is also significantly reduced compared to the PreActResNet18 experiments, in spite of the
significant CO shown by N-FGSM, the attack employed within both Exp-IBP and ForwAbs. Furthermore,
as shown in appendix D.2, both Exp-IBP and ForwAbs reduce runtime compared to PGD-5 and PGD-10.
Remarkably, on CNN-5, as shown in figure 8b, Exp-IBP matches the performance of PGD-10 for ϵ = 24/255,
significantly outperforming N-FGSM, which does not suffer from CO in this setup. In order to prevent
ForwAbs from under-performing on CNN-5, we found it crucial to include sufficiently low λ values in the
tuning grid: see appendix C.3.3. Finally, figure 9 shows that, while the overall performance trade-offs
are greatly improved compared to PreActResNet18, Exp-IBP and ForwAbs fail to improve on multi-step
attacks on CIFAR-100 also on the CNN architectures. We ascribe this to the larger number of classes, which
produce a less favorable trade-off between empirical and certified robustness. Appendix D.6 shows that the
PreActResNet18 IBP loss at initialization is more than a factor 1010 larger than on the CNN architectures,
providing an intuitive explanation for the different performance profiles.

5.2.2 Long training schedule

Experimental setting We now investigate whether certified training schemes can be more beneficial under
longer training schedules. We consider a schedule of 160 epochs from the certified training literature (Shi
et al., 2021) in which the learning rate is decayed twice towards the end of training, and the perturbation
radius (for all methods and loss components) is gradually increased from 0 to its target value during the
first 80 epochs. In order to show the benefits of tuning for each ϵ, the hyper-parameters of Exp-IBP and
ForwAbs (α and λ, respectively) are tuned to maximize validation AA accuracy individually on each setup
considered in table 1, with the exception of ϵ = 16/255 CIFAR-10, which re-uses the values from ϵ = 24/255
to reduce computational overhead. As in figures 6a to 9, N-FGSM is used to generate xadv,A for Exp-IBP
and ForwAbs, except for “Exp-IBP PGD-5", which relies on PGD-5 instead. Noticing the beneficial effect
of large α values, we also include pure IBP (α = 1), whose loss is attack-free, in the comparison.

Results Table 1 shows that Exp-IBP outperforms PGD-5 on all considered CIFAR-10 setups. While
empirical robustness is maximized when the IBP accuracy is large on ϵ = 24/255, it is not the case for
ϵ = 8/255. Remarkably, pure IBP training outperforms all other methods for ϵ ≥ 16/255 on CIFAR-10.
Exp-IBP PGD-5 demonstrates that on CIFAR-10 certified training techniques can also improve robustness
when applied on top of multi-step attacks: this appears to be useful to improve performance when single-step
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Table 1: When training CNN-7 with the long training schedule, Exp-IBP consistently improves on the
average empirical robustness of PGD-5 on CIFAR-10, with IBP outperforming PGD-10 for ϵ ≥ 16/255.
Multi-step adversarial training displays the best performance on CIFAR-100. Bold entries indicate the best
AA or IBP accuracy for each setting. Italics denote AA accuracy improvements on PGD-5. Means and
95% CIs for 5 runs are reported.

CIFAR-10 ϵ = 8/255 CIFAR-10 ϵ = 16/255 CIFAR-10 ϵ = 24/255 CIFAR-100 ϵ = 24/255

Method AA acc. [%] IBP acc. [%] AA acc. [%] IBP acc. [%] AA acc. [%] IBP acc. [%] AA acc. [%] IBP acc. [%]

Exp-IBP 38.44 ± 0.25 0.00 20.72 ± 1.54 20.55 ± 1.45 14.79 ± 1.61 14.74 ± 1.59 3.25 ± 0.44 3.14 ± 0.41
Exp-IBP PGD-5 16.45 ± 1.32 16.34 ± 1.29

IBP 29.43 ± 0.96 29.02 ± 0.96 21.72 ± 0.68 21.62 ± 0.68 16.73 ± 0.43 16.56 ± 0.42 3.78 ± 0.16 3.67 ± 0.16
ForwAbs 37.92 ± 0.08 0.00 17.61 ± 0.38 0.00 14.39 ± 0.16 0.46 ± 0.17 4.31 ± 0.05 0.00
PGD-10 40.14 ± 0.65 0.00 21.13 ± 0.60 0.00 15.14 ± 0.46 0.00 6.15 ± 0.16 0.00
PGD-5 37.32 ± 0.71 0.00 18.19 ± 0.32 0.00 11.47 ± 0.29 0.00 5.52 ± 0.18 0.00

N-FGSM 37.76 ± 0.30 0.00 7.13 ± 11.43 0.00 0.23 ± 0.64 0.00 0.02 ± 0.06 0.00

attacks systematically fail. While ForwAbs can significantly boost the empirical robustness of N-FGSM,
it manages to outperform PGD-5 only on CIFAR-10 with ϵ = 24/255. Finally, the long schedule does not
benefit certified training schemes on CIFAR-100, where their relative performance compared to multi-step
attacks remains unvaried compared to the cyclic schedule, and for which we did not find the use of PGD-5
to generate the attacks for Exp-IBP to be beneficial.

5.3 Sensitivity Analysis and Performance Trade-Offs

This section presents a study of the test-set behavior of Exp-IBP and ForwAbs for varying values of their
coefficients (respectively α and λ) when training PreActResNet18 and CNN-7 with the cyclic schedule.
Figures 6a, 7a, 8a and 9a display results tuned to maximize AA robustness on ϵ = 24/255. We here focus
on ϵ = 20/255 to potentially showcase different performance profiles, either in terms of maximizing empirical
robustness or in terms of trade-offs with standard accuracy. For PreActResNet18, figure 10 shows that,
on CIFAR-10, CO can be mitigated without incurring a significant cost in standard performance. On the
other hand, maximizing empirical robustness alone, especially if with respect to AutoAttack accuracy, will
result in a larger standard performance drop: this is further highlighted by the clean accuracies relative
to figures 6 to 9 and table 1, which are reported in appendix D.4. Stronger regularisation is required on
CIFAR-100, where low coefficient values appear to be detrimental to robustness compared to N-FGSM
(corresponding to α = 0 or λ = 0). Nevertheless, differently from the results showed in figure 7a, both
Exp-IBP and ForwAbs can improve on the average empirical robustness of N-FGSM, highlighting their
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Figure 10: Sensitivity of Exp-IBP and ForwAbs to their respective coefficients, α and λ, when training
PreActResNet18 for ℓ∞ perturbations of ϵ = 20/255. Plot 10c displays the legend for all sub-figures, which
log standard accuracy (Clean), empirical robust accuracies to PGD-50 and AutoAttack (AA), and IBP
verified robust accuracy on the standard test sets.
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Figure 11: Sensitivity of Exp-IBP and ForwAbs to their respective coefficients, α and λ, on CNN-7 for ℓ∞
perturbations of ϵ = 20/255 using the cyclic training schedule. Plot 11b displays the legend for all sub-figures.

versatility and the potential advantages of per-instance tuning. Figure 11 shows similar trends for CIFAR-10
on CNN-7, where however both methods attain a larger AutoAttack accuracy, and at a smaller cost in
standard performance. N-FGSM does not suffer from CO on CIFAR-100 at ϵ = 20/255 for CNN-7, where it
performs competitively with PGD-5: figures 11c and 11d show that non-zero coefficients for Exp-IBP and
ForwAbs are not beneficial in this setup. This is in contrast with figure 8b and table 1, suggesting that
the ability of certified training schemes to enhance the empirical robustness in setups where there is no CO
heavily depends on the size of the network (see appendix D.6) and on the difficulty of the learning task.

