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ABSTRACT

Graph neural networks (GNN) demonstrate excellent performance on many graph-based
tasks; however, they also impose a heavy computational burden when trained on a large-
scale graph. Although various sampling methods have been proposed to speed up training
GNN by shrinking the scale of the graph during training, they become unavailable if we
need to perform sampling before training. In this paper, we quantify the importance of
every edge for training in the graph with the extra information they convey in addition to
the node features, as inspired by a manifold learning algorithm called diffusion map. Based
on this calculation, we propose Graph Diffusion Sampling (GDS), a simple but effective
sampling method for shrinking the size of the edge set before training. GDS prefers to
sample edges with high importance, and edges dropped by GDS will never be used in the
training procedure. We empirically show that GDS preserves the edges crucial for training
in a variety of models (GCN, GraphSAGE, GAT, and JKNet). Compared to training on the
full graph, GDS can guarantee the performance of the model while only samples a small
fraction of the edges.

1 INTRODUCTION

Nowadays, graph-structured data has proliferated in many important applications for its ability to effi-
ciently represent complex networks such as social networks (Backstrom & Leskovec, 2011), brain networks
(Lee et al., 2017), and transaction networks (Liu et al., 2018). How to mine useful information from graphs
has become a crucial problem. Denote A graph dataset as G = (V ,E ,X), where V is the set of nodes, E is
the edge set describing how nodes are connected, and X is a matrix collecting the feature vectors of every
node. Graph neural networks (GNN) have become increasingly popular tools for this challenge. By training
a GNN model on a graph dataset, we can obtain node embeddings that can be utilized for the downstream
tasks such as node classification. GNN models such as Graph Convolution Network (GCN) (Kipf & Welling,
2016), GraphSAGE (Hamilton et al., 2017), Graph Attention Network (GAT) (Veličković et al., 2017) and
JKNet (Xu et al., 2018) have shown excellent efficiency in learning graph representations.

However, these models are inefficient when the graph is large-scale. For a node in the graph, calculating its
embedding need aggregate embeddings of its neighbors by the aggregator specified by the model. Therefore,
the number of nodes we need for embedding this node increases exponentially with the number of layers.
For attention-based models such as GAT, another complexity is introduced by the computation of pairwise
attention weights between connected nodes, which involves the softmax operator. The above two operations
cause a significant increase in the computational when the degree (the number of neighbors of each node) is
high. This problem is even worse when executing backpropagation on the GNN during training.

To overcome the drawback of high computational cost, a number of sampling methods are proposed (Liu
et al., 2021). Computational complexity can be controlled by training on a subgraph of G which is more
sparse than the original graph. By sampling neighbors of every node, for instance, we can limit the degree of
nodes, thereby lifting the computational burden of neighbor aggregation and the attention calculation. Var-
ious sampling methods are applied to training GNN, including node-wise sampling (sampling the neighbor
set of every node each time we calculate the aggregation of its neighbors) (Ying et al., 2018; Oh et al., 2019;
Liu et al., 2020; Srinivasa et al., 2020), layer-wise sampling (sampling a subgraph from the training graph at
every layer of the GNN model) (Chen et al., 2018; Zou et al., 2019; Cong et al., 2020; Huang et al., 2018) and
subgraph sampling (sampling the training graph at every epoch during training) (Rong et al., 2019; Chiang
et al., 2019; Zeng et al., 2019). The three kinds of methods mentioned above are ordered by the granularity
of sampling operation from high to low.

Although the aforementioned sampling methods enhance the performance of various GNN models, they
mainly aim to choose a series of mini-batches from G during training, and demand us to store the whole
dataset. If we want to shrink the size of the dataset before training, these methods cannot help us to select
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the proper part of the graph, since this time the information of the part we do not select is unavailable for
training. How can we select the part of G before training to shrink the computational cost of training and
guarantee the performance of the model at the same time? To answer this question, we must know which
part of G is crucial for training GNN models.

The overarching goal of this paper is to answer the above question from the perspective of edge by finding
the edges which are crucial for training and selecting them as a subset set of E to make G more sparse before
training GNN. We propose an efficient sampling algorithm called Graph Diffusion Sampling (GDS) which
calculates the importance of every edge and samples the edges with high importance for training. GDS only
need some simple computations on the original dataset G and it guarantees the performance of different
types of models in both transductive and inductive tasks. In general, the model will perform worse when
trained on a smaller dataset with the same training procedure, however, we empirically show that models
can even perform better when trained on a subgraph sampled by GDS than trained on a full graph. Inspired
by a classical manifold learning method called diffusion map (Nadler et al., 2005), the importance of edges
can be measured by the extra information they bring relative to the feature matrix X. Distinguished from
existing sampling methods that design sampling strategies for variance reduction (Chen et al., 2018; Cong
et al., 2020; Huang et al., 2018) or preserving graph spectral information (Srinivasa et al., 2020), the extra
information is the only criterion of GDS to select edges from E .

