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Abstract: Scene representation is a crucial design choice in robotic manipulation
systems. An ideal representation is expected to be 3D, dynamic, and semantic to
meet the demands of diverse manipulation tasks. However, previous works often
lack all three properties simultaneously. In this work, we introduce D3Fields—
dynamic 3D descriptor fields. These fields are implicit 3D representations that
take in 3D points and output semantic features and instance masks. They can also
capture the dynamics of the underlying 3D environments. Specifically, we project
arbitrary 3D points in the workspace onto multi-view 2D visual observations and
interpolate features derived from visual foundational models. The resulting fused
descriptor fields allow for flexible goal specifications using 2D images with var-
ied contexts, styles, and instances. To evaluate the effectiveness of these descriptor
fields, we apply our representation to rearrangement tasks in a zero-shot manner.
Through extensive evaluation in real worlds and simulations, we demonstrate that
D3Fields are effective for zero-shot generalizable rearrangement tasks. We also
compare D3Fields with state-of-the-art implicit 3D representations and show sig-
nificant improvements in effectiveness and efficiency. Project Page
Keywords: Implicit 3D Representation, Visual Foundational Model, Zero-Shot
Generalization, Robotic Manipulation
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Figure 1: D3Fields Representation and Application to Zero-Shot Rearrangement Tasks. D3Fields take in
multi-view RGBD images and encode semantic features and instance masks using foundational models. The
descriptor fields visualized in the bottom left using Principal Component Analysis (PCA) demonstrate consis-
tent features across instances. We use our representation for rearrangement tasks given 2D goal images with
diverse instances and styles in a zero-shot manner. We address pick-and-place tasks such as shoe organization
and tasks requiring dynamic modeling like collecting debris. We also show that our framework can accomplish
3D manipulation and compositional task specification in the table organization task.

* Denotes equal contribution.
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1 Introduction

The choice of scene representation is essential in robotic systems. An ideal representation is ex-
pected to be simultaneously 3D, dynamic, and semantic to meet the needs of various robotic ma-
nipulation tasks in our daily lives. However, previous research on scene representations in robotics
often does not encompass all three properties. Some representations exist in 3D space [1–4], yet
they overlook semantic information. Others focus on dynamic modeling [5–8], but only consider
2D data, neglecting the role of 3D space. Some other works are limited by only considering semantic
information such as object instance and category [9–13].

In this work, we aim to satisfy all three criteria by introducing D3Fields, unified descriptor fields
that are 3D, dynamic, and semantic. Notably, D3Fields are implicit 3D representations rather
than explicit 3D representations like point clouds. D3Fields take arbitrary 3D coordinates as inputs
and output both geometric and semantic information corresponding to these positions. This includes
the instance mask, dense semantic features, and the signed distance to the object surface. Notably,
deriving these descriptor fields requires no training and is conducted in a zero-shot manner, utilizing
large visual foundation models and vision-language models (VLMs). In our approach, we employ
a set of advanced models. We first use Grounding-DINO [14], Segment Anything (SAM) [15],
XMem [16], and DINOv2 [17] to extract information from multi-view 2D RGB images. We then
project arbitrary 3D coordinates back to each camera, interpolate to compute representations from
each view, and fuse these data to derive the descriptors associated with these 3D positions, as shown
in Figure 1 (left). Leveraging the dense semantic features and instance mask of our representation,
we achieve robust tracking 3D points of the target object instances and train the dynamics mod-
els. These learned dynamics models can be incorporated into a Model-Predictive Control (MPC)
framework to plan for zero-shot generalizable rearrangement tasks.

Notably, the derived representations allow for zero-shot generalizable rearrangement tasks, where
the goal is specified by 2D images sourced from the Internet, smartphones, or even generated by
AI models. Such goal images have been challenging to manage with previous methods, because
they contain varied styles, contexts, and object instances different from the robot’s workspace. Our
proposed D3Fields can establish dense correspondences between the robot workspace and the target
configurations. Given correspondences, we can define our planning cost and use the MPC frame-
work with the learned dynamics model to derive actions for accomplishing tasks. Remarkably, this
task execution process does not require any further training, offering a highly flexible and convenient
interface for humans to specify tasks for the robots.

We evaluate our method across a wide range of robotic rearrangement tasks in a zero-shot man-
ner. These tasks include organizing shoes, collecting debris, and organizing office desks, as shown
in Figure 1 (right). Furthermore, we provide both quantitative and qualitative comparisons with
state-of-the-art implicit 3D representations to demonstrate the effectiveness and efficiency of our
approach [18, 19]. Through a detailed analysis of our D3Fields, we offer insights into the category-
level generalization capabilities and zero-shot rearrangement capabilities of our approach.

We make three major contributions. First, we introduce a novel representation, D3Fields, that is 3D,
semantic, and dynamic. Second, we present a novel and flexible goal specification method using
2D images that incorporate a wide range of styles, contexts, and instances. Third, our proposed
robotic manipulation framework supports a broad spectrum of zero-shot rearrangement tasks.

2 Related Works

Foundation Models for Robotics. Large Language Models (LLMs) have demonstrated promis-
ing reasoning capabilities for language. Robotics researchers have used LLMs to generate plans
for manipulation [20–23]. Yet, their perception modules fall short in simultaneously modeling the
3D geometry, semantics, and dynamics of objects. Meanwhile, visual foundation models, such as
SAM [15] and DINOv2 [17], have demonstrated impressive zero-shot generalization capabilities
across various vision tasks. While prior visual models, like Dense Object Nets [24], can encode
similar semantic information on a small-scale dataset, these foundational models show better gen-
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Figure 2: Overview of the Proposed Framework. (a) Multi-view RGBD observations are first processed
by foundation models to obtain the feature volume W The implicit function F takes in arbitrary 3D points
and outputs corresponding distance d, semantic features f , and instance probability p. (b) Through marching
cubes, we could reconstruct the mesh from the implicit signed distance function. Since our representation also
encodes instances masks and semantic features for evaluated 3D points, we can construct meshes for the mask
field and descriptor field as well. (c) Given a 2D goal image, we use foundation models to extract the descriptor
map. Then we correspond 3D features to 2D features and define the planning cost based on the correspondence.

eralization capabilities on various object categories and scenarios. However, their focus is primarily
on 2D vision tasks. Grounding these models in a dynamic 3D environment remains a challenge. Re-
cent works showcase how to ground these foundational models in the 3D world and help imitation
learning to generalize [25–28]. Still, these works do not emphasize dynamics learning or achieve
zero-shot generalization ability.

