
Variational Flow Matching for Graph Generation

Floor Eijkelboom∗

UvA-Bosch Delta Lab
University of Amsterdam

Grigory Bartosh∗

AMLab
University of Amsterdam

Christian A. Naesseth
UvA-Bosch Delta Lab

University of Amsterdam

Max Welling
UvA-Bosch Delta Lab

University of Amsterdam

Jan-Willem van de Meent
UvA-Bosch Delta Lab

University of Amsterdam

Abstract

We present a formulation of flow matching as variational inference, which we
refer to as variational flow matching (VFM). Based on this formulation we develop
CatFlow, a flow matching method for categorical data. CatFlow is easy to imple-
ment, computationally efficient, and achieves strong results on graph generation
tasks. The key observation in VFM is that we can parameterize the vector field of
the flow in terms of a variational approximation of the posterior probability path,
which is the distribution over possible end points of a trajectory. We show that this
variational interpretation admits both the CatFlow objective and the original flow
matching objective as special cases. We also relate VFM to score-based models, in
which the dynamics are stochastic rather than deterministic, and derive a bound on
the model likelihood based on a reweighted VFM objective. We evaluate CatFlow
on one abstract graph generation task and two molecular generation tasks. In all
cases, CatFlow exceeds or matches performance of the current state-of-the-art.

1 Introduction

In recent years, the field of generative modeling has seen notable advancements. In image generation
[41, 45], the development and refinement of diffusion-based approaches — specifically those using
denoising score matching [59] — have proven effective for generation at scale [15, 54]. However,
while training can be done effectively, the constrained space of sampling probability paths in a
diffusion requires tailored techniques to work [52, 64]. This is in contrast to more flexible approaches
such as continuous normalizing flows (CNFs) [8], that are able to learn a more general set of
probability paths than diffusion models [53], at the expense of being expensive to train as they require
one to solve an ODE during each training step (see e.g. [5, 46, 14]).

Recently, Lipman and collaborators [27] proposed flow matching (FM), an efficient and simulation-
free approach to training CNFs. Concretely, they use a per-sample interpolation to derive a simpler
objective for learning the marginal vector field that generates a desired probability path in a CNF. This
formulation provides equivalent gradients without explicit knowledge of the (generally intractable)
marginal vector field. This work has been extended to different geometries [7, 23] and various
applications [60, 9, 13, 24]. Similar work has been proposed concurrently in [32, 1].

This paper identifies a reformulation of flow matching that we refer to as variational flow matching
(VFM). In flow matching, the vector field at any point can be understood as the expected continuation
toward the data distribution. In VFM, we explicitly parameterize the learned vector field as an
expectation relative to a variational distribution. The objective of VFM is then to minimize the

*These authors contributed equally to this work.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Kullback-Leibler (KL) divergence between the posterior probability path, i.e. the distribution over
possible end points (continuations) at a particular point in the space, and the variational approximation.

We show that VFM recovers the original flow matching objective when the variational approximation
is Gaussian and the conditional vector field is linear in the data. Under the assumption of linearity,
a solution to the VFM problem is also exact whenever the variational approximation matches the
marginals of the posterior probability path, which means that we can employ a fully-factorized
variational approximation without loss of generality.

While VFM provides a general formulation, our primary interest in this paper is its application to
graph generation, where the data are categorical. This setting leads to a simple method that we
refer to as CatFlow, in which the objective reduces to training a classifier over end points on a
per-component basis. We apply CatFlow to a set of graph generation tasks, both for abstract graphs
[35] and molecular generation [40, 19]. By all metrics, our results match or substantially exceed
those obtained by existing methods.

2 Background

2.1 Transport Framework for Generative Modeling and CNFs

Common generative modeling approaches such as normalizing flows [42, 38] and diffusion models
[15, 54] parameterize a transformation φ from some initial tractable probability density p0 – typically
a standard Gaussian distribution – to the target data density p1. In general, there is a trade-off between
allowing φ to be expressive enough to model the complex transformation while ensuring that the
determinant term is still tractable. One such transformation is a continuous normalizing flow (CNF).

Any time-dependent1 vector field vt : [0, 1]× RD → RD gives rise to such a transformation – called
a flow – as such a field induces a time-dependent diffeomorphism φt : [0, 1]× RD → RD defined by
the following ordinary differential equation (ODE):

d

dt
φt(x) = vt(φt(x)) with initial conditions φ0(x) = x. (1)

In CNFs, this vector field is learned using a neural network vθt . Through the change of variables
formula pt(x) can be evaluated (see appendix E) and hence one could try and optimize the empirical
divergence between the resulting distribution p1 and target distribution. However, obtaining a gradient
sample for the loss requires ones to solve the ODE induced during training, making this approach
computationally expensive.

2.2 Flow Matching

In flow matching [27], the aim is to regress the underlying vector field of a CNF directly on the
interval t ∈ [0, 1]. Flow matching leverages the fact that even though we do not have access to the
actual underlying vector field – which we denote as ut – and probability path pt, one can construct a
per-example formulation by defining conditional flows, i.e. the trajectories towards specific datapoints
x1. Concretely, FM sets:

ut(x) =

∫
ut(x | x1)

pt(x | x1)pdata(x1)

pt(x)
dx1, (2)

where ut(x | x1) is the conditional trajectory. The most common way to define ut(x | x1) is as the
straight line continuation from x to x1, implying one can obtain samples x ∼ pt(x | x1) simply by
interpolating samples x0 ∼ p0 for some p0 and x1 ∼ p1,

ut(x | x1) :=
x1 − x

1− t
=⇒ x = tx1 + (1− t)x0 is a sample x ∼ pt(x | x1). (3)

Crucially, the flow matching objective

LFM(θ) = Et∼[0,1],x∼pt(x)

[∥∥vθt (x)− ut(x)
∥∥2
2

]
(4)

1Time dependence is denoted through the subscript t throughout this paper.

2

is equivalent in expectation (up to a constant) to the conditional flow matching objective

LCFM(θ) = Et∼[0,1],x1∼pdata(x1),x∼pt(x|x1)

[∥∥vθt (x)− ut(x | x1)
∥∥2
2

]
. (5)

An advantage of flow matching is that this conditional trajectory ut(x | x1) can be chosen to make
the problem tractable. The authors show that diffusion models can be instantiated as flow matching
with a specific conditional trajectory, but also show that assuming a simple, straight-line trajectory
leads to more efficient training. Note that in contrast to likelihood-based training of CNFs, flow
matching is simulation free, leading to a scalable approach to learning CNFs.

3 Variational Flow Matching for Graph Generation

We derive CatFlow through a novel, variational view on flow matching we call Variational Flow
Matching (VFM). The VFM framework relies on two insights. First, we can define the marginal
vector field and its approximation in terms of an expectation with respect to a distribution over end
points of the transformation. This implies that we can map a flow matching problem onto a variational
counterpart. Second, under typical assumptions on the forward process, we can decompose the
expected conditional vector field into components for individual variables which can be computed in
terms of the marginals of the distribution over end points of the conditional trajectories. This implies
that, without loss of generality, we can solve a VFM problem using a fully-factorized variational
approximation, providing a tractable approximate vector field. For categorical data, the corresponding
vector field can be computed efficiently via direct summation. This results in a closed-form objective
to train CNFs for categorical data, which we refer to as CatFlow. We develop the theory of VFM in
section 3 and we relate VFM to flow matching and score-based diffusion in section 4.

3.1 Flow Matching using Variational Inference

In any flow matching problem, the vector field in eq. (2) can be expressed as an expectation

ut(x) =

∫
ut(x | x1)pt(x1 | x)dx1 = Ept(x1|x) [ut(x | x1)] , (6)

where pt(x1 | x) is the posterior probability path, the distribution over possible end points x1 of
paths passing through x at time t,

pt(x1 | x) := pt(x, x1)

pt(x)
, pt(x, x1) := pt(x | x1) pdata(x1). (7)

This makes intuitive sense: the velocity in point x is given by all the continuations from x to final
points x1, weighted by how likely that final point is given that we are at x. Note that to compute
ut(x), one has to evaluate a joint integral over D dimensions.

This observation leads us to propose a change in parameterization of the learned vector field. Rather
than predicting the components of the vector field directly, we can define an approximate vector field
in terms of an expectation with respect to a variational distribution qθt with parameters θ,

vθt (x) :=

∫
ut(x | x1) q

θ
t (x1 | x) dx1. (8)

Clearly, in this construction vθt (x) will be equal to ut(x) when qθt (x1 | x) and pt(x1 | x) are identical.
This implies that we can map a flow matching problem onto a variational inference problem.

