
Active Negative Loss Functions for Learning with
Noisy Labels

Xichen Ye
Shanghai University

Shanghai, China
yexichen0930@shu.edu.cn

Xiaoqiang Li ∗

Shanghai University
Shanghai, China

xqli@shu.edu.cn

Songmin Dai
Shanghai University

Shanghai, China
laodar@shu.edu.cn

Tong Liu
Shanghai University

Shanghai, China
tong_liu@shu.edu.cn

Yan Sun
Shanghai University

Shanghai, China
yansun@shu.edu.cn

Weiqin Tong
Shanghai University

Shanghai, China
wqtong@shu.edu.cn

Abstract

Robust loss functions are essential for training deep neural networks in the pres-
ence of noisy labels. Some robust loss functions use Mean Absolute Error (MAE)
as its necessary component. For example, the recently proposed Active Passive
Loss (APL) uses MAE as its passive loss function. However, MAE treats every
sample equally, slows down the convergence and can make training difficult. In
this work, we propose a new class of theoretically robust passive loss functions
different from MAE, namely Normalized Negative Loss Functions (NNLFs), which
focus more on memorized clean samples. By replacing the MAE in APL with
our proposed NNLFs, we improve APL and propose a new framework called Ac-
tive Negative Loss (ANL). Experimental results on benchmark and real-world
datasets demonstrate that the new set of loss functions created by our ANL
framework can outperform state-of-the-art methods. The code is available at
https://github.com/Virusdoll/Active-Negative-Loss.

1 Introduction

Relying on large-scale datasets with high quality annotations, such as ImageNet [1], deep neural
networks (DNNs) achieve good performance in various supervised classification tasks. However,
in practice, the process of labeling large-scale datasets is costly and inevitably introduces noisy
(mislabeled) samples. Moreover, empirical studies show that over-parameterized DNNs can easily fit
a randomly labeled dataset [2], which implies that DNNs may have a poor evaluation performance
when trained on a noisy dataset. As a result, noisy label learning has received a lot of attention.

Different approaches have been proposed to solve the noisy label learning problem, and one popular
research line is to design noise-robust loss functions, which is also the main focus of this paper.
Ghosh et al. [3] have theoretically proved that, symmetric loss functions such as Mean Absolute
Error (MAE), are robust to noise, while others like commonly used Cross Entropy (CE) are not.
However, MAE treats every sample equally, leading to significantly longer training time before
convergence and even making learning difficult, which suggests that MAE is not suitable for training
DNNs with challenging datasets [4]. Motivated by this, several works proposed partially robust loss
functions, including Generalized Cross Entropy (GCE) [4], a generalized mixture of CE and MAE,
and Symmetric Cross Entropy (SCE) [5], a combination of CE and a scaled MAE, Reverse Cross

∗Corresponding Author

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/Virusdoll/Active-Negative-Loss

Entropy (RCE). Recently, Active Passive Loss (APL) [6] framework has been proposed to create
fully robust loss functions.

APL is one of the state-of-the-art methods, and shows that any loss function can be made robust to
noisy labels by a simple normalization operation. Moreover, to address the underfitting problem of
normalized loss functions, APL first characterizes existing loss functions into two types and then
combines them. The two types are 1) “Active” loss, which only explicitly maximizes the probability
of being in the labeled class, and 2) “Passive” loss, which also explicitly minimizes the probabilities
of being in other classes. However, by investigating several robust loss functions created by the
APL framework, we find that their passive loss functions are always scaled versions of MAE. As we
mentioned before, MAE is not conducive to training. As a result, to address the underfitting problem,
APL combines active loss functions with MAE, which again may lead to difficulty in training and
further limits its performance.

The fact that APL still struggles with MAE motivates us to investigate new robust passive loss
functions. In this paper, we propose a new class of passive loss functions different from MAE, called
Negative Loss Functions (NLFs). We show that, by combining 1) complementary label learning [7, 8]
and 2) a simple “vertical flipping” operation, any active loss function can be made into a passive loss
function. Moreover, to make it theoretically robust to noisy labels, we further apply the normalization
operation on NLFs to obtain Normalized Negative Loss Functions (NNLFs). By replacing the MAE in
APL with NNLF, we propose a novel framework called Active Negative Loss (ANL). ANL combines
a normalized active loss function and a NNLF to build a new set of noise-robust loss functions,
which can be seen as an improvement of APL. We show that under our proposed ANL framework,
several commonly-used loss functions can be made robust to noisy labels while ensuring sufficient
fitting ability to achieve state-of-the-art performance for training DNNs with noisy datasets. Our key
contributions are highlighted as follows:

• We provide a method to build a new class of robust passive loss functions called Normalized
Negative Loss Functions (NNLFs). By replacing the MAE in APL with our proposed
NNLFs, we propose a novel framework, Active Negative Loss (ANL), to construct a new set
of robust loss functions.

• We demonstrate the theoretical robustness of our proposed NNLFs and ANL to noisy labels,
and discuss how replacing the MAE in APL with our NNLFs enhances performance in noisy
label learning.

• Our empirical results show that the new set of loss functions, created using our proposed
ANL framework, outperform existing state-of-the-art methods.

2 Preliminaries

2.1 Risk Minimization and Label Noise Model

Consider a typical K-class classification problem. Let X ⊂ Rd be the d-dimensional feature space
from which the samples are drawn, and Y = [k] = {1, · · · ,K} be the label space. Given a
clean training dataset, S = {(xn, yn)}Nn=1, where each (xn, yn) is drawn i.i.d. from an unknown
distribution, D, over X ×Y . We denote the distribution over different labels for sample x by q(k|x),
and

∑K
k=1 q(k|x) = 1. Since there is only one corresponding label y for a x, we have q(y|x) = 1

and q(k ̸= y|x) = 0.

A classifier, h(x) = argmaxi f(x)i, where f : X → C, C ⊆ [0, 1]K , ∀c ∈ C, 1T c = 1, is a function
that maps feature space to label space. In this work, we consider f as a DNN ending with a softmax
output layer. For each sample x, f(x) computes its probability p(k|x) of each label k ∈ {1, · · · ,K},
and

∑K
k=1 p(k|x) = 1. Throughout this paper, as a notation, we call f itself the classifier. Training

a classifier f is to find an optimal classifier f∗ that minimize the empirical risk defined by a loss
function:

∑N
n=1 L(f(xn), yn), where L : C ×Y → R+ is a loss function, and L(f(x), k) is the loss

of f(x) with respect to label k.

When label noise is present, our model can only access a corrupted dataset Sη = {(xn, ŷn)}Nn=1,
where each sample is drawn i.i.d. from an unknown distribution, Dη. In this paper, we consider a
popular approach for modeling label noise, which simply assumes that, given the true label y, the

2

corruption process is conditionally independent of input features x [9]. So we can formulate noisy
label ŷ as:

ŷ =

{
y with probability (1− ηy)

j, j ∈ [k], j ̸= y with probability ηyj
, (1)

where ηyj denotes the probability that true label y is corrupted into label j, and ηy =
∑

j ̸=y ηyj
denotes the noise rate of label y. Under our assumption of label noise model, label noise can be either
symmetric or asymmetric. The noise is called symmetric, if ηij = ηi

K−1 ,∀j ̸= y and ηi = η,∀i ∈ [k],
where η is a constant. And for asymmetric noise, ηij is conditioned on both the true label i and
corrupted label j.

2.2 Active Passive Loss Functions

Ghosh et al. [3] have shown, under some mild assumptions, a loss function L is noise tolerant if it is
symmetric:

∑K
k=1 L(f(x), k) = C,∀x ∈ X , where C is some constant. Based on this, Ma et al. [6]

proposed the normalized loss functions, which normalize a loss function L by:

Lnorm =
L(f(x), y)∑K
k=1 L(f(x), k)

. (2)

This simple normalization operation can make any loss function robust to noisy labels, since we
always have

∑K
k Lnorm = 1. For example, the Normalized Cross Entropy (NCE) is:

NCE =

∑K
k=1 q(k|x)(− log p(k|x))∑K

j=1

∑K
k=1 q(y = j|x) logp(k|x)

. (3)

Similarly, we can normalize FL, MAE, and RCE to obtain Normalized Focal Loss (NFL), Normalized
Mean Absolute Error (NMAE), and Normalized Reverse Cross Entropy (NRCE), respectively.

But a normalized loss function alone suffers from the underfitting problem. To address this, Ma et al.
[6] characterize existing loss functions into two types: Active and Passive. Denote the function of loss
L(f(x), y) by ℓ(f(x), k), that is L(f(x), y) =

∑K
k=1 ℓ(f(x), k) (e.g., let L be CE, then L(f(x), y)

=
∑K

k=1 q(k|x)(− log p(k|x)), and ℓ(f(x), k) = q(k|x)(− log p(k|x))), we have the following
definitions:
Definition 1 (Active loss function). LActive is an active loss function if ∀(x, y) ∈ D,∀k ̸=
y, ℓ(f(x), k) = 0.
Definition 2 (Passive loss function). LPassive is a passive loss function if ∀(x, y) ∈ D,∃k ̸=
y, ℓ(f(x), k) ̸= 0.

Active loss functions only explicitly maximize p(y|x), the classifier’s output probability at the
class position specified by the label y. In contrast, passive loss functions also explicitly minimize
p(k ̸= y|x), the probability at least one other class positions. Accordingly, the active loss functions
include CE, FL, NCE, and NFL, while the passive loss functions include MAE, RCE, NMAE, and
NRCE. These two types of loss functions can mutually boost each other to mitigate underfitting, and
we refer the reader to [6] for more detailed discussions. By combining them, Ma et al. proposed the
Active Passive Loss (APL):

LAPL = α · LActive + β · LPassive, (4)
where α, β > 0 are parameters. As an example, by combining NCE and RCE, Ma et al get NCE+RCE,
one of the state-of-the-art methods.

2.3 APL struggles with MAE

As shown in the previous subsection, there are four passive loss functions available to APL, including
MAE, RCE, NMAE, and NRCE. However, we can show that all these passive loss functions are
scaled versions of MAE. Specifically, NMAE = 1

2(K−1) · MAE, RCE = −A
2 · MAE, and

NRCE = 1
2(K−1) ·MAE (detailed derivations can be found in appendix A.1). Thus, we can rewrite

APL as follows:
LAPL = α · LActive + β ·MAE. (5)

3

0.0 0.2 0.4 0.6 0.8 1.0
p(k|x)

0

1
2 A

A

lo
ss (f(x), k)

A (f(x), k)

Figure 1: “Vertical flipping” operation. L(f(x), k) is an active loss function, e.g., CE. Loss function
A− L(f(x), k) is obtained by flipping L(f(x), k) vertically with axis loss = 1

2A.

This indicates that MAE is a necessary component of the current APL. However, as we mentioned
before, MAE requires longer training time and even makes learning difficult. Thus, on the one hand,
APL needs passive loss functions to mitigate active loss functions underfitting, yet on the other
hand, MAE is not training friendly, which may limit the performance of APL. This motivates us to
investigate new robust passive loss functions.

