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ABSTRACT

Truly intelligent systems are expected to make critical decisions with incomplete
and uncertain data. Active feature acquisition (AFA), where features are sequen-
tially acquired to improve the prediction, is a step towards this goal. However,
current AFA methods lack robustness in two key areas that limits their applica-
bility in the real world. First, current AFA models only consider a small set of
candidate features and have difficulty scaling to a large feature space. Second,
they are ignorant about the valid domains where they can predict confidently, thus
they can be vulnerable to out-of-distribution (OOD) inputs. In order to remedy
these deficiencies and bring AFA models closer to practical use, we propose sev-
eral techniques to advance the current AFA approaches. Our framework can eas-
ily handle a large number of features using a hierarchical acquisition policy and
is more robust to OOD inputs with the help of an OOD detector for partially ob-
served data. Extensive experiments demonstrate the efficacy of our framework
over strong baselines.

1 INTRODUCTION

A typical machine learning system will first collect all the features and then predict the target vari-
ables based on the collected feature values. Unlike the two-step paradigm, active feature acquisition
performs feature value acquisition and target prediction at the same time. Features are actively ac-
quired to improve the prediction, and the prediction in turn informs the acquisition process. Ideally,
only features that provide useful information and outweigh their cost will be acquired. The AFA
model will stop acquiring more features when the prediction is sufficiently accurate or it exceeds
the given acquisition budget (Li & Oliva, 2020; Shim et al., 2018; Ma et al., 2018). Since each
instance could have different set of informative features, active feature acquisition is expected to
acquire different features for different instances.

As a motivating example, consider a doctor making a diagnosis on a patient (an instance). The
doctor usually has not observed all the possible measurements (such as blood samples, x-rays, etc.)
from the patient. The doctor is also not forced to make a diagnosis based on the currently observed
measurements; instead, he/she may dynamically decide to take more measurements to help deter-
mine the diagnosis. The next measurement to make (feature to observe), if any, will depend on the
values of the already observed features; thus, the doctor may determine a different set of features
to observe from patient to patient (instance to instance) depending on the values of the features that
were observed. Hence, each patient will not have the same subset of features selected (as would be
the case with typical feature selection).

In the current literature, there are mainly two types of approaches to acquire features actively: greedy
acquisition approaches and reinforcement learning based approaches. Both approaches acquire fea-
tures sequentially, that is, one candidate feature is acquired at each acquisition step based on the pre-
viously observed features. Greedy approaches directly optimize the utility of the next acquisition,
while reinforcement learning based approaches optimize a discounted reward along the acquisition
trajectories. As a result, the reinforcement learning (RL) based approaches tend to find better solu-
tions to the AFA problem as shown in (Li & Oliva, 2020). Here, we base ourselves on the Markov
decision process (MDP) formulation of the AFA problem proposed in (Li & Oliva, 2020; Shim et al.,
2018) and focus on resolving the deficiencies of the current AFA models.

One of the obstacles to extending the current AFA models to practical use is the potentially large
number of candidate features. Greedy approaches are computationally difficult to scale, because
the utilities need to be recalculated for each candidate feature based on the updated set of observed
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features at each acquisition step, which incurs an O(d2) complexity for a d dimensional feature
space. Reinforcement learning algorithms are known to have difficulties with a high dimensional
action space (Dulac-Arnold et al., 2015). In this work, we propose to cluster the candidate features
into groups and use a hierarchical reinforcement learning agent to select the next feature to be
acquired.

Another challenge in deploying AFA models is assessing confidence and identifying “in distribu-
tion” queries. In a practical application, it is very likely for an AFA model to encounter inputs that
are different from its training distribution. For example, it may be asked to acquire features for pa-
tients with unknown disease. For those out-of-distribution instances, the AFA model may acquire an
arbitrary subset of features and predict one of its known categories. Dealing with out-of-distribution
inputs is difficult in general, and is even more challenging for AFA models, since the model only has
access to a subset of features at any acquisition step. In this work, we propose a novel algorithm for
detecting out-of-distribution inputs with partially observed features, and further utilize it to improve
the robustness of the AFA model.

Our contributions are as follows: 1) We propose to reduce the action space for active feature acqui-
sition by grouping similar actions and learn a hierarchical policy to select the next candidate feature
to be acquired. 2) We develop a novel out-of-distribution detection algorithm that can distinguish
OOD inputs using an arbitrary subset of features. 3) Armed with the partially observed OOD de-
tection algorithm, we encourage the AFA agent to acquire features that are most informative for
distinguishing OOD inputs. 4) Our approach achieves the state-of-the-art performance for active
feature acquisition, while identifying out-of-distribution inputs.