Concretely, we can define a variational flow matching problem by minimizing the Kullback-Leibler
(KL) divergence from pt to qθt , which we can express as

Et

[
KL

(
pt(x)pt(x1 | x) || pt(x)qθt (x1 | x)

)]
= −Et,x,x1

[
log qθt (x1 | x)

]
+ const, (9)

where t ∼ Uniform(0, 1) and x, x1 ∼ pt(x, x1) (see appendix A.1 for derivations). This leads us to
propose the variational flow matching (VFM) objective

LVFM(θ) = −Et,x,x1

[
log qθt (x1 | x)

]
. (10)

While this variational formulation of flow matching is promising, two potential drawbacks emerge
in practical applications. First, although it is feasible to reformulate any flow matching problem as

3

a variational inference task, doing so requires learning an approximation of a potentially complex,
high-dimensional distribution pt(x1 | x) (including any correlations between the different xd

1).
Second, representing vθt (x) as an expectation may pose intractability challenges. Interestingly, under
typical assumptions about the conditional velocity field in flow matching, this objective simplifies
significantly, making it no more computationally demanding than standard flow matching, a point we
will further address in section 3.2.

3.2 Mean-Field Variational Flow Matching

Decomposing the conditional vector field. At first glance, we do not seem to obtain much from
this variational view due to the intractability of pt(x1 | x) and vθt (x). Fortunately, we can simplify the
objective and the calculation of the marginal vector field under the typical case where the conditional
vector field ut(x | x1) is linear in x1, such as in straight line interpolations commonly used in flow
matching. This leads to two simplifications. First, we notice that the expected value of a linear
conditional velocity field simply equals the conditional velocity field towards the expectation/mean
of the distribution we are considering, i.e.

ut(x) = Ept(x1|x) [ut(x | x1)] = ut(x | Ept
[x1 | x]) if ut(x | x1) is linear in x1. (11)

This means that as long as our variational distribution has the same mean as pt(x1 | x), we will
learn the same underlying field. Second, we realize that the expected value of xd

1 only depends on
pt(x

d
1 | x), and thus as such as long as qθt (x1 | x) has the same marginal expectations E

[
xd
1 | x

]
, we

will learn the same field as under pt(x1 | x). In other words, it suffices to learn a fully-factorized
approximation qθt (x1 | x), there is no need to fully characterize the covariance of the posterior
probability path. Thich allows us to reduce a high-dimensional variational problem to a series of low
dimension problems.

Formally, the following holds:
Theorem 1. Assume that the conditional vector field ut(x | x1) is linear in x1. Then, for any
distribution rt(x1 | x) such that the marginal distributions coincide with those of pt(x1 | x), the
corresponding expectations of ut(x | x1) are equal, i.e.

Ert(x1|x) [ut(x | x1)] = Ept(x1|x) [ut(x | x1)] . (12)

We provide a proof in appendix A.3.

It follows directly from theorem 1 that without loss of generality we can consider the considerably
easier task of a fully-factorized approximation

qθt (x1 | x) :=
D∏

d=1

qθt (x
d
1 | x). (13)

We refer to this special case as mean-field variational flow matching (MF-VFM), and the VFM
objective reduces to

LMF-VFM(θ) = −Et,x,x1

[
log qθt (x1 | x)

]
= −Et,x,x1

[
D∑

d=1

log qθt (x
d
1 | x)

]
. (14)

Even though we use a factorized model, it is worth emphasizing that due to the linearity of the
conditional field, a mean-field variational distribution can learn the solution exactly.

Computing the marginal vector field. To calculate the vector field vθt (x), we can simply substitute
the factorized distribution qθt (x1 | x) into eq. (8). However, this still requires an evaluation of an
expectation. Fortunately, leveraging the linearity condition significantly simplifies this computation,
since as long as we have access to the first moment of one-dimensional distributions qθt (x

d
1 | x), we

can efficiently calculate vθt (x) by simply considering the conditional field towards it. Note that for
many distributions – e.g. Gaussian – learning its parameters is equivalent to learning its expected
value. Note that the training procedure will differ for two distinct distributions – e.g. Gaussian versus
Categorical – so the form of the distribution qθt (x1 | x) remains practically important, a flexibility
provided through the variational view on flow matching.

4

Figure 1: Parameterization of the vector field in CatFlow. Given an interpolant xt = tx1 + (1− t)x0,
CatFlow predicts a categorical distribution qθt (x1 | xt) parameterized by a vector µt(xt). The
resulting construction for the vector field vθt (xt) = (µt(xt)− xt)/(1− t) ensures that trajectories
converge to a point on the simplex at t = 1.

If we now use the standard flow matching case of using a conditional vector field based on a linear
interpolation, the approximate vector field can be expressed in terms of the first moment of the
variational approximation:

vθt (x) = Eqθt (x1|x)

[
x1 − x

1− t

]
=

µ1 − x

1− t
, µ1 := Eqθt (x1|x) [x1] . (15)

Note that this covers both the case of categorical data, which we focus on in this paper, and the case
of continuous data, as considered in traditional flow matching methods. We provided the general
algorithm for training and generation in appendix B.1.

At first glance, the linearity condition of the conditional vector field ut(x | x1) in theorem 1 might
seem restricting. However, in most state-of-the-art generative modeling techniques, this condition is
satisfied, e.g. diffusion-based models, such as flow matching [27, 2, 32], diffusion models [15, 54],
and models that combine the injection of Gaussian noise with blurring [44, 16], among others [10, 51].

3.3 CatFlow: Mean-Field Variational Flow Matching for Categorical Data

The CatFlow Objective In CatFlow, we directly apply the VFM framework to the categorical case.
Let our parameterised variational distribution qθt (x

d
1 | x) = Cat(xd

1 | θdt (x)), and let us denote the
parameters of this categorical as

µdk
t (x) := qθt (x

d
1 = k | x) = Eqθt (x1|x)[I[x

d
1 = k]]. (16)

Then, the dth component of the learned vector field is

vθ,dt (x) :=

Kd∑
k=1

µdk
t (x)

I[xd
1 = k]− x

1− t
. (17)

Intuitively, CatFlow learns a distribution over the conditional trajectories to all corners of the
probability simplices, rather than regressing towards an expected conditional trajectory.

In the categorical setting, the MF-VFM objective can be written out explicitly. Writing out the
probability mass function of the categorical distribution, we see that

log qθt (x
d
1 | x) = log

Kd∏
k=1

(µdk
t (x))I[x

d
1=k] =

D∑
d=1

I[xd
1 = k] logµdk

t (x). (18)

As such, we find that CatFlow objective is given by a standard cross-entropy loss:

LCatFlow(θ) = −Et,x,x1

 D∑
d=1

Kd∑
k=1

I[xd
1 = k] logµdk

t (x)

 . (19)

Note, however, that when actually computing vθt , this can be done efficiently, since

Eqθt (x
d
1 |x)

[
ut(x

d | xd
1)
]
= Eqθt (x

d
1 |x)

[
xd
1 − xd

1− t

]
=

µd(x)− xd

1− t
, (20)

5

since µd(x) := Eqθt (x
d
1 |x)[u

d
t (x

d
1 | x)] and the other terms are not in the expectation. Note that this

geometrically corresponds to learning the mapping to a point in the probability simplex, and then
flowing towards that. This procedure is illustrated in fig. 1. Because of this, training CatFlow is no
less efficient than flow matching. We provided the algorithm for training and generation for CatFlow
and a Gaussian VFM objective in appendix B.2 and appendix B.3 respectively.

More precisely, training CatFlow offers two key benefits over standard flow matching. First, given
that CatFlow predicts points in the probability simplex and parametrizes the velocities to point into it,
an inductive bias is introduced ensuring all generative paths align with realistic trajectories, hence
avoiding misaligned paths. Second, using a cross-entropy loss instead of a mean-squared error
improves gradient behavior during training. Both aspects enhance learning dynamics and speed up
convergence, which is evaluated in section 6.3. Lastly, CatFlow’s ability to learn probability vectors
– rather than directly choosing classes as is common in discrete approaches – allows the model to
express uncertainty about variables at a specific time. This is especially useful in complex domains
like molecular generation, where initial uncertainty about components decreases as more structure is
established, leading to more precise predictions.

Permutation Equivariance. Graphs, defined by vertices and edges, lack a natural vertex order
unlike other data types. This permutation invariance means any vertex labeling represents the same
graph if the connections remain unchanged. Note that even though the following results apply to
graphs, an unordered set of categorical variables can be described by a graph without edges. Under
natural conditions – see appendix A – we ensure CatFlow adheres to this symmetry (see appendix A.4
for the proof).

Theorem 2. CatFlow generates exchangeable distributions, i.e. CatFlow generates all graph permu-
tations with equal probability.