3 Active Negative Loss Functions

3.1 Method

Normalized Negative Loss Functions. Our goal is to find a method that creates robust passive loss
functions from existing active loss functions. This method must consist of three components that: 1)
let the loss function optimize the classifier’s output probability for at least one other class position
that is not specified by the label y, 2) let the loss function minimize the classifier’s output probability
instead of maximizing it, and 3) let the loss function robust to noisy labels. Inspired by NLNL [10]
and APL [6], we use 1) complementary label learning, 2) “vertical flipping” and 3) normalization
operation as these three components respectively.

Complementary label learning [7, 8] is an indirect learning method for training CNNs, which
randomly selects complementary labels and trains the CNN to recognize that “input does not belong
to this complementary label”. Unlike the usual training approach, complementary label learning
focuses on the loss of classifier’s predictions with complementary labels, which naturally fits with the
passive loss function. Here, we only use its basic idea of letting the loss function focus on all classes
{1, · · · ,K} except the labeled class y.

“Vertical flipping” is a simple operation that can convert the loss function from “maximizing” to
“minimizing”. As shown in the fig. 1, given an active loss function L(f(x), k), the new loss function
A−L(f(x), k) is obtained by flipping L(f(x), k) vertically with axis loss = 1

2A. It should be noted
that, A− L(f(x), k) is the opposite of L(f(x), k), and it focuses on optimizing p(k|x) to 0.

Based on these two components, given an active loss function L, we propose Negative Loss Functions
(NLFs) as follows:

Lneg(f(x), y) =

K∑
k=1

(1− q(k|x))(A− L(f(x), k)), (6)

A = L([· · · ,pmin, · · ·]T , y). (7)

Here, [· · · ,pmin, · · ·]T is some probability distribution that may be output by the classifier f , where
p(y|x) = pmin, the minimum value of p(k|x) (e.g., 0). Therefore A is some constant, the maximum
loss value of L. In practice, setting pmin = 0 could cause some computational problems, for example,
if L is CE and pmin = 0, then A = − log 0 = +∞. So in this paper, unless otherwise specified, we
define pmin = 1× 10−7. This technique is similar to the clipping operation implemented by most
deep learning frameworks.

Our proposed NLF can transform any active loss function into a passive loss function, where 1) (1−
q(k|x)) ensures that the loss function focuses on classes {1, · · · ,K} \ {y}, and 2) (A−L(f(x), k))
ensures that the loss function aims to minimize the output probability p(k|x).

4

Next, to make our proposed passive loss functions robust to noisy labels, we perform a normalization
operation on NLFs. Given an active loss function L, we propose Normalized Negative Loss Functions
(NNLFs) as follows:

Lnn(f(x), y) = 1− A− L(f(x), y)∑K
k=1 A− L(f(x), k)

, (8)

where A has the same definition as eq. (7). The detailed derivation of NNLFs can be found in
appendix A.2. Additionally, NNLFs have the property that Lnn ∈ [0, 1]. Accordingly, we can create
NNLFs from active loss functions as follows.

The Normalized Negative Cross Entropy (NNCE) is:

NNCE = 1− A− (− log p(y|x))∑K
k=1 A− (− log p(k|x))

, (9)

where A = − log pmin.

The Normalized Negative Focal Loss (NNFL) is:

NNFL = 1− A− (−(1− p(y|x))γ log p(y|x))∑K
k=1 A− (−(1− p(k|x))γ log p(k|x))

, (10)

where A = −(1− pmin)
γ log pmin.

ANL Framework. We can now create new robust loss functions by replacing the MAE in APL with
our proposed NNLF. Given an active loss function L, we propose the Active Negative Loss (ANL)
functions as follows:

LANL = α · Lnorm + β · Lnn. (11)

Here, α and β are parameters greater than 0, Lnorm denotes the normalized L and Lnn denotes the
Normalized Negative Loss Function corresponding to L. Accordingly, we can create ANL from the
two mentioned active loss functions as follows.

For Cross Entropy (CE), we have ANL-CE:

LANL-CE = α · LNCE + β · LNNCE. (12)

For Focal Loss (FL), we have ANL-FL:

LANL-FL = α · LNFL + β · LNNFL. (13)

3.2 Robustness to noisy labels

NNLFs are symmetric. We first prove that our proposed Normalized Negative Loss Functions
(NNLFs) are symmetric. Detailed proofs can be found in appendix B.
Theorem 1. Normalized negative loss function Lnn is symmetric.

NNLFs are robust to noise. In reference to Theorem 1 and Theorem 3 from [3], it has been proven
that symmetric loss functions, under some mild assumptions, exhibit noise tolerant in the face of both
symmetric and asymmetric noise. Given that our NNLFs fall under the category of symmetric loss
functions, they inherently possess the attribute of noise tolerant.

ANL is robust to noise. In light of Lemma 3 from [6], it is understood that the combination of two
noise tolerant loss functions retains the noise tolerant attribute. It is noteworthy that both Lnorm and
Lnn within our ANL are noise tolerant, which makes ANL as a whole noise tolerant.

3.3 NNLFs focus more on well-learned samples

As shown in the fig. 2, by replacing MAE with our proposed NNCE, NCE+NNCE and ANL-CE
show better fitting ability. This raises the question: why does NNLF perform better than MAE? In the
following, taking NNCE as an example, we analysis the gradients of MAE and NNCE to provide a
preliminary answer to this question. Detailed derivations and proofs can be found in appendix C.

The gradient of the MAE with respect to the classifier’s output probability can be derived as:

∂LMAE

∂p(j|x)
=

{
1, j ̸= y

−1, j = y.
(14)

5

0 20 40 60 80 100 120
Epochs

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Clean Samples in Training Set
Noisy Samples in Training Set
Test Set

(a) CE

0 20 40 60 80 100 120
Epochs

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

(b) MAE

0 20 40 60 80 100 120
Epochs

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

(c) NCE+RCE

0 20 40 60 80 100 120
Epochs

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

(d) ANL-CE (w/ L2)

0 20 40 60 80 100 120
Epochs

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

(e) ANL-CE (w/ L1)

0 50 100 150 200
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

(f) CE

0 50 100 150 200
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

(g) MAE

0 50 100 150 200
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

(h) NCE+RCE

0 50 100 150 200
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

(i) ANL-CE (w/ L2)

0 50 100 150 200
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

(j) ANL-CE (w/ L1)

Figure 2: Training and test accuracies of different loss functions. (a) - (e): CIFAR-10 under 0.8
symmetric noise. (f) - (j): CIFAR-100 under 0.6 symmetric noise. The accuracies of noisy samples in
training set should be as low as possible, since they are mislabeled.

The gradient of the NNCE with respect to the classifier’s output probability can be derived as:

∂LNNCE

∂p(j|x)
=


1

p(j|x) ·
A+log p(y|x)(∑K

k=1 A+log p(k|x)
)2 , j ̸= y

− 1
p(y|x) ·

∑
k ̸=y A+log p(k|x)(∑K
k=1 A+log p(k|x)

)2 , j = y.
(15)

For the purpose of analysis, we consider how the gradients of NNCE would differ from MAE in
the following two scenarios: 1) given the classifier’s output probability of sample x, we analyze the
difference in gradient for each class, 2) given the classifier’s output probabilities of sample x1 and
x2, we analyze the difference in gradient between these two samples.

Theorem 2. Given the classifier’s output probability p(·|x) for sample x and normalized negative
cross entropy LNNCE. If p(j1|x) < p(j2|x), j1 ̸= j2 ̸= y, then ∂LNNCE

∂p(j1|x) >
∂LNNCE
∂p(j2|x) .

Theorem 3. Given the classifier’s output probabilities p(·|x1) and p(·|x2) of sample x1 and x2,
where p(y|x1) ≥ p(k|x1), p(y|x2) ≥ p(k|x2), ∀k ∈ {1, · · · ,K}, p(j|x1) = p(j|x2), j ̸= y, and
normalized negative cross entropy LNNCE. If p(y|x1) > p(y|x2) and p(k|x1) ≤ p(k|x2), ∀k ∈ {1,
· · · , K} \{j, y}, then ∂LNNCE

∂p(j|x1)
> ∂LNNCE

∂p(j|x2)
.

theorem 2 and theorem 3 demonstrate that, for the gradient of the non-labeled classes, our NNCE
focuses more on the classes and samples that have been well learned compared to MAE, which
treats every class and sample equally This property may enhance the model’s performance in noisy
label learning. Some studies [11] have shown that during the training process, DNNs would first
memorize clean samples and then noisy samples. According to the property revealed by theorem 2
and theorem 3, apart from robustness, our NNLF may potentially help the model to continuously
learn the clean samples that the model has memorized in the previous stages of training and ignore
the unmemorized noisy samples.

4 Experiments

In this section, we empirically investigate our proposed ANL functions on benchmark datasets,
including MNIST [12], CIFAR-10/CIFAR-100 [13] and a real-world noisy dataset WebVision [14].

4.1 Empirical Understandings

In this subsection, we explore some properties of our proposed loss functions. Unless otherwise
specified, all detailed experimental settings are the same as those in section 4.2. More experiments
and discussions about gradient, parameter analysis, and pmin can be found in the appendix D.1.

6

0 20 40 60 80 100 120
Epochs

0.25

0.35

0.45

0.55

0.65

Te
st

 A
cc

ur
ac

y
(a) w/o regularizar

0 20 40 60 80 100 120
Epochs

0.25

0.35

0.45

0.55

0.65

Te
st

 A
cc

ur
ac

y

= 1e 7
= 5e 7
= 1e 6
= 5e 6
= 1e 5
= 5e 5
= 1e 4

(b) L2

0 20 40 60 80 100 120
Epochs

0.25

0.35

0.45

0.55

0.65

Te
st

 A
cc

ur
ac

y

= 1e 7
= 5e 7
= 1e 6
= 5e 6
= 1e 5
= 5e 5
= 1e 4

(c) Jacobian

0 20 40 60 80 100 120
Epochs

0.25

0.35

0.45

0.55

0.65

Te
st

 A
cc

ur
ac

y

= 1e 7
= 5e 7
= 1e 6
= 5e 6
= 1e 5
= 5e 5
= 1e 4

(d) L1

Figure 3: Test accuracies of ANL-CE on CIFAR-10 under 0.8 symmetric noise with different
regularization methods and different parameters. δ is the weight of regularization term of ANL-CE.

Table 1: Test accuracies (%) of different methods on CIFAR-10 datasets with clean and symmetric
(η ∈ {0.2, 0.4, 0.6, 0.8}) label noise. The top-1 best results are in bold.