6 Conclusions

We presented a comprehensive empirical study on the utility of recent certified training techniques for
empirical robustness, as opposed to verifiability, their original design goal. In particular, we showed that
Exp-IBP can prevent catastrophic overfitting on single-step attacks for a variety of settings, outperforming
some multi-step baselines in a subset of these. Furthermore, we presented a conceptually simple regularizer
on the size of network over-approximations, named ForwAbs, that can achieve similar effects to Exp-IBP
on top of single-step attacks while cutting down its overhead. While we believe that these results highlight
the potential of certified training as an empirical defense, they also show the severe limitations of current
techniques on harder datasets, ultimately calling for the development of better certified training algorithms.
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Figure 12: IBP certified robustness attained by expressive losses on the PreActResNet18 training setup
from de Jorge et al. (2022). Validation results on CIFAR-10 under perturbations of ϵ = 8/255.

A Qualitative Behavior of CC-IBP and SABR

We here present the CC-IBP and SABR losses, then expand the qualitative analysis on the behavior of
expressive losses presented in §3.2. Specifically, focusing again on a PreActResNet18 setup prevalent in
the single-step adversarial training literature and studied in §5.1, we will show that they share the same
qualitative behavior of MTL-IBP.

Let xadv,A be the output of the chosen attack for perturbation set Bϵ(x). SABR (Müller et al., 2023) com-
putes the IBP loss over a subset of the perturbation set of radius αϵ centered on xα = Proj(xadv,A, Bϵ−αϵ(x)).
Similarly to MTL-IBP and Exp-IBP (see §3.2), the CC-IBP loss is defined through convex combinations.
Specifically, it computes the chosen loss L on the convex combination between the adversarial logit differences
zfθ

(xadv,A, y) and the IBP lower bounds l
Bϵ(x),y
fθ

.

Definition A.1 The SABR and CC-IBP losses are defined as follows:

LSABR
α (fθ, Bϵ(x); y) := LIBP(fθ, Bαϵ(xα); y),

LCC-IBP
α (fθ, Bϵ(x); y) := L

(
−

[
(1 − α)zfθ

(xadv,A, y) + α l
Bϵ(x),y
fθ

]
, y

)
,

(7)

Figure 12 shows that, as MTL-IBP, SABR and CC-IBP fail to yield non-negligible certified accuracy via
IBP. As for MTL-IBP, we gradually increase α and the IBP perturbation radius to improve performance (see
appendix D.1). Their final IBP losses are both larger than those attained by MTL-IBP (and, transitively,
by Exp-IBP). In addition, figure 13 shows that CC-IBP and SABR display the same growth trends of the
MTL-IBP loss on the toy networks, further demonstrating their common similarity.
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Figure 13: Sensitivity of the expressive losses on a toy network of varying depth, with α = 10−1 for Exp-IBP.
For all three plots, CC-IBP displays almost identical behavior to MTL-IBP.
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B Experimental Details

We now provide experimental details omitted from sections 3 to 5.2.

B.1 Toy Networks

The toy neural networks employed in §3.2 are fully connected networks of depth n designed to feature IBP
bounds which are tunable in magnitude through a scalar parameter w, and explode with the depth of the
network. They are defined as follows:

x1 = ReLU
([

w −w
−w w

]
x0

)
, xn =

[
2 0
0 2

]
xn−1 +

[
3
1

]
,

{
xk = ReLU

([
2 0
0 2

]
xk−1

)}
∀ k ∈ J2, n − 1K ,

evaluating to:

xn = 2n−1 ReLU
(

w

[
x0

0 − x0
1

x0
1 − x0

0

])
+

[
3
1

]
.

Let us assume that y = 1 (a similar reasoning holds if y = 0). In this context, if w ≥ 0, the logit differences
zxn(x0, y) can be computed as:

zxn(x0, 1) = 2n−1 [
ReLU

(
w

(
x0

1 − x0
0
))

− ReLU
(
w

(
x0

0 − x0
1
))]

− 2
= w 2n−1 [

ReLU
(
x0

1 − x0
0
)

− ReLU
(
x0

0 − x0
1
)]

− 2
= w 2n−1 (

x0
1 − x0

0
)

− 2.

If an x̃0 such that x̃0
1 − x̃0

0 < 0 belongs to the perturbation set Bϵ(x0), then zxn(x̃0, 1) will have (−∞, −2]
as image for w ∈ [0, +∞). Noting that the relative IBP lower bounds l

Bϵ(x0),1
xn evaluate to −2 if w = 0

(see equation 4), that l
Bϵ(x0),1
xn ≤ zxn(x̃0, 1) for any w ≥ 0, and that l

Bϵ(x0),1
xn is a continuous function with

respect to w (as it is computed through compositions and linear combinations of continuous functions), the
image of l

Bϵ(x0),1
xn for w ∈ [0, +∞) will also be (−∞, −2]. In addition, for any fixed w > 0, l

Bϵ(x0),1
xn will

decrease at least as fast as zxn(x̃0, 1) (which decreases exponentially) with the depth of the network.

In order to meet the above condition, figure 3 uses x0 = [−5, 5]T , y = 1 and B10(x0) as perturbation.
Furthermore, in order to keep the adversarial loss constant with w for the purposes of figure 3, we set
xadv,A = [0, 0]T , for which zxn(xadv,A, 1) = −2 regardless of w.

B.2 Datasets

We focus on three standard 32 × 32 image classification datasets: CIFAR-10 and CIFAR-100 (Krizhevsky
& Hinton, 2009), and SVHN (Netzer et al., 2011). CIFAR-10 and CIFAR-100 consist of 60,000 32 × 32
RGB images, with 50,000 images for training and 10,000 for testing. CIFAR-10 contains 10 classes, while
CIFAR-100 contains 100 classes. SVHN consists of 73,257 32 × 32 RGB images, with 73,257 images for
training and 26,032 for testing.

Unless specified otherwise, for tuning purposes or when reporting validation results we use a random 20%
holdout of the training set as validation set, and train on the remaining 80%. After tuning and when
reporting test set results, we use the standard train and test splits for all datasets.

C Implementation Details and Computational Setup

This appendix details our implementation and outlines the computational setup employed to run the exper-
iments.