4 Flow Matching and Score Matching: Bridging the Gap

In this section, we relate the VFM framework to existing generative modeling approaches. First, we
show that VFM has standard flow matching as a special case when the variational approximation is
Gaussian. This implies that VFM provides a more general approach to learning CNFs. Second, we
show that through VFM, we are not only able to compute the target vector field, but also the score
function as used in score-based diffusion. This has two primary theoretical implications: 1) VFM
simultaneously learns deterministic and stochastic dynamics – as diffusion models rely on stochastic
dynamics, and 2) VFM provides a variational bound on the model likelihood.

Relationship to Flow Matching. VFM admits FM as a special case, under certain assumptions
on ut(x | x1), when the variational approximation is Gaussian. Formally, the following holds (see
theorem 3 in appendix A.2 for the proof):

Theorem 3. Assume the conditional vector field ut(x | x1) is linear in x1 and is of the form

ut(x|x1) = At(x)x1 + bt(x), (21)

where At(x) : [0, 1]×RD → RD×RD and bt(x) : [0, 1]×RD → RD. Moreover, assume that At(x)
is an invertible matrix and qθt (x1 | x) = N (x1 | µθ

t (x),Σt(x)), where Σt(x) =
1
2 (A

⊤
t (x)At(x))

−1.
Then, VFM reduces to flow matching.

Relationship to Score-Based Models. Flow matching [27] is inspired by score-based models [54]
and shares strong connections with them. This leads us to two observations. The first is that it should
be possible to define a variational parameterization of the score function in diffusion models that is
analogous to the one in VFM. The second is that we can build on existing results that show that many
diffusion model objectives, including the standard flow matching objective with a linear interpolant,
can be expressed as special cases of a general weighted loss function [22, 21]. Here we simililarly
define a bound on the log-likelihood in terms of a reweighted VFM objective.

In score-based models, the objective is to approximate the score function ∇x log pt(x) with a function
sθt (x). A connection to VFM becomes apparent by observing that the score function can also be

6

expressed as an expectation with respect to pt(x1 | x) (see appendix A.5 for derivation):

∇x log pt(x) =

∫
pt(x1 | x)∇x log pt(x | x1)dx1 = Ept(x1|x) [∇x log pt(x | x1)] , (22)

where ∇x log pt(x | x1) is the tractable conditional score function. Similarly, we can parameterize
sθt (x) in terms of an expectation with respect to a variational approximation qθt (x1 | x),

sθt (x) :=

∫
qθt (x1 | x)∇x log pt(x | x1) dx1. (23)

It is now clear that sθt (x) = ∇x log pt(x) when qθt (x1 | x) = pt(x1 | x). This suggests that there
exists a variational formulation of score-based models that is entirely analogous to VFM. Indeed,
existing work on continuous diffusion for categorical data [11] defines a parameterization of the score
function of this form (see section 5 for a more detailed discussion).

Following [54, 3], we can construct stochastic generative dynamics dx = ṽθt (x)dt + gtdw to
approximate the true dynamics dx = ũt(x)dt+ gtdw (see details in appendix A.6), with

ũt(x) := Ept(x1|x)

[
ut(x | x1) +

g2t
2
∇x log pt(x | x1)

]
, ṽθt (x) := vθt (x) +

g2t
2
sθt (x). (24)

Here gt : [0, 1] → R+ is a scalar function, and w is a standard Wiener process.

This connection has two important implications. First, it shows that learning a variational approxi-
mation qθt (x1 | x) can be used to define both deterministic and stochastic dynamics, whereas flow
matching typically considers deterministic dynamics only (as flows are viewed through the lens of
ODEs). Second, it enables us to show that a reweighted version of the VFM objective provides a
bound on the log-likelihood of the model. This result, inspired by [21], provides another theoretical
motivation for learning using the VFM objective.
Theorem 4. Rewrite the Variational Flow Matching objective as follows:

LVFM(θ) = Et,x

[
Lθ(t, x)

]
where Lθ(t, x) = −Ex1

[
log qθt (x1 | x)

]
. (25)

Then, the following holds:

−Ex1

[
log qθ1(x1)

]
≤ Et,x

[
λt(x)Lθ(t, x)

]
+ C, (26)

where λt(x) is a non-negative function and C is a constant.

We provide a proof in appendix A.7. We further note that that applying the same linearity condition
that we discussed in section 3.2 to the conditional score function maintains all the same connections
with score-based models.

5 Related Work

Diffusion Models for Discrete Data. Several approaches to diffusion models have been developed
for graph generation. In [58], the authors define a Markov process that progressively edits graphs
by adding or removing edges and altering node or edge categories and is trained using a graph
transformer network, that reverses this process to predict the original graph structure from its noisy
version. This approach breaks down the complex task of graph distribution learning into simpler
node and edge classification tasks. Moreover, [20] proposes a score-based generative model for
graph generation using a system of stochastic differential equations (SDEs). The model effectively
captures the complex dependencies between graph nodes and edges by diffusing both node features
and adjacency matrices through continuous-time processes. These are non-autoregressive graph
generation approaches that perform on par with autoregressive ones, such as in [31, 26, 36]. Other
non-autoregressive approaches worth mentioning are [28, 34, 33].

There is also work on diffusion-based models for discrete data in the form of text and other sequential
data [4, 33, 61, 18]. Though not explicitly formulated in terms of a variational perspective, the work
on continuous diffusion for categorical data [11] arrives at a an approach that is closely related to that
of CatFlow. This work defines a diffusion in the embedding space of a transformer-based language

7

Table 1: Results abstract graph generation.
Ego-small Community-small

Degree ↓ Clustering ↓ Orbit ↓ Degree ↓ Clustering ↓ Orbit ↓
GraphVAE [50] 0.130 0.170 0.050 0.350 0.980 0.540
GNF [29] 0.030 0.100 0.001 0.200 0.200 0.110
EDP-GNN [37] 0.052 0.093 0.007 0.053 0.144 0.026
GDSS [20] 0.021 0.024 0.007 0.045 0.086 0.007

CatFlow 0.013 0.024 0.008 0.018 0.086 0.007

model. It defines an approximation of the score function as an expected value of a conditional score
function as in eq. (23), which leads to an expression for the learned score function in terms of a mean
embedding, analogous to the one we obtain in eq. (15). Where this approach differs from CatFlow,
other than in that it defines a flow in the embedding space of language models, is in how the objective
is defined. The authors also minimize a cross-entropy loss, but employ a time-warped objective,
similar to the general weighted objective proposed in [22], where the warping is optimized to ensure
that the entropy of predictions decreases linearly when moving from noise to data in uniform time.

Flow-based methods for Discrete Data. Recently, two flow-based methods for discrete generative
modeling have been proposed, which differ both in terms of technical approach and intended use
case from the work that we present here.2

In [56], a Dirichlet flow framework for DNA sequence design is introduced, utilizing a transport
problem defined over the probability simplex, similar to diffusion on simplices proposed in [43]. This
approach differs from CatFlow in that it represents the conditional probability path pt(x | x1) using
a Dirichlet distribution. This implies that points x are constrained to the simplex, which is not the
case for CatFlow. Dirichlet Flows have not been evaluated on graph generation, but we did carry
out preliminary experiments based on the released source code. We compare to this approach in our
experiments.

In [6], Discrete Flow Models (DFMs) are introduced. DFMs use Continuous-Time Markov Chains to
enable flexible and dynamic sampling in multimodal generative modeling of both continuous and
discrete data. Though sharing a goal, this approach differs significantly from CatFlow as in the end
the resulting model does not learn a CNF, but rather generation through sequential sampling from a
time-dependent categorical distribution. As in the case of Dirichlet flows, no evaluation on graph
generation was performed.

The switch to the variational perspective is inspired by [58], showing significant improvement through
viewing the dynamics as a classification task over end points. However, CatFlow is still a continuous
model, and integrates – rather than iteratively samples – during generation.

6 Experiments

We evaluate CatFlow in three sets of experiments. First, we consider an abstract graph generation task
proposed in [35], where the goal of this task is to evaluate if CatFlow is able to capture the topological
properties of graphs. Second, we consider two common molecular benchmarks, QM9 [40] and
ZINC250k [19], consisting of small and (relatively) large molecules respectively. This task is chosen
to see if CatFlow can learn semantic information in graph generation, such as molecular properties.
Finally, we perform an ablation comparing CatFlow to standard flow matching, specifically in terms
of generalization. The experimental setup and model choices are provided in appendix D.

Note that we treat graphs as purely categorical/discrete objects and do not consider ‘geometric’ graphs
that are embedded in e.g. Euclidean space. Specifically, for some graph with Kv node classes and
Ke edge classes, we process the graph as a fully-connected graph, where each node is treated as a

2Flow matching and diffusion models have also been proposed for geometric graph generation, e.g. in
[23, 55] and [17, 57] respectively, but since these approaches are continuous (as they generate coordinates based
on some conformer) they consider a fundamentally different task than the ones we consider here.