Methods Clean (η = 0.0) η = 0.2 η = 0.4 η = 0.6 η = 0.8
NCE 88.68 81.65 74.80 63.14 37.52

NNCE 91.51 90.09 86.91 82.16 57.06
ANL-CE 91.66±0.04 90.02±0.23 87.28±0.02 81.12±0.30 61.27±0.55

Overfitting problem. In practice, we find that ANL can lead to overfitting in some experimental
settings. To motivate this problem, as an example, we train networks using different loss functions
on CIFAR-10 under 0.8 symmetric noise and CIFAR-100 under 0.6 symmetric noise, and the
experimental results are shown in fig. 2. As can be observed, in the setting of CIFAR-10 under 0.8
symmetric noise, the training set accuracy of ANL-CE (w/ L2) keeps increasing while the test set
accuracy keeps decreasing. We identify this problem as an overfitting problem.

It is worth noting that although overfitting occurs, unlike CE, the gap between the clean sample
accuracies and the noisy sample accuracies of the training set does not shrink, which indicates that
our ANL has some robustness to noisy labels even in the case of overfitting. Moreover, we conjecture
that the overfitting is caused by the property of NNLF focusing more on well-learned samples. When
the noise rate is high, one might assume that the model has been trained on only a fairly small number
of clean samples, with a very large gradient, which can lead to overfitting.

The choice of regularization method. We also find that the commonly used L2 regularization
may struggle to mitigate the overfitting problem. To address this, we decide to try using other
regularization methods. We consider 2 other regularization methods: L1 and Jacobian [15, 16]. To
compare the performance of these methods, we apply them to ANL-CE for training on CIFAR-10
under 0.8 symmetric noise. For simplicity and fair comparison, we use δ as the coefficient of the
regularization term and consider it as an additional parameter of ANL. We keep α and β the same as
in section 4.2, tune δ for all three methods by following the parameter tuning setting in appendix D.2.
We also train networks without using any regularization method. The results reported in fig. 3. As
can be observed, among the three regularization methods, only L1 can somewhat better mitigate the
overfitting problem. If not otherwise specified, all ANLs in this paper use L1 regularization.

Robustness and fitting ability. We conduct a set of experiments on CIFAR-10/-100 to verify the
robustness and fitting ability of our proposed loss functions. We set the noise type to be symmetric
and the noise rate to 0.8 for CIFAR-10 and 0.6 for CIFAR-100. In each setting, we train the network
using different loss functions, including: 1) CE, 2) MAE, 3) NCE+RCE, 4) ANL-CE (w/ L2), and 5)
ANL-CE (w/ L1). For ANL-CE (w/ L2), we set its parameters α and β to be the same as ANL-CE
(w/ L1) and set its weight decay to be the same as NCE+RCE.

As can be observed in fig. 2: 1) CE is not robust to noise, the accuracies of clean and noisy samples
in the training set are continuously close to each other, 2) MAE is robust to noise, the accuracies of
clean and noisy samples in the training set keep moving away from each other, but its fitting ability is
insufficient, especially when the dataset becomes complex, 3) NCE+RCE is robust to noise and has
better fitting ability compared to MAE, 4) ANL-CE (w/ L2) is robust to noise and has stronger fitting
ability, but suffers from over-fitting. and 5) ANL-CE is robust to noise and mitigates the impact of
overfitting to achieve the best performance. To summarize, our proposed loss functions are robust to
noise, NNLF shows better fitting ability than MAE, and L1 regularization addresses the overfitting
problem of NNLF.

7

Table 2: Test accuracies (%) of different methods on benchmark datasets with clean, symmetric
(η ∈ {0.4, 0.6, 0.8}) or asymmetric (η ∈ {0.2, 0.3, 0.4}) label noise. The results (mean±std) are
reported over 3 random runs under different random seeds (1, 2, 3). The top-2 best results are in bold.

Datasets Methods Clean (η=0.0) Symmetric Noise Rate (η) Asymmetric Noise Rate (η)
0.4 0.6 0.8 0.2 0.3 0.4

MNIST

CE 99.20±0.02 74.46±0.28 49.19±0.05 22.51±0.23 94.02±0.18 88.90±0.07 81.79±0.34
MAE 99.16±0.03 98.80±0.02 97.69±0.20 70.35±1.16 99.11±0.03 98.42±0.09 87.40±4.01

GCE [4] 99.18±0.01 96.81±0.13 80.86±0.31 33.59±0.48 96.59±0.07 88.99±0.27 81.91±0.58
SCE [5] 99.30±0.07 97.48±0.16 88.35±0.77 48.28±0.81 97.95±0.23 94.00±0.41 84.54±0.14

NLNL [10] 98.61±0.13 97.17±0.09 95.42±0.30 86.34±1.43 98.35±0.01 97.51±0.15 95.84±0.26
NCE+RCE [6] 99.43±0.02 98.53±0.09 95.61±0.12 74.04±1.83 98.79±0.10 95.16±0.08 91.36±0.22

NCE+AGCE [17] 99.10±0.03 98.91±0.04 98.50±0.07 96.93±0.13 99.04±0.02 98.94±0.03 98.41±0.04
ANL-CE 99.08±0.05 98.84±0.05 98.42±0.08 96.62±0.12 99.04±0.04 98.91±0.07 98.01±0.10
ANL-FL 99.13±0.05 98.90±0.05 98.46±0.12 95.73±0.22 99.05±0.09 98.93±0.02 98.18±0.01

CIFAR-10

CE 90.38±0.11 58.19±0.21 38.75±0.19 19.09±0.35 83.00±0.33 78.15±0.17 73.69±0.20
MAE 89.15±0.27 81.76±3.17 76.82±0.84 46.42±3.66 79.63±0.74 67.35±3.41 57.36±2.37

GCE [4] 89.66±0.20 82.44±0.26 68.62±0.35 25.45±0.51 85.55±0.24 79.32±0.52 72.83±0.17
SCE [5] 91.38±0.12 79.96±0.25 62.16±0.33 27.98±0.98 86.22±0.44 80.20±0.20 74.01±0.52

NLNL [10] 90.73±0.20 63.90±0.44 50.68±0.47 29.53±1.55 84.74±0.08 81.26±0.43 76.97±0.52
NCE+RCE [6] 90.94±0.01 86.03±0.13 79.89±0.11 55.52±2.74 88.36±0.13 84.84±0.16 77.75±0.37

NCE+AGCE [17] 91.08±0.06 86.16±0.10 80.14±0.27 55.62±4.78 88.48±0.09 84.79±0.15 78.60±0.41
ANL-CE 91.66±0.04 87.28±0.02 81.12±0.30 61.27±0.55 89.13±0.11 85.52±0.24 77.63±0.31
ANL-FL 91.79±0.19 87.25±0.11 81.67±0.19 61.22±0.85 89.09±0.31 85.81±0.23 77.73±0.31

CIFAR-100

CE 71.14±0.38 40.72±0.74 22.98±0.07 7.55±0.21 58.25±1.00 50.30±0.19 41.53±0.34
MAE 7.35±1.19 3.61±0.21 3.63±0.35 2.83±1.35 6.19±0.42 5.82±0.96 3.96±0.35

GCE [4] 61.62±0.43 56.46±0.95 46.27±1.30 19.51±0.86 59.06±0.46 53.88±0.96 41.51±0.52
SCE [5] 70.80±0.37 39.84±0.19 21.97±0.92 7.87±0.48 57.78±0.83 50.15±0.12 41.33±0.86

NLNL [10] 68.72±0.60 30.29±1.64 16.60±0.90 11.01±2.48 50.19±0.56 42.81±1.13 35.10±0.20
NCE+RCE [6] 68.22±0.28 57.97±0.30 46.26±1.07 25.65±0.51 62.77±0.53 55.62±0.56 42.46±0.42

NCE+AGCE [17] 68.61±0.12 59.74±0.68 47.96±0.44 24.13±0.07 64.05±0.25 56.36±0.59 44.90±0.62
ANL-CE 70.68±0.23 61.80±0.50 51.52±0.53 28.07±0.28 66.27±0.19 59.76±0.34 45.41±0.68
ANL-FL 70.40±0.15 61.73±0.48 51.32±0.34 27.97±0.58 66.26±0.44 59.68±0.86 46.65±0.04

Table 3: Top-1 validation accuracies(%) on clean ILSVRC12 and WebVision validation set of
ResNet-50 models trained on WebVision using different methods. The top-2 best results are in bold.

Methods CE GCE [4] SCE [5] NCE+RCE [6] NCE+AGCE [17] ANL-CE ANL-FL
ILSVRC12 Val 58.64 56.56 62.60 62.40 60.76 65.00 65.56
WebVision Val 61.20 59.44 68.00 64.92 63.92 67.44 68.32

Active and passive parts separately. In table 1, we show the results of the active and passive parts
separately. We separately train NCE and NNCE on CIFAR-10 with different symmetric noise rates
while maintaining the same parameters as ANL-CE. Specifically, for α · NCE, we set α to 5.0 and
for β · NNCE, we set β to 5.0, while δ is set to 5× 10−5 for both. As indicated in the results, the test
set accuracies of NNCE are very close to those of ANL-CE, except in the case with a 0.8 noise rate.
This suggests that NNCE performs well on its own at low noise rates. However, at very high noise
rates, a combination of active losses is needed to achieve better performance.

4.2 Evaluation on Benchmark Datasets

Baselines. We consider several state-of-the-art methods: 1) Generalized Cross Entropy (GCE) [4]; 2)
Symmetric Cross Entropy (SCE) [5]; 3) Negative Learning for Noisy Labels (NLNL) [10]; 4) Active
Passive Loss (APL) [6], including NCE+MAE, NCE+RCE, and NFL+RCE; 5) Asymmetric Loss
Functions (AFLs) [17], including NCE+AEL, NCE+AGCE, and NCE+AUL. For our proposed ANL,
we consider two loss functions: 1) ANL-CE and 2) ANL-FL. Additionally, we train networks using
Cross Entropy (CE), Focal Loss (FL) [18], and Mean Absolute Error (MAE).

Experimental Details. The full experimental results and the detailed settings of noise generation,
networks, training and parameters can be found in the appendix D.2.

Results. The main experimental results under symmetric and asymmetric label noise are reported
in table 2. For more experimental results, please see appendix D.2. As can be observed, our ANL-
CE and ANL-FL show significant improvement for most label noise settings of CIFAR-10/-100,
especially when the data become more complex and the noise rate becomes larger. For example, on
CIFAR-10 under 0.8 symmetric noise, our ANL-CE outperform the state-of-the-art method (55.62%
of NCE+AGCE) by more than 5.0%. Overall, the experimental results demonstrate that our ANL can
show outstanding performance on different datasets, noise types, and noise rates, which validates the
effectiveness of our proposed NNLFs and ANL.