2 BACKGROUND AND RELATED WORKS

2.1 ACTIVE FEATURE ACQUISITION (AFA)

Typical discriminative models predict a target y using all d-dimensional features x ∈ Rd. AFA,
instead, actively acquires feature values to improve the prediction. It typically starts from an empty
set of features and sequentially acquires more features xi until the prediction is sufficiently accurate
or it exceeds the given acquisition budget. The goal of an AFA model is to minimize the following
objective

L(ŷ(xo), y) + αC(o), (1)

where L(ŷ(xo), y) is the prediction error between the groundtruth target y and the prediction ŷ(xo)
using the acquired features xo, C(o) measures the total cost of acquiring a subset of features o ⊆
{1, . . . , d}, and α balances these two terms.

However, directly optimizing equation 1 is not trivial, since it involves optimizing over a combina-
torial number of possible subsets. Many heuristic approaches have been developed to approximately
solve this problem. For example, in (Ling et al., 2004), the authors propose to take into account the
cost of features when selecting an attribute for building a decision tree so that the final tree will have
a minimum total cost. (Chai et al., 2004) utilizes a naive Bayes classifier to handle the partially ob-
served features, where the unobserved features are simply ignored in the likelihood objective. They
then assess the utility of each unobserved feature by their expected reduction of the misclassification
cost. At each acquisition step, the feature with highest utility is acquired. Nan et al. (2014) instead
leverage a margin-based classifier. An instance is classified by retrieving the nearest neighbors from
training set using the partially observed features, and the utility of each unobserved feature is cal-
culated by the one-step ahead classification accuracy. Following the same greedy solution, EDDI
(Ma et al., 2018) utilizes modern generative models to handle partially observed instances. Specifi-
cally, they propose a partial VAE to model the arbitrary marginal likelihoods p(xo) (target variable
y is concatenated into x and modeled together). Inspired by the experimental design approaches
(Bernardo, 1979), they assess the utility of each unobserved feature with their expected information
gain to the target variable y, i.e.,

Ui = Ep(xi|xo)DKL[p(y | xo, xi)‖p(y | xo)]. (2)

The feature with highest utility is acquired at each step. Similar to EDDI, Icebreaker (Gong et al.,
2019) proposes to use a Bayesian Deep Latent Gaussian model to capture the uncertainty of un-
observed features and to assess their utilities. They further extend the problem to actively acquire
additional information during training.
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Greedy approaches are easy to understand, but they are also inherently flawed, since they are my-
opic and unaware of the long-term goal of obtaining multiple features that are jointly informative.
Instead of acquiring features greedily, the AFA problem has been formulated as a Markov Deci-
sion Process (MDP) (Zubek et al., 2004; Rückstieß et al., 2011). Therefore, reinforcement learning
based approaches can be utilized, where a long-term discounted reward is optimized. In the MDP
formulation of the AFA problem, the state is the current observed features, the action is the next
feature to acquire, and the reward contains the final prediction reward and the cost of each acquired
feature. In (Li & Oliva, 2020) and (Shim et al., 2018), a special action indicating the termination
of the acquisition process is also introduced. The agent will stop acquiring more features when it
selects the termination action. Specifically, we have

s = [o, xo], a ∈ u ∪ φ, r(s, a) = −L(ŷ(xo), y)I(a = φ)− αC(a)I(a 6= φ), (3)

where the state, s, consists of the current acquired feature subset, o ⊆ {1, . . . , d}, and their values,
xo. The action, a, is either one of the remaining unobserved features, u = {1, . . . , d} \ o, or the
termination action, φ. When a new feature, i, is acquired, the current state transits to a new state
following o i−→ o ∪ i, xo

i−→ xo ∪ xi, and the agent receives the negative acquisition cost of this
feature as a reward. If the termination action is selected (i.e., a = φ), the agent makes a prediction
based on all acquired features, xo, and receives a final reward as −L(ŷ(xo), y).
Given the above MDP formulation, several RL approaches have been explored. (Zubek et al., 2004)
fits a transition model using complete data, and then uses the AO∗ heuristic search algorithm to
find an optimal policy. (Rückstieß et al., 2011) utilizes Fitted Q-Iteration to optimize the MDP. (He
et al., 2012) and (He et al., 2016) instead employ a imitation learning approach coached by a greedy
reference policy. JAFA (Shim et al., 2018) jointly learns an RL agent and a classifier, where the
classifier is deemed as the environment to calculate the reward.

Although MDPs are broad enough to encapsulate the active acquisition of features, there are several
challenges that limit the success of a naive reinforcement learning approach. In the aforementioned
MDP, the agent pays the acquisition cost at each acquisition step but only receives a reward about
the prediction after completing the acquisition process. This results in sparse rewards leading to
credit assignment problems for potentially long episodes (Minsky, 1961; Sutton, 1988), which may
make training difficult. In addition, an agent that is making feature acquisitions must also navigate a
complicated high-dimensional action space, as the action space scales with the number of features,
making for a challenging RL problem (Dulac-Arnold et al., 2015). To assuage these challenges,
GSMRL (Li et al., 2020) proposes a model-based alternative. The key observation of GSMRL
is that the dynamics of the above MDP can be modeled by the conditional dependencies among
features. That is, the state transitions are based on the conditionals: p(xj | xo), where xo is current
observed features and xj is an unobserved feature. Base on this observation, a surrogate model
that captures the arbitrary conditionals, p(xu, y | xo), is employed to assist the agent. Specifically,
GSMRL defines an intermediate reward using the information gain of the acquired feature, xi, at the
current acquisition step, i.e., rm(s, i) = H(y | xo)−H(y | xo, xi). The entropy terms are estimated
using the learned surrogate model. Furthermore, the expected information gain for each candidate
acquisition is provided to the agent as side information, i.e.,