Neural Fields for Robotic Manipulation. There are various approaches leveraging neural fields
as a representation for robotic manipulation [29–42]. Among them, a series of works distilling
neural feature fields from visual foundation models are closely related to us [19, 43–46]. However,
they often require dense camera views for a quality field, which is expensive and impractical for
real-world scenarios. Also, distilled neural fields need retraining for new scenes, which is time-
consuming and inefficient. In contrast, our D3Fields require no training for new scenes and can
work with sparse views and dynamic settings. GNFactor and FeatureNeRF train neural feature
fields that can be conditioned on sparse views [18, 47]. However, such fields are often trained on a
small dataset, making them hard to generalize to novel instances and scenes, whereas our D3Fields
offer better generalization capability to new instances.

3 Method
3.1 Problem Formulation

We formulate our problem as a zero-shot rearrangement problem given a 2D goal image I and
RGBD images from multiple fixed viewpoints. We denote the workspace scene representation as
sgoal. Our goal is to find an optimal action sequence {at} to minimize the task objective:

min
{at}

c(sT , sgoal),

s.t. st = g(ot), st+1 = f(st, at),
(1)

where c(·, ·) is the cost function measuring the distance between the terminal representation sT and
the goal representation sgoal. Representation extraction function g(·) takes in the current multi-view
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RGBD observations ot and outputs the current representation st. f(·, ·) is the dynamics function that
predicts the future representation st+1, conditioned on the current representation st and action at.
The optimization aims to find the action sequence {at} that minimizes the cost function c(sT , sgoal).

Section 3.2 describes how to construct representation extraction function g(·). Section 3.3 elaborates
on the dynamics function f(·, ·). In Section 3.4, we show how to define the cost function c(·, ·).

3.2 D3Fields Representation
We assume that we can access multiple RGBD cameras with fixed viewpoints to construct D3Fields.
Multi-view RGBD observations are first fed into visual foundational models. Then we obtain 2D
feature volumes W . D3Fields are implicit functions F(·|W) defined as follows:

(d, f ,p) = F(x|W), (2)

where x can be an arbitrary 3D coordinate in the world frame, and (d, f ,p) corresponds to the signed
distance d ∈ R, the semantic descriptor f ∈ RN , and the instance probability distribution p ∈ RM

of M instances. M could be different across scenarios.

depth image surface

camera view ray

Figure 3: Notation Illustration. ri is the distance be-
tween a 3D point x and camera i, and r′i is the interpo-
lated depth from the depth image.

As an overview, our pipeline first projects x
into the image space of each camera. Then,
we can obtain the truncated depth difference
between projected depth and real depth read-
ing using Equation 3. Afterwards, we assign
weights to each viewpoint using Equation 4 and
interpolate the semantic features and instance
masks for each camera using Equation 5. Fi-
nally, we fuse features from all viewpoints to
obtain the final descriptor using Equation 6.

More concretely, we map an arbitrary 3D point x to the ith viewpoint’s image space. We denote the
projected pixel as ui and the distance from x to the ith viewpoint as ri (Figure 3). By interpolating
the ith viewpoint’s depth image Ri, we compute the corresponding depth reading from the depth
image as r′i = Ri[ui]. Then we can compute the truncated depth difference as

di = ri − r′i, d′i = max(min(di, µ),−µ), (3)

where µ specifies the truncation threshold for the Truncated Signed Distance Function (TSDF).
Given the truncated depth difference, we compute weights vi and wi for each viewpoint as

vi = 1di<µ, wi = exp

(
min (µ− |di|, 0)

µ

)
. (4)

Here is the explanation and design justification for each term.
vi: It represents the visibility of x in camera i. 1di<µ is the indicator function, which equals to

1 when di < µ and equals to 0 otherwise. When di = ri − r′i ≥ µ, x is behind the surface,
which means x is not visible in camera i and vi = 0.

wi: It is the weight for the ith viewpoint. Since we only have a confident estimation when x is
close to the surface, wi will decay as |di| increases. For x that is far away, wi degrades to 0.

Then we extract the semantic feature fi and instance mask pi in each viewpoint using

fi = Wf
i [ui], pi = Wp

i [ui], (5)

where DINOv2 [17] extracts the semantic feature volume Wf
i ∈ RH×W×N from RGB image.

Wp
i ∈ RH×W×M is the instance mask volume using Grounded-SAM [14, 15]. Note that pi is a

one-hot vector and already associated to ensure consistent instance indexing across different views.
Finally, we fuse the semantic features and instance masks from all K viewpoints using

d =

∑K
i=1 vid

′
i

δ +
∑K

i=1 vi
, f =

∑K
i=1 viwifi

δ +
∑K

i=1 vi
, p =

∑K
i=1 viwipi

δ +
∑K

i=1 vi
, (6)

where δ is a small number to avoid numeric issues. Since the process of projection, interpolation,
and fusion is differentiable, F(·|W) is differentiable when x is within the truncation threshold.
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3.3 Keypoints Tracking and Dynamics Learning
This section will present how to use the dynamic implicit 3D descriptor field F(·|W) to track key-
points and train dynamics. Without loss of generality, consider the tracking of a single object in-
stance st ∈ R3×ns . For clarity, we denote f and d from F(·|W) as Ff (·|W) and Fd(·|W). We
initialize the tracked keypoints s0 by sampling points close to the surface of the desired instance. To
track keypoints s0, we formulate the tracking problem as an optimization problem:

min
st+1

||Ff (s
t+1|W)−Ff (s

0|W)||2. (7)

As F(·|W) is differentiable, we could use a gradient-based optimizer. This method could be natu-
rally extended to multiple-instance scenarios. We found that relying solely on features for tracking
can be unstable. Therefore, if we know that the tracked object is rigid, we can apply additional rigid
constraints and distance regularization for more stable tracking.