The main contributions of this study are as follows: (1) We analyze and quantify the importance of every
edge for training GNN. (2) We propose the GDS algorithm for shrinking the edge set E before training which
has a time and space complexity linear to the number of edges. (3) We empirically show that GDS does
guarantee the performance of various baseline models on both transductive and inductive node classification
tasks even when only a small fraction of the edges is sampled.

2 RELATED WORKS

2.1 GRAPH REPRESENTATION LEARNING
Research on graph representation has gained increasing attention in recent years (Chen et al., 2020b). By

training graph neural networks, we obtain low-dimensional embeddings of nodes, edges or whole graphs
which can be used as the input for downstream tasks such as node classification, edge classification and link
prediction. There have been a variety of GNN models for graph representation learning which have achieved
excellent performance on mining and learning graph-structured data. DeepWalk (Perozzi et al., 2014) embeds
nodes of the graph by implementing a skip-gram model on random walks which is regarded as sequences
of nodes (Mikolov et al., 2013). Graph Convolution Networks (GCN) (Mikolov et al., 2013) introduces
a convolution operator induced by the graph Laplacian which aggregates the embeddings of neighbors of
every node. GraphSAGE (Hamilton et al., 2017) extends GCN by allowing different kinds of aggregator
functions. GraphSAGE alters the formula of graph convolution so that it can be applied to inductive tasks.
Graph Attention Networks (GAT) (Veličković et al., 2017) makes use of an attention mechanism (Vaswani
et al., 2017) to adaptively adjust the weight distribution of neighbor aggregations for every node. Jumping
Knowledge Networks (JKNet) (Xu et al., 2018) enables the embedding of nodes using a structure-aware
strategy. The above models, however, can significantly increase the computational cost when the size of the
graph is large without a proper sampling method.

2.2 SAMPLING METHODS FOR TRAINING GRAPH NEURAL NETWORKS
Depending on the granularity of the sampling operation, we can divide the existing sampling methods

acting on homogeneous graphs into three categories: node-wise sampling, layer-wise sampling and subgraph
sampling (Liu et al., 2021). Here we summarize some representative sampling methods for each category.
2.2.1 NODE-WISE SAMPLING METHODS

In GraphSAGE, we can uniformly sample a part of neighbors for node embeddings every time we execute
the neighbor-aggregating operation for every node. By controlling the size of every sample set, we can al-
leviate the computational burden which increases dramatically as the number of layers increases. Oh et al.
(2019) extends this method by treating the neighbor selection problem as a reinforcement learning problem.
In this work, a non-linear regressor is trained by reinforcement learning for calculating a real-valued impor-
tance measure of a neighborhood. Liu et al. (2020) also applies reinforcement learning for sampling with
an objective to reduce the variance. Motivated by the graph sparsification theory (Spielman & Srivastava,
2011), Srinivasa et al. (2020) proposes a neighbor sampling algorithm called FastGAT. FastGAT implements
an importance sampling to the neighbors of every node based on the effective resistances before computing
attention to reduce the burden of computation. According to Spielman & Srivastava (2011), the effective
resistances of edges indicate how important each edge is for preserving the spectral information of the graph.
2.2.2 LAYER-WISE SAMPLING METHODS

FastGCN (Chen et al., 2018) samples a certain number of nodes in each layer of GCN model, where
the sampling probability distribution minimizes the variance caused by sampling. AS-GCN (Huang et al.,
2018) introduces an adaptive sampling strategy that is implemented sequentially from layer to layer in GCN
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model. The adaptive part of the sampling method reduces the variance of the sampling. MVS-GNN (Cong
et al., 2020) also aims to reduce the sampling variance. MVS-GNN uses history embeddings of the previous
training epoch to approximate the embeddings of the new epoch. The deviation caused by this approximation
is decomposed into the embedding approximation variance and the stochastic gradient variance. The former
is negligibly small whereas the latter is reduced by optimizing the sampling probability distribution.
2.2.3 SUBGRAPH SAMPLING METHODS

DropEgde (Rong et al., 2019) uniformly samples a certain number of edges from the graph for train-
ing GNN at every epoch of the training procedure. Theoretically, DropEdge can fix the issues of over-
smoothing (Li et al., 2018) and over-fitting. GraphSAINT (Zeng et al., 2019) generates a series of subgraphs
by implementing importance sampling on the graph for training GCN. Before training, GraphSAINT cal-
culates the normalization coefficients of every node and edge based on their frequency of occurrence in the
previously sampled subgraph . The normalization coefficients include aggregator normalization and loss
normalization that are used to reduce the bias of the forward propagation and the loss function respectively.
Cluster-GCN (Chiang et al., 2019) is an improved GCN model which utilizes a graph clustering algorithm
called Metis (Karypis & Kumar, 1998) to partition the graph into several clusters. For every epoch of training,
Cluster-GCN randomly chooses a certain number of clusters and trains the GCN on the induced subgraph
of the union of the chosen clusters. The partition operation limits the embedding of every node on only a
small number of clusters and avoids neighborhood expansion. It also preserves the clustering and community
structure of the graph so that the performance of GCN is guaranteed.