8

Table 2: Results molecular generation.
QM9 ZINC250k

Valid ↑ Unique ↑ FCD ↓ Valid ↑ Unique ↑ FCD ↓
MoFlow [63] 91.36 98.65 4.467 63.11 99.99 20.931
EDP-GNN [37] 47.52 99.25 2.680 82.97 99.79 16.737
GraphEBM [30] 8.22 97.90 6.143 5.29 98.79 35.471
GDSS [20] 95.72 98.46 2.900 97.01 99.64 14.656
Digress [58] 99.00 96.20 - - - -
Flow Matching [27] 94.10 98.20 5.155 94.01 96.68 18.764
Dirichlet FM [56] 99.10 98.15 0.888 97.52 99.20 14.222

CatFlow 99.81 99.95 0.441 99.21 100.00 13.211

categorical variable of one of Kv classes and each edge of Ke + 1 classes, where the extra class
corresponds with being absent.

6.1 Abstract graph generation

We first evaluate CatFlow on an abstract graph generation task, including synthetic and real-world
graphs. We consider 1) Ego-small (200 graphs), consisting of small ego graphs drawn from a larger
Citeseer network dataset [48], 2) Community-small (100 graphs), consisting of randomly generated
community graphs, 3) Enzymes (587 graphs), consisting of protein graphs representing tertiary
structures of the enzymes from [47], and 4) Grid (100 graphs), consisting of 2D grid graphs. We
follow the standard experimental setup popularized by [62] and hence report the maximum mean
discrepancy (MMD) to compare the distributions of degree, clustering coefficient, and the number of
occurrences of orbits with 4 nodes between generated graphs and a test set. Following [20], we also
use the Gaussian Earth Mover’s Distance kernel to compute the MMDs instead of the total variation.

The results of the Ego-small and Community-small tasks are summarized in table 1, and additional
results (and error bars) are provided in appendix C. The results indicate that CatFlow is able to capture
topological properties of graphs, and performs well on abstract graph generation.

6.2 Molecular Generation: QM9 & ZINC250k

Molecular generation entails designing novel molecules with specific properties, a complex task
hindered by the vast chemical space and long-range dependencies in molecular structures. We
evaluate CatFlow on two popular molecular generation benchmarks: QM9 and ZINC250k [40, 19].

We follow the standard setup – e.g. as in [49, 33, 58, 20] – of kekulizing the molecules using
RDKit [25] and removing the hydrogen atoms. We sample 10,000 molecules and evaluate them
on validity, uniqueness, and Fréchet ChemNet Distance (FCD) – evaluating the distance between
data and generated molecules using the activations of ChemNet [39]. Here, validity is computed
without valency correction or edge resampling, hence following [63] rather than [49, 33], as is more
reasonable due to the existence of formal charges in the data itself. We do not report novelty for QM9
and ZINC250k, as QM9 is an exhaustive list of all small molecules under some chemical constraint
and all models obtain (close to) 100% novelty on ZINC250k.3

3CatfFlow obtains 49% novelty on QM9.

Figure 2: CatFlow samples of QM9 (top) and ZINC250k (bottom).

9

(a) Score 100% of data. (b) Score 20% of data. (c) Score 5% of data.

Figure 3: Ablation results. We compare standard flow matching and CatFlow. We visualize perfor-
mance degradation in terms of a score, which is the percentage of molecules that is valid and unique,
for a varying number of layers and percentage of the training data.

The results are summarized in table 2 and samples from the model are shown in fig. 2. CatFlow
obtains state-of-the-art results on both QM9 and ZINC250k, virtually obtaining perfect performance
on both datasets. It is worth noting that CatFlow also converges faster than flow matching and is not
computationally more expensive than any of the baselines either during training or generation.

6.3 CatFlow Ablations

To understand the difference in performance between CatFlow and a standard flow matching formula-
tion we perform ablations. we focus on generalization capabilities, and as such consider ablations
that the number of parameters in the model and the amount of training data.

In fig. 3 we report a score, which is the percentage of generated molecules that is valid and unique.
CatFlow not only outperforms regular flow matching in the large model and full data setting, but is
also significantly more robust to a decrease in model-size and data. Moreover, we observe significantly
faster convergence (curves not shown). We hypothesize this is a consequence of the optimization
procedure not exploring ‘irrelevant’ paths that do not point towards the probability simplex.

7 Conclusion

We have introduced a variational reformulation of flow matching. This formulation in turn informed
the design of a simple flow matching method for categorical data, which achieves strong performance
on graph generation tasks. Variational flow is very general and opens up several lines of inquiry. We
see immediate opportunities to apply CatFlow to other discrete data types, including text, source
code, and more broadly to the modeling of mixed discrete-continuous data modalities. Additionally,
the connections to score-based models that we identify in this paper, suggest a path towards learning
both deterministic and stochastic dynamics.

Limitations. While the VFM formulation that we identify in this paper has potential in terms of
its generality, we have as yet only considered its application to the specific task of categorical graph
generation. We leave other use cases of VFM to future work. A limitation of CatFlow, which is
shared with related approaches to graph generation, is that reasoning about the set of possible edges
has a cost that is quadratic in the number of nodes. As a result CatFlow does not scale well to e.g.
large proteins of 104 or more atoms.

Ethics Statement. Graph generation in general, and molecular generation specifically, holds great
promise for advancing drug discovery and personalized medicine. However, this technology also
poses ethical concerns, such as the potential for misuse in creating harmful substances. In terms of
technology readiness, this work is not yet at a level where we foresee direct benefits or risks.

Acknowledgements. This project was supported by the Bosch Center for Artificial Intelligence.

10

References
[1] Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A

unifying framework for flows and diffusions. arXiv preprint arXiv:2303.08797, 2023.

[2] Michael Samuel Albergo and Eric Vanden-Eijnden. Building Normalizing Flows with Stochastic
Interpolants. In The Eleventh International Conference on Learning Representations, September
2022.

[3] Brian DO Anderson. Reverse-time diffusion equation models. Stochastic Processes and their
Applications, 12(3):313–326, 1982.

[4] Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg.
Structured denoising diffusion models in discrete state-spaces. Advances in Neural Information
Processing Systems, 34:17981–17993, 2021.

[5] Heli Ben-Hamu, Samuel Cohen, Joey Bose, Brandon Amos, Maximillian Nickel, Aditya Grover,
Ricky T. Q. Chen, and Yaron Lipman. Matching normalizing flows and probability paths on
manifolds. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and
Sivan Sabato, editors, Proceedings of the 39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning Research, pages 1749–1763. PMLR, 17–23
Jul 2022.

[6] Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Gener-
ative flows on discrete state-spaces: Enabling multimodal flows with applications to protein
co-design. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver,
Jonathan Scarlett, and Felix Berkenkamp, editors, Proceedings of the 41st International Confer-
ence on Machine Learning, volume 235 of Proceedings of Machine Learning Research, pages
5453–5512. PMLR, 21–27 Jul 2024.

[7] Ricky TQ Chen and Yaron Lipman. Flow matching on general geometries. In The Twelfth
International Conference on Learning Representations, 2024.

[8] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

[9] Quan Dao, Hao Phung, Binh Nguyen, and Anh Tran. Flow matching in latent space. arXiv
preprint arXiv:2307.08698, 2023.

[10] Giannis Daras, Mauricio Delbracio, Hossein Talebi, Alex Dimakis, and Peyman Milanfar.
Soft diffusion: Score matching with general corruptions. Transactions on Machine Learning
Research, 2023.

[11] Sander Dieleman, Laurent Sartran, Arman Roshannai, Nikolay Savinov, Yaroslav Ganin,
Pierre H. Richemond, Arnaud Doucet, Robin Strudel, Chris Dyer, Conor Durkan, Curtis
Hawthorne, Rémi Leblond, Will Grathwohl, and Jonas Adler. Continuous diffusion for categor-
ical data, December 2022.

[12] Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
AAAI Workshop on Deep Learning on Graphs: Methods and Applications, 2021.

[13] Ehsan Ebrahimy and Robert Shimer. Stock–flow matching. Journal of Economic Theory,
145(4):1325–1353, 2010.

[14] Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, and David Duvenaud. Scalable re-
versible generative models with free-form continuous dynamics. In International Conference
on Learning Representations, 2019.

[15] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in neural information processing systems, 33:6840–6851, 2020.

[16] Emiel Hoogeboom and Tim Salimans. Blurring diffusion models. In The Eleventh International
Conference on Learning Representations, 2023.