8

4.3 Evaluation on Real-world Noisy Labels

Here, we evaluate our proposed ANL methods on large-scale real-world noisy dataset WebVision
[14], which contains more than 2.4 million web images crawled from the internet by using queries
generated from the 1,000 class labels of the ILSVRC 2012 [1] benchmark. Here, we follow the “Mini”
setting in [19], and only take the first 50 classes of the Google resized image subset. We evaluate the
trained networks on the same 50 classes of both the ILSVRC 2012 validation set and the WebVision
validation set, and these can be considered as clean validation sets. We compare our ANL-CE and
ANL-FL with GCE, SCE, NCE+RCE, and NCE+AGCE. The experimental details can be found in
the appendix D.3. The results are reported in table 3. As can be observed, our proposed methods
outperform the existing loss functions. This verifies that our proposed ANL framework can help the
trained model against real-world label noise.

Moreover, in addition to WebVision, to further validate the effectiveness of our method on real-world
noisy datasets, we also conduct a set of experiments on CIFAR-10N/-100N [20], Animal-10N [21],
and Clothing-1M [22]. The experimental details and results can be found in the appendix D.5, which
demonstrate the effectiveness of our method on different real-world noisy datasets.

5 Limitations

We believe that the main limitation of our approach lies in the choice of regularization method.
Although we have experimentally verified that L1 is the most efficient among the three regularization
methods (L1, L2, and Jacobian), we lack further theoretical analysis of it. Furthermore, although
we only consider relatively simple regularization methods for the sake of fair comparison, other
regularization methods, such as dropout [23] or regmixup [24], might be more effective in mitigating
the overfitting problem caused by NNLF. And we believe that a better solution to overfitting can
further improve the performance of our method.

6 Related Work

In recent years, some robust loss-based methods have been proposed for robust learning with noisy
labels. Here, we briefly review the relevant approaches. Ghosh et al. [3] theoretically proved that
symmetric loss functions, such as MAE, are robust to label noise. Zhang and Sabuncu [4] proposed
Generalized Cross Entropy (GCE), a generalization of CE and MAE. Wang et al. [5] suggested a
combination of CE and scaled MAE, and proposed Symmetric Cross Entropy (SCE). Menon et al.
[25] proposed composite loss-based gradient clipping and applied it to CE to obtain PHuber-CE.
Ma et al. [6] proposed Active Passive Loss (APL) to create fully robust loss functions. Feng et al.
[26] applied the Taylor series to derive an alternative representation of CE and proposed Taylor-
CE accordingly. Zhou et al. [17] proposed Asymmetric Loss Functions (ALFs) to overcome the
symmetric condition. Inspired by complementary label learning, NLNL [10] and JNPL [27] use
complementary labels to reduce the risk of providing the wrong information to the model.

7 Conclusion

In this paper, we propose a new class of theoretically robust passive loss functions different from
MAE, which we refer to as Normalized Negative Loss Functions (NNLFs). By replacing the MAE
in APL with our NNLF, we propose Active Negative Loss (ANL), a robust loss function framework
with stronger fitting ability. We theoretically demonstrate that our NNLFs and ANLs are robust to
noisy labels and also highlight the property that NNLFs focus more on well-learned samples. We
found in our experiments that NNLFs have a potential overfitting problem, and we suggest using
L1 regularization to mitigate it. Experimental results verified that our ANL can outperform the
state-of-the-art methods on benchmark datasets.

9

Acknowledgements

This work is supported in part by Shanghai Science and Technology Committee under grant No.
21511100600 and No. 22511106005.

References
[1] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical

image database. Proceedings of the 2009 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, pages 248–255, 2009.

[2] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep
learning requires rethinking generalization. Proceedings of the 5th International Conference on Learning
Representations, 2017.

[3] Aritra Ghosh, Himanshu Kumar, and P. S. Sastry. Robust Loss Functions under Label Noise for Deep
Neural Networks. Proceedings of the 31st AAAI Conference on Artificial Intelligence, pages 1919–1925,
2017.

[4] Zhilu Zhang and Mert R. Sabuncu. Generalized Cross Entropy Loss for Training Deep Neural Networks
with Noisy Labels. Advances in Neural Information Processing Systems 31, pages 8792–8802, 2018.

[5] Yisen Wang, Xingjun Ma, Zaiyi Chen, Yuan Luo, Jinfeng Yi, and James Bailey. Symmetric Cross Entropy
for Robust Learning with Noisy Labels. Proceedings of the 2019 IEEE International Conference on
Computer Vision, pages 322–330, 2019.

[6] Xingjun Ma, Hanxun Huang, Yisen Wang, Simone Romano, Sarah M. Erfani, and James Bailey. Nor-
malized Loss Functions for Deep Learning with Noisy Labels. Proceedings of the 37th International
Conference on Machine Learning, pages 6543–6553, 2020.

[7] Takashi Ishida, Gang Niu, Weihua Hu, and Masashi Sugiyama. Learning from Complementary Labels.
Advances in Neural Information Processing Systems 30, pages 5639–5649, 2017.

[8] Xiyu Yu, Tongliang Liu, Mingming Gong, and Dacheng Tao. Learning with Biased Complementary Labels.
15th Proceedings of the European Conference on Computer Vision, pages 69–85, 2018.

[9] Nagarajan Natarajan, Inderjit S. Dhillon, Pradeep Ravikumar, and Ambuj Tewari. Learning with Noisy
Labels. Advances in Neural Information Processing Systems 26, pages 1196–1204, 2013.

[10] Youngdong Kim, Junho Yim, Juseung Yun, and Junmo Kim. NLNL: Negative Learning for Noisy Labels.
Proceedings of the 2019 IEEE International Conference on Computer Vision, pages 101–110, 2019.

[11] Mingchen Li, Mahdi Soltanolkotabi, and Samet Oymak. Gradient descent with early stopping is prov-
ably robust to label noise for overparameterized neural networks. International conference on artificial
intelligence and statistics, pages 4313–4324, 2020.

[12] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[13] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. 2009.

[14] Wen Li, Limin Wang, Wei Li, Eirikur Agustsson, and Luc Van Gool. Webvision Database: Visual Learning
and Understanding from Web Data. CoRR, abs/1708.02862, 2017. URL http://arxiv.org/abs/1708.
02862.

[15] Jure Sokolic, Raja Giryes, Guillermo Sapiro, and Miguel R. D. Rodrigues. Robust Large Margin Deep
Neural Networks. IEEE Trans. Signal Process., 65(16):4265–4280, 2017.

[16] Judy Hoffman, Daniel A. Roberts, and Sho Yaida. Robust Learning with Jacobian Regularization. CoRR,
abs/1908.02729, 2019. URL http://arxiv.org/abs/1908.02729.

[17] Xiong Zhou, Xianming Liu, Junjun Jiang, Xin Gao, and Xiangyang Ji. Asymmetric Loss Functions for
Learning with Noisy Labels. Proceedings of the 38th International Conference on Machine Learning,
pages 12846–12856, 2021.

[18] Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming He, and Piotr Dollár. Focal Loss for Dense Object
Detection. Proceedings of the 2017 IEEE International Conference on Computer Vision, pages 2999–3007,
2017.

10

http://arxiv.org/abs/1708.02862
http://arxiv.org/abs/1708.02862
http://arxiv.org/abs/1908.02729

[19] Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, and Li Fei-Fei. MentorNet: Learning Data-Driven
Curriculum for Very Deep Neural Networks on Corrupted Labels. Proceedings of the 35th International
Conference on Machine Learning, pages 2309–2318, 2018.

[20] Jiaheng Wei, Zhaowei Zhu, Hao Cheng, Tongliang Liu, Gang Niu, and Yang Liu. Learning with noisy
labels revisited: A study using real-world human annotations. Proceesdings of the 10th International
Conference on Learning Representations, 2022.

[21] Hwanjun Song, Minseok Kim, and Jae-Gil Lee. SELFIE: Refurbishing Unclean Samples for Robust Deep
Learning. Proceedings of the 36th International Conference on Machine Learning, 2019.

[22] Tong Xiao, Tian Xia, Yi Yang, Chang Huang, and Xiaogang Wang. Learning from massive noisy labeled
data for image classification. Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern
Recognition, pages 2691–2699, 2015.

[23] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout:
A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15(56):
1929–1958, 2014.

[24] Francesco Pinto, Harry Yang, Ser Nam Lim, Philip H. S. Torr, and Puneet K. Dokania. Using mixup as
a regularizer can surprisingly improve accuracy & out-of-distribution robustness. Advances in Neural
Information Processing Systems 35, 2022.

[25] Aditya Krishna Menon, Ankit Singh Rawat, Sanjiv Kumar, and Sashank Reddi. Can gradient clipping
mitigate label noise? Proceedings of the 8th International Conference on Learning Representations, 2020.

[26] Lei Feng, Senlin Shu, Zhuoyi Lin, Fengmao Lv, Li Li, and Bo An. Can cross entropy loss be robust to
label noise? 29th International Joint Conference on Artificial Intelligence, 2020.

[27] Youngdong Kim, Juseung Yun, Hyounguk Shon, and Junmo Kim. Joint Negative and Positive Learning
for Noisy Labels. Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition,
pages 9442–9451, 2021.

[28] Giorgio Patrini, Alessandro Rozza, Aditya Krishna Menon, Richard Nock, and Lizhen Qu. Making Deep
Neural Networks Robust to Label Noise: A Loss Correction Approach. Proceedings of the 2017 IEEE
Conference on Computer Vision and Pattern Recognition, pages 2233–2241, 2017.

[29] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image Recognition.
Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, pages 770–778,
2016.

[30] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. Proceedings of the 3rd
International Conference on Learning Representations, 2015.

[31] Daiki Tanaka, Daiki Ikami, Toshihiko Yamasaki, and Kiyoharu Aizawa. Joint optimization framework for
learning with noisy labels. Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern
Recognition, pages 5552–5560, 2018.

11

A Loss functions

A.1 NMAE, RCE, and NRCE are scaled versions of MAE

Here, inspired by [5, 6], we show how to reformulate NMAE, RCE, and NRCE as scaled versions of
MAE. First, for convenience, we reformulate the Mean Absolute Error (MAE) as follows:

MAE =

K∑
k=1

|p(k|x)− q(k|x)|

= (1− p(y|x)) +
∑
k ̸=y

p(k|x)

= 2(1− p(y|x)),

(16)

where the last equality holds due to
∑K

k=1 p(k|x) = 1.

For Normalized Mean Absolute Error (NMAE), we have:

NMAE =

∑K
k=1 |p(k|x)− q(k|x)|∑K

j=1

∑K
k=1 |p(k|x)− q(y = j|x)|

=
2(1− p(y|x))∑K
j=1 2(1− p(j|x))

=
1

K − 1
(1− p(y|x))

=
1

2(K − 1)
·MAE.

(17)

This shows that the NMAE is a scaled version of the MAE with a factor of 1
2(K−1) .

For Reverse Cross Entropy (RCE), we have:

RCE =

K∑
k=1

p(x|x)(− log q(k|x))

= p(y|x)(− log 1) +
∑
k ̸=y

p(k|x)(− log 0)

=
∑
k ̸=y

p(k|x)(−A)

= −A(1− p(y|x))

= −A

2
·MAE,

(18)

recall that in RCE we set log 0 = A, where A < 0 is some constant (e.g., A = −4). This shows that
the RCE is a scaled version of the MAE with a factor of −A

2 .