C.1 Implementation Details

Our implementation relies on PyTorch (Paszke et al., 2019) and on the public codebases from de Jorge et al.
(2022); Rocamora et al. (2024); De Palma et al. (2024b). We compute IBP bounds using the auto_LiRPA
implementation (Xu et al., 2020).
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N-FGSM may return a point outside the set of allowed perturbations Bϵ(x). As a result, when using it to
compute the adversarial point xadv,A for SABR, we disable the projection of the SABR perturbation subset
onto the original perturbation set, simply setting xα = xadv,A (see §3.2), which allows the implementation
to meet the definition of expressivity for small α values.

Consistently with the single-step adversarial training literature (de Jorge et al., 2022; Rocamora et al.,
2024), BatchNorm layers (Ioffe & Szegedy, 2015), which are present in all the employed models, are always
kept in training mode throughout training (including during the attacks). When computing IBP bounds for
expressive losses and ForwAbs terms at training time, we use the batch statistics from the current adversarial
attack. For ForwAbs, these are retrieved from the auto_LiRPA implementation (Xu et al., 2020). The clean
inputs are never fed to the network at training time, except when using FGSM to generate the attack or
when training with pure IBP (in that case, the clean batch statistics are used to compute the IBP bounds).
The outcome of the running statistics compute during training is systematically employed at evaluation time.

C.2 Computational Setup

All timing measurements were carried out on an Nvidia GTX 1080Ti GPU, using 6 cores of an Intel Skylake
Xeon 5118 CPU. All the other experiments were run on a single GPU each, allocated from two separate
Slurm-based internal clusters. We used the following GPU models from one cluster: Nvidia V100, Nvidia
RTX6000, Nvidia RTX8000, Nvidia GTX 1080Ti, Nvidia RTX2080Ti. And the following GPU models from
the other cluster: Nvidia Quadro P5000, Nvidia H100.

C.3 Training Details and Hyper-parameters

We now provide omitted training details and hyper-parameters.

C.3.1 Network Architectures

The PreActResNet18 and CNN-7 architectures used in our experiments are left unvaried with respect to the
implementations from de Jorge et al. (2022) and De Palma et al. (2024b), respectively.

The CNN-5 architecture has the following structure:

1. convolutional layer with 64 3 × 3 filters, stride = 1 and padding = 1, followed by BatchNorm and a
ReLU activation function;

2. convolutional layer with 64 4 × 4 filters, stride = 2 and padding = 1, then BatchNorm and ReLU;

3. convolutional layer with 128 4 × 4 filters, stride = 2 and padding = 1, then BatchNorm and ReLU;

4. linear layer with 512 neurons, then BatchNorm and ReLU;

5. linear layer with k (the number of classes) neurons.

C.3.2 Initialization and Training Schedule

All the networks trained using MTL-IBP, Exp-IBP and ForwAbs are initialized using the specialized tech-
nique from Shi et al. (2021), which results in smaller IBP bounds at initialization. Except for the experiments
from §3 and for those in table 1, where the specialized initialization is employed in order to fairly compare
IBP bounds, all the networks trained via pure adversarial training and ELLE are instead initialized using
PyTorch’s default initialization.

All the PreActResNet18 experiments use a short schedule popular in the literature (Andriushchenko &
Flammarion, 2020; Wong et al., 2020; de Jorge et al., 2022; Rocamora et al., 2024). The batch size is set to
128, and SGD with weight decay of 5 × 10−4 is used for the optimization. Crucially, no gradient clipping
is employed, which (in addition to network depth and the lack of ramping up) we found to be a major
factor behind the instability of pure IBP training (see §3.2). On CIFAR-10 and CIFAR-100 we train a
PreActResnet18 for 30 epochs with a cyclic learning rate linearly increasing from 0 to 0.2 during the first
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half of the training then decreasing back to 0. On SVHN the training is done for 15 epochs, with a cyclic
learning rate linearly increasing from 0 to 0.05 during 6 epochs, then decreasing back to 0 for the remaining
9 epochs. Furthermore, for SVHN only, the attack perturbation radius is ramped up from 0 to ϵ during the
first 5 epochs. For consistency, the CNN experiments from figures 8 and 9 employ the same training schedule.

All the MTL-IBP and ForwAbs experiments using the cyclic schedule gradually increase both the method
coefficient (respectively α and λ) and the perturbation radius used to compute the IBP bounds (or their
proxy δ̄n) from 0 to their target value. We conduct an ablation study on MTL-IBP in the context of the
experiment from figure 2 to justify this choice: we refer the reader to appendix D.1. The increase happens
over the first 25 epochs for CIFAR-10 and CIFAR-100, and over the first 12 epochs for SVHN. The radius
used to compute the attack is kept consistent with the adversarial training literature (that is, constant in all
cases except for the first 5 epochs on SVHN). In particular, the value is increased exponentially for the first
25% of the above epochs and linearly for the rest (Shi et al., 2021), relying on the SmoothedScheduler from
auto_LiRPA (Xu et al., 2020). In all cases, the attack perturbation radius is left unchanged with respect to
the schedules described above for consistency with pure adversarial training.

The long training schedule used for the experiments in table 1 mirror a setup from Shi et al. (2021), widely
adapted in the certified training literature (Müller et al., 2023; Mao et al., 2023; De Palma et al., 2024b).
Training is carried out for 160 epochs using the Adam optimizer with a learning rate of 5 × 10−4, decayed
twice by a factor of 0.2 at epochs 120 and 140. Gradient clipping is employed, with the maximal ℓ2 norm of
gradients equal to 10. Training starts with an epoch of clean training (“warmup”). During epochs 1 to 81,
the perturbation radius (regardless of the computation it is employed for) is increased from 0 to its target
value using the SmoothedScheduler from auto_LiRPA (Xu et al., 2020). For Exp-IBP and IBP, we employ
a specialized regularizer (Shi et al., 2021) for the IBP bounds for the first 81 epochs (with coefficient 0.5 as
done by the original authors on CIFAR-10), as commonly done in previous work (Müller et al., 2023; Mao
et al., 2023; De Palma et al., 2024b).

C.3.3 Hyper-parameters

Experiment Exp-IBP α MTL-IBP α ForwAbs λ̃

Figures 6a, 20a and 21a 2 × 10−2 1 × 10−8 1 × 10−24

Figures 7a, 20g and 21b 5 × 10−3 1 × 10−8 1 × 10−18

Figures 7b, 20c and 21c 2 × 10−3 2.75 × 10−15 1 × 10−23

Figures 8b, 20e and 21e 4 × 10−1 1 × 10−8

Figures 9b, 20e and 21g 2 × 10−3 1 × 10−10

Figures 8a, 20d and 21d 2 × 10−1 1 × 10−10

Figures 9a, 20f and 21f 2 × 10−3 1 × 10−12

Table 1, CIFAR-10, ϵ = 8/255 5 × 10−3 1 × 10−12

Table 1, CIFAR-10, ϵ = 24/255 and ϵ = 16/255 7.5 × 10−1 1 × 10−8

Table 1, CIFAR-100, ϵ = 24/255 7.5 × 10−1 1 × 10−8

Table 2: Exp-IBP, MTL-IBP and ForwAbs coefficients for figures 6 to 9, figure 20, figure 21, and table 1.