3 PROBLEM DEFINITION

Let G = (V ,E ,X) be a directed, unweighted and attributed graph without self-loop, where V is the node
set, E ⊂ V ×V is the edge set, and X = (Xu)u∈V ∈Rn×|V | is a matrix consisting of all nodes’ n-dimensional
feature vectors. Given the labels of a part of the nodes, we learn the embedding of the nodes by training a
model on G through supervised learning. To reduce the cost in both space and time for training the model,
we sample a subset Ê from the edge set E . Then we train the model on the sampled dataset Ĝ = (V , Ê ,X).
Noticed that we sample E once and for all, in contrast to many other sampling methods that sample E
multiples times to get a series of mini-batches for training the model in different epochs.

Goal. Our goal is to derive a sampling method so that the model still perform well after trained on Ĝ

compared to the model trained on G , even when the sample ratio |Ê ||E | is low.

4 QUANTIFYING EXTRA INFORMATION BROUGHT BY THE GRAPH

The key idea of our technique is to identify which edges are more important for training the model by
evaluating the extra information they bring relative to the feature of nodes.

The attributed graph G can be divided into two parts: the feature part (V ,X) and the graph part (V ,E ).
Ignoring the graph part, there are various ways to learn the nodes embedding. For instance, by exploiting
manifold learning methods on X, we can discover the low-dimensional manifold structure so that embed
feature vectors of nodes into this low-dimension space. In this way, however, we lose useful information
brought by the graph. The graph structure regularizes the model so that the embedding outputs of two
connected nodes tend to be close with each other (Belkin et al., 2006). Therefore, graph structure provides
us with extra information that reshapes original manifold structure of X .

4.1 DIFFUSION MAP
To quantify this extra information, we exploit a classical manifold learning method called the diffusion

map (Nadler et al., 2005) which is introduced as follows. For a dataset with feature matrix X, diffusion
map builds a Markov random field by defining transition probability distributions on every node. First, we
introduce the Gaussian kernel K(·, ·)

K(x,y) = exp

(
−‖x− y‖2

ε

)
,x,y ∈ Rn,

where ε is a positive constant. This is a popular kernel function which can be used to measure the similarity
between two real vectors. Let the similarity between two nodes u and v as su,v = K(Xu,Xv), and define the
similarity matrix S = (su,v)u,v∈V , which collects the similarities of all pairs of nodes. S can be interpreted as
a weighted graph denoted as GX. To control the cost of computation on the matrix in the subsequent process,
we introduce receptive fields for every node. Given a node u, its receptive field denoted as Fu is a subset of
V , and we redefine the similarity between u and other nodes in V as

su,v =

{
K(Xu,Xv), v ∈Fu

0, v /∈Fu
.
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In this way, the corresponding similarity matrix S and the graph GX are more sparse. In the diffusion map,
Fu is either the k-nearest neighbors of u or the nodes inside the r-ball of u, where r is a positive parameter.
We apply the latter so that GX is symmetric and assume that r is not too small so that GX is connected.

Given a node u with a feature vector Xu, the probability of transitioning from u to another node v with
a feature vector XV is calculated as: p(v | u) = su,v

zu
, where Zu = ∑v∈Fu su,v is the normalization term at the

node u. Obviously, Fu is the set of nodes reachable from u within one step and when v /∈Fu, the transition
probability p(v | u) is zero. Collecting the transition probability between all pairs of nodes, we get the
(one-step) probability transition matrix M, which determines a Markov random field denote as M. Since
GX is connected by definition, this Markov random field is irreducible. Define the stationary distribution as
q = (qv)v∈V satisfying qT M = q. If a Markov random field is irreducible and has finite states, then there
exists a unique stationary distribution q, and qv is strictly positive for all v ∈ V . By some calculations, we
have q = 1

∑v∈V zv
(zv)v∈V satisfies qT M = q. Therefore, q is the stationary distribution of M. By the property

of Markov chain, the t-step probability transition matrix is Mt . The elements of Mt are the t-step transition
probability written as pt(v | u). Then we define the diffusion distance between two nodes u and u′ as

D2
t (u,u

′) = ∑
v∈V

(pt(v | u)− pt(v | u′))2

qv
,

which serves as a measure of similarity between two points in the observation space. Next, we approximate
the diffusion distance by some matrix theories. Define a diagonal matrix D = (du,v) with du,u = Zu. Then
we have the relation: M = D−1S. Since S is symmetric, W = D−

1
2 SD−

1
2 is also symmetric. There exist an

orthogonal matrix U and diagonal matrix Λ such that W =UΛUT . And then, we have M = D−
1
2 UΛUT D

1
2 .