For Normalized Reverse Cross Entropy (NRCE), we have:

NRCE =

∑K
k=1 p(k|x)(− log q(k|x))∑K

j=1

∑K
k=1 p(k|x)(− log q(y = j|x))

=
−A(1− p(y|x))∑K

j=1(−A(1− p(j|x)))

=
1

K − 1
(1− p(y|x))

=
1

2(K − 1)
·MAE.

(19)

This shows that NRCE is a scaled version of the MAE with a factor of 1
2(K−1) .

12

A.2 Normalized Negative Loss Functions

Here, we show how to derive Normalized Negative Loss Functions (NNLFs) into its proper form.

NNLF =

∑K
k=1(1− q(k|x))(A− L(f(x), k))∑K

j=1

∑K
k=1(1− q(k = j|x))(A− L(f(x), k))

=

∑
k ̸=y A− L(f(x), k)∑K

j=1

∑
k ̸=j A− L(f(x), k)

=

∑
k ̸=y A− L(f(x), k)

(K − 1)
∑K

k=1 A− L(f(x), k)

=
1

K − 1
·
(
1− A− L(f(x), y)∑K

k=1 A− L(f(x), k)

)
∝ 1− A− L(f(x), y)∑K

k=1 A− L(f(x), k)
.

(20)

B Noise tolerant

Theorem 1. Normalized negative loss function Lnn is symmetric.

Proof. For all x ∈ X and all f , we have:

K∑
k=1

Lnn(f(x), k) =

K∑
k=1

(
1− A− L(f(x), k)∑K

j=1 A− L(f(x), j)

)
= K −

∑K
k=1 A− L(f(x), k)∑K
j=1 A− L(f(x), j)

= K − 1,

(21)

where K − 1 is a constant and Lnn satisfies the definition of the symmetric loss function.

C Gradient analysis

C.1 Gradient of MAE

The complete derivation of the Mean Absolute Error (MAE) with respect to the classifier’s output
probabilities is as follows:

In the case of j ̸= y:

∂LMAE

∂p(j|x)
=

∂

∂p(j|x)

K∑
k=1

|p(k|x)− q(k|x)|

=
1

∂p(j|x)
(
(1− p(y|x)) +

∑
k ̸=y

p(k|x)
)

= 1.

(22)

In the case of j = y:

∂LMAE

∂p(j|x)
=

∂

∂p(j|x)

K∑
k=1

|p(k|x)− q(k|x)|

=
1

∂p(j|x)
(
(1− p(y|x)) +

∑
k ̸=y

p(k|x)
)

= −1.

(23)

13

C.2 Gradient of NNCE

The complete derivation of our proposed Normalized Negative Cross Entropy (NNCE) with respect
to the classifier’s output probabilities is as follows:

In the case of j ̸= y:

∂LNNCE

∂p(j|x)
=

∂

∂p(j|x)

(
1− A− (− log p(y|x))∑K

k=1 A− (− log p(k|x))

)
= − ∂

∂p(j|x)

(A+ log p(y|x)∑K
k=1 A+ log p(k|x)

)
= −

0− (A+ log p(y|x)) 1
p(j|x)(∑K

k=1 A+ log p(k|x)
)2

=
1

p(j|x)
· A+ log p(y|x)(∑K

k=1 A+ log p(k|x)
)2

(24)

In the case of j = y:

∂LNNCE

∂p(j|x)
=

∂

∂p(j|x)

(
1− A− (− log p(y|x))∑K

k=1 A− (− log p(k|x))

)
= − ∂

∂p(j|x)

(A+ log p(y|x)∑K
k=1 A+ log p(k|x)

)
= −

1
p(y|x)

(∑K
k=1 A+ log p(k|x)

)
− (A+ log p(y|x)) 1

p(y|x)(∑K
k=1 A+ log p(k|x)

)2
= − 1

p(y|x)
·
∑

k ̸=y A+ log p(k|x)(∑K
k=1 A+ log p(k|x)

)2

(25)

C.3 Properties of NNCE

Theorem 2. Given the classifier’s output probability p(·|x) for sample x and normalized negative
cross entropy LNNCE. If p(j1|x) < p(j2|x), j1 ̸= j2 ̸= y, then ∂LNNCE

∂p(j1|x) >
∂LNNCE
∂p(j2|x) .

Proof. As per the assumption, we have:

p(j1|x) < p(j2|x)
1

p(j1|x)
>

1

p(j2|x)
1

p(j1|x)
· A+ log p(y|x)(∑K

k=1 A+ log p(k|x)
)2 >

1

p(j2|x)
· A+ log p(y|x)(∑K

k=1 A+ log p(k|x)
)2

∂LNNCE

∂p(j1|x)
>

∂LNNCE

∂p(j2|x)
.

(26)

This completes the proof.

Theorem 3. Given the classifier’s output probabilities p(·|x1) and p(·|x2) of sample x1 and
x2, where p(y|x1) ≥ p(k|x1), p(y|x2) ≥ p(k|x2), ∀k ∈ {1, · · · ,K}, p(j|x1) = p(j|x2), and
normalized negative cross entropy LNNCE. If p(y|x1) > p(y|x2), j ̸= y, and p(k|x1) ≤ p(k|x2),
∀k ∈ {1, · · · , K} \{j, y}, then ∂LNNCE

∂p(j|x1)
> ∂LNNCE

∂p(j|x2)
.

Proof. We first consider two functions f1 and f2. The function f1 is defined as follows:

f1(p) =

K∑
k=1

log pk, (27)

14

where the input p is a discrete probability distribution,
∑K

k=1 pk = 1 and 0 ≤ pk ≤ 1, ∀k ∈ {1,
· · · , K}. Given a discrete probability distribution p and a real number D as input, the function f2 is
defined as follows:

f2(p, D) = log(py +D) + log pj +
∑

k ̸=j ̸=y

log(pk − dk), (28)

where py ≥ pk, ∀k ∈ {1, · · · ,K}, 0 < D ≤ 1− py. And {dk}, k ∈ {1, · · · ,K} \ {j, y} is a set
of random variables which satisfy following conditions: 0 ≤ pk − dk ≤ pk and

∑
k ̸=j ̸=y dk = D.

Next, we consider whether f1(p)− f2(p, D) > 0. Given p and D, we have,

f1(p)− f2(p, D) =
(K∑

k=1

log pk

)
−
(
log(py +D) + log pj +

∑
k ̸=j ̸=y

log(pk − dk)
)

= logpy − log(py +D) +
∑

k ̸=j ̸=y

log pk − log(pk − dk)

= log
py

py +D
+
∑

k ̸=j ̸=y

log
pk

pk − dk

≥ log
py

py +D
+
∑

k ̸=j ̸=y

log
py

py − dk

= logpy − log(py +D) +
∑

k ̸=j ̸=y

log py − log(py − dk)

=

(
log py +

∑
k ̸=j ̸=y

log py

)
−
(
log(py +D) +

∑
k ̸=j ̸=y

log(py − dk)
)

≥
(
log py +

∑
k ̸=j ̸=y

log py

)
− sup

{dk},k ̸=j ̸=y

(
log(py +D) +

∑
k ̸=j ̸=y

log(py − dk)
)
.

(29)

The first inequality holds because for a fraction a
b ≥ 1, we always have a

b ≥ a+c
b+c , where c ≥ 0.

To get the maximum value of log(py +D) +
∑

k ̸=j ̸=y log(py − dk), we must solve the following
minimization problem subject to constraints:

min
{dk},k ̸=j ̸=y

−
(
log(py +D) +

∑
k ̸=j ̸=y

log(py − dk)
)
. (30)

s.t.
∑

k ̸=j ̸=y

dk = D. (31)

We can define the Lagrange function L as follows:

L(d1, · · · , dK , λ) = −
(
log(py +D) +

∑
k ̸=j ̸=y

log(py + dk)
)
+ λ ·

(∑
k ̸=j ̸=y

dk −D
)
. (32)

Now we can calculate the gradients:{
∂L
∂dk

= − 1
py+dk

+ λ, k ̸= j ̸= y
∂L
∂λ =

∑
k ̸=j ̸=y dk −D.

(33)

Let ∂L
∂dk

= 0 and ∂L
∂λ = 0, we have:{

− 1
py+dk

+ λ = 0, k ̸= j ̸= y∑
k ̸=j ̸=y dk −D = 0,

(34)

and therefore:
dk =

D

K − 2
, k ̸= j ̸= y. (35)

15

So, the minimization value is:

−
(
log(py +D) +

∑
k ̸=j ̸=y

log(py −
D

K − 2
)
)
. (36)

Now, back to the eq. (29), we have:

f1(p)− f2(p, D) ≥ log py +
∑

k ̸=j ̸=y

log py − sup
{dk},k ̸=j ̸=y

(
log(py +D) +

∑
k ̸=j ̸=y

log(py − dk)
)

= log py +
∑

k ̸=j ̸=y

log py −
(
log(py +D) +

∑
k ̸=j ̸=y

log(py −
D

K − 2
)
)

= log py − log(py +D) + (K − 2)
(
log py − log(py −

D

K − 2
)
)

= (K − 2)
(
log py − log(py −

D

K − 2
)
)
−
(
log(py +D)− log py

)
= D ·

(log py − log(py − D
K−2)

D
K−2

−
log(py +D)− log py

D

)
.

(37)

Recall the nature of the difference, we have
log py−log(py− D

K−2)
D

K−2

= d log x
dx

∣∣∣
x=py−α

= 1
py−α , where

0 ≤ α ≤ D
K−2 , and log(py+D)−log py

D = d log x
dx

∣∣∣
x=py+β

= 1
py+β , where 0 ≤ β ≤ D. And therefore:

log py − log(py − D
K−2)

D
K−2

=
1

py − α
>

1

py

>
1

py + β
=

log(py +D)− log py

D
. (38)

So we have:

log py − log(py − D
K−2)

D
K−2

>
log(py +D)− log py

D

f1(p) > f2(p, D).

(39)

Now, let pk = p(k|x2),∀k ∈ {1, · · · ,K}, D = p(y|x1)− p(y|x2), and dk = p(k|x2)− p(k|x1),
k ̸= j ̸= y. Following eq. (39), we have:

f1(p) > f2(p, D)

K∑
k=1

log pk > log(py +D) + log pj +
∑

k ̸=j ̸=y

log(pk − dk)

K∑
k=1

log p(k|x2) >

K∑
k=1

log p(k|x1)

1(∑K
k=1 A+ log p(k|x1)

)2 >
1(∑K

k=1 A+ log p(k|x2)
)2

1

p(j|x1)
· A+ log p(y|x1)(∑K

k=1 A+ log p(k|x1)
)2 >

1

p(j|x2)
· A+ log p(y|x2)(∑K

k=1 A+ log p(k|x2)
)2

∂LNNCE

∂p(j|x1)
>

∂LNNCE

∂p(j|x2)
.