For N-FGSM, we use the same hyper-parameters as de Jorge et al. (2022): the uniform perturbation is
sampled from [−2ϵ, 2ϵ] for every setting except for SVHN with ϵ = 12/255 where the perturbation is sampled
from [−3ϵ, 3ϵ]. The step size is set to α = ϵ for all settings. For PGD baselines, we use a step size of α = ϵ/4
in all settings. Unless stated otherwise, all the certified training algorithms rely on N-FGSM to generate
the adversarial attack composing their loss. To mirror the hyper-parameter in our codebase, we will report
λ̃ = λ/2 for the employed ForwAbs regularization coefficient λ.

All α and λ parameters for Exp-IBP, MTL-IBP and ForwAbs Figures 6 to 9, 20 and 21 and table 1 are
reported in table 2. Exp-IBP PGD5 on CIFAR-10 with 24/255 from table 1 uses α = 0.75. All the tuning
for these experiments is done on a random validation set (see appendix B.2). On all experiments except
those in figure 7, tuning is carried out by maximizing empirical robustness while above the CO threshold.
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Figure 15: Effect of scheduling the bounding perturbation radius and α on the IBP certified robustness
attained by CC-IBP, MTL-IBP and SABR on the PreActResNet18 training setup from de Jorge et al. (2022).
Validation results on CIFAR-10 under perturbations of ϵ = 8/255.

Except where otherwise stated, the employed metric is validation AA accuracy. As explained in §5.1, certified
training schemes in figure 7 were tuned using 5 seeds, maximizing PGD-50 robustness while excluding from
the final hyper-parameter values any configuration displaying a strong CO behavior.

For the experiments of §3.2, §3.3 and appendix D.1, whose goal was instead to reduce the IBP loss as much
as possible on the validation set, we employed the following α values: α = 0.1 for Exp-IBP, α = 10−6 for
CC-IBP and MTL-IBP with scheduling, α = 10−15 for CC-IBP and MTL-IBP without scheduling, α = 10−4

for SABR with scheduling and α = 10−9 for SABR without scheduling. Similarly, in figure 4, λ̃ = 10−15

was used for ForwAbs and λℓ1 = 0.04 for ℓ1-regularized N-FGSM. For all methods in this experiment,
larger values among those we considered led to numerical problems or trivial behaviors, such as networks
consistently outputting the same class in our implementation).

Finally, figure 5 employs the following hyper-parameters: on ϵ = 8/255, α = 3 × 10−2 for Exp-IBP, α = 10−8

for MTL-IBP, λ̃ = 10−18 for ForwAbs; on ϵ = 24/255 , α = 2.5 × 10−2 for Exp-IBP, α = 10−7 for MTL-IBP,
λ̃ = 2 × 10−16 for ForwAbs. The goal of the experiment is to qualitatively discern whether certified training
schemes can prevent catastrophic overfitting on FGSM. In order to determine this, we ran a series of Exp-
IBP, MTL-IBP and ForwAbs experiments directly on the CIFAR-10 test set, and plotted the successful runs
(in terms of preventing CO) with the smallest α or λ̃ values (among those tried).
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Figure 14: Results of insufficient tuning of
ForwAbs for CNN-5 on CIFAR-10, setup of
figure 8b.

In conclusion of this appendix, we show a preliminary
version of figure 8b resulting from insufficient tuning of
the ForwAbs coefficient λ. Specifically, when tuning for
the experiment, we first focused on excessively large coef-
ficients, selecting λ̃ = 10 as the best-performing setup in
terms of validation AA accuracy (as opposed to λ̃ = 10−8

used for figure 8b). Figure 14 shows the result: while
ForwAbs achieves large IBP accuracy on CNN-5, further
confirming its utility towards certified robustness, it at-
tains low empirical robustness throughout the experi-
ment. Noticing instead the strong empirical robustness
of ForwAbs with λ̃ = 10−10 on CNN-7 (figure 8a), we ex-
tended the tuning on CNN-5 to smaller λ̃ values. We then
found λ̃ = 10−8 to yield stronger validation AA accuracy
than λ̃ = 10, hence producing figure 8b.

D Additional Experimental Results

This appendix displays supplementary experimental results.

26



Published in Transactions on Machine Learning Research (03/2025)

D.1 Supplement to Section 3.2, Scheduling Ablation

We here present experimental results omitted from §3.2 and appendix A. Figure 16 displays the behavior
of the training IBP loss for Exp-IBP. In particular, it shows that the training loss drops from more than
1017 to 2.67 from the first to the second epoch, demonstrating the large degree of variability in IBP loss for
the employed PreActResNet18 training setup. In this context, as shown in figure 3, Exp-IBP displays less
sensitivity to the magnitude of the IBP loss, proving more effective for the purposes of decreasing the IBP
loss. In fact, the other losses from equation (5) display numerical problems that prevent successful training
for large α coefficients (and for pure IBP, which corresponds to α = 1 for any expressive loss), leading to
aborted runs in our PyTorch implementation.
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Figure 16: Training IBP loss of the Exp-IBP exper-
iment from figure 2.

Figure 15 studies the effect of scheduling (gradually
increasing from 0 to their target value in 25 epochs)
both α and the perturbation radius ϵ employed to com-
pute the IBP lower bounds l

Bϵ(x),y
fθ

. Excluding trivial
outcomes, such as networks systematically outputting
the same class, for CC-IBP, MTL-IBP and SABR, we
were unable to reach validation IBP loss values below
44 without scheduling. The scheduling allows the use
of larger α values, resulting in lower IBP loss value
for CC-IBP, MTL-IBP and SABR: respectively from
56.47 to 24.06, from 44.50 to 9.89, and from 185.51
to 69.09. These improvements come with a slight de-
crease in robustness to PGD-7 (a PGD attack with 7 steps). Nevertheless, CC-IBP, MTL-IBP and SABR
are unable to attain non-negligible certified accuracy via IBP in this context. In view of these results, we
employ the same scheduling for ForwAbs (see appendix C.3.2).