Keypoint tracking enables dynamics model training on real data. We instantiate the dynamics model
f(·, ·) as graph neural networks (GNNs). We follow [48] to predict object dynamics. Please refer
to [48, 49] for more details on how to train the graph-based neural dynamics model. The trained
dynamics model will be used for trajectory optimization in Section 3.4.

3.4 Zero-Shot Generalizable Robotic Rearrangement
In this section, we will describe how to define the planning cost for our zero-shot rearrangement
framework. As shown in Figure 2 (c), we first find the correspondence between the descriptor fields
and goal image using Equation 8. Then we define the cost function c(·, ·) in Equation 9 to measure
the distance between the current state and the goal state. Finally, we optimize the action sequence
{at} to minimize the cost function as described in Section 3.1.

As described in Section 3.2, we initially sample points s0 ∈ R3×ns and obtain the associated
features f0 ∈ Rf×ns from the descriptor fields. We correspond s0 to the goal image Igoal to define
2D goal points sgoal ∈ R2×ns . Firstly, we compute the feature distance αij between ith pixel ui of
Igoal and jth sampled point of s0. Then we normalize αij using the softmax over the whole image
and obtain the weight βij . Lastly, we find the 2D point sgoal,j corresponding to the jth 3D point
using weighted sum. The computation process is summarized in the following:

αij = ||Wf
goal[ui]− f0j ||2, βij =

exp (−sαij)∑H×W
i=1 exp (−sαij)

, sgoal,j =

H×W∑
i=1

βijui, (8)

where Wf
goal is the feature volume extracted from Igoal using DINOv2, and s is the hyperparameter

to determine whether the heatmap βij is more smooth or concentrating. Although Equation. 8 only
shows a single instance case, it could be naturally extended to multiple instances by using instance
mask information.

Figure 4: Object Set in Our Experiments.
This figure shows diverse objects used in our
experiments, expanding over 10 object types.

Note that sgoal is in the image space, and the current
state representation, st is in 3D space. To reconcile
this discrepancy, we introduce a virtual reference cam-
era. We project st into the reference image and obtain
its 2D positions st2D. Consequently, we define the task
cost function as follows:

c(st, sgoal) = ||st2D − sgoal||22. (9)

Given the planning cost, we could use an MPC frame-
work to derive the action sequence {at} to minimize
the cost function. Specifically, we use MPPI to opti-
mize the action sequence [50]. At each time step, we
sample a set of action sequences and evaluate the cost
function. Then we update the action sequence using
the cost function and repeat the process until conver-
gence. This process will be repeated for each time step until the task is completed. More details
regarding the method are included in the supplementary material.
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Figure 5: Correspondence Qualitative Comparison. We select the pixel from the source image, obtain
the associated DINOv2 feature, and visualize the correspondence heatmap on the reconstructed mesh. (a) Our
representation reconstructs clear mesh and corresponds from the source image to semantically similar 3D areas.
(b) F3RM [19] could construct a reasonable mesh in the shoe scene and establish rough correspondences, but
fails in other scenes. (c) Only trained on a small dataset, FeatureNeRF [18] fails to generalize to novel scenes.
The reconstructed meshes are out of camera view, and the correspondence quality is poor.

4 Experiments
We design and organize our experiments to answer three key questions about our method: (1) How
efficient and effective our D3Fields is compared to existing neural representations? (2) What kind of
manipulation tasks can be enabled by our framework, and what type of generalization can it achieve?
(3) Why can our D3Fields enable these tasks and be generalizable?

4.1 Experiment Setup
In the real world, we use four RGBD cameras positioned at the corners of the workspace and employ
the Kinova® Gen3 arm for action execution. In the simulation, we use OmniGibson and the Fetch
robot for mobile manipulation tasks [51]. Our evaluations span various tasks, including organizing
shoes, collecting debris, tidying the table, and so on. More details are in the supplementary material.

4.2 D3Fields Efficiency and Effectiveness
In this section, we compare our D3Fields with two baselines, Distilled Feature Fields (F3RM) [19]
and FeatureNeRF [18]. For F3RM, we use four camera views as inputs and the DINOv2 features
as the supervision and stop the distillation process at 2,000 steps, which is defaulted by the au-
thors [19]. We first compare our D3Fields with F3RM and FeatureNeRF in terms of the correspon-
dence accuracy, as shown in Figure 5. We reconstruct the mesh from our 3D implicit representation
using marching cubes. We then select DINOv2 features from the source image and visualize the
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Figure 6: Qualitative Results. We qualitatively evaluate our proposed framework on rearrangement tasks,
both in the real world and in simulation, encompassing tasks such as organizing utensils, fruits, shoes, food,
and mugs. The figure highlights that our representation can generalize across varied instances, styles, and
contexts. For instance, in the example of organizing fruit, the goal image, unlike the workspace, is styled as
a sketch drawing. Because our representation encodes semantic features, the banana in the workspace can
correspond with the banana in the goal image, which allows the task to be finished. This wide range of tasks
showcases the generalization capabilities of our framework.

corresponding heatmap on the reconstructed feature mesh. We could see that our D3Fields could
reconstruct the mesh with high quality and highlight semantically similar areas across different
instances and contexts, while F3RM fails to reconstruct the mesh accurately, which leads to an inac-
curate correspondence heatmap. Since FeatureNeRF is only pre-trained on a small dataset, it fails to
construct an accurate mesh of the scene and find accurate correspondence in novel scenes, demon-
strating our representation’s effectiveness in reconstructing meshes and encoding semantic features.
Quantitative comparisons are included in the supplementary material.

We also evaluate the time efficiency of constructing the implicit representation given four RGBD
views across four scenes on the machine with A6000 GPU. Our method takes 0.166±0.002 seconds,
which is significantly more efficient than F3RM, which takes 88.379± 5.306 seconds.