11

[17] Emiel Hoogeboom, Vıctor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant
diffusion for molecule generation in 3d. In International conference on machine learning, pages
8867–8887. PMLR, 2022.

[18] Naoto Inoue, Kotaro Kikuchi, Edgar Simo-Serra, Mayu Otani, and Kota Yamaguchi. Layoutdm:
Discrete diffusion model for controllable layout generation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 10167–10176, 2023.

[19] John J Irwin, Teague Sterling, Michael M Mysinger, Erin S Bolstad, and Ryan G Coleman. Zinc:
a free tool to discover chemistry for biology. Journal of chemical information and modeling,
52(7):1757–1768, 2012.

[20] Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based Generative Modeling of Graphs
via the System of Stochastic Differential Equations. In Proceedings of the 39th International
Conference on Machine Learning, pages 10362–10383. PMLR, June 2022.

[21] Diederik Kingma and Ruiqi Gao. Understanding Diffusion Objectives as the ELBO with Simple
Data Augmentation. Advances in Neural Information Processing Systems, 36:65484–65516,
December 2023.

[22] Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational Diffusion Models. In
Advances in Neural Information Processing Systems, volume 34, pages 21696–21707. Curran
Associates, Inc., 2021.

[23] Leon Klein, Andreas Krämer, and Frank Noe. Equivariant flow matching. In Thirty-Seventh
Conference on Neural Information Processing Systems, November 2023.

[24] Jonas Kohler, Yaoyi Chen, Andreas Kramer, Cecilia Clementi, and Frank Noé. Flow-matching:
Efficient coarse-graining of molecular dynamics without forces. Journal of Chemical Theory
and Computation, 19(3):942–952, 2023.

[25] Greg Landrum. Rdkit: Open-source cheminformatics software, 2016.

[26] Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, Will Hamilton, David K Duvenaud, Raquel
Urtasun, and Richard Zemel. Efficient graph generation with graph recurrent attention networks.
Advances in neural information processing systems, 32, 2019.

[27] Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
matching for generative modeling. In The Eleventh International Conference on Learning
Representations, 2023.

[28] Phillip Lippe and Efstratios Gavves. Categorical Normalizing Flows via Continuous Transfor-
mations. In International Conference on Learning Representations, October 2020.

[29] Jenny Liu, Aviral Kumar, Jimmy Ba, Jamie Kiros, and Kevin Swersky. Graph normalizing
flows. Advances in Neural Information Processing Systems, 32, 2019.

[30] Meng Liu, Keqiang Yan, Bora Oztekin, and Shuiwang Ji. GraphEBM: Molecular graph
generation with energy-based models. In Energy Based Models Workshop - ICLR 2021, 2021.

[31] Qi Liu, Miltiadis Allamanis, Marc Brockschmidt, and Alexander Gaunt. Constrained graph
variational autoencoders for molecule design. Advances in neural information processing
systems, 31, 2018.

[32] Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate
and transfer data with rectified flow. In The Eleventh International Conference on Learning
Representations, 2023.

[33] Youzhi Luo, Keqiang Yan, and Shuiwang Ji. Graphdf: A discrete flow model for molecular
graph generation. In International conference on machine learning, pages 7192–7203. PMLR,
2021.

[34] Kaushalya Madhawa, Katushiko Ishiguro, Kosuke Nakago, and Motoki Abe. Graphnvp: An
invertible flow model for generating molecular graphs. arXiv preprint arXiv:1905.11600, 2019.

12

[35] Karolis Martinkus, Andreas Loukas, Nathanaël Perraudin, and Roger Wattenhofer. Spectre:
Spectral conditioning helps to overcome the expressivity limits of one-shot graph generators. In
International Conference on Machine Learning, pages 15159–15179. PMLR, 2022.

[36] Rocío Mercado, Tobias Rastemo, Edvard Lindelöf, Günter Klambauer, Ola Engkvist, Hongming
Chen, and Esben Jannik Bjerrum. Graph networks for molecular design. Machine Learning:
Science and Technology, 2(2):025023, 2021.

[37] Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, and Stefano Ermon.
Permutation invariant graph generation via score-based generative modeling. In International
Conference on Artificial Intelligence and Statistics, pages 4474–4484. PMLR, 2020.

[38] George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji
Lakshminarayanan. Normalizing flows for probabilistic modeling and inference. Journal of
Machine Learning Research, 22(57):1–64, 2021.

[39] Kristina Preuer, Philipp Renz, Thomas Unterthiner, Sepp Hochreiter, and Gunter Klambauer.
Fréchet chemnet distance: a metric for generative models for molecules in drug discovery.
Journal of chemical information and modeling, 58(9):1736–1741, 2018.

[40] Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld.
Quantum chemistry structures and properties of 134 kilo molecules. Scientific data, 1(1):1–7,
2014.

[41] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical
text-conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 1(2):3,
2022.

[42] Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In
International conference on machine learning, pages 1530–1538. PMLR, 2015.

[43] Pierre H. Richemond, Sander Dieleman, and Arnaud Doucet. Categorical SDEs with Simplex
Diffusion, October 2022.

[44] Severi Rissanen, Markus Heinonen, and Arno Solin. Generative modelling with inverse heat
dissipation. In International Conference on Learning Representations (ICLR), 2023.

[45] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 10684–10695, 2022.

[46] Noam Rozen, Aditya Grover, Maximilian Nickel, and Yaron Lipman. Moser flow: Divergence-
based generative modeling on manifolds. Advances in Neural Information Processing Systems,
34:17669–17680, 2021.

[47] Ida Schomburg, Antje Chang, Christian Ebeling, Marion Gremse, Christian Heldt, Gregor Huhn,
and Dietmar Schomburg. Brenda, the enzyme database: updates and major new developments.
Nucleic acids research, 32(suppl_1):D431–D433, 2004.

[48] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-
Rad. Collective classification in network data. AI magazine, 29(3):93–93, 2008.

[49] Chence Shi, Minkai Xu, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, and Jian Tang. Graphaf:
a flow-based autoregressive model for molecular graph generation. In International Conference
on Learning Representations, 2019.

[50] Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of small graphs
using variational autoencoders. In Artificial Neural Networks and Machine Learning–ICANN
2018: 27th International Conference on Artificial Neural Networks, Rhodes, Greece, October
4-7, 2018, Proceedings, Part I 27, pages 412–422. Springer, 2018.

[51] Raghav Singhal, Mark Goldstein, and Rajesh Ranganath. Where to diffuse, how to diffuse and
how to get back: Automated learning in multivariate diffusions. In International Conference on
Learning Representations, 2023.

13

[52] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In
International Conference on Learning Representations, 2020.

[53] Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon. Maximum likelihood training of
score-based diffusion models. Advances in neural information processing systems, 34:1415–
1428, 2021.

[54] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. In
International Conference on Learning Representations, 2020.

[55] Yuxuan Song, Jingjing Gong, Minkai Xu, Ziyao Cao, Yanyan Lan, Stefano Ermon, Hao Zhou,
and Wei-Ying Ma. Equivariant Flow Matching with Hybrid Probability Transport for 3D
Molecule Generation. In Thirty-Seventh Conference on Neural Information Processing Systems,
November 2023.

[56] Hannes Stark, Bowen Jing, Chenyu Wang, Gabriele Corso, Bonnie Berger, Regina Barzilay, and
Tommi Jaakkola. Dirichlet flow matching with applications to DNA sequence design. In Ruslan
Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett,
and Felix Berkenkamp, editors, Proceedings of the 41st International Conference on Machine
Learning, volume 235 of Proceedings of Machine Learning Research, pages 46495–46513.
PMLR, 21–27 Jul 2024.

[57] Brian L Trippe, Jason Yim, Doug Tischer, David Baker, Tamara Broderick, Regina Barzilay, and
Tommi S Jaakkola. Diffusion probabilistic modeling of protein backbones in 3d for the motif-
scaffolding problem. In The Eleventh International Conference on Learning Representations,
2022.

[58] Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal
Frossard. DiGress: Discrete Denoising diffusion for graph generation. In The Eleventh
International Conference on Learning Representations, September 2022.

[59] Pascal Vincent. A connection between score matching and denoising autoencoders. Neural
computation, 23(7):1661–1674, 2011.

[60] Jonas Wildberger, Maximilian Dax, Simon Buchholz, Stephen Green, Jakob H Macke, and
Bernhard Schölkopf. Flow matching for scalable simulation-based inference. Advances in
Neural Information Processing Systems, 36, 2024.

[61] Dongchao Yang, Jianwei Yu, Helin Wang, Wen Wang, Chao Weng, Yuexian Zou, and Dong Yu.
Diffsound: Discrete diffusion model for text-to-sound generation. IEEE/ACM Transactions on
Audio, Speech, and Language Processing, 2023.