(40)

The eq. (40) holds because we have p(j|x1) = p(j|x2), and log p(y|x1) > log p(y|x2), where
p(y|x1) > p(y|x2). This completes the proof.

16

1 10 20 30 40 50 60 70 80 90 100 110 120
Epochs

0
100

101

102

103

104

105

106

Gr
ad

ie
nt Clean samples

Noisy samples

(a) CIFAR-10 under 0.6 symmetric noise

1 10 20 30 40 50 60 70 80 90 100 110 120
Epochs

0
100

101

102

103

104

105

106

Gr
ad

ie
nt Clean samples

Noisy samples

(b) CIFAR-10 under 0.8 symmetric noise

Figure 4: The gradient maxj,j ̸=y

(
∂LNNCE
∂p(j|x)

)
for clean and noisy samples. Blue boxes indicate clean

samples, red boxes indicate noisy samples, blue triangles indicate the means of clean samples, and
red triangles indicate the means of noisy samples. The outliers are ignored.

D Experiments

D.1 Empirical Understandings

Gradients of NNCE. We conduct experiments with ANL-CE on CIFAR-10 under 0.6 and 0.8
symmetric noise. For each sample, we calculate the gradient of our NNCE with respect to the predicted
probability of each non-labeled class and take their maximum value, which is maxj,j ̸=y

(
∂LNNCE
∂p(j|x)

)
.

The results are shown in fig. 4 in the form of box plots. As can be observed, as the number of training
epochs increases, the gradients of the clean samples are concentrated at larger values and the gradients
of the noisy samples are concentrated at smaller values. The means of the gradients for noisy samples
are higher than the medians and smaller than the means for clean samples’ gradients. This indicates
that although the model is still incorrectly learning some noisy samples, these learned noisy samples
constitute only a small fraction of all noisy samples in the training set. In general, this result verifies
that our NNLFs have the ability to focus more on clean samples and ignore noisy samples during the
training process, and also verifies our discussion in section 3.3.

Parameter Analysis. We apply different values of α and β to NCE+NNCE for training on CIFAR-10
under 0.8 symmetric noise. We test the combinations between α ∈ {0.1, 0.5, 1.0, 5.0, 10.0} and
β ∈ {0.1, 0.5, 1.0, 5.0, 10.0}, where α is the weight of NCE and β is the weight of NNCE. The
weight decay of NCE+NNCE is set to be the same as NCE+RCE. As can be observed in fig. 5,
regardless of how α (the weight of NCE) varies, when β (the weight of NNCE) increases, both the
robustness and the fitting ability of the model improve, although overfitting occurs. This verifies
that our NNLFs are robust to noisy labels and have good fitting ability. Although in ANL we use L1
regularization instead of L2 regularization (weight decay), the effect of α and β in the loss functions
created by ANL should be similar to that in NCE+NNCE.

17

0 20 40 60 80 100 120
Epochs

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Clean Samples in Training Set
Noisy Samples in Training Set
Test Set

(a) α = 0.1, β = 0.1

0 20 40 60 80 100 120
Epochs

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

(b) α = 0.1, β = 0.5

0 20 40 60 80 100 120
Epochs

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

(c) α = 0.1, β = 1.0

0 20 40 60 80 100 120
Epochs

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

(d) α = 0.1, β = 5.0

0 20 40 60 80 100 120
Epochs

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

(e) α = 0.1, β = 10.0

0 20 40 60 80 100 120
Epochs

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

(f) α = 0.5, β = 0.1

0 20 40 60 80 100 120
Epochs

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

(g) α = 0.5, β = 0.5

0 20 40 60 80 100 120
Epochs

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

(h) α = 0.5, β = 1.0

0 20 40 60 80 100 120
Epochs

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

(i) α = 0.5, β = 5.0

0 20 40 60 80 100 120
Epochs

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

(j) α = 0.5, β = 10.0

0 20 40 60 80 100 120
Epochs

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

(k) α = 1.0, β = 0.1

0 20 40 60 80 100 120
Epochs

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

(l) α = 1.0, β = 0.5

0 20 40 60 80 100 120
Epochs

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

(m) α = 1.0, β = 1.0

0 20 40 60 80 100 120
Epochs

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

(n) α = 1.0, β = 5.0

0 20 40 60 80 100 120
Epochs

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

(o) α = 1.0, β = 10.0

0 20 40 60 80 100 120
Epochs

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

(p) α = 5.0, β = 0.1

0 20 40 60 80 100 120
Epochs

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

(q) α = 5.0, β = 0.5

0 20 40 60 80 100 120
Epochs

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

(r) α = 5.0, β = 1.0

0 20 40 60 80 100 120
Epochs

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

(s) α = 5.0, β = 5.0

0 20 40 60 80 100 120
Epochs

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

(t) α = 5.0, β = 10.0

0 20 40 60 80 100 120
Epochs

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

(u) α = 10.0, β = 0.1

0 20 40 60 80 100 120
Epochs

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

(v) α = 10.0, β = 0.5

0 20 40 60 80 100 120
Epochs

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

(w) α = 10.0, β = 1.0

0 20 40 60 80 100 120
Epochs

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

(x) α = 10.0, β = 5.0

0 20 40 60 80 100 120
Epochs

0.0

0.2

0.4

0.6

0.8
Ac

cu
ra

cy

(y) α = 10.0, β = 10.0

Figure 5: Training and test accuracies of NCE+NNCE on CIFAR-10 under 0.8 symmetric noise with
different parameters. α is the weight of NCE and β is the weight of NNCE. The accuracies of noisy
samples in training set (red dashed line) should be as low as possible, since they are mislabeled.

0 20 40 60 80 100 120
Epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y ANL-CE
= 1e 7
= 5e 7
= 1e 6
= 5e 6
= 1e 5
= 5e 5
= 1e 4

(a) L2

0 20 40 60 80 100 120
Epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y ANL-CE
= 1e 7
= 5e 7
= 1e 6
= 5e 6
= 1e 5
= 5e 5
= 1e 4

(b) L1

0 20 40 60 80 100 120
Epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y ANL-CE
= 1e 7
= 5e 7
= 1e 6
= 5e 6
= 1e 5
= 5e 5
= 1e 4

(c) Jacobian

Figure 6: Test accuracies of NCE+RCE on CIFAR-10 under 0.8 symmetric noise with different
regularization methods and different parameters. δ is the weight of regularization term of NCE+RCE.
As a comparison, the blue line shows the test accuracy of our ANL-CE with the same data set and
noise setting.

18

0 20 40 60 80 100 120
Epochs

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

 A
cc

ur
ac

y

pmin = 1e 5
pmin = 1e 6
pmin = 1e 7
pmin = 1e 8
pmin = 1e 9

(a) CIFAR-10

0 50 100 150 200
Epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 A
cc

ur
ac

y

pmin = 1e 5
pmin = 1e 6
pmin = 1e 7
pmin = 1e 8
pmin = 1e 9

(b) CIFAR-100

Figure 7: Test accuracies of different pmin applied to ANL-CE on CIFAR-10/CIFAR-100 under 0.6
symmetric noise.

Can APL outperform our ANL by changing the regularization method? We apply different
regularization methods to NCE+RCE for training on CIFAR-10 under 0.8 symmetric noise and
compare the results with our ANL-CE. Specifically, we train networks using loss functions in the
form of α ·NCE+β ·RCE+δ ·Reg, where α, β, δ > 0 are parameters and Reg is the regularization
term. Similarly, we consider 3 regularization methods: 1) L2, 2) L1, and 3) Jacobian [15, 16]. We
keep the α and β of NCE+RCE the same as in section 4.2 and tune δ ∈ { 1 × 10−7, 5 × 10−7,
1× 10−6 5× 10−6 1× 10−5 5× 10−5 1× 10−4} for all three methods. As can be observed in fig. 6,
the performance of NCE+RCE can be improved by adapting the regularization method. However,
the improvement from changing the regularization method is limited, and the test accuracies of
NCE+RCE are consistently lower than our ANL-CE, no matter how the regularization method is
changed and how the parameter δ is varied. This verifies that APL cannot outperform our ANL by
changing the regularization method and also verifies the performance of our proposed NNLFs.

Does the pmin affect the performance of ANL? As shown in the definitions of NLF and NNLF,
pmin controls the lower bound of the classifier’s output probability, and further controls the constant
A. In fig. 7, we show different pmin ∈ {1× 10−5, 1× 10−6, 1× 10−7, 1× 10−8, 1× 10−9} applied
to ANL-CE for training on CIFAR-10/-100 under 0.6 symmetric noise. As can be observed, for both
datasets, pmin does not significant affect the performance of ANL.

D.2 Evaluation on Benchmark Datasets

Noise generation. The noisy labels are generated following standard approaches in previous works
[28, 6, 17]. For symmetric noise, we flip the labels in each class randomly to incorrect labels of
other classes. For asymmetric noise, we flip the labels within a specific set of classes. For MNIST,
flipping 7 → 1, 2 → 7, 5 ↔ 6, 3 → 8. For CIFAR-10, flipping TRUCK → AUTOMOBILE, BIRD
→ AIRPLANE, DEER → HORSE, CAT ↔ DOG. For CIFAR-100, the 100 classes are grouped into
20 super-classes with each has 5 sub-classes, and each class are flipped within the same super-class
into the next in a circular fashion. We vary the noise rate η ∈ {0.2, 0.4, 0.6, 0.8} for symmetric noise
and η ∈ {0.1, 0.2, 0.3, 0.4} for asymmetric noise.

Networks and training. We follow the experimental setting in previous works [6, 17]. A 4-layer
CNN is used for MNIST, an 8-layer CNN is used for CIFAR-10, and a ResNet-34 [29] is used for
CIFAR-100. For MNIST, CIFAR-10, and CIFAR-100, the networks are trained for 50, 120, and 200
epochs, respectively. For all the training, we use SGD optimizer with momentum 0.9 and cosine
learning rate annealing. Weight decay is set to 1 × 10−3, 1 × 10−4, and 1 × 10−5 for MNIST,
CIFAR-10, and CIFAR-100, respectively. Particularly, for our proposed ANL methods, weight decay
is set to 0 for all datasets. The initial learning rate is set to 0.01 for MNIST/CIFAR-10 and 0.1 for
CIFAR-100. Batch size is set to 128. For all settings, we clip the gradient norm to 5.0. Typical data
augmentations including random width/height shift and horizontal flip are applied.

Parameter tuning. For each dataset, we tune the parameters of ANL-CE under 0.8 symmetric noise
and then use them directly for all other noise settings and ANL functions. Specifically, we use 10%
of the original training set as the validation set, and generate 0.8 symmetric noise on the remaining
90% of the original training set as the training set by the standard noise generation approach. We tune
the parameters α ∈ {0.1, 0.5, 1.0, 5.0, 10.0}, β ∈ {0.1, 0.5, 1.0, 5.0, 10.0}, and δ ∈ { 1 × 10−7,
5× 10−7, 1× 10−6, 5× 10−6, 1× 10−5, 5× 10−5, 1× 10−4 }.