4.3 Zero-Shot Generalizable Rearrangement
We conduct a qualitative evaluation of D3Fields in common robotic rearrangement tasks in a zero-
shot manner, with partial results displayed in Figure 1 and Figure 6. We observed several key
capabilities of our framework, which are as follows:
Generalization to AI-Generated Goal Images. In Figure 1, the goal image is rendered in a Van
Gogh style, which is distinctly different from those in the workspace. Since D3Fields encode seman-
tic information, capturing shoes with varied appearances under similar descriptors, our framework
can manipulate shoes based on AI-generated goal images.
Compositional Goal Images. In the office desk organization task in Figure 1, the robot first arranges
the mouse and pen to match the goal image. Then, the robot repositions the mug from the top of a
box to the mug pad, guided by a separate goal image of the upright mug. This example illustrates
that our system can accomplish tasks using compositional goal images.
Generalization across Instances and Materials. Figure 4 and Figure 1 also show our framework’s
ability to generalize across various instances and materials. For example, the debris collection in
Figure 1 shows our framework’s ability to handle granular objects. Figure 6 further shows our frame-
work’s instance-level generalization, where the goal instances distinct from ones in the workspace.
Generalization across Simulation and Real World. We evaluated our framework in the simulator,
as shown in the utensil organization and mug organization examples in Figure 6. Given goal images
from the real world, our framework can also manipulate objects to the goal configurations. This
underscores our framework’s generalization capabilities between simulation and the real world.
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Figure 7: Representation Visualizations. To analyze our representation, we visualize the representation
across different object categories. Mask fields color objects based on their instance masks, showing effective
distinguishing among different instances. Descriptor fields color 3D points through PCA. The consistent color
patterns across instances show that our representation could encode consistent semantic features over different
instances. We also demonstrate our representation’s robustness to clustered scenes in the right two columns.

4.4 D3Fields Analysis
To obtain a more thorough understanding of our D3Fields, we first extract the mesh using the march-
ing cube algorithm. We evaluate vertices from the extracted mesh using our D3Fields and obtain the
associated segmentation information and semantic features, as visualized in Figure 7. Mask fields
in Figure 7 show a distinct 3D instance segmentation in different scenarios, even clustering scenes
like cans and toothpaste. The 3D instance segmentation enables the downstream planning module
to distinguish and manipulate multiple instances, as shown in the mug organization tasks.
Additionally, we visualize the semantic features by mapping them to RGB space using PCA. We
observe that our semantic fields show consistent color patterns across different instances. In the
provided shoe example, even though various shoes have distinct appearances and poses, they exhibit
similar color patterns: shoe heels are represented in green, and shoe toes in red. We observed
similar patterns for other object categories such as mugs and forks. The consistent semantic features
across various instances help our manipulation framework to achieve category-level generalization.
When encountering novel instances, our D3Fields can still establish the correspondence between the
workspace and the goal image using semantic features. In addition, we analyze in the supplementary
to show that D3Fields have better 3D consistency compared to simple point cloud stitching.

5 Conclusion
In this work, we introduce D3Fields, which implicitly encode 3D semantic features and 3D instance
masks, and model the underlying dynamics. Our emphasis is on zero-shot generalizable rearrange-
ment tasks specified by 2D goal images of varying styles, contexts, and instances. Our framework
excels in executing a diverse array of robotic rearrangement tasks in both simulated and real-world
scenarios. Its performance greatly surpasses baseline methods such as FeatureNeRF and F3RM in
terms of efficiency and effectiveness.
Limitation. Our method lifts 2D visual foundation models to the 3D world, enabling a range of
zero-shot rearrangement manipulation tasks. However, we both benefit from and are limited by their
capabilities. For example, the semantic feature field is not fine-grained enough to distinguish be-
tween the right and left sides of shoes. Visual foundation models with more fine-grained semantic
features are needed. In addition, rearrangement tasks could fail when they need to follow a spe-
cific manipulation order to avoid collision with other objects, e.g. a crowded scene. In the future,
incorporating a task planner to handle clustered scenes could be a valuable direction.
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1 Detailed Comparisons with Prior Works

1.1 Comparisons with Prior 3D Representations using Visual Foundational Models

We extend the application of state-of-the-art visual foundational models to robotic manipulation
tasks, offering the following improvements over prior methods:

• Efficiency: Several existing works construct 3D representations from 2D models, but they
are often time-consuming due to the distillation process. This limits their applicability in
tasks requiring frequent visual feedback. For instance, prior works such as F3RM [1] and
LERF [2] require 1.3 to 8 minutes for training. In contrast, our method takes only 0.166
seconds, making it 500 to 3,000 times faster.

• Sparse Views: Some existing works, such as F3RM and LERF, require dense camera views
(more than 50) to build a high-quality 3D representation, which is not suitable for typical
robotic manipulation workspaces with sparse camera views (1-4). In contrast, we have
developed a more efficient and effective pipeline that uses only four views.

• Planning Using Reconstructed Fields: We explicitly use the reconstructed fields to find
matches that define our planning objective, allowing us to employ model-based planning to
solve rearrangement tasks. This contrasts with existing methods like F3RM, which require
expert demonstrations for every new task.

Additionally, our work distinguishes itself from FeatureNeRF by applying our representation specif-
ically to robotic manipulation tasks, whereas FeatureNeRF does not focus on manipulation [3].

1.2 Comparisons with Dense Object Nets

Our approach differs from Dense Object Nets (DON) in two major ways [4]:

• Training Requirements: DON is trained via contrastive learning, which requires fore-
ground and background separation and a careful selection of positive and negative pairs.
This means that deploying a DON in a new environment or on new object categories re-
quires additional training efforts. In contrast, our pipeline does not need extra training
and can be applied to a diverse set of object categories by leveraging visual foundational
models.

• Generalization: DON is trained on small-scale datasets and may not generalize well to
new object categories and scenarios. Our pipeline, however, offers stronger generalization
capabilities without the need for retraining and additional data collection.

2 Method Details

2.1 Notation: Camera Transformation and Projection

We assume that there are multiple RGBD cameras with fixed viewpoints. We assume all cameras’
intrinsic parameters K and extrinsic parameters T are known. The ith camera’s extrinsic parameters
are defined as follows:

Ti =

[
Ri ti
0T 1

]
∈ SE(3), (1)

where Euclidean group SE(3) := {R, t | R ∈ SO3, t ∈ R3}. For a 3D point x in the world frame,
we could obtain the pixel ui projected in ith camera and distance to ith camera ri as follows:

ui = Proj (Ki (Rix+ ti)) , ri = [0, 0, 1]T (Rix+ ti) , (2)

where Proj performs perspective projection, mapping a 3D vector p = [x, y, z]T to a 2D vector
q = [x/z, y/z]T .