D.2 Training Overhead

Figure 6b shows the per-epoch training overhead of MTL-IBP, Exp-IBP, ForwAbs, PGD-5 and PGD-10
with respect to N-FGSM (which is used to compute the attack for MTL-IBP, Exp-IBP, ForwAbs) when
training a PreActResNet18 on 80% of the CIFAR-10 training set using the cyclic schedule, complementing
the information provided in figure 4. As described in §3.3, ForwAbs has minimal overhead with respect to
N-FGSM. On the other hand, MTL-IBP and Exp-IBP display a runtime slightly smaller than PGD-5. As
expected, PGD-10 training requires almost twice the time as PGD-5, and more than half the time as MTL-
IBP and Exp-IBP. Figure 17, instead, plots the respective training overheads when training CNN-7 and CNN-5
using the cyclic schedule. The relative runtimes across methods remain similar to PreActResNet18, with
the runtime of each algorithm markedly smaller on the CNN models, and for the 5-layer network. Differently
from the experiments in §5, all these runtime measurements were carried out on the same machine under
constant load (see also appendix C.2).
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Figure 17: Box plots (10 repetitions) for the CIFAR-10 training time of a single epoch (using a 80% subset
of the training set) on CNN-7 and CNN-5.
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Figure 18 explicitly plots trade-offs between runtime and empirical robustness. In particular, fig-
ures 18a and 18c respectively plot the runtimes from figures 17a and 6b against the AA accuracies reported
for CIFAR-10 at ϵ = 24/255 within figures 6a and 8a. Differently from the cyclic schedule, the long schedule
(160 epochs) used for the experiments of table 1 does not have a constant training cost throughout the
epochs (see appendix C.3.2): all methods start with a warmup epoch that requires additionally evaluating
the network on clean inputs, and methods using IBP bounds (Exp-IBP and IBP) employ the regularizer
from Shi et al. (2021) to control the bounds in earlier epochs, increasing their overhead until epoch 81.
Figure 18b plots the AA accuracies for CIFAR-10 at ϵ = 24/255 from table 1 against the per-epoch runtimes
from figure 17a for N-FGSM, PGD-5, PGD-10 and ForwAbs (hence providing an estimate of long-schedule
runtime after warmup, on 80% of the CIFAR-10 training set), and against the per-epoch runtimes (also com-
puted on 80% of the training set, after warmup) of Exp-IBP and IBP when the bounds regularizer is active.
Across the three setups, both ForwAbs and Exp-IBP consistently outperform PGD-5, with the former in-
curring a relatively small overhead compared to N-FGSM. On the long schedule, IBP outperforms all the
other algorithms despite its low runtime, including the stronger multi-step baseline PGD-10.

40 60 80 100 120 140 160
Estimated runtime per epoch (s)

0.00

0.05

0.10

0.15

0.20

0.25

Au
to

At
ta

ck
 a

cc
ur

ac
y

N-FGSM
Exp-IBP
ForwAbs
PGD-5
PGD-10

(a) CNN-7, CIFAR-10, ϵ = 24/255, setup of figure 8a.
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(b) CNN-7, CIFAR-10, ϵ = 24/255, setup of table 1
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(c) PreactResNet18, CIFAR-10, ϵ = 24/255, setup of
figure 6a

Figure 18: Trade-offs between estimated per-
epoch runtime and AA accuracy on CIFAR-10
for ϵ = 24/255.

D.3 Supplement to FGSM experiments

Figure 19 plots the training adversarial accuracy computed via FGSM, the attack employed to generate
xadv,A for all training methods in this experiment, associated to the plots in figure 5. The behavior of the
training adversarial accuracy for FGSM, which spikes up for ϵ = 8/255 roughly when its validation PGD-7
accuracy goes towards 0 (cf. figure 5), and attains very large values for ϵ = 24/255 in spite of its null validation
PGD-7 accuracy, is a clear marker of catastrophic overfitting.
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(a) FGSM training accuracy for ϵ = 8/255.
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(b) FGSM training accuracy for ϵ = 24/255.

Figure 19: Training FGSM accuracy for the experiments from figure 5.

D.4 Clean Accuracies and IBP Loss for N-FGSM Experiments

We here provide omitted clean accuracies and IBP losses for the experiments for figures 6 to 9 and table 1.
Figure 20 provides the results for the cyclic training schedule on PreActResNet18, CNN-7 and CNN-5. It
is clear that the positive effects associated to the certified training schemes (the mitigation or prevention
of catastrophic overfitting in §5.1 and the empirical robustness improvements detailed in §5.2) come at a
cost in clean accuracy, which is a limitation of these methods and of enforcing low IBP loss. Generally
speaking, as visible in figure 21, Exp-IBP attains significantly better trade-offs between clean accuracy and
IBP loss, especially when compared to MTL-IBP. As a result, Exp-IBP is to be preferred if IBP accuracy
is the primary metric. Table 3 presents the clean accuracies and IBP losses pertaining to the long schedule
experiment from table 1, additionally presenting a comparison between the IBP losses of the certified training
schemes tuned for empirical robustness and the adversarial training baselines whose IBP loss was shown in
figure 1. In all cases, certified training schemes decrease the IBP loss compared to the adversarial training
baselines at a cost in standard accuracy, with a larger cost associated to a greater reduction in IBP loss.
We conclude by pointing out that an alternative tuning criterion (considering trade-offs between standard
accuracy and empirical robustness) could result in more favorable trade-offs. This was not the focus of the
presented experiments.

Table 3: Clean accuracies and IBP losses for the experiments in table 1.

Dataset ϵ Method Clean acc. [%] IBP loss

CIFAR-10

8
255

Exp-IBP 76.30 ± 0.43 (4.90 ± 0.55) × 104

IBP 39.37 ± 1.51 1.92 ± 0.01
ForwAbs 74.26 ± 0.28 (2.05 ± 0.11) × 104

PGD-10 77.07 ± 0.31 (9.79 ± 0.85) × 105

PGD-5 79.81 ± 0.38 (1.72 ± 0.11) × 106

N-FGSM 77.28 ± 0.26 (1.91 ± 0.14) × 106

16
255

Exp-IBP 31.30 ± 2.13 2.15 ± 0.02
IBP 31.65 ± 0.55 2.13

ForwAbs 46.54 ± 0.31 (7.72 ± 0.37) × 101

PGD-10 58.44 ± 0.24 (3.57 ± 0.33) × 105

PGD-5 64.07 ± 0.14 (1.01 ± 0.13) × 106

N-FGSM 62.38 ± 9.16 (2.93 ± 2.66) × 106

24
255

Exp-IBP 23.03 ± 4.97 2.25 ± 0.02
Exp-IBP PGD-5 27.32 ± 2.94 2.23 ± 0.02

IBP 23.51 ± 2.63 2.22 ± 0.01
ForwAbs 30.15 ± 0.37 8.73 ± 0.53
PGD-10 39.99 ± 0.60 (2.60 ± 0.42) × 104

PGD-5 49.31 ± 0.37 (2.13 ± 0.22) × 105

N-FGSM 57.46 ± 9.60 (3.31 ± 1.55) × 106

CIFAR-100 24
255

Exp-IBP 6.85 ± 1.29 4.49 ± 0.02
IBP 7.29 ± 0.61 4.45 ± 0.01

ForwAbs 16.85 ± 0.67 (5.79 ± 0.36) × 101

PGD-10 23.56 ± 0.61 (2.19 ± 0.19) × 105

PGD-5 28.53 ± 0.46 (6.12 ± 0.32) × 105

N-FGSM 29.07 ± 3.01 (6.50 ± 1.92) × 106
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Figure 20: Clean accuracies for the experiments
from figures 6, 7, 8 and 9. Means and 95% con-
fidence intervals over 5 repetitions.
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(a) PreActResNet18, CIFAR-10.
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(b) PreActResNet18, CIFAR-100.
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(c) PreActResNet18, SVHN.
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(d) CNN-7, CIFAR-10.
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(e) CNN-5, CIFAR-10.
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(f) CNN-7, CIFAR-100.
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(g) CNN-5, CIFAR-100.
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Figure 21: IBP losses of methods from §3 for the
experiments from figures 6, 7, 8 and 9. Means
and standard deviations over 5 repetitions.
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12 16 20 24
Epsilon

102

103

104

105

106

IB
P 

Lo
ss ForwAbs

MTL-IBP
Exp-IBP

ForwAbs
MTL-IBP
Exp-IBP

(b) PreActResNet18, CIFAR-100.