Uj = H(y | xo)− Ep(xj |xo)H(y | xo, xj), j ∈ u. (4)

In addition to Uj , the surrogate model can also provide the current prediction ŷ, the prediction
probability, p(y | xo), the imputed values of unobserved features and their uncertainties, p(xu |
xo), as auxiliary information. Armed with the auxiliary information and the intermediate reward,
GSMRL alleviates the challenge of a model-free approach and obtains state-of-the-art performance
for several AFA problems. Given their established excellence, we use GSMRL as the base model
for our robust AFA framework.

2.2 ACTIVE INSTANCE RECOGNITION (AIR)

AFA acquires features actively to improve the prediction of a target variable, while some application
do not have an explicit target; instead, the features are acquired to improve our understanding of
the instance. In GSMRL (Li & Oliva, 2020), the authors propose a task named AIR, where an
agent acquires features actively to reconstruct the unobserved features. A similar model-based RL
approach is used for AIR, where a dynamics model p(xu | xo) captures the state transition. The
intermediate reward and auxiliary information can be similarly derived by replacing y with xu\i (the
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Figure 1: An illustrative example of the
grouped action space, where 6 features are
grouped into 3 clusters. The grayed circles rep-
resent the current observed features (or fully
observed groups) and are not considered as
candidates anymore. The dashed line shows
one acquisition at the current step, which ac-
quires the feature g(1)2 . The corresponding cir-
cles will be grayed after this acquisition step.

Algorithm 1 Robust Active Feature Acquisition
Input: acquisition environment env; dynamics

model M; partially observed OOD detector
D; AFA agent agent; acquisition budget B

Output: reward, ood likelihood, prediction
1: xo, o, reward = env.reset()
2: while |o| < B do
3: aux = M.query(xo, o)
4: action = agent.act(xo, o, aux)
5: rm = M.reward(xo, o, action)
6: xo, o, re = env.step(action)
7: reward += re + rm
8: end while
9: aux = M.query(xo, o)

10: prediction = agent.predict(xo, o, aux)
11: rp = env.reward(xo, o, prediction)
12: rd = D.reward(xo, o)
13: reward += rp + rd
14: ood likelihood = D.log prob(xo, o)

unobserved features excluding the current candidate i). A special case of AIR is to acquire features
in k-space (Fourier frequency domain) for accelerated MRI reconstruction. (Pineda et al., 2020)
and (Bakker et al., 2020) have explored this application using deep Q-learning and policy gradient
respectively. Several non-RL approaches (Zhang et al., 2019; van Gorp et al., 2021) have also been
proposed.

2.3 OUT-OF-DISTRIBUTION DETECTION

ML models are typically trained with a specific data distribution, however, when deployed, the
model may encounter data that is outside the training distribution. For those out-of-distribution
inputs, the prediction could be arbitrarily bad. Therefore, detecting OOD inputs has been an active
research direction. A possible approach is to use the uncertainty of prediction, since the prediction
for OOD inputs are expected to have higher uncertainty. Bayesian neural networks (BNNs) (Blundell
et al., 2015), model ensemble (Lakshminarayanan et al., 2016) and MC dropout based ensemble (Gal
& Ghahramani, 2016) have been leveraged to obtain the prediction uncertainties. Another approach
is to quantify the distance to the “in distribution” manifold. Representative methods include DUQ
(Van Amersfoort et al., 2020), SNGP (Liu et al., 2020) and DUE (van Amersfoort et al., 2021).
Generative models have also been used for OOD detection, where the OOD inputs are expected to
have lower likelihood (Bishop, 1994). However, recent works (Nalisnick et al., 2019a; Hendrycks
et al., 2019) show that it is not the case for high dimensional distributions, and since then many
methods have been proposed to rectify this pathology (Choi et al., 2018; Ren et al., 2019; Nalisnick
et al., 2019b; Morningstar et al., 2021; Mahmood et al., 2021).

3 METHOD

In this section, we introduce each component of our framework. We use the model-based AFA
approach, GSMRL (Li & Oliva, 2020), as the base model, which utilizes an arbitrary conditional
model p(xu, y | xo) to assist the agent by providing the intermediate rewards and the auxiliary in-
formation. We further leverage the arbitrary conditionals to cluster features into groups and develop
a hierarchical acquisition policy to deal with the large action space. After, we introduce the OOD
detection algorithm for partially observed instances along the acquisition trajectories. We then com-
pose all those components together and propose the robust active feature acquisition framework.
For convenience of evaluating OOD detection performance, we do not use the termination action for
AFA but specify a budget of the acquisition (i.e., the number of features being acquired).