2



Algorithm 1 Fusion Process

1: procedure FUSION(x) ▷ Input 3D point
2: ui, ri ← Project(x, i), r′i ← Ri[ui] ▷ 3D projection and depth reading
3: di ← r′i − ri, d′i ← Truncate(di, µ) ▷ Truncated depth difference using Eq. 3 in main paper
4: vi, wi ←Weights(di) ▷ Assign weights to each view using Eq. 4 in main paper
5: fi,pi ← Interpolate(Wf

i ,W
p
i ,ui) ▷ Interpolate features using Eq. 5 in main paper

6: f ,p← Fuse(fi,pi, vi, wi) ▷ Fuse features using Eq. 6 in main paper

2.2 Fusion Equation Explanation

Here is a detailed explanation for Equation 6.

• Signed Distance d: Assuming
∑

vi ̸= 0 and ignoring δ, the equation simplifies to d =∑
vid

′
i∑

vi
. In this case, the weights sum to 1.

• Semantic Feature f and Instance Masks p: Similarly, with
∑

vi ̸= 0 and ignoring δ, we
have f =

∑
viwif

′
i∑

vi
and p =

∑
viwip

′
i∑

vi
. The weight wi varies based on proximity to the

surface: wi = 1 when x is close, summing weights to 1, and wi approaches 0 when x is
far, causing f and p to converge to 0.

2.3 Correspondence Equation Explanation

Equation 8 describes the process of finding the correspondence from jth sampled point’s associated
feature f0j ∈ Rf to a 2D point sgoal,j in the image space. The computation process consists of three
steps:

• αij is the feature-space distance between jth sampled point and ith goal image pixel. We
first extract goal image’s feature mapWgoal and read out ith pixel’s corresponding feature
Wgoal[ui]. Then we compute the L2 distance betweenWgoal[ui] and f0j and assign to αij .

• After applying the softmax to αij over the whole image, we obtain βij . The summation of
βij over the image space, i.e.

∑H×W
i=1 βij = 1.

• Then we apply the weighted sum of pixels to obtain the corresponding pixel on the goal
image sgoal,j .

2.4 Grounded-SAM Masks Association

Using Grounded-SAM [5, 6], we could extract instance segmentation masks from each view. How-
ever, masks from different views can contain a different number of instances, and the instance IDs
may not be consistent. To tackle this problem, we need to post-process the instance segmentation
results. The high-level idea is to merge instances from different viewpoints based on their geometric
distance.

We will save all merged instances to a list. Specifically, we will first start from the first viewpoint.
For each instance mask, we map them to 3D point clouds and save them into a list. Then, we move
to the next viewpoint and map all instance masks to 3D point clouds. We will compare each instance
with the merged instances in the list. If they have significant overlap, measured by the Intersection
of Union (IoU) of the two point clouds, we will merge the instance from the new viewpoint with
the merged instances in the list. This process will continue until all viewpoints have been iterated
through.

After merging all instances, we will filter out instances that are not stably detected. Specifically,
instances that meet one of the following criteria will be filtered out:

• The instance has little point cloud.

• The instance is known to be a background, such as the table.
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• The instance overlaps with other instances, while other instances have a higher confidence.

After filtering, we will assign consistent instance IDs to the instance masks in each viewpoint.

2.5 Mask Tracking using XMem

After using Grounded-SAM to obtain initial masks, we use XMem to track instance masks in later
frames so that we can skip time-consuming segmentation detection for subsequent frames. By apply-
ing XMem, we significantly reduce the computational cost and processing time, making the pipeline
more efficient.

2.6 Dynamics Training Details

We instantiate the dynamics model f(·, ·) as graph neural networks (GNNs) that predict the evo-
lution of particles st ∈ R2×ns under external actions at. We also construct edges et ∈ N2×ne

according to particle distance, where etj = (ut
j , v

t
j) represents an edge connecting from particle ut

j

to particle vtj . f(·, ·) consists of node and edge encoders f enc
O (·, ·), f enc

E (·, ·) to obtain node and edge
representations:

pti = f enc
O (sti, at), i = 1, . . . , ns,

qtj = f enc
E (stut

j
, stvt

j
), j = 1, . . . , ne.

(3)

Then, we use node and edge decoders f dec
O (·, ·), f dec

E (·, ·) to predict the next time step’s particle
states:

rtj = f dec
E (qtj), j = 1, . . . , ne,

ŝt+1
i = f dec

O (pti,
∑
j∈Ni

rtj), i = 1, . . . , ns,
(4)

where Ni is the index set of the edges that connect to particle i. In practice, we follow Li et al. [7]
and use multi-step message passing over the graph to approximate the propagation of action impacts.

2.7 Keypoints Tracking Initialization

To initialize keypoint tracking, we first densely sample points, which can either come from grid
sampling or instances’ 3D point clouds. Then, we evaluate these points using our D3Fields and
mask out those not belonging to the desired instance. Finally, we downsample these points to the
desired number using farthest point sampling.

2.8 Model-Predictive Control (MPC) Details

As described in Section 3.4 of the main paper, our MPC framework needs a reference camera to
bridge the gap between 3D representation and 2D representation. In our work, the reference cam-
era’s extrinsic parameters are manually defined according to the tasks. Typically, it looks down
at the workspace from above. Its intrinsic parameters are the same as the real camera’s intrinsic
parameters. The detailed MPC algorithm we used is described in Algorithm 2.

For the pick-and-place tasks, our dynamics model is simplified, as the object is rigidly attached to
the end-effector.