6 8 10 12
Epsilon

109

1010

1011

1012

IB
P 

Lo
ss ForwAbs

MTL-IBP
Exp-IBP

ForwAbs
MTL-IBP
Exp-IBP

(c) PreActResNet18, SVHN.

12 16 20 24
Epsilon

101

102

103

IB
P 

Lo
ss ForwAbs

Exp-IBP
ForwAbs
Exp-IBP

(d) CNN-7, CIFAR-10.

12 16 20 24
Epsilon

101IB
P 

Lo
ss

ForwAbs
Exp-IBP
ForwAbs
Exp-IBP

(e) CNN-5, CIFAR-10.

12 16 20 24
Epsilon

103

104

IB
P 

Lo
ss

ForwAbs
Exp-IBP
ForwAbs
Exp-IBP

(f) CNN-7, CIFAR-100.

12 16 20 24
Epsilon

102

IB
P 

Lo
ss

ForwAbs
Exp-IBP
ForwAbs
Exp-IBP

(g) CNN-5, CIFAR-100.

31



Published in Transactions on Machine Learning Research (03/2025)

Table 4: Validation empirical robustness of the last model and of the model corresponding to the best
PGD-50 accuracy when training PreActResNet18 with the cyclic schedule (means and 95% CIs for 5 runs).

Dataset ϵ Method Final AA acc. [%] Selected AA acc. [%]

CIFAR-10 20
255

Exp-IBP 15.88 ± 1.39 15.42 ± 2.37
ForwAbs 14.22 ± 1.68 14.96 ± 1.29
N-FGSM 10.34 ± 5.43 12.80 ± 2.34

CIFAR-100 24
255

Exp-IBP 3.74 ± 1.01 3.92 ± 0.96
ForwAbs 4.14 ± 0.80 4.08 ± 0.78
N-FGSM 2.20 ± 2.29 4.34 ± 0.50

D.5 Validation CO Study

This appendix presents a study on the behavior of Exp-IBP and ForwAbs over the course of training epochs,
aimed at providing further insights into their effect on CO when applied on top of N-FGSM. Specifically,
we evaluate on a holdout set of 1000 images, and train on the remainder of the original training set. We
compute the PGD-50 accuracy at each epoch, and store two models for a more accurate empirical robustness
evaluation via AutoAttack: the one corresponding to the best PGD-50 accuracy (we call this the selected
model), and the final model. We focus on two PreActResNet18 setups: CIFAR-10 at ϵ = 20/255, and CIFAR-
100 at ϵ = 24/255, which are the benchmarks in which N-FGSM displays the worst average AutoAttack
accuracy within figures 6 and 7a.

Table 4 shows that, on both settings, Exp-IBP and ForwAbs significantly reduce the variability between
the final and the selected models compared to N-FGSM, further confirming their ability to prevent CO. On
CIFAR-10, both methods attain stronger empirical robustness than the selected N-FGSM models, showing
that they are preferable to early stopping with an expensive attack on this dataset. While this is not
immediately confirmed on the harder CIFAR-100, we point out that a tuning process aware of early stopping
may likely bring to a different conclusion: this is beyond the scope of the experiment. Exp-IBP and ForwAbs
were run with the following coefficients: on CIFAR-10, α = 2×10−2 for Exp-IBP, and λ̃ = 10−22 for ForwAbs;
on CIFAR-100, α = 5 × 10−3 for Exp-IBP, and λ̃ = 10−18 for ForwAbs. These coincide with the coefficients
employed for figures 6 and 7a, except for ForwAbs on CIFAR-10, where the new runs for this experiment
showed some signs of CO for these dataset splits using λ̃ = 10−24 and hence prompted us to employ a larger
coefficient for this appendix, pointing to some degree of experimental variability (cf. figure 10b, which does
not display CO even for significantly smaller coefficient values). We remark that the ForwAbs coefficient for
figure 6 was tuned using a single seed, on a different dataset split, at ϵ = 24/255: variability could likely be
reduced by tuning on multiple seeds and for the same perturbation radius.

D.6 Effect of Model Architecture

The experimental results in §5 show that the relative efficacy of certified training schemes towards empirical
robustness improves on shallower networks. The present appendix is devoted to providing further insights
on this phenomenon.

D.6.1 Effect of Model Architecture on Method Performance

Table 5 presents an analysis of the effect of model size on the performance of both multi-step adversarial
training and certified training techniques, grouping in table form the results from figures 6a, 8a, and 8b on

Table 5: Effect of model architecture on AutoAttack accuracy on CIFAR-10 with ϵ = 24/255. Results from
figures 6a, 8a, and 8b (means and standard deviations for 5 runs).

Architecture Exp-IBP AA acc. [%] ForwAbs AA acc. [%] PGD-5 AA acc. [%] PGD-10 AA acc. [%]

PreActResNet18 13.67 ± 1.30 12.92 ± 0.34 12.39 ± 0.96 15.83 ± 1.05
CNN-7 14.50 ± 0.81 14.98 ± 0.37 13.29 ± 0.37 16.03 ± 0.52
CNN-5 15.26 ± 0.35 14.36 ± 0.32 12.94 ± 0.23 15.28 ± 0.58
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Table 6: IBP loss at initialization for the network architectures considered in this work, computed on the
CIFAR-10 training set against perturbations of radius ϵ = 24/255 (means and standard deviations for 5 runs).

Architecture IBP loss

PreActResNet18 (2.20 ± 0.06) × 1016

CNN-7 (8.67 ± 0.18) × 105

CNN-5 (1.11 ± 0.01) × 104

CIFAR-10 with ϵ = 24/255. Differently from §5, where the focus was on relative performance across methods,
here we concentrate on the impact of model architecture on the performance of each method. All considered
algorithms attain larger empirical robustness on CNN-7 compared to PreActResNet18. Remarkably, and dif-
ferently from all the other techniques, the AutoAttack accuracy of Exp-IBP is maximized on CNN-5, suggest-
ing that smaller networks may be particularly beneficial to expressive losses under shorter training schedules.