Denote D
1
2 U = Φ = (Φu)u∈V and D−

1
2 U = Ψ = (Ψu)u∈V , where Φu and Ψu are the column vectors of Φ

and Ψ respectively. Then Φu is the left eigenvectors of M, and Ψu is the right eigenvectors of M. Without
loss of generality, let Φ0 = q. Then, it can be proved that (Nadler et al., 2005)

D2
t (u,u

′) =
|V |

∑
k=1

λ
2t
k (Ψu,k−Ψu′,k)

2,

where λk is the eigenvalue of M related to Ψk and Φk. We approximate the D2
t (u,u

′) by its first m terms and
define the diffusion map Ψm

t (u) = (λ t
kΨk,u)

m+1
k=2 , which maps every node to a m-dimensional vector. This map

approximatively preserves the diffusion distances between different pairs of nodes and therefore preserves
the essential structure of the dataset. When m� n, this map is served as a low-dimensional embedding of
feature vectors.

4.2 CALCULATING THE EXTRA INFORMATION
Back to the graph dataset G , we already have the graph structure (V ,E ), which can induce another Markov

random field M with corresponding diffusion distance D2
t (u,u

′) and diffusion map Ψ′t
m, if we define a tran-

sition probability distribution for every u ∈ V as

pu(v) =
{ 1

dout
u

, v ∈Nu

0, v /∈Nu
.

Normally, the diffusion map obtained from (V ,E ) is different from the original diffusion map Ψm
t , and this

difference provides information about how to twist Ψm
t to fit the graph structure. If we get a diffusion map

identical to the one we get from GX, however, (V ,E ) does not provide any extra information for us to adjust
Ψm

t . Motivated by this observation, we measure the extra information brought by (V ,E )s by evaluating the
difference between Ψ′t

m and Ψm
t .

Since the direct comparison between two diffusion maps involves calculating eigenvalues of the whole
graph and this calculation is unscalable when the dataset has a large number of nodes or edges, we com-
pare the difference between the two Markov random fields instead. Given two distributions p1 and p2, the
Kullback–Leibler divergence of them is define as

KL(p1 || p2) = Ex∼p1

[
log

p1(x)
p2(x)

]
.

For u ∈ V , we compute the Kullback–Leibler divergence between the transition probability distribution pu
induced by the graph part and the transition probability distribution pu induced by the feature part:

KL(pu || pu) = ∑
v∈N out

u

1
dout

u
log

1
dout

u
K(Xu,Xv)

zu

=
1

dout
u

∑
v∈N out

u

(log
zu

dout
u
− logK(Xu,Xv)).
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Noticed that we have made the assumption that Nu ⊂Fu, since if there exist v ∈Fu∩N c
u , KL(pu || pu) is

infinite. We define the extra information of the whole graph part as

IG = ∑
u∈V

KL(pu || pu) = ∑
u∈V

1
dout

u
∑

v∈N out
u

(log
zu

dout
u
− logK(Xu,Xv)).

Theorem 1. If IG = 0, then diffusion distances induced by both (V ,X) and (V ,E ) are the same, namely

D2
t (u,u

′) = D2
t (u,u

′),∀t ∈ Z+,∀u,u′ ∈ V

Proof. If IG = 0, then KL(pu || pu) = 0 for all u ∈ V by the non-negativity of Kullback–Leibler divergence.
Then pu is identical to pu by the property of Kullback–Leibler divergence. Therefore, M and M are the same,
and then the diffusion distances induced by them are identical.

5 EVALUATING IMPORTANCE OF EDGES

5.1 COMPLEXITY ISSUE
We have quantified the extra information brought by the graph part of the data set as IG. Given the budget

of sampling number of edges Eb, one of the natural ways to utilize this indicator for sampling edge set is to
solve the constrained optimization problem{

maxÊ⊂E IĜ , Ĝ = (V , Ê ,X)

subject to
∣∣Ê ∣∣≤ Eb

,

where Ê is the set of edges sampled from E , and IĜ is the extra information of the sampled subgraph. This
is an NP-hard problem since it involves subset selection. One observation is that we can decompose this
problem into |V | optimization problems if we know the exact degree distribution of the solution. Denote
d̂out

u as the out-degree of node u ∈ V in Ĝ which is one of the solutions, then the optimization problem is
decoupled as {

max ˆNu⊂Nu
KL(pu || pu) =

1
d̂out

u
∑v∈ ˆN out

u
(log zu

d̂out
u
− logK(Xu,Xv))

subject to
∣∣ ˆN out

u
∣∣= d̂out

u
,∀u ∈ V .