2.9 Discussion of Backbone Choice

We choose DINOv2 as our feature backbone because there are several great and unique properties
of DINOv2, including:

• Generalization: DINOv2 has demonstrated consistent feature extraction across diverse ob-
ject categories and scenes, which allows us to apply our pipeline to various object categories
and bridge the gap between goal image and workspace.
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Algorithm 2 Trajectory optimization at each MPC step
Input: Current state s0, goal sgoal, time horizon T , gradient descent iteration N

the perception module h, and the dynamics module f
Output: Actions a0:T−1

Sample current action sequence â∗0:T−1
for i = 1, . . . , N do

Sample M action sequences â1:M0:T−1 near current action sequence
for m = 1, . . . ,M do

for t = 0, . . . , T − 1 do
Predict the next step st+1 ← f(st, â

m
t )

Calculate the task loss cm ← c(sT , yg)

Calculate the current action sequence â∗0:T−1 using the task loss c1:M

Return â∗0:T−1

• Refined Correspondence: DINOv2 demonstrates the capability to establish a refined corre-
spondence, even when two images have quite different backgrounds and contexts. This is
important for our tasks since we need refined correspondence between the goal image and
the workspace to define the objective function for the manipulation.

However, our framework is not specific to DINOv2. If there is a better visual foundational model in
the future, we could replace it easily in a plug-and-play manner.

3 Additional Experiments

3.1 Implementation Details

For the truncation threshold µ, we set it to 0.02 across all experiments. For the prompts used for
Grounded-SAM [5, 6] in Figure 7 in the main paper, from left to right, they are “shoe”, “mug”,
“spoon”, “can”, and “toothpaste” respectively. The confidence threshold used for Grounded-SAM
is 0.2.

We also compare with several baselines, with details listed below:

• Dense Object Nets (DON) [4]: We compare the effects of using different feature backbones,
with DON as one of the baseline backbones. We use the pre-trained DON model since our
method also uses off-the-shelf models with no re-training or additional data. Specifically,
we use the model trained on the shoe class, which can be found here.

• DINO [8]: Another feature backbone we baseline on is DINO, which is the precursor to
DINOv2. We use the code provided by [9] to extract dense DINO features.

• RGBD+DINOv2: We also compare our method to simply merging point clouds with DI-
NOv2 features from multiple viewpoints [10].

• FeatureNeRF [3]: We compare our representation with other state-of-the-art 3D implicit
semantic representations, including FeatureNeRF. We trained the model on the car example
dataset provided by the authors. For comparison with our model, we do not distill the model
from the DINO model but from DINOv2. It is worth noting that FeatureNeRF only uses
one RGB image to generate the neural fields. We found that providing more views to the
FeatureNeRF model during inference time leads to worse performance. Therefore, we keep
its input as a single-view RGB image.

• Distilled Feature Fields (F3RM) [1]: Another 3D implicit semantic representation we com-
pare to is F3RM. We use the same training code provided by the authors, except that we
distill from DINOv2 models to make it comparable with our model. In addition, we use
four camera views as F3RM inputs instead of dense views as the original paper.
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2D Image Reconstructed Mesh
(a) FeatureNeRF Original Results

2D Image Sequence Reconstructed Mesh
(b) F3RM Original Results

(c) Comparisons with FeatureNeRF and F3RM
2D Image Ours FeatureNeRF F3RM

Figure 1: Mesh Reconstruction Comparison. (a) shows the reconstructed mesh of the FeatureNeRF, given
a 2D image from the training distribution. This reflects that our mesh extraction process works well when the
input image is within the training distribution. Given a sequence of 2D images densely scanning the workspace,
(b) also shows good reconstruction quality of the scene. However, when given sparse views containing novel
instances, both FeatureNeRF and F3RM fail to generate accurate meshes for the scene, which demonstrates the
effectiveness of our method.

For the dynamics training of the shoe-pushing example, we collected 20 episodes of pushing one
shoe. Then, we trained a dynamics model that can take in current particles and a pushing action and
predict particles in the next step.

For the evaluation in the real world, we summarize the details of our tasks in Table 1.

Environment Task Name Objects

Real World

Organize Shoes Shoe
Collect Debris Almonds

Organize Office Table Mouse, Pen, Mug
Organize Utensils Knife, Spoon, Fork, Bowl
Organize Fruits Apple, Banana

Push Shoes Shoe

Simulation

Serve Food Cupcake, Bread, Tomato, Lemon, Banana
Organize Mugs Mug
Organize Shoes Shoe

Organize Utensils Knife, Spoon, Fork

Table 1: Task Details Summary. This table summarizes our task environment, specific tasks, and
objects. We evaluate our framework on eight tasks and fifteen object categories, where each object
category covers several object instances with diverse appearances and shapes.
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3.2 Keypoint Tracking Results

We show two examples of 3D keypoint tracking in Figure 2. In the first scenario, we track a shoe as
it is pushed and subsequently flipped. The second example demonstrates tracking a shoe that is lifted
and then placed down. Our system robustly tracks the shoe in 3D space. These examples underscore
the effectiveness of D3Fields in maintaining accurate tracking in dynamic scenarios, which enables
our dynamics learning capabilities.

3.3 Mesh Comparisons with FeatureNeRF and F3RM

Push and Rotate Lifting

Figure 2: Keypoint Tracking. We apply D3Fields
to tracking tasks and showcase two tracking examples,
both of which involve 3D motions and partial observa-
tions from single viewpoints. This shows that our rep-
resentation is 3D, dynamic, and semantic.

We qualitatively compare the descriptor fields
generated by the three methods. We extract the
mesh from these fields using marching cubes,
as shown in Figure 1. We observe that our
D3Fields could generate accurate color meshes
given sparse views. FeatureNeRF could re-
construct a reasonable mesh given a single 2D
image from the training distribution, as shown
in Figure 1 (a). However, when it encounters
a new object outside the training distribution,
the reconstructed mesh will be completely off,
even when we apply the image preprocessing
to align the testing images with the training set
in terms of image sizes, data range, and back-
ground color. Although Figure 1 (b) shows that
we can reconstruct a clear mesh with dense im-
age sequences as in the original paper, its color
mesh is quite inaccurate given sparse view-
points in our experiment setting, except for the
shoe case.