3.1 ACTION SPACE GROUPING

As described in Sec. 2.1, the AFA problem can be interpreted as a MDP, where the action space
at each acquisition step contains the current unobserved features. For certain problems, the action
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space could be enormous. For example, in the aforementioned health care example, the action space
could contain an exhaustive list of possible inspections a hospital can offer. Dealing with large action
space for RL is generally challenging, since the agent may not be able to effectively explore the entire
action space. Several approaches have been proposed to train RL agent with a large discrete action
space. For instance, Dulac-Arnold et al. (2015) propose a Wolpertinger policy that maps a state to a
continuous proto-action embedding. The proto-action embedding is then used to look up k-nearest
valid actions using the given action embeddings. Finally, the action with the highest Q value is
selected and executed in the environment. Wolpertinger policy assumes the apriori availability of
action representations (embeddings) for k-nearest neighbor searching. However, there is no such
representation for general AFA problems. That is, in general datasets, features are enumerated and
proximity in indices (i.e., |i− j|, i, j ∈ {1, . . . , d}) is typically not informative of feature similarity.
Majeed & Hutter (2020) propose a sequentialization scheme, where the action space is transformed
into a sequence of B-ary decision code words. A pair of bijective encoder-decoder is defined to
perform this transformation. Running the agent will produce a sequence of decisions, which are
subsequently decoded as a valid action that can be executed in the environment.

Similar to (Majeed & Hutter, 2020), we also formulate the action space as a sequence of decisions.
Here, we propose to utilize the inherited clustering properties of the candidate features. Given a
set of features, {x1, . . . , xd}, we assume features can be clustered based on their informativeness
to the target variable y. That is, there might be a subset of features that are decisive about y and
another subset of features that are not relevant to y. Based on this intuition, we propose to assess
the informativeness of the candidate features using their mutual information to the target variable,
y, i.e., I(xi; y), where i ∈ {1, . . . , d}. The mutual information can be estimated using the learned
arbitrary conditionals of the surrogate model

I(xi; y) = Exi,y log
p(xi, y)

p(xi)p(y)
= Exi,y log

p(y | xi)
p(y | ∅)

, (5)

where the expectation is estimated using a held-out validation set. Given the estimated mutual
information, we can simply sort and divide the candidate features into different groups. For the sake
of implementation simplicity, we use clusters with the same number of features. We can further
group features inside each cluster into smaller clusters and develop a tree-structured action space
as in (Majeed & Hutter, 2020), which we leave for future works. Note that the clustering is not
performed actively for each instance; instead, we cluster once for each dataset and keep the cluster
structure fixed throughout the acquisition process. Our grouping scheme partitions features based
on how informative individual features are (marginally, i.e. in isolation) to the target. This acts
as an additional form of auxiliary information, which guides the agent in earlier acquisitions (as
marginally informative features will be more useful). The grouping shall also help guide the agent
in later acquisitions, where it may seek less marginally informative features (that may be jointly
informative with the current observations) to obtain more nuanced discriminations.

It is worth noting that the mutual information I(xi; y) is not the only choice for clustering features.
Alternative quantities, such as the pairwise mutual information I(xi;xj) or a metric d(xi, xj) =
H(xi, xj) − I(xi;xj), can be used together with a hierarchical clustering procedure to group can-
didate features. However, these alternatives need to be estimated for each pair of candidate features,
which incurs a O(d2) computational complexity, while the mutual information, I(xi; y), only has
O(d) complexity.

Given the grouped action space, A = {gk}Kk=1, with K distinct clusters, we develop a hierarchical
policy to select one candidate feature at each acquisition step. gk = {g(1)k , . . . , g

(N)
k } ⊆ {1, . . . , d}

represents the kth group of features of size N , where ∀k 6= k′, gk ∩ gk′ = ∅ and ∪Kk=1gk =
{1, . . . , d}. The policy factorizes autoregressively by first selecting the group index, k, and then
selecting the feature index, n, inside the selected group, i.e.,

p(a | s) = p(k | s)p(n | k, s), k ∈ {1, . . . ,K}, n ∈ {1, . . . , N}. (6)

The actual feature index being acquired is then decoded as g(n)k . As the agent acquires features, the
already acquired features are removed from the candidate set. We simply set the probabilities of
those features to zeros and renormalize the distribution. Similarly, if all features of a group have
been acquired, the probability of this group is set to zero. With the proposed action space grouping,
the original d-dimensional action space is reduced to K +N decisions. Please refer to Fig. 1 for an
illustration.
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3.2 PARTIALLY OBSERVED OUT-OF-DISTRIBUTION DETECTION

In Sec. 2.3, we introduce several advanced techniques to detect out-of-distribution inputs. However,
those approaches require fully observed data. In an AFA framework, data are partially observed at
any acquisition step, which renders those approaches inappropriate. In this section, we develop a
novel OOD detection algorithm specifically tailored for partially observed data. Inspired by MSMA
(Mahmood et al., 2021), we propose to use the norm of scores from an arbitrary marginal distri-
bution p(xo) as summary statistics and further detect partially observed OOD inputs with a DoSE
(Morningstar et al., 2021) approach. MSMA for fully observed data is built by the following steps:

(i) Train a noise conditioned score matching network sθ (Song & Ermon, 2019) with L noise
levels by optimizing

1

L

L∑
i=1

σ2
i

2
Epdata(x)Ex̃∼N (x,σ2

i I)

[∥∥∥∥sθ(x̃, σi) + x̃− x
σ2
i

∥∥∥∥2
2

]
. (7)

The score network essentially approximates the score of a series of smoothed data distri-
butions ∇x̃ log qσi(x̃), where qσi(x̃) =

∫
pdata(x)qσi(x̃ | x)dx, and qσi(x̃ | x) transforms

x by adding some Gaussian noise form N (0, σ2
i I).

(ii) For a given input x, compute the L2 norm of scores at each noise level, i.e., si =
‖sθ(x, σi)‖.

(iii) Fit a low dimensional likelihood model for the norm of scores using in-distribution data,
i.e., p(s1, . . . , sL), which is called density of states in (Morningstar et al., 2021) following
the concept in statistical mechanics.

(iv) Threshold the likelihood to determine whether the input x is OOD or not.

In order to deal with partially observed data, we modify the score network to output scores of arbi-
trary marginal distributions, i.e., ∇x̃m

log qσi
(x̃m), where m ⊆ {1, . . . , d} represents an arbitrary

subset of features. We propose to do so by extending equation 7 to

1

L

L∑
i=1

σ2
i

2
Epdata(x)Ex̃∼N (x,σ2

i I)
Em∼p(m)

[∥∥∥∥sθ(x̃� Im, Im, σi)� Im +
x̃� Im − x� Im

σ2
i

∥∥∥∥2
2

]
,

(8)
where Im represents a d-dimensional binary mask indicating the partially observed features, � rep-
resents the element-wise product operation, and p(m) is the distribution for generating observed
dimensions. Similar to the fully observed case, we compute the L2 norm of scores at each noise
level, i.e., si = ‖sθ(x � Im, Im, σi) � Im‖, and fit a likelihood model in this transformed low-
dimensional space. The likelihood model is also conditioned on the binary mask Im to indicate the
observed dimensions, i.e., p(s1, . . . , sL | Im). Given an input x with observed dimensions m, we
threshold the likelihood p(si, . . . , sL | Im) to determine whether the partially observed data xm is
OOD or not. To train the partially observed MSMA (PO-MSMA), we generate a mask for each
input data x at random. The conditional likelihood over norm of scores is estimated by a conditional
autoregressive model, for which we utilize the efficient masked autoregressive implementation (Pa-
pamakarios et al., 2017).

One benefit of our proposed PO-MSMA approach is that a single model can be used to detect OOD
inputs with arbitrary observed features, which is convenient for detecting OOD inputs along the
acquisition trajectories. Furthermore, sharing weights across different tasks (i.e., different marginal
distributions) could act as a regularization (as discussed in (Li et al., 2020)), thus the unified score
matching network can potentially perform better than separately trained ones for each different
conditional, which we will investigate in future works.

3.3 ROBUST ACTIVE FEATURE ACQUISITION

Above, we introduce our proposed action space grouping technique and a partially observed OOD
detection algorithm. Combining those components, we can now actively acquire features for a
problem with a large action space and simultaneously detect OOD inputs using the acquired subset
of features. In order to guide the agent to acquire features that are informative for OOD detection,
we propose an auxiliary reward that utilizes the likelihood of score norms of a partially observed
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(a) MNIST (b) FMNIST (c) SVHN

Figure 3: Classification accuracy for acquiring different number of features.

(a) MNIST - Omniglot (b) FMNIST - MNIST (c) SVHN - CIFAR10

Figure 4: AUROC for OOD detection with acquired features.

input (with mask Im), p(s1, . . . , sL | Im). This encourages the agent to acquire features that more
closely resemble the in-distribution ones, and thus reduces the false positive detection.

Figure 2: Schematic illustration of
our robust AFA framework.

In summary, our robust AFA framework contains a dynam-
ics model, a grouping of actions (features), an OOD detector
and an RL agent. The dynamics model captures the arbitrary
conditionals, p(xu, y | xo), and is utilized to provide auxil-
iary information and intermediate rewards. It also enables a
simple and efficient action space grouping technique and thus
scales AFA up to applications with large action spaces. The
partially observed OOD detector is used to distinguish OOD
inputs alongside the acquisition procedure and also used to
provide an auxiliary reward so that the agent is encouraged to
acquire informative features for OOD detection. The RL agent
takes in the current acquired features and auxiliary information
from the dynamics model and predicts what next feature to ac-
quire. When the feature is actually acquired, the agent pays
the acquisition cost of the feature and receives an intermediate reward from the dynamics model.
When the acquisition process is terminated, the agent makes a final prediction about the target, y,
using all its acquired features and receives an reward about its prediction. It also receives an reward
from the OOD detector about the likelihood of the acquired feature subset in the transformed space
(i.e., the norm of the scores). Please refer to Algorithm 1 for additional details and to Fig. 2 for an
illustration.