In this way, the complexity of optimization decreases from O(2|E |) to O(∑u∈V 2|d̂
out
u |). However, the cost of

solving these problems is still unacceptable when there are many nodes with high degree.
To overcome the problem of complexity, we propose the edge replacement method to assign every edge

an importance indicator.

5.2 EDGE REPLACEMENT
To evaluate the importance of a given edge (u,v), we replace it by self-loop (u,u) and calculate the corre-

sponding extra information IG
′. This replacement causes the variation of IG

∆IG = IG
′− IG =

1
dout

u
logK(u,v)− 1

dout
u

logK(u,u).

Since K(u,u) ≥ K(u,v), ∆IG ≤ 0. This replacement will always reduce the IG, i.e., shrinking the extra
information brought by the graph part. We define Iu,v =−∆IG as the importance of edge (u,v). The larger the
Iu,v, the more extra information will decrease if we replace (u,v) by (u,u). Therefore, Iu,v can be regarded as
the relative extra information of (u,v) relative to (u,u), and the more Iu,v is, the more preference we have to
sample (u,v). By the definition, we can compute Iu,v as following

Iu,v =−
1

dout
u

logK(u,v)+
1

dout
u

logK(u,u)

=
1

dout
u ε
‖Xu−Xv‖2− 1

dout
u ε
‖Xu−Xu‖2 =

1
dout

u ε
‖Xu−Xv‖2 .

5.3 SYMMETRIZATION
Although edges in G are direct, the effect of edge (u,v) in the training process can be bilateral. Take GAT

as an instance, for every node u ∈ V , we calculate the attention weights αu,v,v ∈Nu as

αu,v =
exp{σ(aT [Whu ||Whv])}

∑k∈Nu exp{σ(aT [Whu ||Whk])}
,

where σ(·) is a non-linear activation function, [· || ·] is the concatenation operation, a,W are learnable pa-
rameters, and hu,hv are the embeddings of u and v respectively at the current layer. As long as one of (u,v)
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and (v,u) exists, during the backward propagation, both hu and hv will received feedback from αu,v or αv,u.
Therefore, either (u,v) or (v,u) can effect embeddings of both u and v.

To take into consideration the bilateral effect of edges, we symmetrize Iu,v by considering reverses of all
edges in E

Isym
u,v = I′u,v + I′v,u =

1
duε
‖Xu−Xv‖2 +

1
dvε
‖Xv−Xu‖2 = (

1
duε

+
1

dvε
)‖Xu−Xv‖2 ,

where I′u,v and I′v,u are the importance of (u,v) and (v,u) respectively calculated after we add reversed edge
for each edge in the original graph, making (V ,E ) as a symmetric graph, and du is the degree of u.

5.4 PREVENTING DEGENERATION

Another issue is the degeneration of the importance Isym
u,v . In some graph datasets, there may exist pairs of

neighbor nodes that have the close or even the same features, and this will make the importance of corre-
sponding edges vanish, regardless of different topological environments around those edges. To prevent this
problem, we add a term to Isym

u,v :

Iu,v = Isym
u,v + Ĩsym

u,v = (
1

duε
+

1
dvε

)(‖Xu−Xv‖2 + D̄2),

where X̄ is the mean vector of all the features, and Ĩsym
u,v is the symmetrized importance of Iu,v calculated after

replacing ‖Xu−Xv‖ ,(u,v) ∈ E by the average distance to the mean vector: D̄ =
√

1
|V | ∑k∈V ‖Xk− X̄‖2.

Noticed that D̄2 is also the conditional expectation of the squared distance between features of two
nodes sampled independently from the empirical distribution N (µ,Σ), where µ = 1

|V | ∑k∈V Xk and Σ =

diag{ 1
|V | ∑k∈V (X

(i)
k −µ(i))2, i = 1, ...,n}:

E(X ,Y )∼N (µ,Σ)⊗N (µ,Σ)

[
‖X−Y‖2

∣∣∣∣X]= 1
|V | ∑k∈V

‖Xk− X̄‖2
= D̄2.

When we need to calculate Iu,v, D̄ can be exactly calculated or estimated by sampling a small batch of sample
points. We can also compute D̄ directly if we have prior knowledge about the distribution of features X.

6 OUR ALGORITHM: GDS
In this section, we present our sampling algorithm (GDS) Graph Diffusion Sampling based on the impor-

tance indicator Iu,v. GDS applys independent edge sampling: for every edge (u,v)∈ E , we assign a sampling
probability pu,v according to Iu,v. To control the behavior of the algorithm, we introduce three parameters
p1, p2,q ∈ [0,1]. We assign a probability p2 to the edges with the top-q importance and a probability p1 to
other edges. The algorithm is shown in Algo. 1. Noticed that since we only need to compare the relative
magnitude of the importance, we can ignore the parameter ε when computing Iu,v.