3.4 Quantitative Correspondence Comparisons with FeatureNeRF and F3RM

(a) Drill (b) Hammer (c) Mug (d) Shoe

Pr
ec
is
io
n

Recall

Ours
F3RM [8]
FeatureNeRF [7]
DON [3]
DINO [4]
RGBD + DINOv2 [6]

Figure 3: Precision-Recall of Various Thresholds for Different Instances. The curves show how D3Fields
compares with 3 baseline methods in terms of matching quality, tested on 4 different instances: mug, bag, pan,
and shoe. We use the precision-recall curve to measure the correspondence quality. Our method shows to con-
sistently exceeds the performance of the baseline approaches, which demonstrates our method’s capability to
encode semantic information accurately and establish precise correspondences using the semantic information.

In addition, we also measure the quantitative correspondence accuracy of our method, FeatureNeRF,
and F3RM. We manually label the ground truth correspondence keypoints on the source image and
the target descriptor fields. We measure the correspondence quality using the precision-recall curve,
as shown in Figure 3 A larger area under the curve indicates better correspondence quality. Details
regarding the precision-recall curve are provided later. We could see that F3RM and FeatureNeRF
collapse to the origin point except for the shoe example for F3RM. This is because these two methods
fail to reconstruct meshes given sparse observations and unseen instances. In contrast, our method
shows a much better correspondence quality.
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To generate the precision-recall curve, we manually label one point xsrc on the 2D source image, and
a set of corresponding 3D points xtgt. For 2D points, we obtain the associated semantic feature fsrc.
For vertices on the reconstructed mesh, we can obtain a set of semantic features {ftgt,0, ..., ftgt,N}.
Then we compute the cosine similarity between features fsrc and {ftgt,0, ..., ftgt,N}. For one similarity
threshold τ , we filter out a set of points Fτ with similarity scores higher than τ . Additionally, we
identify the set of points G that are close to xtgt. We then define precision Pτ and Rτ as follows:

Pτ =
|Fτ ∩G|
|Fτ |

, Rτ =
|Fτ ∩G|
|G|

. (5)

By varying τ , we can plot the precision-recall curve as shown in Figure 3.

3.5 Comparisons with F3RM under Dense Views

We compare our approach using 4 views against F3RM [1], which uses 50 views (with and without
Grounding DINO + SAM supervision), on the Dense Object Nets dataset [4].

Our qualitative results are shown in Figure 4. Similar to the main paper, We compare the recon-
structed mesh, descriptor fields, and mask fields for our approach (4 views), F3RM without Ground-
ing DINO + SAM (50 views), and F3RM with Grounding DINO + SAM (50 views). We observed
that F3RM with 50 views reconstructs high-quality meshes, confirming our F3RM implementation
is bug-free. Additionally, there is no significant qualitative difference between our method with 4
views and F3RM with 50 views, demonstrating the effectiveness of our representation. Lastly, we
did not observe notable differences between F3RM with and without Grounding DINO + SAM,
which is consistent with our previous conclusion that this additional supervision does not signifi-
cantly contribute to F3RM training.

Similar to our paper, we also evaluated quantitative correspondence quality using the Precision-
Recall (P-R) curve, as shown in Figure 5. A larger area under the P-R curve indicates better
correspondence quality. Our results show no significant correspondence differences between our
approach with 4 views and F3RM with 50 views, indicating that our representation is effective even
with sparse views.

3.6 Ablation Study: Qualitative Correspondence Comparisons

In this section, we first study how different feature backbones could affect the correspondence
quality. Then we show the qualitative correspondence results of our method. As mentioned in
Section 3.1, we substitute our method’s backbone with other pre-trained models, like DON and
DINO [4, 8]. We also compare with RGBD+DINOv2 to demonstrate its effectiveness.

Figure 6 shows the qualitative correspondence results of all ablation baselines. There are three key
observations we can make from this figure.

• Compared with RGBD+DINOv2, our method’s correspondence quality is better. We
achieve more accurate correspondence since our representation can amortize noise from
single views by considering 3D consistency. Although RGBD+DINOv2 can achieve some
spatial consistency, there are still variances in results from different viewpoints, while our
method guarantees spatial consistency.

• Compared with DINO, our correspondence is more fine-grained and accurate. Thanks
to the advancements in foundational visual models, DINOv2 encodes more fine-grained
features and enables correspondence with higher accuracy.

• DON struggles to generalize to novel scenes and unseen object categories. Although the
original DON shows good correspondence quality, it is trained on one type of object with
a relatively small dataset. Compared with visual foundational models, it shows limited
generalization capabilities in terms of scenes and object categories.
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Figure 4: Comparisons with F3RM under Dense Views. We compared the reconstructed mesh, feature
fields, and mask fields with F3RM using dense views. Our results showed that, despite using sparse inputs, our
method did not exhibit significant qualitative performance degradation compared to F3RM under dense views,
demonstrating the efficiency of our approach.
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(a) Drill (b) Hat (c) Mug (d) Shoe
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Figure 5: Quantitative Comparisons with F3RM under Dense Views. We use the P-R curve to measure the
correspondence accuracy. Our results show no significant differences in correspondence between our approach
with 4 views and F3RM with 50 views, indicating that our representation remains effective even with sparse
views.

We also visualize the correspondence from 2D images to our workspace as shown in Figure 7.
Specifically, we extract the DINOv2 feature of the selected pixel in the 2D image. Then we high-
light the part of the 3D mesh with features close to the query feature. There are two observations
regarding the qualitative correspondence results. First, the semantically similar parts are correctly
matched across different instances and contexts. For example, when we select the rim of the plate
in the 2D image, the corresponding part in the 3D mesh is highlighted. This matching is consistent
across different object parts, such as the head and tail of the shoe, the handle and blade of the knife,
and the tip and bar of the drill. Second, the correspondence is multimodal when there are multiple
semantically similar object parts in the workspace. For example, when we select the spoon handle
in the 2D image, multiple utensil handles in the workspace are highlighted. The correspondence
qualitative results show that our D3Fields could establish meaningful correspondences across differ-
ent instances and contexts, so that we can rely on correspondence to define the planning objective
function.

3.7 Ablation Study: Quantitative Correspondence Comparisons

Similar to the main paper, we generate the precision-recall curve to quantitatively compare the cor-
respondence quality with ablation baselines. We can make the following observations regarding the
baseline correspondence results.