19

Table 4: Parameters settings for different methods.
Method MNIST CIFAR-10 CIFAR-100 WebVision
CE (-) (-) (-) (-) (-)
FL (γ) (0.5) (0.5) (0.5) -

MAE (-) (-) (-) (-) -
GCE (q) (0.7) (0.7) (0.7) (0.7)

SCE (α, β) (0.01, 1.0) (0.1, 1.0) (6.0, 0.1) (10.0, 1.0)
NCE+MAE (α, β) (1.0, 10.0) (1.0, 1.0) (10.0, 0.1) -
NCE+RCE (α, β) (1.0, 10.0) (1.0, 1.0) (10.0, 0.1) (50.0, 0.1)

NFL+RCE (α, β, γ) (1.0, 10.0, 0.5) (1.0, 1.0, 0.5) (10.0, 0.1, 0.5) -
NCE+AEL (α, β, a) (0.0, 1.0, 3.5) (1.0, 4.0, 5.0) (10.0, 0.1, 1.5) -

NCE+AGCE (α, β, a, q) (0.0, 1.0, 4.0, 0.2) (1.0, 4.0, 6.0, 1.5) (10.0, 0.1, 1.8, 3.0) (50.0, 0.1, 2.5, 3.0)
NCE+AUL (α, β, a, p) (0.0, 1.0, 3.0, 0.1) (1.0, 4.0, 6.3, 1.5) (10.0, 0.015, 6.0, 3.0) -

ANL-CE (α, β, δ) (1.0, 1.0, 1 × 10−6) (5.0, 5.0, 5 × 10−5) (10.0, 1.0, 5 × 10−7) (20.0, 1.0, 6 × 10−6)
ANL-FL (α, β, δ, γ) (1.0, 1.0, 1 × 10−6 , 0.5) (5.0, 5.0, 5 × 10−5 , 0.5) (10.0, 1.0, 5 × 10−7 , 0.5) (20.0, 1.0, 6 × 10−6 , 0.5)

Table 5: Test accuracies (%) of different methods on benchmark datasets with symmetric (η ∈
{0.2, 0.4, 0.6, 0.8}) or asymmetric (η ∈ {0.1, 0.2, 0.3, 0.4}) label noise. The results (mean±std) of
our methods are reported over 3 random runs under different random seeds (1, 2, 3). The reported
results of PHuber-CE and Taylor-CE are directly taken from the original paper of Taylor-CE. The
top-2 best results are in bold.

Datasets Methods Symmetric Noise Rate (η) Asymmetric Noise Rate (η)
0.2 0.4 0.6 0.8 0.1 0.2 0.3 0.4

CIFAR-10

PHuber-CE [25] 85.81±0.21 80.25±0.22 67.71±0.19 32.97±0.32 87.91±0.13 84.87±0.26 79.01±0.38 71.87±0.36
Taylor-CE [26] 85.96±0.09 80.51±0.11 66.36±0.32 33.48±0.44 87.34±0.12 85.02±0.11 79.37±0.12 72.65±0.11
ANL-CE (ours) 87.43±0.24 83.18±0.54 73.80±0.24 45.18±1.27 88.29±0.07 86.54±0.27 83.12±0.58 75.07±0.43
ANL-FL (ours) 86.75±0.70 82.97±0.46 74.47±0.21 45.52±2.24 88.42±0.16 86.36±0.54 83.26±0.14 74.95±1.21

CIFAR-100

PHuber-CE [25] 58.11±0.11 50.89±0.13 35.85±0.29 13.83±0.25 60.07±0.09 53.30±0.10 44.39±0.14 35.36±0.13
Taylor-CE [26] 59.11±0.11 50.99±0.09 38.31±0.12 15.96±0.31 60.96±0.21 55.45±0.12 45.81±0.19 35.45±0.25
ANL-CE (ours) 59.20±0.36 53.42±0.18 44.42±0.09 26.27±0.81 60.58±0.68 58.11±0.60 49.91±0.42 38.57±0.72
ANL-FL (ours) 59.23±0.17 53.79±0.50 44.71±0.64 26.89±0.62 61.51±0.33 58.05±0.11 50.27±0.54 39.14±0.98

Parameter settings. For all baseline methods, the parameters are set to match their original papers.
Detailed parameter settings can be found in table 4.

Results. The experimental results of symmetric and asymmetric label noise are reported in table 6
and table 7, respectively.

D.3 Evaluation on Real-world Noisy Labels

We train a ResNet-50 [29] using SGD for 250 epochs with initial learning rate 0.4, nesterov momentum
0.9 and weight decay 3× 10−5 (for our proposed ANL methods, the weight decay is set to 0) and
batch size 512. The learning rate is multiplied by 0.97 after every epoch of training. For all settings,
we clip the gradient norm to 5.0. All the images are resized to 224× 224. Typical data augmentations
including random width/height shift, color jittering and random horizontal flip are applied. Detailed
parameter settings can be found in table 4.

D.4 More comparisons with other baseline methods

We also compare our proposed ANL with two other baseline methods, PHuber-CE [25] and Taylor-
CE [26]. For a fair comparison, we followed the experimental setup in the Taylor-CE paper and
compared it directly with its reported experimental results. We use Adam [30] optimizer with the
number of epochs set to 200 and the batch size set to 256. We use ResNet-34 for CIFAR-10/-
100. We tune our parameters and select the learning rate lr from {10−2, 10−3, 10−4, 10−5}. For
CIFAR-10 and CIFAR-100, we set the parameters (α, β, δ, lr) to (5.0, 5.0, 1× 10−7, 1× 10−4) and
(10.0, 1.0, 1× 10−7, 1× 10−4), respectively. The results in table 5 demonstrate that our proposed
ANL can outperform both PHuber-CE and Taylor-CE on the CIFAR-10/-100 dataset with symmetric
or asymmetric label noise.

20

Table 6: Test accuracies (%) of different methods on benchmark datasets with clean or symmetric
label noise (η ∈ {0.2, 0.4, 0.6, 0.8}). The results (mean±std) are reported over 3 random runs under
different random seeds (1, 2, 3) and the top-2 best results are boldfaced.

Datasets Methods Clean (η=0.0) Symmetric Noise Rate (η)
0.2 0.4 0.6 0.8

MNIST

CE 99.20±0.02 91.40±0.28 74.46±0.28 49.19±0.05 22.51±0.23
FL 99.16±0.08 91.66±0.18 75.42±0.25 50.58±0.38 22.93±0.11

MAE 99.16±0.03 99.03±0.01 98.80±0.02 97.69±0.20 70.35±1.16
GCE 99.18±0.01 98.84±0.03 96.81±0.13 80.86±0.31 33.59±0.48
SCE 99.30±0.07 98.91±0.04 97.48±0.16 88.35±0.77 48.28±0.81

NLNL 98.61±0.13 98.02±0.14 97.17±0.09 95.42±0.30 86.34±1.43
NCE+MAE 99.22±0.06 98.96±0.04 98.15±0.14 92.94±0.26 59.54±0.76
NCE+RCE 99.43±0.02 99.20±0.05 98.53±0.09 95.61±0.12 74.04±1.83
NFL+RCE 99.33±0.04 99.17±0.03 98.62±0.03 95.54±0.26 75.05±1.45
NCE+AEL 99.06±0.06 99.03±0.08 98.87±0.05 98.39±0.11 96.71±0.10

NCE+AGCE 99.10±0.03 99.00±0.05 98.91±0.04 98.50±0.07 96.93±0.13
NCE+AUL 99.19±0.01 99.04±0.05 99.00±0.03 98.52±0.14 96.97±0.12
ANL-CE 99.08±0.05 98.97±0.02 98.84±0.05 98.42±0.08 96.62±0.12
ANL-FL 99.13±0.05 98.94±0.07 98.90±0.05 98.46±0.12 95.73±0.22

CIFAR-10

CE 90.38±0.11 75.05±0.26 58.19±0.21 38.75±0.19 19.09±0.35
FL 89.84±0.28 74.52±0.10 57.54±0.75 38.83±0.49 19.33±0.58

MAE 89.15±0.27 87.19±0.19 81.76±3.17 76.82±0.84 46.42±3.66
GCE 89.66±0.20 87.17±0.01 82.44±0.26 68.62±0.35 25.45±0.51
SCE 91.38±0.12 87.86±0.12 79.96±0.25 62.16±0.33 27.98±0.98

NLNL 90.73±0.20 73.70±0.05 63.90±0.44 50.68±0.47 29.53±1.55
NCE+MAE 88.94±0.13 87.37±0.19 83.70±0.21 76.35±0.08 44.68±1.12
NCE+RCE 90.94±0.01 89.19±0.18 86.03±0.13 79.89±0.11 55.52±2.74
NFL+RCE 90.86±0.51 89.04±0.09 86.08±0.33 79.79±0.16 54.18±2.06
NCE+AEL 88.51±0.26 86.59±0.24 83.07±0.46 75.06±0.26 41.79±1.40

NCE+AGCE 91.08±0.06 89.11±0.07 86.16±0.10 80.14±0.27 55.62±4.78
NCE+AUL 91.26±0.12 89.08±0.14 86.11±0.27 79.39±0.41 54.49±2.77
ANL-CE 91.66±0.04 90.02±0.23 87.28±0.02 81.12±0.30 61.27±0.55
ANL-FL 91.79±0.19 89.95±0.20 87.25±0.11 81.67±0.19 61.22±0.85

CIFAR-100

CE 71.14±0.38 55.97±1.11 40.72±0.74 22.98±0.07 7.55±0.21
FL 71.02±0.36 55.94±0.53 39.55±1.24 23.21±0.49 7.80±0.27

MAE 7.35±1.19 7.91±0.66 3.61±0.21 3.63±0.35 2.83±1.35
GCE 61.62±0.43 61.50±1.50 56.46±0.95 46.27±1.30 19.51±0.86
SCE 70.80±0.37 55.04±0.37 39.84±0.19 21.97±0.92 7.87±0.48

NLNL 68.72±0.60 46.99±0.91 30.29±1.64 16.60±0.90 11.01±2.48
NCE+MAE 67.52±0.21 52.68±0.42 35.71±0.47 19.44±0.15 7.08±0.07
NCE+RCE 68.22±0.28 64.20±0.47 57.97±0.30 46.26±1.07 25.65±0.51
NFL+RCE 68.04±0.30 64.33±0.23 58.48±0.50 47.20±0.58 26.26±0.19
NCE+AEL 64.98±0.42 48.13±0.32 32.11±0.89 20.75±2.00 7.97±1.02

NCE+AGCE 68.61±0.12 65.30±0.21 59.74±0.68 47.96±0.44 24.13±0.07
NCE+AUL 69.91±0.18 65.26±0.17 56.67±0.21 39.98±0.42 13.30±0.08
ANL-CE 70.68±0.23 66.79±0.34 61.80±0.50 51.52±0.53 28.07±0.28
ANL-FL 70.40±0.15 66.54±0.29 61.73±0.48 51.32±0.34 27.97±0.58

21

Table 7: Test accuracies (%) of different methods on benchmark datasets with asymmetric label noise
(η ∈ {0.1, 0.2, 0.3, 0.4}). The results (mean±std) are reported over 3 random runs under different
random seeds (1, 2, 3) and the top-2 best results are boldfaced.