Algorithm 1 Graph Diffusion Sampling
1: Input: The training data set G = (V ,E ,X), the average distance D̄; sampling parameters: p1, p2, q.
2: Output: The sample set Ê .
3: Ê ← /0
4: for all edge (u,v) ∈ E do
5: Iu,v← ( 1

du
+ 1

dv
)(‖Xu−Xv‖2 + D̄2)

6: θ ← the (1−q)-quantile of {Iu,v,(u,v) ∈ E }
7: for all edge (u,v) ∈ E do
8: if Iu,v ≥ θ then
9: push the edge (u,v) into the sample set Ê with probability p2.

10: else
11: push the edge (u,v) into the sample set Ê with probability p1.

By adjusting p1, p2 and q, we can control the expected sample size. Denote the sample ratio ρ =
|Ê |
|E | .

Since every edge is sampled independently, we have:
E [ρ] = p1(1−q)+ p2q.

When p1 = p2, GDS uniformly samples every edge with probability p1. When p1 = 0, p2 = 1, GDS simply
selects edges with top-q importance without randomness. The role of p1 and p2 is to make the sampling soft
so that every edge has chance to be sampled.
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Dataset Type Nodes Edges Classes Node Features
Citeseer transductive 3327 4732 6 3703

Cora transductive 2708 5429 7 1433
Pubmed transductive 19717 44338 3 500
CoraFull inductive 19793 126842 70 8710
Amazon inductive 13752 491722 10 767
Coauther inductive 18333 163788 15 6805
Gamble inductive 28042 312826 2 6394

Table 1: Datasets description.
Dataset Model Full Graph US(50%) GDS (50%)

Cora

GCN 79.94 (0.5) 78.84 (1.0) 78.93 (0.4)
GraphSAGE 76.54 (7.3) 76.02 (6.2) 76.63 (5.0)

GAT 78.91 (1.3) 76.94 (1.7) 77.80 (1.0)
JKNet 78.87 (1.2) 77.67 (2.0) 77.88(1.6)

Citeseer

GCN 70.89 (0.5) 69.25 (1.4) 69.30 (0.5)
GraphSAGE 67.57 (5.8) 67.15 (4.5) 67.99 (3.8)

GAT 68.96 (0.7) 67.23 (2.3) 68.71 (0.1)
JKNet 64.75(1.3) 64.90(2.4) 67.84 (1.7)

Pubmed

GCN 79.28 (0.4) 76.07 (1.4) 79.58 (0.1)
GraphSAGE 76.56 (6.5) 73.71 (7.1) 77.43 (6.2)

GAT 77.57 (0.8) 75.23 (1.7) 78.28 (0.7)
JKNet 76.66 (0.9) 75.13 (1.8) 76.57 (1.3)

Table 2: US means uniform sampling. We show the accuracies in % with standard deviation (over 100
independent experiments) and set the font of best results in bold.
6.1 COMPLEXITY ANALYSIS

We analyze the time and space complexity of GDS. During the sampling procedure, time is mainly spent
on calculating importance for every edge. Noticed that for an edge (u,v) ∈ E , we only need du, dv and
‖Xu−Xv‖2 for computing Iu,v. Therefore, the time complexity of GDS is O(|E |). Since the calculations of
importance are independent for different edges, it is easy to speedup GDS by parallelization on edges.

During the sampling, the intermediate results we need to store are du, ‖Xu−Xv‖2 and Iu,v, where
u ∈ V ,(u,v) ∈ E . Altogether there are |V |+ 2 |E | scalars. Therefore, the extra cost of storage during
the sampling is negligible comparing to the cost of storing G . As we mentioned in the previous section, the
final storage, i.e., the size of sample set Ê can be controlled by the sampling parameters directly. Therefore,
the final space complexity is O(ρ |E |), where the expectation of ρ is determined by the sampling parameters.

7 EXPERIMENTS

7.1 EXPERIMENTAL SETUP
Dataset. We evaluate the performance of GDS on six public benchmarks and one industrial dataset called

Gamble. All the public datasets can be downloaded directly from DGL1. We put more details about datasets
in the supplementary material. Tasks in Citeseer (Giles et al., 1998), Cora (McCallum et al., 2000), and
Pubmed (Sen et al., 2008) are transductive meaning that all the nodes are used for training, while tasks
in CoraFull (Bojchevski & Günnemann, 2017), Amazon (McAuley et al., 2015), Coauthor2, and Gamble
are inductive meaning that nodes for testing are unseen when training. The description of these datasets is
summarized in Table 1.

Model. We train four baseline graph embedding methods: GCN, GraphSAGE, GAT, and JKNet. We have
already introduced these models in Sec. 2.

Implementations. We implement all models in PyTorch and Deep Graph Library (Wang et al., 2019) with
Adam optimizer (Kingma & Ba, 2014).