[62] Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. Graphrnn: Generat-
ing realistic graphs with deep auto-regressive models. In International conference on machine
learning, pages 5708–5717. PMLR, 2018.

[63] Chengxi Zang and Fei Wang. Moflow: an invertible flow model for generating molecular graphs.
In Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery &
data mining, pages 617–626, 2020.

[64] Qinsheng Zhang and Yongxin Chen. Fast sampling of diffusion models with exponential
integrator. In The Eleventh International Conference on Learning Representations, 2022.

14

A Proofs and Derivations

A.1 Derivation of the Variational Flow Matching Objective

We derive eq. (9) that states the equivalence of the optimization of the VFM objective and mini-
mization of the KL divergence between the true endpoint distribution pt(x1 | x) and the variational
approximation qθt (x1 | x). Note that

min
θ

Et,x

[
KL

(
pt(x1 | x) || qθt (x1 | x)

)]
= max

θ
Et,x,x1

[
log qθt (x1 | x)

]
, (27)

where t ∼ Uniform(0, 1), x ∼ pt(x) and x1 ∼ pdata(x1).

First, we rewrite the KL divergence as combination of entropy and cross-entropy KL (p || q) =
H(p, q)− H(p):

Et,x

[
KL

(
pt(x1 | x) || qθt (x1 | x)

)]
=Et,x

[
H
(
pt(x1 | x), qθt (x1 | x)

)]
− (28)

Et,x

[
H
(
pt(x1 | x)

)]
. (29)

We observe that the entropy term does not depend on the parameters θ. Consequently we disregard it
when optimising the variational distribution qθt (x1 | x).
Second, we rewrite the cross-entropy term:

Et,x

[
H
(
pt(x1 | x), qθt (x1 | x)

)]
= −Et,x,x1

[
log qθt (x1 | x)

]
. (30)

Therefore, the second part of eq. (27) corresponds to negative cross-entropy and minimisation
corresponds to maximisation of negative cross-entropy.

A.2 Flow Matching as a Special Case of Variational Flow Matching

Theorem 3. Assume the conditional vector field ut(x | x1) is linear in x1 and is of the form

ut(x|x1) = At(x)x1 + bt(x), (21)

where At(x) : [0, 1]×RD → RD×RD and bt(x) : [0, 1]×RD → RD. Moreover, assume that At(x)
is an invertible matrix and qθt (x1 | x) = N (x1 | µθ

t (x),Σt(x)), where Σt(x) =
1
2 (A

⊤
t (x)At(x))

−1.
Then, VFM reduces to flow matching.

Proof. Let us substitute the assumed form of qθt (x1 | x) into the VFM objective:

LVFM(θ) = −Et,x,x1

[
log qθt (x1 | x)

]
(31)

= −Et,x,x1

[
log

(
(2π)

−D/2 |Σt(x)|−1/2
exp

(
−
∥∥At(x)

(
x1 − µθ

t (x)
)∥∥2

2

))]
(32)

= Et,x,x1

[∥∥At(x)
(
x1 − µθ

t (x)
)∥∥2

2

]
+

1

2
Et,x,x1

[
D log (2π) + log |Σt(x)|

]
(33)

= Et,x,x1

[∥∥(At(x)x1 + bt(x))−
(
At(x)µ

θ
t (x) + bt(x)

)∥∥2
2

]
+ C (34)

= Et,x,x1

[∥∥ut(x | x1)− vθt (x)
∥∥2
2

]
+ C, (35)

which is what we wanted to show.

A.3 Decomposition of the Flow

Theorem 1. Assume that the conditional vector field ut(x | x1) is linear in x1. Then, for any
distribution rt(x1 | x) such that the marginal distributions coincide with those of pt(x1 | x), the
corresponding expectations of ut(x | x1) are equal, i.e.

Ert(x1|x) [ut(x | x1)] = Ept(x1|x) [ut(x | x1)] . (12)

15

Proof. Applying the linearity condition, we rewrite the conditional vector field ut(x|x1) as such:

ut(x | x1) = At(x)x1 + bt(x), (36)

where At(x) : [0, 1]× RD → RD × RD and bt(x) : [0, 1]× RD → RD. Then, we substitute it into
equation:

Ept(x1|x) [ut(x | x1)] = Ept(x1|x) [At(x)x1 + bt(x)] (37)

= At(x)Ept(x1|x) [x1] + bt(x). (38)

Then, we know, that for any distribution r such that the marginal distributions coincide with those of
p the following holds:

Er[x] = Ep[x]. (39)

Applying this fact to eq. (38) we obtain:

Ept(x1|x) [ut(x | x1)] = At(x)Ert(x1|x) [x1] + bt(x) (40)

= Ert(x1|x) [At(x)x1 + bt(x)] (41)

= Ert(x1|x) [ut(x | x1)] , (42)

which is what we wanted to show.

A.4 CatFlow

Let G = (V, E) be a graph with node and edge features given by Hn ∈ R|V|×dn and He ∈
R|V|×|V|×de respectively, and let x denote the graphs and its features. Moreover, let π ∈ S|V| be a
permutation and P its associated permutation matrix, such that the action of the group is defined as

• π ·Hn := PHn,

• π ·He := PHeP
⊤.

To simplify notation, we will simply write π · x to denote the above operation.

Lemma 1. If µt(x) is permutation equivariant w.r.t S|V|, then so is vt.

Proof. Note that

vt(π · x) = µt(π · x)− π · x
1− t

=
π · µt(x)− π · x

1− t
,

where the last step follows from permutation equivariance. Moreover, since π acts on x through
permutation matrices, we can leverage the distributive property of linear operators, i.e. we conclude
that

π · µt(x)− π · x
1− t

= π · (µt(x)− x)

1− t
= π · vt(x),

finishing the proof.

Theorem 5. Let p0 be an exchangeable distribution – e.g. a standard normal distribution – and µt(x)
be permutation equivariant. Then, all permutations of graphs are generated with equal probability.

Proof. By result 1, we know that µt(x) being permutation equivariant implies that vt(x) is per-
mutation equivariant. Moreover, if we let Γ(x) := x +

∫ 1

0
vt(xt)dt, the for all π ∈ Sn we have

that

Γ(π · x) = π · x+

∫ 1

0

vt(π · xt)dt = π · x+

∫ 1

0

π · vt(xt)dt = π · Γ(x),

where again the last step follows by basic properties of linear operators. Therefore, since p0 assigns
equal density of all permutations of x, the resulting distribution p1 preservers this property, which is
what we wanted to show.

16

A.5 Derivation of the Score Function

In this subsection we want to derive the equation that allows us to express the score function
∇x log pt(x) in terms of the posterior probability path pt(x | x1). Notice that

∇x log pt(x) =
1

pt(x)
∇xpt(x) (43)

=
1

pt(x)
∇x

∫
pt(x | x1)p(x1)dx1 (44)

=
1

pt(x)

∫
p(x1)∇xpt(x | x1)dx1 (45)

=

∫
pt(x | x1)p(x1)

pt(x)
∇x log pt(x | x1)dx1 (46)

=

∫
pt(x1 | x)∇x log pt(x | x1)dx1 (47)

= Ept(x1|x) [∇x log pt(x | x1)] . (48)

A.6 Stochastic Dynamics with Variational Flow Matching

In this subsection, we discuss how the VFM framework can be applied to construct stochastic
generative dynamics and how it relates to score-based models.

First, let us consider the marginal vector field ut(x). It provides the deterministic dynamic that can
be written as the following ordinary differential equation (ODE):

dx = ut(x)dt. (49)

For the vector field ut(x) we know that – starting from the distribution p0(x) – it generates some
probability path pt(x). However, as we know from [54, 3], if we have access to the score function
∇x log pt(x) of distribution pt(x), we can construct a stochastic differential equation (SDE) that,
staring from distribution p0(x), generates the same probability path pt(x):

dx =

[
ut(x) +

g2t
2
∇x log pt(x)

]
dt+ gtdw, (50)

where g : R → R≥0 is a scalar function, and w is a standard Wiener process.

Given that

ut(x) = Ept(x1|x) [ut(x | x1)] and ∇x log pt(x) = Ept(x1|x) [∇x log pt(x | x1)] , (51)

we can rewrite eq. (50) in the following form:

dx = ũt(x)dt+ gtdw, where (52)

ũt(x) = Ept(x1|x) [ũt(x | x1)] and ũt(x | x1) = ut(x | x1) +
g2t
2
∇x log pt(x | x1). (53)

Importantly, the function gt does not affect the distribution path pt(x): it only changes the stochasticity
of the trajectories. In the extreme case when gt ≡ 0, the SDE in eq. (50) coincides with the ODE in
eq. (49).