DATASETS METHODS
ASYMMETRIC NOISE RATE (η)

0.1 0.2 0.3 0.4

MNIST

CE 97.70±0.02 94.02±0.18 88.90±0.07 81.79±0.34
FL 97.62±0.05 94.41±0.11 88.82±0.35 81.99±0.61

MAE 99.05±0.06 99.11±0.03 98.42±0.09 87.40±4.01
GCE 98.97±0.02 96.59±0.07 88.99±0.27 81.91±0.58
SCE 99.05±0.02 97.95±0.23 94.00±0.41 84.54±0.14

NLNL 98.63±0.06 98.35±0.01 97.51±0.15 95.84±0.26
NCE+MAE 99.12±0.09 98.33±0.14 95.16±0.21 85.79±0.47
NCE+RCE 99.31±0.06 98.79±0.10 95.16±0.08 91.36±0.22
NFL+RCE 99.27±0.02 98.79±0.15 96.97±0.09 91.36±0.40
NCE+AEL 99.06±0.05 99.05±0.07 98.88±0.02 98.29±0.27

NCE+AGCE 99.11±0.04 99.04±0.02 98.94±0.03 98.41±0.04
NCE+AUL 99.11±0.05 99.09±0.03 98.98±0.06 98.70±0.01
ANL-CE 99.10±0.05 99.04±0.04 98.91±0.07 98.01±0.10
ANL-FL 99.00±0.05 99.05±0.09 98.93±0.02 98.18±0.01

CIFAR-10

CE 86.85±0.15 83.00±0.33 78.15±0.17 73.69±0.20
FL 86.32±0.28 83.03±0.10 78.53±0.16 73.78±0.16

MAE 88.22±0.05 79.63±0.74 67.35±3.41 57.36±2.37
GCE 88.19±0.21 85.55±0.24 79.32±0.52 72.83±0.17
SCE 89.57±0.11 86.22±0.44 80.20±0.20 74.01±0.52

NLNL 88.54±0.25 84.74±0.08 81.26±0.43 76.97±0.52
NCE+MAE 88.22±0.25 86.16±0.18 82.98±0.15 75.23±0.24
NCE+RCE 89.98±0.19 88.36±0.13 84.84±0.16 77.75±0.37
NFL+RCE 90.11±0.06 88.26±0.27 84.72±0.18 77.29±0.30
NCE+AEL 87.64±0.16 85.64±0.07 81.95±0.38 74.55±0.42

NCE+AGCE 90.21±0.16 88.48±0.09 84.79±0.15 78.60±0.41
NCE+AUL 90.12±0.06 88.29±0.15 84.84±0.06 76.99±0.26
ANL-CE 90.90±0.13 89.13±0.11 85.52±0.24 77.63±0.31
ANL-FL 90.81±0.20 89.09±0.31 85.81±0.23 77.73±0.31

CIFAR-100

CE 65.17±0.45 58.25±1.00 50.30±0.19 41.53±0.34
FL 64.55±0.39 58.00±1.38 50.77±0.41 41.88±0.57

MAE 6.63±1.60 6.19±0.42 5.82±0.96 3.96±0.35
GCE 64.29±0.90 59.06±0.46 53.88±0.96 41.51±0.52
SCE 64.64±0.57 57.78±0.83 50.15±0.12 41.33±0.86

NLNL 59.55±1.22 50.19±0.56 42.81±1.13 35.10±0.20
NCE+MAE 60.52±0.36 52.92±0.50 44.41±0.22 36.71±0.16
NCE+RCE 66.18±0.23 62.77±0.53 55.62±0.56 42.46±0.42
NFL+RCE 66.16±0.44 63.43±0.71 55.63±0.37 42.54±0.52
NCE+AEL 57.47±0.47 50.49±0.12 42.46±0.51 35.04±0.29

NCE+AGCE 66.86±0.23 64.05±0.25 56.36±0.59 44.90±0.62
NCE+AUL 66.23±0.21 57.79±0.40 47.64±0.24 38.65±0.30
ANL-CE 68.78±0.11 66.27±0.19 59.76±0.34 45.41±0.68
ANL-FL 68.36±0.15 66.26±0.44 59.68±0.86 46.65±0.04

22

D.5 Comparisons on more real-world datasets.

CIFAR-10N/-100N [20] are CIFAR-10/-100 equipped with human-annotated real-world noisy labels.
CIFAR-10N contains five noisy label sets with noise rates of 9.03% (Aggregate), 17.23% (Random
1), 18.12% (Random 2), 17.64% (Random 3) and 40.21% (Worst). CIFAR-100N contains one noisy
label set with noise rate of 40.20% (Noisy).

We use the same experimental settings and parameters as CIFAR-10 and CIFAR-100 for CIFAR-10N
and CIFAR-100N, since the only difference is the noise label distribution. The results are reported in
Table 8 and Table 9.

Animal-10N [21] is a real-world noisy data set of human-labeled online images for 10 confusing
animals, with 50, 000 training and 5, 000 testing images, and its noise rate was estimated at 8%.

We follow the experimental setting in previous works [21]. We use VGG-19 with batch normalization.
The SGD optimizer is employed. We train the network for 100 epochs and use an initial learning rate
of 0.1, which is divided by 5 at 50% and 75% of the total number of epochs. Batch size is set to 128.
Typical data augmentations including random horizontal flip are applied.

We compare our ANL-CE with CE and GCE. We use L2 regularization (weight decay) for GCE,
and L1 regularization for ANL-CE. We denote the regularization coefficient by δ. We tune the
parameters {δ}, {q, δ}, {α, β, δ} for CE, GCE and ANL-CE respectively. We use the best parameters
{1× 10−3}, {0.5, 1× 10−4}, {0.5, 1.0, 1× 10−6} for each method in our experiments. The results
are reported in Table 10.

Moreover, we experiment with NCE+RCE on this dataset and tune the parameters {α, β, δ} , but we
find that the performance is very poor for some unknown reason. The best test accuracy we achieve is
28.28% with {10.0, 0.1, 5× 10−6}. Since this result is too low and inconsistent with its performance
on other datasets, we do not include it in the table for comparison.

Clothing-1M [22] is a large-scale clothing dataset contains 14 categories and 1 million training
samples with nearly 40% mislabeled samples.

We follow the experimental setting in previous works [31]. We use the 14k and 10k clean data for
validation and test, respectively, and we do not use the 50k clean training data. We use ResNet-50
pre-trained on ImageNet. For preprocessing, we resized the images to 256× 256, performed mean
subtraction, and cropped the middle 224 × 224. We use SGD with a momentum of 0.9, a weight
decay of 1 × 10−3, and batch size of 32. We train the network for 10 epochs with learning rate
1× 10−3 and 1× 10−4 for 5 epochs each. Typical data augmentations including random horizontal
flip are applied.

We compare our ANL-CE with CE, GCE and NCE+RCE. In this experiment, we use L2 regularization
(weight decay) for ANL-CE and set the coefficient the same as those for CE, GCE and NCE+RCE.
We tune the parameters {q}, α, β and {α, β} for GCE, NCE+RCE and ANL-CE respectively. We
use the best parameters {0.6}, {10.0, 1.0} and {5.0, 0.1} for each method in our experiments. The
results are reported in Table 11.

23

Table 8: Test accuracies (%) of different methods on CIFAR-10N dataset. The results (mean±std)
are reported over 3 random runs under different random seeds (1, 2, 3) and the top-2 best results are
boldfaced.

Methods Clean Aggregate Random 1 Random 2 Random 3 Worst
CE 90.38±0.11 85.09±0.30 79.09±0.28 78.59±0.42 78.39±0.50 61.43±0.52

GCE 89.66±0.20 87.38±0.07 85.87±0.27 85.43±0.13 85.51±0.15 75.19±0.23
SCE 91.38±0.12 88.48±0.26 85.65±0.30 85.71±0.19 85.87±0.13 73.65±0.29

NCE+RCE 90.94±0.01 89.17±0.28 87.62±0.34 87.66±0.12 87.70±0.18 79.74±0.09
NCE+AGCE 91.08±0.06 89.27±0.28 87.92±0.02 87.61±0.20 87.62±0.16 79.91±0.37

ANL-CE (ours) 91.66±0.04 89.66±0.12 88.68±0.13 88.19±0.08 88.24±0.15 80.23±0.28

Table 9: Test accuracies (%) of different methods on CIFAR-100N dataset. The results (mean±std)
are reported over 3 random runs under different random seeds (1, 2, 3) and the top-2 best results are
boldfaced.

Methods Clean Noisy
CE 71.14±0.38 48.63±0.53

GCE 61.62±0.43 50.97±0.60
SCE 70.80±0.37 48.52±0.11

NCE+RCE 68.22±0.28 54.27±0.09
NCE+AGCE 68.61±0.12 55.96±0.20

ANL-CE (ours) 70.68±0.23 56.37±0.42

Table 10: Test accuracies (%) of different methods on Animal-10N dataset. The results (mean±std)
are reported over 3 random runs under different random seeds (1, 2, 3) and the top-1 best results are
boldfaced.

Methods CE GCE ANL-CE (ours)
Test Acc. (%) 78.92±0.76 80.39±0.17 80.72±0.37

Table 11: Test accuracies (%) of different methods on Clothing-1M dataset. The top-1 best results
are boldfaced.

Methods CE GCE NCE+RCE ANL-CE (ours)
Test Acc. (%) 68.07 68.94 69.07 69.93

24

	Introduction
	Preliminaries
	Risk Minimization and Label Noise Model
	Active Passive Loss Functions
	APL struggles with MAE

	Active Negative Loss Functions
	Method
	Robustness to noisy labels
	NNLFs focus more on well-learned samples

	Experiments
	Empirical Understandings
	Evaluation on Benchmark Datasets
	Evaluation on Real-world Noisy Labels

	Limitations
	Related Work
	Conclusion
	Loss functions
	NMAE, RCE, and NRCE are scaled versions of MAE
	Normalized Negative Loss Functions

	Noise tolerant
	Gradient analysis
	Gradient of MAE
	Gradient of NNCE
	Properties of NNCE

	Experiments
	Empirical Understandings
	Evaluation on Benchmark Datasets
	Evaluation on Real-world Noisy Labels
	More comparisons with other baseline methods
	Comparisons on more real-world datasets.