Goal. We design our experiments for two goals: (i) verifying the effect of GDS for both transductive tasks
and inductive tasks under various models and sample ratio, (ii) providing some guides for tuning sampling
parameters for different tasks and sample ratio.

7.2 RESULTS
7.2.1 THE EFFECT OF GDS ON TRANSDUCTIVE TASKS

We compare the accuracy of the models on test sets after training the models on the full graph, subgraph
sampled by uniform sampling, and subgraph sampled by GDS, where uniform sampling means that we sam-
ple every edge from E independently with the same probability. Noticed that we only implement sampling
methods on training sets, not on validating or test sets. Table 2 summarizes the results on three citation
datasets, where we train a two-layer GCN, GraphSAGE (applying the GCN aggregator), GAT, and JKNet

1https://docs.dgl.ai/api/python/dgl.data.htmlnode-prediction-datasets
2https://www.microsoft.com/en-us/research/project/microsoft-academic-graph/
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respectively for the node classification task. In these experiments, we always set p1 = 0, p2 = 1 and q = 0.5.
We calculate the mean and standard deviation over 100 independent experiments for every combination of
models and datasets. Experiments in which the sampling ratio is lower than 50% are shown in the supple-
mentary material for the limit of space.

We have the following observations: (1) In all the situations, GDS has a better performance than uniform
sampling. (2) GDS can even outperform full graph training in some cases. (3) The standard deviation of the
model accuracy after training on the subgraph sampled by GDS is always the minimum compared to other
sampling methods, and this means that after sampling by GDS, training is more robust.
7.2.2 THE EFFECT OF GDS ON INDUCTIVE TASKS
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Figure 1: The performance of models on the inductive tasks after sampling by different sampling
methods under different sample ratio.

In this section, we show the experimental results on the inductive tasks. We split every dataset by 70%,
15%, and 15% for training, validation, and test respectively. For CoraFull, Amazon, and Coauthor datasets,
we train two-layer GraphSAGE, GAT, and JKNet models on the training set which is sampled by GDS and
uniform sampling with varying sample ratios from 2% to 100%. For every dataset, model, and sampling
method, we calculate the mean accuracy of the models on test sets with its standard deviation over 100 inde-
pendent experiments. The results are shown in Fig. 1 and the detailed results are shown in the supplementary
material. Fig 2 summarizes the results of the Gamble dataset, where we train a two-layer GAT model. The
parameter settings of GDS for tests on the inductive tasks are shown in Table 3. It’s observed that GDS con-
sistently outperforms uniform sampling in most situations. Interestingly, both GDS and uniform sampling
can have better performance than the full graph training. This phenomenon will be discussed later.
7.2.3 THE PARAMETER SETTINGS

Noticed that we set p1, p2, and q so that GDS is soft for selecting edges in the case of inductive tasks,
different from the transductive situation. This is because, for the inductive tasks, the model only sees a part
of the whole graph when training, and if graph properties such as degree distribution of the training graph
are too different from the test graph due to the GDS sampling (which tends to sample edges whose endpoints
have less degree), it may be more difficult for the generalization of the model on the test graph. The soft
GDS sampling can be regarded as the mixed of the hard GDS and uniform sampling method, and it reduces
the gap of the degree distributions between the training graph and test graph. For example, to make the
expectation of the sample ratio closed to 2%, we can set the soft one p1 = 0.01, p2 = 0.03,q = 0.5 or the
hard one p1 = 0, p2 = 1,q = 0.98. For the GAT model on the Amazon dataset, the soft one can achieve the
mean accuracy of 82.61%, while the hard one only reaches 77.43%.

For transductive tasks, if the sample ratio is too low, we also need to make GDS soft, otherwise, there
will be many isolated nodes (especially for the graph with fewer edges) which deteriorate the embeddings
of nodes. For example, for GAT model on the Citeseer dataset, the soft setting p1 = 0.1, p2 = 0.3,q = 0.5
achieve the mean accuracy of 63.92%, while the hard setting p1 = 0, p2 = 1,q = 0.8 only reach 47.52%.
More details are discussed in the supplementary material.
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Figure 2: The accuracy of GAT on the Gamble dataset

sample ratio p1 p2 q
50% 0.3 0.7 0.5
20% 0.1 0.3 0.5
10% 0.05 0.15 0.5
5% 0.03 0.07 0.5
2% 0.01 0.03 0.5

Table 3: Parameter settings under differ-
ent sample ratios for inductive tasks

7.2.4 WHY MODELS CAN PERFORM BETTER WHEN TRAINING ON SAMPLED SUBGRAPHS THAN ON
FULL GRAPHS

It is observe that models trained on the subgraphs can perform better than those trained on the full graph.
We explain this phenomenon as follows. We first introduce the over-smoothing issue (Chen et al., 2020a).
Over-smoothing is one of the main obstacles for training deep Graph Neural Networks, which make the
representations of adjacent nodes converge to a stationary point when the model goes with an infinite number
of layers. Therefore, the model tends to mix adjacent nodes and fails to classify nodes of different classes if
they are in the same connected component of G . Rong et al. (2019) proves that graph sparsification reduces
the convergence speed of over-smoothing or relieve the information loss caused by it.