Moreover, if we construct the stochastic dynamics in this way, we obtain score-based models as a
special case. In score-based models [54] the deterministic process that corresponds to probability
path pt(x) has the following form:

dx = ut(x)dt where ut(x) = ft(x) +
g2t
2
∇x log pt(x), (54)

where ft(x) is tractable. Substituting this ut(x) into eq. (50) we obtain:

dx =
[
ft(x) + g2t∇x log pt(x)

]
dt+ gtdw. (55)

17

The SDE in eq. (55) only depends on the score function, so in score-based models, the aim is to learn
the score function.

Now, let us note that similarly to vector field ut(x), the drift term ũt(x) in eq. (52) can be expressed
in terms of an end point distribution pt(x1 | x). Consequently, having a variational approximation of
end point distribution qθt (x1 | x), allows us to construct an approximation of the drift term ũt(x):

ṽθt (x) = Eqθt (x1|x) [ũt(x | x1)] = vθt (x) +
g2t
2
sθt (x), (56)

where vθt (x) = Eqθt (x1|x) [ut(x | x1)] and sθt (x) = Eqθt (x1|x) [∇x log pt(x | x1)] . (57)

Thus, we may define the following approximated SDE:

dx = ṽθt (x)dt+ gtdw or dx =

[
vθt (x) +

g2t
2
sθt (x)

]
dt+ gtdw. (58)

Then, eq. (58) is not just simply a new dynamic, it is a family of dynamics that admits deterministic
dynamics as a special case when gt ≡ 0. Importantly, the only thing we need to construct the stochas-
tic process in eq. (58) is an approximation of the end point distributions qθt (x1 | x). Additionally we
know that when pt(x1 | x) = qθt (x1 | x), ũt(x) = ṽθt (x), the processes coincide for all functions gt.
Therefore, we can train the model with the same objective as in VFM.

A.7 Variational Flow Matching as a Variational Bound on the Log-likelihood

In this subsection, we leverage the connections of VFM with stochastic processes to show that a
reweighted integral over the point-wise VFM objective defines a bound on the data likelihood in the
generative model.
Theorem 4. Rewrite the Variational Flow Matching objective as follows:

LVFM(θ) = Et,x

[
Lθ(t, x)

]
where Lθ(t, x) = −Ex1

[
log qθt (x1 | x)

]
. (25)

Then, the following holds:

−Ex1

[
log qθ1(x1)

]
≤ Et,x

[
λt(x)Lθ(t, x)

]
+ C, (26)

where λt(x) is a non-negative function and C is a constant.

Proof. Let us consider the two stochastic processes, that we discussed in appendix A.6:

dx = ũt(x)dt+ gtdw, where dx = ṽθt (x)dt+ gtdw. (59)

Note that they both start from the same prior distribution p0(x). The first one, by design, generates
probability path pt(x) and ends up in the data distribution pdata(x) = p1(x). The second process
generates some probability path qθt (x) that depends on the variational distribution qθt (x1|x).

We want to find a variational bound on KL divergence between p1(x) and qθ1(x). We start by applying
the result from [1] (see Lemma 2.22):

KL
(
p1(x1)∥qθ1(x1)

)
≤ Et,x

[
1

2g2t

∥∥ũt(x)− ṽθt (x)
∥∥2
2

]
(60)

= Et,x

[
1

2g2t

∥∥∥∥∫ (
pt(x1 | x)− qθt (x1 | x)

)
ũt(x|x1)dx1

∥∥∥∥2
2

]
(61)

≤ Et,x

[
1

2g2t

(∫ ∥∥∥ (pt(x1 | x)− qθt (x1 | x)
)
ũt(x|x1)

∥∥∥dx1

)2
]

(62)

≤ Et,x

[
1

2g2t

(∫ ∣∣pt(x1 | x)− qθt (x1 | x)
∣∣ ∥ũt(x|x1)∥ dx1

)2
]
. (63)

18

Now, let us introduce two auxiliary functions:

lt(x) = sup
x1

∥ũt(x|x1)∥ and λt(x) =
lt(x)

g2t
. (64)

If we utilise λt(x) to write down the following bound, we see that

KL
(
p1(x1)∥qθ1(x1)

)
≤ Et,x

[
λt(x)

2

(∫ ∣∣pt(x1 | x)− qθt (x1 | x)
∣∣ dx1

)2

2

]
. (65)

Next, we can apply Pinsker’s inequality, which states that for two probability distributions p and q
the following holds: ∫

|p(x)− q(x)|dx ≤ 2KL(p∥q). (66)

Applying it to the inner integral, we have:

KL
(
p1(x1)∥qθ1(x1)

)
≤ Et,x

[
λt(x)KL

(
pt(x1 | x)∥qθt (x1 | x)

)]
. (67)

We may rewrite the left part of inequality as a combination of the data entropy and the model’s
likelihood, where only the likelihood depends on parameters θ:

KL
(
p1(x1)∥qθ1(x1)

)
= −H (p1(x1))− Ex1

[
log qθ1(x1)

]
. (68)

The right part of inequality can be rewritten as an expectation of entropy that does not depend on any
parameters θ plus a reweighted VFM objective with weighting coefficient λt(x):

Et,x

[
λt(x)KL

(
pt(x1 | x)∥qθt (x1 | x)

)]
=− Et,x [λt(x)H(pt(x1 | x))] (69)

− Et,x,x1

[
λt(x)q

θ
t (x1 | x)

]
(70)

We see that this reweighted version of the VFM objective defines an upper bound on the model
likelihood, which was what we wanted to show.

A.8 Stochastic Dynamics under Linearity Conditions

In this subsection, we discuss the connection between VFM and stochastic dynamics under the
condition of linearity in x1 of the conditional vector field ut(x | x1) and conditional score function
∇x log pt(x | x1).

As we discuss in section 3.2, under the linearity condition, we may express ut(x) in terms of any
distribution of end points rt(x1 | x) if it has the same marginals as pt(x1 | x). In appendix A.5,
we demonstrate that the score function ∇x log pt(x) can also be expressed in terms of end point
distributions pt(x1 | x). Therefore, the score function may also be equally expressed in terms of
distribution rt(x1 | x) if it has the same marginals as pt(x1 | x). This fact is easy to show in the
same way as we present in appendix A.3.

Consequently, under the linearity conditions, the drift term ũt(x) can also be expressed in terms of
rt(x1 | x), as it is just a linear combination of the vector field ut(x) and score function ∇x log pt(x).
Hence, the transition from the distribution p(x1 | x) to some distribution r(x1 | x) does not affect the
discussion of connections of stochastic dynamics in appendix A.6.

Furthermore, the transition from distribution pt(x1 | x) to some distribution rt(x1 | x) does not
affect connections of the VFM objective with the model likelihood that we discuss in appendix A.7.
It is easy to see that in the derivations, we only rely on functions ũt(x) and ṽθt (x) (see eq. (60)).
However, as we discussed, they are not affected by the transition from pt(x1 | x) to some rt(x1 | x).
Therefore, we may repeat all the same derivations for some r(x1|x) using a factorized distribution.

19

B Algorithms

B.1 General Variational Flow Matching

Algorithm 1 Variational Flow Matching

Training
Sample x1 from data and x0 ∼ p0(x0)
Sample t ∼ U(0, 1)
Compute xt = tx1 + (1− t)x0

Compute loss L = − log qθt (x1 | xt)
Backpropagate.

Generation
Sample x0 ∼ p0(x0)

Solve ODE x1 = x0 +
∫ t=1

t=0

E
qθt

[x1|xt]−xt

1−t+ε dt
Return x1

B.2 Categorical Variational Flow Matching (CatFlow)

Algorithm 2 Categorical Variational Flow Matching (CatFlow)

Assume qt(x1 | xt) =
∏D

d=1 Cat(x
d
1 | µd

t (xt)) where µ is learnable

Training
Sample x1 from data and x0 ∼ p0(x0)
Sample t ∼ U(0, 1)
Compute xt = tx1 + (1− t)x0

Compute cross-entropy loss L = −
∑D

d=1

∑Kd

k=1 I[xd
1 = k] logµdk

t (x)
Backpropagate.

Generation
Sample x0 ∼ p0(x0)

Solve ODE x1 = x0 +
∫ t=1

t=0
µt(xt)−xt

1−t+ε dt
Return x1

B.3 Gaussian Variational Flow Matching

Algorithm 3 Gaussian Variational Flow Matching

Assume qt(x1 | xt) =
∏D

d=1 N (xd
1 | µd

t (xt), I) where µ is learnable

Training
Sample x1 from data and x0 ∼ p0(x0)
Sample t ∼ U(0, 1)
Compute xt = tx1 + (1− t)x0

Compute mean squared error loss L = 1
2

∑D
d=1 ||µd

t (xt)− xd
1||2

Backpropagate.