D.6.2 IBP Losses at Initialization across Architectures

In order to provide further insights on the results from §5 and table 5, we compute the IBP loss at initialization
on the three network architectures employed in this work, which provides an indication of the size of the
IBP network over-approximation. Specifically, we measure the average IBP loss over the standard CIFAR-10
training set, against perturbations of radius ϵ = 24/255. Table 6 shows that, as expected, the network bounds
explode with the model depth, with PreActResNet18 displaying an IBP loss at initialization that is several
orders of magnitude larger than those of the two employed CNN architectures. As a result, the significantly
smaller IBP loss values associated with maximal AutoAttack accuracy (see figure 21) come at a larger cost
in terms of empirical robustness, resulting in worse performance trade-offs. Finally, CNN-7 features an IBP
loss almost two orders of magnitude larger than CNN-5, explaining the qualitative differences in behavior
from figure 8.

D.7 Comparison with ELLE

The main objective of this work is to demonstrate that certified training techniques can be success-
fully employed towards empirical robustness, hence beyond their original design goal. As part of the
provided evidence, section 5.1 shows that Exp-IBP and ForwAbs can prevent CO on settings common
to the single-step adversarial training literature. In order to contextualize their performance for the
task, this appendix provides a comparison of the performance of Exp-IBP, MTL-IBP and ForwAbs with
ELLE-A (Rocamora et al., 2024), a state-of-the-art method designed to prevent catastrophic overfitting.

The experimental setup is the one from figures 6 and 7 (a PreActResNet18 trained with a cyclic training
schedule). As for the certified training techniques, we use N-FGSM as underlying adversarial attack. The
runtime overhead of ELLE-A, which is slightly smaller than MTL-IBP and Exp-IBP, and significantly larger
than ForwAbs on an Nvidia GTX 1080Ti GPU, is reported in figure 22d. While the original work (Rocamora
et al., 2024) reports less overhead for ELLE-A, which requires 3 batched forward passes to compute its
regularization term, we found its overhead to be heavily dependent on the GPU model, with newer models
leading to a faster execution of the batched forward pass (the original work relies on an Nvidia A100 SXM4
GPU). We tuned the ELLE-A hyper-parameter λELLE, which controls the amount of regularization imposed
on a notion of local linearity proposed by the authors, consistently with the way MTL-IBP, Exp-IBP and
ForwAbs were tuned for figures 6 and 7. The tuning resulted in the following values: λELLE = 6000 for
CIFAR-10 (which maximizes both the validation PGD-50 and AA accuracy), λELLE = 3000 for CIFAR-100,
and λELLE = 1000 for SVHN.

As reported in Figure 22, ELLE-A prevents CO across all settings. Remarkably, on CIFAR-10, certified train-
ing techniques match or outperform ELLE-A in AA accuracy for ϵ ≥ 20/255, with Exp-IBP outperforming
ELLE-A while also producing non-negligible certified robustness via IBP. We believe this suggests that verifi-
ability and empirical robustness are not conflicting objectives in this setup. Furthermore, ForwAbs performs
at least competitively with ELLE-A on all the considered epsilons while reducing its overhead. The situation
is drastically different on the harder CIFAR-100, where ELLE-A markedly outperforms certified training
schemes. We speculate the employed network may lack the capacity to sustain tight over-approximations
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Figure 22: Comparison of certified training techniques with ELLE-A (Rocamora et al., 2024), a the state-
of-the-art regularizer for singe-step adversarial training. Setup from figures 6 and 7. We report means over
5 repetitions and their 95% confidence intervals.
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Figure 23: Clean accuracies for the experiments
reported in Figure 22
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Figure 24: When applied on top of FGSM, certified training techniques can prevent CO beyond ReLU
networks. Results with a modified PreActResNet18 employing SoftPlus activations, for perturbations of
ϵ = 24/255 on the CIFAR-10 and CIFAR-100 test sets.

while preserving empirical robustness. On SVHN, except MTL-IBP which fails owing to the sensitivity of
its loss as discussed in §5.1, all the algorithms attain similar performance profiles, with the most robust
algorithm depending on the perturbation radius. Figure 23 reports the corresponding clean accuracies: on
average ELLE-A has less impact on clean accuracy than certified training schemes, except for SVHN, where
expressive losses display larger standard performance, and on CIFAR-10 for ϵ = 24/255, where ForwAbs does.
In summary of this appendix, we argue that, on easier datasets such as CIFAR-10, certified training tech-
niques such as Exp-IBP and ForwAbs should be considered as strong baselines for CO prevention by the
single-step adversarial training community.

D.8 Preventing Catastrophic Overfitting on SoftPlus

We here present results demonstrating that certified training schemes can enhance empirical robustness
beyond piecewise-linear networks. In particular, we focus on a modified PreActResNet18 architecture, for
which each ReLU is replaced by a SoftPlus activation, relying on the training schedule from figure 5. Owing
to the monotonicity of SoftPlus, IBP bounds can be computed using the procedure outlined in §2.3.1 and
using the auto_LiRPA library, which we also employ for ReLU networks (see appendix C.1). We leave the
ForwAbs implementation unvaried with respect to §3.3.

Figure 24 provides results for CIFAR-10 and CIFAR-100 at ϵ = 24/255, for which we show FGSM to be
highly vulnerable to CO. Mirroring the experimental procedure for figure 5, we demonstrate that MTL-IBP,
Exp-IBP and ForwAbs can all prevent CO on this setting. Similarly to the ReLU experiments, this involves
significantly decreasing the IBP loss compared to FGSM. Figure 24 plots the following coefficient values: on
CIFAR-10, α = 5 × 10−3 for Exp-IBP, α = 2 × 10−11 for MTL-IBP, λ̃ = 10−20 for ForwAbs; on CIFAR-100,
α = 1 × 10−2 for Exp-IBP, α = 10−10 for MTL-IBP, λ̃ = 10−20 for ForwAbs.

E Previous Work on the Empirical Accuracy of Certified Training

We now comment on the relationship between §5 and literature results, explicit or implicit, on the empirical
accuracy of certified training algorithms (see §4). In particular, §E.2 provides additional experiments studying
CO within setups from the certified training literature (De Palma et al., 2024b).
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E.1 Empirical Robustness Evaluations

While this was not the focus of their works, Gowal et al. (2018); Mao et al. (2024a) both demonstrated that
certified training schemes (including IBP for Gowal et al. (2018), IBP, SABR and MTL-IBP for Mao et al.
(2024a)) outperform multi-step adversarial training on large perturbation radii on MNIST for relatively
shallow convolutional networks. Specifically, Gowal et al. (2018) showed that IBP outperforms PGD-7
training in terms of PGD-200-10 (PGD with 200 iterations and 10 restarts) accuracy for ϵ ∈ {0.3, 0.4}, when
using a 100-epoch training schedule. Mao et al. (2024a) tuned the certified training schemes to maximize
certified robustness, and then positively compared their empirical robustness, measured through the attacks
within MN-BaB, a complete verifier based on branch-and-bound (Ferrari et al., 2022), to the AA accuracy
of PGD-5-3 training for ϵ = 0.3 (using a 70-epoch training schedule). Moreover, De Bartolomeis et al.
(2023) report that, on MNIST, IBP (Shi et al., 2021) outperforms adversarial training based on a 10-step
AutoPGD (Croce & Hein, 2020) attack in terms of AA accuracy for ϵ ∈ {0.1, 0.2, 0.3, 0.4}. However, they
employ inconsistent training schedules and optimizers across methods, and their adversarial training baseline
severely under-performs compared to other works (Mao et al., 2024a). We omit MNIST from our main study
owing to its relative simplicity, and to our focus on settings typically considered in the single-step adversarial
training literature (de Jorge et al., 2022; Rocamora et al., 2024; Andriushchenko & Flammarion, 2020).