GDS makes the graph more sparse mainly by dropping the edges that are not necessary for training. In
this way, GDS alleviates the over-smoothing without losing important information for training. Uniform
sampling can also alleviate the over-smoothing, however, may drop edges which is important for training.
Therefore, GDS can perform better than both full graph training and uniform sampling.

When there are a large number of redundant edges in the graph, uniform sampling can also sparsify the
graph without losing crucial information for training, since in this case there is more probability to drop an
edge which is unnecessary for training. Therefore, uniform sampling can beat full graph training in datasets
where redundant edges are pervasive. Consequently, the comparison between training on full graph and
subgraph sampled by uniform sampling indicates how redundant the edge set is for a given dataset.

8 DISCUSSION

Extensions. First, we can calculate the extra information of various graphlets such as triangles, four-node
cycles ( ), cliques ( ), and stars ( ) in the graph, so that we will know what kind of structures is more
essential for training. Second, in the case where features are on the edges instead of nodes, we can simply
aggregate (execute mean operator, for instance) the features of neighbor edges of each node and generate its
feature before applying GDS. The choice of the aggregator needs further study.

Imitations. GDS works well on static graphs as the experiments shown in the last section, however,
it may have little effect on dynamical graphs, where there is a timestamp on every edge. GDS does not
consider the temporal information of edges (such as the order of edges on the timeline) which may be crucial
for tasks in this situation (Rossi et al., 2020; Wang et al., 2021). One possible remedy is to develop a
stream sampling (Ahmed et al., 2013) version of GDS. A stream sampling method takes an array of edges
{en,n ∈ Z+} ordered by their timestamps (also referred as a graph stream) as its input. At the timestep n,
the method receives the edge en, and makes a decision to store en or ignore it. When GDS acts as a stream
sampling method, it can make the decision of whether to sample the coming edge based on an estimated extra
information of it. By applying techniques such as adaptive strategy (Ahmed & Duffield, 2019) and waiting
room (Shin, 2017), we can observe temporal dependencies in edge, which may be served as the temporal
information utilized by GDS. In this way, GDS is also applicable to the online learning tasks where the graph
comes as a graph stream.

9 CONCLUSION

In this paper, we propose Graph Diffusion Sampling (GDS), an edge sampling algorithm for training graph
neural networks (GNN). GDS calculates the importance of every edge by quantifying its extra information
relative to the features information and samples the edges with high importance. Our experiments show that
different types of GNN models can perform better on the subgraph sampled by GDS compared to training on
the subgraph sampled by uniformly sampling and even training on the full graph. In further study, we will
develop the GDS algorithm by exploring more delicate ways of quantifying extra information of a graph.
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Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio.
Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma, Lingfan Yu,
Yu Gai, et al. Deep graph library: A graph-centric, highly-performant package for graph neural networks.
arXiv preprint arXiv:1909.01315, 2019.

Xuhong Wang, Ding Lyu, Mengjian Li, Yang Xia, Qi Yang, Xinwen Wang, Xinguang Wang, Ping Cui, Yupu
Yang, Bowen Sun, et al. Apan: Asynchronous propagation attention network for real-time temporal graph
embedding. In Proceedings of the 2021 International Conference on Management of Data, pp. 2628–2638,
2021.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie Jegelka.
Representation learning on graphs with jumping knowledge networks. In International Conference on
Machine Learning, pp. 5453–5462. PMLR, 2018.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec. Graph
convolutional neural networks for web-scale recommender systems. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 974–983, 2018.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graphsaint:
Graph sampling based inductive learning method. arXiv preprint arXiv:1907.04931, 2019.

11



Under review as a conference paper at ICLR 2022

Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and Quanquan Gu. Layer-dependent importance
sampling for training deep and large graph convolutional networks. arXiv preprint arXiv:1911.07323,
2019.

12


	Introduction
	related works
	Graph Representation Learning
	Sampling methods for training graph neural networks
	Node-wise sampling methods
	Layer-wise sampling methods
	Subgraph sampling methods


	Problem definition
	Quantifying Extra Information Brought by the Graph
	diffusion map
	calculating the extra information

	evaluating Importance of edges
	Complexity issue
	edge replacement
	Symmetrization
	Preventing Degeneration

	Our Algorithm: GDS
	Complexity analysis

	experiments
	experimental setup
	Results
	The effect of GDS on transductive tasks
	The effect of GDS on inductive tasks
	The parameter settings
	Why models can perform better when training on sampled subgraphs than on full graphs


	discussion
	conclusion