Generation
Sample x0 ∼ p0(x0)

Solve ODE x1 = x0 +
∫ t=1

t=0
µt(xt)−xt

1−t+ε dt
Return x1

20

C Additional Results

C.1 Detailed results

Here, we provide the results for CatFlow with standard deviations, as computed as in [20] through
multiple seeds.

Ego-small Community-small

4 ≤ |V| ≤ 18 12 ≤ |V| ≤ 20

Degree ↓ Clustering ↓ Orbit ↓ Degree ↓ Clustering ↓ Orbit ↓
0.013± 0.007 0.024± 0.009 0.008± 0.005 0.018± 0.012 0.086± 0.021 0.007± 0.005

Enzymes Grid

10 ≤ |V| ≤ 125 100 ≤ |V| ≤ 400

Degree ↓ Clustering ↓ Orbit ↓ Degree ↓ Clustering ↓ Orbit ↓
0.013± 0.012 0.062± 0.011 0.008± 0.007 0.115± 0.010 0.004± 0.002 0.075± 0.071

QM9 ZINC250k

1 ≤ |V| ≤ 9, 4 atom types 6 ≤ |V| ≤ 38, 9 atom types

Valid ↑ Unique ↑ FCD ↓ Valid ↑ Unique ↑ FCD ↓
99.81± 0.03 99.95± 0.02 0.441± 0.023 99.21± 0.04 100.00± 0.00 13.211± 0.12

C.2 Extra results SBM and Planar Graphs

Results on Stochastic Block Model and Planar Graphs. We ran extra experiments for (standard) flow
matching and Dirichlet flow matching. We observe that CatFlow obtains SOTA performance on all
tasks and metrics. Moreover, it is worth noting CatFlow was significantly faster to train than Dirichlet
FM due to a computationally cheaper forward process.

Model Deg ↓ Clus ↓ Orb ↓ V.U.N. ↑

Stochastic Block Model

SPECTRE [35] 1.9 1.6 1.6 53%
ConGress [58] 34.1 3.1 4.5 0%
DiGress [58] 1.6 1.5 1.7 74%
Flow Matching [27] 10.2 2.0 3.2 22%
Dirichlet FM [56] 1.7 1.5 1.4 80%

CatFlow 1.5 1.5 1.4 85%

Planar Graphs

SPECTRE [35] 2.5 2.5 2.4 25%
ConGress [58] 23.8 8.8 2590 0%
DiGress [58] 1.4 1.2 1.7 75%
Flow Matching [27] 5.1 5.6 5.5 30%
Dirchlet FM [56] 1.5 1.3 1.5 80%

CatFlow 1.4 1.3 1.5 80%

21

D Experimental setup

D.1 Model

To ensure a comparison on equal terms to baselines, we employ the same graph transformer network
as proposed in [12], which was also used in [58], along with the same hyper-parameter setup. We
summarize the parametrization of our network here.

Just as done in DiGress, our graph transformer takes as input a graph (Hn,He) and predicts a
distribution over the clean graphs, using structural and spectral features to improve the network
expressivity, which we denote as Hg . Each transformer layer does the following operations:

1. Node Features Hn and Edge Features He:

(a) Linear Transformation: Apply linear transformations to both Hn and He.
(b) Outer Product and Scaling: Compute the outer product of the transformed features

and apply scaling.

2. Node Features Hn:

(a) Feature-wise Linear Modulation (FiLM): Apply FiLM to the transformed node
features using global features Hg .

3. Edge Features He:

(a) Feature-wise Linear Modulation (FiLM): Apply FiLM to the transformed edge
features using global features Hg .

4. Self-Attention Mechanism:

(a) Linear Transformation: Apply a linear transformation to the transformed node
features.

(b) Softmax Operation: Compute the attention scores using the softmax function.
(c) Attention Score Calculation: Calculate the weighted sum of the transformed node

features based on the attention scores.

5. Global Features y:

(a) Pooling: Apply PNA pooling to the node features Hn and edge features He.
(b) Summation: Sum the pooled features with the global features Hg .

6. Final Outputs:

(a) Node Features H′
n: Obtain updated node features after the attention mechanism.

(b) Edge Features H′
e: Obtain updated edge features after the attention mechanism.

(c) Global Features H′
g: Obtain updated global features after summation.

Here, the FiLM operation is defined as:

FiLM(M1,M2) = M1W1 + (M1W2)⊙M2 +M2

for learnable weight matrices W1 and W2, and PNA is defined as:

PNA(X) = cat(max(X),min(X),mean(X), std(X))W.

D.2 Hyperparameters and Computational Costs

We report the hyperparameters here:

All models were trained until convergence. Furthermore, all data splits are kept the same as in [20],
and hidden dimensions are kept the same as [58]. All experiments were run on a single NVIDIA
RTX 6000 and took about a day to run.

22

Hyperparameter Abstract QM9/ZINC250k Ablation

Optimizer AdamW AdamW AdamW
Scheduler Cosine Annealing Cosine Annealing Cosine Annealing
Learning Rate 2 · 10−4 2 · 10−4 2 · 10−4

Weight Decay 1 · 10−12 1 · 10−12 1 · 10−12

EMA 0.999 0.999 0.999
Table 3: Hyperparameter setup.

E Detail CNFs

To compute the resulting distribution pt for CNF, one can use the change of variables formula:

[φt]∗p0(x) = p0(φ
−1
t (x))det

[
∂φ−1

t

∂x
(x)

]
. (71)

This induces a probability path, i.e. a mapping pt : [0, 1]× RD → R>0 such that
∫
pt(x)dx = 1 for

all t ∈ [0, 1]. We say that vt generates this probability path given a starting distribution p0. In theory,
one could try and optimize the empirical divergence between the resulting distribution p1 and target
distribution, but obtaining a gradient sample for the loss requires us to solve the ODE at each step
during training, making this approach computationally prohibitive.

One way to assess if a vector field generates a specific probability path is using the continuity equation,
i.e. we can assess whether vt and pt satisfy

∂

∂t
pt(x) +∇ · (pt(x)vt(x)) = 0, (72)

where ∇ is the divergence operator. Note that by sampling x0 ∼ p0, a new sample from p1 can be
generated by following this ODE, i.e. integrating

x1 = x0 +

∫ 1

0

vt(xt)dt. (73)

23

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our paper follows the structure of the abstract and introduction directly.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We added a section addressing limitations in section 7.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

24

Justification: We provide all proofs in detail in appendix A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Besides code, we provide the model description and hyperparameters in
appendix D. Moreover, our model and datasets are common in the field, e.g. [20], so no
novel experimental details are required. Our main contribution, the objective, is clearly
stated in section 3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

25

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide all code to the experiments. Moreover, all data is publically
available, and will be provided in the repository, including data processing.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the hyperparameters and experimental detail appendix D. Moreover,
we took all of our choices from previous works of [20], which is also publicly available.
Last, our code will be made public.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide error bars and how they are computed in appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

26

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide this information in appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We read and checked the code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We reflect on this in our conclusion, i.e. section 7.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

27

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not publish such models and as such do not require safeguards for them.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the authors of the relevant assets where used, see section 6. All relevant
information about licenses is publicly available and respected in our code.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

28

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We provide a new objective to train and use previous code/assets for the
experiments which are referenced.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work did not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We did not work with subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

29

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

30

	Introduction
	Background
	Transport Framework for Generative Modeling and CNFs
	Flow Matching

	Variational Flow Matching for Graph Generation
	Flow Matching using Variational Inference
	Mean-Field Variational Flow Matching
	CatFlow: Mean-Field Variational Flow Matching for Categorical Data

	Flow Matching and Score Matching: Bridging the Gap
	Related Work
	Experiments
	Abstract graph generation
	Molecular Generation: QM9 & ZINC250k
	CatFlow Ablations

	Conclusion
	Proofs and Derivations
	Derivation of the Variational Flow Matching Objective
	Flow Matching as a Special Case of Variational Flow Matching
	Decomposition of the Flow
	CatFlow
	Derivation of the Score Function
	Stochastic Dynamics with Variational Flow Matching
	Variational Flow Matching as a Variational Bound on the Log-likelihood
	Stochastic Dynamics under Linearity Conditions

	Algorithms
	General Variational Flow Matching
	Categorical Variational Flow Matching (CatFlow)
	Gaussian Variational Flow Matching

	Additional Results
	Detailed results
	Extra results SBM and Planar Graphs

	Experimental setup
	Model
	Hyperparameters and Computational Costs

	Detail CNFs