In GSMRL (Li & Oliva, 2020), the acquisition procedure is terminated when the agent selects a
special termination action, which means each instance could have different number of features ac-
quired. Although intriguing for practical use, it introduces additional complexity to assess OOD
detection performance. To simplify the evaluation, we instead specify a fixed acquisition budget
(i.e., the number of acquired features). The agent will terminate the acquisition process when it
exceeds the specified acquisition budget. However, it is possible to incorporate a termination action
into our framework.

4 EXPERIMENTS

In this section, we evaluate our framework on several commonly used OOD detection benchmarks.
Our model actively acquires features to predict the target and meanwhile determines whether the
input is OOD using only the acquired features. Given that these benchmarks typically have a large
number of candidate features, current AFA approaches cannot be applied directly. We instead com-
pare to a modified GSMRL algorithm, where candidate features are clustered with our proposed
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(a) MNIST (b) FMNIST

Figure 6: Reconstruction MSE for robust AIR.

(a) MNIST - Omniglot (b) FMNIST - MNIST

Figure 7: OOD detection for robust AIR.

Figure 8: Examples of the acquisition process for robust AIR.

action space grouping technique. We also compare to a simple random acquisition baseline, where a
random unobserved feature is acquired at each acquisition step. The random policy is repeated for 5
times and the metrics are averaged from different runs. Please refer to Appendix A for experimental
details. For each dataset, we assess the performance under several prespecified acquisition budgets.
For classification task, the performance is evaluated by the classification accuracy; for reconstruc-
tion task, the performance is evaluated by the reconstruction MSE. We also detect OOD inputs using
the acquired features and report the AUROC scores.

Figure 5: Examples of the acquisition process
from our robust AFA framework. The bar charts
demonstrate the class prediction probability at the
corresponding acquisition step.

Robust Active Feature Acquisition We first
evaluate the AFA tasks using several classifi-
cation datasets. The agent is trained to acquire
the pixel values. For color images, the agent
acquires all three channels at once. For MNIST
(LeCun et al., 2010) and FMNIST (Xiao et al.,
2017), we follow GSMRL to train the surrogate
model using a class conditioned ACFlow (Li
et al., 2020); for SVHN (Netzer et al., 2011),
we simply use a partially observed classifier to
learn p(y | xo) since we found ACFlow dif-
ficult to train for this dataset. The auxiliary
information is accordingly modified to contain
only the prediction probability. Figure 3 and
4 report the classification accuracy and OOD
detection AUROC respectively. The accuracy
is significantly higher for RL approaches than
the random acquisition policy. Although we ex-
pect a trade-off between accuracy and OOD de-
tection performance for our robust AFA frame-
work, the accuracy is actually comparable to
GSMRL and sometimes even better across the
datasets. Meanwhile, the OOD detection per-
formance for our robust AFA framework is sig-
nificantly improved by enforcing the agent to acquire informative features for OOD identification.
For SVHN and CIFAR10 detection, the AUROC for GSMRL is even lower than the random policy,
which we believe is because of the discrepancy of informative features for two different goals. Aug-
mented with the detector reward solves the problem and improves the detection performance even
further. Figure 5 presents several examples of the acquisition process from our robust AFA frame-
work. We can see the prediction becomes certain after only a few acquisition steps. See appendix A
for additional examples.

Robust Active Instance Recognition In this section, we evaluate the AIR task using MNIST and
FashionMNSIT datasets. Following GSMRL (Li & Oliva, 2020), we use ACFlow as the surrogate

8



Under review as a conference paper at ICLR 2022

model. Figure 6 and 7 report the reconstruction MSE and OOD detection performance respectively
using the acquired features. We can see our robust AIR framework improves the OOD detection
performance significantly, especially when the acquisition budget is low, while the reconstruction
MSEs are comparable to GSMRL. Figure 8 presents several examples of the acquisition process for
robust AIR.

Figure 9: Compare AFA
performance with or with-
out action grouping.

Figure 10: Ablation study
about clustering methods.

Ablations Our proposed action grouping technique enables the agent
to acquire features from a potentially large pool of candidates. How-
ever, it also introduces some complexity due to the autoregressive fac-
torization in equation 6. In Fig. 9, we compare two agents with and
without the action grouping using a downsampled MNIST. We can
see the action grouping does not degrade the performance on smaller
dimensionalities whilst allowing one to work over larger dimension-
alities that previous methods cannot scale to.

The mutual information based clustering scheme could help the agent
navigate the action space, thus simplifying exploration. Figure A.3
in appendix presents the acquisition process for MNIST AFA. We
can see the acquired features concentrate on the informative groups
especially at the early stage, which verifies the effectiveness of our
action space grouping scheme.