• Compared with RGBD+DINOv2, our method shows more accurate correspondence re-
sults. This is because our D3Fields can average out noise from each viewpoint, while
RGBD+DINOv2 accumulates noises.

• DINO faces challenges in accurately distinguishing specific object components. This limi-
tation results in less precise correspondence, as shown in Figure 3.

• Although DON can encode semantic features in seen environments and instances, it fails
to generalize to novel environments and object categories. Therefore, its correspondence
results are even worse than DINO, as shown in Figure 3.

3.8 Abaltion Study: Quantitative Manipulation Results

In Figure 8 (a), we measure performance using the IoU between the mask of the goal image and the
mask of the final state post-manipulation. Higher IoU values indicate a greater degree of alignment
between the intended and achieved configurations. Our method demonstrates superior performance
across five distinct object categories, consistently outshining the baseline methods. For each cate-
gory, we performed 5 experiments for the evaluation results. This not only highlights its exceptional
manipulation accuracy but also its robust generalization capabilities. While the DINO model ex-
hibits some struggles, particularly in distinguishing specific object components and consequently
yielding less precise results, it still performs better than DON. Although DON shows commendable
results with familiar objects and configurations, its performance dips in novel scenarios, revealing a
lack of generalization. These results collectively emphasize the significant advantages of our method
in diverse and accurate object manipulation.
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Figure 6: Correspondence Quantitative Comparison. The top row shows the selected pixel from the source
image, and the following rows show the corresponding areas for different methods. While our method could
have accurate correspondence, RGBD+DINOv2 corresponds to some points in the background. For example,
the drill tip is not accurately highlighted in the RGBD+DINOv2 example, while ours can accurately highlight
the drill tip. Ours with DINO feature backbones fail to identify objects accurately, while ours with DON fail to
generalize to novel scenes and novel instances.
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Source Image Target Image Correspondence Mesh Source Image Target Image Correspondence Mesh

Figure 7: Cross-Domain Correspondence. The red triangles represent query points in the source image, and
the corresponding areas are highlighted in the 3D mesh. First, we observe that our representation can encode
features for object parts and establish the correspondence, such as spoon tips and spoon handles. In addition,
we found the correspondence can be multimodal. When the shoe head is selected, multiple shoe heads in the
workspace are highlighted. At last, the correspondence is generalizable across different contexts, instances, and
domains, which demonstrates our method’s generalization capabilities.
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Figure 8: Quantitative Evaluation. We perform real-world quantitative evaluations by measuring final goal-
achieving performance and keypoints correspondence accuracy. (a) We use IoU to measure goal-achieving
performance. Results indicate that our method aligns with the goal configurations much better than DON and
DINO across various object categories and scenarios. (b) We measure the keypoints correspondence accuracy
according to the fraction of points with accurate matches, with correct matches determined by a distance thresh-
old. Our method is consistently better at aligning with the goal image, regardless of the chosen threshold.

In Figure 8 (b), we present the correspondence results. We label 10 corresponding keypoint pairs on
both the goal image and the final manipulation result to sufficiently evaluate the correspondence ac-
curacy. The accuracy of correspondence was determined by calculating the proportion of keypoints
that were accurately matched, using a predefined distance threshold as the criterion. If the dis-
tance between corresponding keypoints exceeds this threshold, they are determined as unmatched.
Our method shows superior performance across various thresholds, consistently outperforming the
baseline models. DINO emerges as the second-best in terms of performance, exhibiting broad appli-
cability but with a lower precision compared to our method. Meanwhile, DON lags in performance,
primarily due to its struggles with generalization in novel scenarios. These results, in conjunction
with those from Figure 8 (a), reiterate our method’s outstanding capabilities in both generalization
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and accuracy. While DINO provides reasonable applicability, it lacks the precision of our approach,
and the performance of DON is hindered by its limited adaptability.
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Figure 9: Qualitative Comparison with F3RM. We compare our representation with F3RM trained with
additional Grounded-SAM on four scenes. We qualitatively evaluate their performance by reconstructing their
mesh and visualizing descriptor fields and mask fields. Although Grounded-SAM supervision can help F3RM
to segment out objects as shown in the shoe example, it does not contribute too much to reconstructing a quality
mesh. In contrast, our representation can consistently reconstruct meshes and generate quality descriptor fields
and mask fields across four scenes.

3.9 F3RM with Grounded-SAM

We also trained F3RM [1] on Grounded-SAM [5, 6] and compare with our method, as shown in
Figure 9. For F3RM, we use the same setting as the main paper, except for the additional Grounded-
SAM labeling. We reconstruct meshes and visualize the corresponding descriptor meshes and mask
meshes, similar to what we did in the main paper. We have the following observations:

• F3RM could segment out objects given additional Grounded-SAM supervision, as shown
in the shoe example. This indicates that our F3RM training pipeline works as expected.

• Additional Grounded-SAM supervision does not influence too much on results. We could
see that reconstructed meshes are quite similar to the results from the main paper because
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additional Grounded-SAM supervision does not contribute too much to NeRF training.
Instead, sparse camera views are the main reason for the poor performance of F3RM.

• Our representation can consistently construct quality meshes and generate clear descriptor
fields and mask fields, which demonstrates the effectiveness of our method.

3.10 Debris Experiment Details

In this section, we provide more details and visualization for our debris experiments. Our initial
multi-view observations and goal images are visualized in Figure 10. In this task, we want the
robot to push spreading almonds into one object pile. We could see that initially, the debris spreads
over the workspace, which is quite different from the goal states. This task is challenging since
the dynamics of object piles is hard to predict. In addition, such manipulation capability needs an
efficient perception module so that it can gain visual feedback from the environment. Our zero-shot
rearrangement framework can collect these almonds into one pile successfully using our dynamic
representation and the learned dynamics model.
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Figure 10: Debris Experiments Details. We visualize initial multi-view observations in our debris experi-
ments and the corresponding goal image. The bottom row overlays the RGB observation with the mask. In this
task, our objective is to collect spreading debris into an object pile, which is useful for tasks like cleaning.
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