Furthermore, Gowal et al. (2018); Mao et al. (2024a) reported that certified training schemes (IBP for
Gowal et al. (2018), SABR and MTL-IBP for Mao et al. (2024a)) can outperform multi-step attacks in
terms of empirical robustness using CNN-7 for ϵ = 8/255 on CIFAR-10. Gowal et al. (2018) employ a 3200-
epoch training schedule, using which PGD-7 and IBP respectively attain 34.77% and 24.95% PGD-200-10
accuracy. Mao et al. (2024a) rely instead on a 240-epoch schedule and again tune certified training schemes
to maximize certified robustness, reporting 35.93% AA accuracy for PGD-10-3, 36.11% and 36.02% MN-
BaB empirical robustness for SABR and MTL-IBP, respectively. In addition, De Bartolomeis et al. (2023)
reports better AA accuracy for IBP (Shi et al., 2021) (32.5%), using a 160-epoch schedule, compared to 10-
step AutoPGD (Croce & Hein, 2020) (30.2%) on CIFAR-10 for ϵ = 8/255 using a residual network. However,
as for their MNIST experiments, the comparison employs different training schedules and optimizers for the
various methods, and features an empirically weak adversarial training baseline. We remark that N-FGSM
already attains 37.76% average AA accuracy using the same network architecture in table 1, outperforming
the results reported above for both adversarial and certified training, and highlighting the importance of
strong baselines and appropriate regularization. In fact, differently from Mao et al. (2024a), who adopt ℓ1
regularization also for the adversarial training baselines, we use weight decay (with coefficient 5 × 10−5),
which is more commonly adopted in the adversarial training literature to combat robust overfitting.

E.2 CO in Certified Training Setups

The strong certified robustness results reported in previous work can be employed to draw conclusions on
CO, exploiting the fact that certified accuracy lower bounds the empirical accuracy to any attack. It is easy
to conclude that any certified training scheme which lacks an adversarial training component (see §2.3) is
trivially immune to CO (Gowal et al., 2018; Shi et al., 2021; Zhang et al., 2020). Nevertheless, these are
neither applicable in all training contexts (see §3.2) nor necessarily associated to the best performance (Müller
et al., 2023). For α < 1 tuned for certified robustness via verifiers based on branch-and-bound, the results
reported in De Palma et al. (2024b) imply the absence of CO on the relative CC-IBP, MTL-IBP and Exp-IBP
runs. As reported by De Palma et al. (2024b, appendix G.9), this is in spite of the fact that they rely on a
randomized attack that always lands on a corner of the perturbation region and was shown to display CO by
previous work in a different experimental setup (Wong et al., 2020). However, as highlighted in §4.3, fully
demonstrating that the reported results imply the ability of expressive losses to prevent CO requires showing
that the underlying one-step attack (α = 0) would display CO in the specific experimental setting. We here
carry out such investigation, whose results are provided in table 7. In particular, we compare the average
AutoAttack accuracy from RS-FGSM η = 10.0ϵ, the one-step attack employed in most expressive loss results
from De Palma et al. (2024b)1 with the best AutoAttack accuracy obtained from the published expressive
losses checkpoints from De Palma et al. (2024b). Table 7 shows that the one-step attack displays systematic

1except on CIFAR-10 with ϵ = 2/255, for which De Palma et al. (2024a) use a multi-step attack.
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Table 7: CO study on CNN-7 setups from the certified training literature. We report mean and 95% over 5
runs for the one-step attack used in most expressive loss results from De Palma et al. (2024b), and compare
it with the best AutoAttack accuracy across the relative published CC-IBP, MTL-IBP and Exp-IBP
checkpoints (De Palma et al., 2024b).

MNIST ϵ = 0.1 MNIST ϵ = 0.3 CIFAR-10 ϵ = 2/255 CIFAR-10 ϵ = 8/255 TinyImageNet ϵ = 1/255

Method AA acc. [%] AA acc. [%] AA acc. [%] AA acc. [%] AA acc. [%]

RS-FGSM η = 10.0ϵ 83.84 ± 39.02 0.00 74.46 ± 0.44 0.00 28.92 ± 0.17
Best Expressive Loss 98.48 94.02 69.33 36.50 28.46

CO on MNIST with ϵ = 0.3 and on CIFAR-10 with ϵ = 8/255, and some signs of CO on MNIST with ϵ = 0.1.
In all cases, this is effectively prevented by the expressive losses runs from the literature. Nevertheless,
mirroring what is outlined in appendix E.1, we point out that the empirical robustness of literature models
is still disappointing if compared with stronger one-step baselines. For CIFAR-10 with ϵ = 8/255, N-FGSM
attains 37.76% average AA accuracy on the same network (table 1).

E.3 Comparison to §5

Differently from the previous literature, this work (§5.1) presents a systematic analysis of the ability of
certified training schemes to prevent CO on setups from the single-step adversarial training literature, and
(§5.2) extends the study by examining settings where certified training schemes relying on single-step attacks
can overcome multi-step attacks.

Owing to the strong sensitivity of CO and of expressive losses (see appendix D.6) to the specific experimental
setup, the conclusions in §5.1 do not trivially follow neither from the previous literature, nor from our
study in appendix E.2. For instance, figure 8 shows that the occurrence of CO depends on the network
architecture even for the same training schedule, dataset, and perturbation radius, and a comparison with
table 1 illustrates the effect of changes in the training schedule. Compared to the literature discussed in
appendix E.1, §5.2 provides a fair and systematic comparison (relying on the same strong attack suite (Croce
& Hein, 2020), which is also used as tuning metric on validation) which includes larger perturbation radii
(up to ϵ = 24/255), the harder CIFAR-100 dataset, and a shorter cylic training schedule more common in the
adversarial training literature.

Crucially, throughout §5, rather than simply assessing the robustness of certified training schemes deployed
to maximize certified robustness, we also tune these algorithms for empirical robustness. This can make a
difference in practice. For instance, Exp-IBP attains 38.44% average AA accuracy in our experiments for
ϵ = 8/255 with α = 5 × 10−3 on CIFAR-10, outperforming N-FGSM and PGD-5 from table 1, the results
from table E.2 with α = 0.5, and all values reported by Mao et al. (2024a).
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