We also compare with several alternative clustering schemes. Ran-
dom clustering groups the candidate features into several equal-sized
clusters. Row clustering groups pixels by their rows. Graph clustering
first builds an undirected graph over candidate features and groups the
nodes using spectral clustering methods. Figure 10 presents the AFA
performance using different clustering schemes. We can see our in-
formation based scheme outperforms other alternatives significantly,
especially when the acquisition budget is low. Figure A.4 in the ap-
pendix shows several clusters obtained from each grouping scheme.

Several attempts have been made to deal with large action space in general RL. Here, we compare
with the Wolpertinger policy. Although there is no universal action embeddings available for gen-
eral AFA problems (as described in Sec. 3.1), we can use the Cartesian coordinates of pixels as the
embeddings for image datasets. We perform extensive hyperparameter tuning for training the pol-
icy. Results are presented in Fig. A.5, which demonstrates that our action space grouping is more
effective in the AFA setting. Please see the appendix for additional details.

Although our PO-MSMA is designed for partially observed instances, it can handle fully observed
ones as special cases. In Table 1, we report the AUROC scores for both methods. We can see our
PO-MSMA is competitive even though it is not trained to detect fully observed instances.

Table 1: Comparison with MSMA for fully observed OOD detection. AUROC scores are reported.
MNIST - Omniglot FMNIST - MNIST SVHN - CIFAR10 CIFAR10 - SVHN

MSMA - 82.56 97.60 95.50
PO-MSMA 99.55 96.62 97.77 74.74

5 DISCUSSION AND CONCLUSION

In this work, we investigate an understudied problem in AFA, increasing robustness. Previous AFA
methodology fails to produce meaningful acquisitions in high dimensional settings and do not flag
when they are applied to out of distribution instances. Both short-commings limit the applicability
of AFA in real-world scenarios. We propose a robust AFA framework to acquire feature actively and
determine whether the input is OOD using only the acquired subset of features. In order to scale up
the AFA models to practical use, we develop a hierarchical acquisition policy, where the candidate
features are grouped together based on their relevance to the target. Our framework represents
the first AFA model that can deal with a potentially large pool of candidate features. Extensive
experiments are conducted to showcase the effectiveness of our framework.
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A EXPERIMENTAL DETAILS

A.1 ROBUST ACTIVE FEATURE ACQUISITION

Datasets We evaluate the performance for robust AFA using several classification datasets.
MNIST and FashionMNIST are two gray-scale image datasets of size 28 × 28, and SVHN is a
color image dataset of size 32 × 32. Our framework acquires one pixel value at each acquisition
step. For color images, it acquires all three channels at once.

Dynamics Model For MNIST and FashionMNIST, we follow GSMRL (Li & Oliva, 2020) to use
a class conditioned ACFlow for dynamics modeling. ACFlow captures the arbitrary conditional
distribution p(xu | xo, y), and the prediction using an arbitrary subset can be derived using the
Bayes rule, i.e.,

p(y | xo) =
p(xo | y)p(y)∑
y′ p(xo | y′)p(y′)

. (A.1)

The architecture of ACFlow closely follows GSMRL, which contains a stack of affine coupling lay-
ers and a Gaussian base likelihood module. The dynamics model is used to assess the intermediate
reward of an acquisition and provide auxiliary information to assist the agent. please refer to Sec. 2
for details.

For SVHN, it is hard for ACFlow to balance the likelihood objective and the classification loss.
Instead, we use a simple classifier with partially observed inputs to learn p(y | xo). We use the
ResNet50 architecture and modify it to take in masked inputs and a binary mask. During training,
we sample the mask at random. Since the partially observed classifier does not explicitly capture
the dependencies among features, it cannot provide any prediction about the unobserved features.
Although, it can still assess the intermediate reward using the information gain. We also use the
current prediction probability as the auxiliary information.

PO-MSMA Our PO-MSMA model consists of a score matching network and a likelihood model
over the norm of scores. We modify the original NCSN model to produce the scores for arbitrary
marginal distributions ∇x̃m log p(x̃m). Specifically, the inputs contain the masked images xo and a
binary mask indicating the observed pixels. The output is a tensor with the same size as the input
image. We then mask out the unobserved dimensions for the output and compute the norm only
for those observed pixels. Throughout the experiment, we use 10 noise scales, thus obtaining 10
summary statistics, s1, . . . , s10, for each input image. Then, we train a conditional autoregressive
model for the norms conditioned on the binary mask Im, i.e.,

p(s1, . . . , s10 | Im). (A.2)

Given a test image x with observed dimensions m, the OOD detection starts by calculating the
norm of scores on different noise levels. Then, the conditional likelihood p(s1, . . . , s10 | Im) is
thresholded to determine whether the given partially observed input is OOD or not. Here, we report
the AUROC scores to evaluate the OOD detection performance.

AFA Agent We use PPO algorithm to train our AFA agent. Given the observed dimensions as the
state, we first use a two-layer convolutional network with max pooling to extract an embedding, from
which the actor and critic are derived using two fully connected layers. The actor network predicts
the probability of the next action, where the probabilities of observed features are manually set to
zero. The critic network is used to estimate the state values. The AFA agent observes the current
acquired features and determines which next feature to acquire. It stops acquiring more features
when the acquired features exceed the acquisition budget. Throughout this work, we assume each
feature has the same cost, thus the acquisition budget is equivalent to the number of features to be
acquired. In GSMRL (Li & Oliva, 2020), the authors also learn a predictor along with the agent.
However, we did not find it beneficial at the early stage of experiment. Therefore, we directly use
the dynamics model to make a final prediction.

Baselines Both greedy and RL based approaches have been proposed for the AFA task. However,
they all deal with a small number of candidate features and have difficulty scaling to large ones.
For example, the greedy approach, EDDI (Ma et al., 2018), has a O(Nd) computation complexity
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Figure A.1: Additional results from our robust
AFA framework.

Figure A.2: Additional results from our robust
AIR framework.

for acquiring N features from a d dimensional feature space. Model-free and model-based RL
approaches are known difficult dealing with large action spaces (Li & Oliva, 2020). In order to
evaluate the OOD detection performance using commonly used benchmarks, we modify the state-
of-the-art AFA approach, GSMRL (Li & Oliva, 2020), with our proposed action space grouping
technique. We also compare to a random policy where a random unobserved feature is acquired at
each acquisition step.

Additional Results Figure A.1 presents additional results for acquiring features using our robust
AFA framework. Our model successfully recognizes the underlying classes using only a small subset
of features.

A.2 ROBUST ACTIVE INSTANCE RECOGNITION

Datasets We evaluate the AIR performance using MNIST and FashionMNIST. The model ac-
quires one pixel at each acquisition step to reconstruct those unobserved pixels.

Dynamics Model Following GSMRL (Li & Oliva, 2020), we use ACFlow to model the dynamics.
Specifically, ACFlow learns the arbitrary conditional distribution p(xu | xo), and the prediction
about the unobserved pixels are simply sampled from this distribution. The intermediate reward is
defined as the improvement of the log likelihood per dimension, i.e.,

rm(s, i) =
log p(xu\i | xo)
|u| − 1

− log p(xu | xo)
|u|

. (A.3)

The dynamics model also provides auxiliary information to the agent, which contains the predicted
mean and variance of the unobserved pixels.

PO-MSMA The OOD detector is the same as used in the AFA task.

AIR Agent The agent is also the same as the AFA task, except the final reward is given as the
MSE between the prediction and the groundtruth.

Baselines Similar to the AFA task described above, we compare to a modified GSMRL algorithm
and a random acquisition policy.
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Figure A.3: Acquired groups along the acquisition process for MNIST AFA. Each column represents
the frequency of each group being acquired at the corresponding acquisition step. Groups with
smaller index have higher mutual information to the target variable.

Figure A.4: Examples of the clusters from different grouping scheme.

Additional Results Figure A.2 presents several acquisition processes for the AIR task using our
proposed framework. The prediction quickly becomes certain after only several acquisitions.

A.3 ABLATIONS

Information based clustering Figure A.3 presents the frequencies of each group being acquired
along the acquisition process for MNSIT AFA. We can see the acquired features concentrate on the
informative groups especially at the early acquisition steps. Therefore, our grouping scheme acts
like a curriculum that guides the agent towards informative acquisitions.

Grouping schemes In the main text, we propose using mutual information between each candidate
feature and target variable to group actions. The mutual information based clustering scheme could
help the agent eliminate non-informative actions, thus simplifying exploration. Here, we compare
with several alternative clustering schemes. Random clustering groups the candidate features into
several equal-sized clusters. Row clustering groups pixels by their rows. Graph clustering first
builds an undirected graph over candidate features and groups the nodes using spectral clustering
methods. We build the graph for MNIST pixels using the graphical lasso method. Since the spectral
clustering cannot guarantee balanced cluster sizes, we further postprocess the clustering results by
splitting large clusters and combining small clusters so that each cluster has equal size. Figure A.4
shows several clusters obtained from each grouping scheme.
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Figure A.5: Comparison with Wolpertinger DDPG policy for MNIST AFA.

Figure A.6: Comparison of different detection reward.

Wolpertinger DDPG Policy Wolpertinger policy is specifically designed to deal with large dis-
crete action space. Although there is no universal action embeddings available for general AFA
problems, we can use the Cartesian coordinates of pixels as the embeddings for image datasets. We
perform extensive hyperparameter tuning for training the policy, such as the network architectures,
epsilon greedy exploration, and Ornstein Uhlenbeck Process parameters. Results are presented in
Fig. A.5, which demonstrates that our action space grouping is more effective in the AFA setting.

Detection Reward In the main text, we use log p(s1, . . . , s10 | Im) as an auxiliary reward from
the OOD detector. As we discussed in Sec. 3.3, the positive log likelihood reward helps to reduce
the false positive, while the negative log likelihood reward helps to reduce the false negative. Figure
A.6 compares different types of detection reward. We can see both positive and negative likelihood
reward can improve the detection performance, and the classification accuracy does not degrade a
lot from the baseline.
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