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ABSTRACT

How do different architectural design choices influence the space of solutions that
a transformer can implement and learn? How do different components interact
with each other to shape the model’s hypothesis space? We investigate these
questions by characterizing the solutions simple transformer blocks can imple-
ment when challenged to solve the histogram task – counting the occurrences of
each item in an input sequence from a fixed vocabulary. Despite its apparent
simplicity, this task exhibits a rich phenomenology: our analysis reveals a strong
inter-dependence between the model’s predictive performance and the vocabulary
and embedding sizes, the token-mixing mechanism and the capacity of the feed-
forward block. In this work, we characterize two different counting strategies
that small transformers can implement theoretically: relation-based and inventory-
based counting, the latter being less efficient in computation and memory. The
emergence of either strategy is heavily influenced by subtle synergies among hy-
perparameters and components, and depends on seemingly minor architectural
tweaks like the inclusion of softmax in the attention mechanism. By introspecting
models trained on the histogram task, we verify the formation of both mechanisms
in practice. Our findings highlight that even in simple settings, slight variations in
model design can cause significant changes to the solutions a transformer learns.

1 INTRODUCTION

Transformers are the key neural network behind many recent deep learning advances, most notably
large language models (LLMs). Their success is partly due to their versatility in processing di-
verse data types, including text, images, and video, represented as sequences of tokens (Liu et al.,
2021; Girdhar et al., 2019; Brown et al., 2020). While scale has been a key factor in unleashing
the potential of these models, it is remarkable that their architecture still largely follows the same
simple template of the original transformer model proposed by Vaswani et al. (2017). At its core,
a single transformer block primarily alternates two basic components: the token-mixing attention
mechanism and a standard fully connected multi-layer perceptron. At a high level, the attention
mechanism mixes the tokens, while the multi-layer perceptron applies a nonlinear feature trans-
formation identically to each token. Despite the widespread use of transformers, there is no clear
consensus on the distinct roles of their components, how they interact, or if they can be substituted
with alternative modules (Tolstikhin et al., 2021; Bozic et al., 2023; Gu & Dao, 2023). In particular,
the specific contribution of each architectural element to the model’s hypothesis space –the range
of algorithms it can learn and implement in practice– remains opaque (Weiss et al., 2021; Delétang
et al., 2023; Abbe et al., 2023; Ouellette et al., 2023).

In this work, we investigate this question from a mechanistic interpretability perspective (Cammarata
et al., 2020; Olah et al., 2020; Elhage et al., 2021; Michaud et al., 2024; Ouellette et al., 2023) by
considering the histogram task as a prototypical problem (Weiss et al., 2021). This task consists
of predicting the number of appearances of each token in the input sequences processed by the
model – counting. It encompasses two distinct fundamental algorithmic operations: comparison and
aggregation. Despite its apparent simplicity, this task exhibits a rich phenomenology, allowing us to
study the relative role of different architectural components and their impact on the final solutions
implemented by the model in a controlled setting. To this end, we focus on models following
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the architectural template of primitive transformer blocks, i.e. alternating a token-mixing attention
mechanism and a multi-layer perceptron.

In our analysis, we provide explicit constructions (parameter configurations) for a range of such
architectures reaching perfect accuracy in a model-dependent hyperparameter regime. In a subse-
quent step, we compare these algorithms with the performance and mechanistic behavior of models
trained from data. Our findings reveal that this class of models is capable of implementing strik-
ingly different solutions for the histogram task, with a strong dependence on the scale of the model’s
hyperparameters and the type of token-mixing mechanism utilized. Our main contributions are:

• We identify two main algorithmic strategies that can be used to solve the histogram task perfectly:
relation- and inventory-based counting. Relation-based counting uses local pair-wise compar-
isons between tokens in a given sequence to obtain the number of occurrences conditioned on a
given position. Inventory-based counting relies on the knowledge of the complete alphabet and
counts the occurrences of all possible tokens to then extract the correct count for a given position.

• We show that the emergence of either mechanism during learning depends on the specifics of the
architecture and the inductive bias it possesses in relation to the task. Relation-based counting is
memory and compute-efficient as it can leverage an attention-like dot-product mixing mechanism
for comparison operations. Inventory-based counting, instead, can be implemented based on an
input-independent token-mixing mechanism. This weak inductive bias can be compensated via
a feed-forward module with a large enough hidden layer that can memorize a lookup table to
implement a comparison operation (inventory): the model-task misalignment can be closed at the
cost of increased memory and compute requirements.

• When the embedding dimension is comparatively smaller than the size of the alphabet, we show
that non-orthogonal embeddings can still result in some models attaining perfect accuracy. Due to
the discrete nature of the counting task, near-orthogonal embeddings may not have a detrimental
effect on prediction performance. Additionally, major gains are possible for the softmax operator
and dot-product attention which together can remove noise stemming from linear dependence in
a semantic, token-dependent manner. In this context, we also identify a curious regime where
very small embedding dimensions, independent of the alphabet size, are in theory possible, but
are never learned.

Section 2 provides the necessary background and notation. In Section 3 we describe our experimen-
tal setup, followed by our theoretical and experimental results1 in Section 4. Section 5 discusses the
related literature. Section 6 presents the limitations, conclusion and open questions of this work.

2 BACKGROUND AND NOTATION

Architecture. As inputs, we consider sequences of tokens x = (x1, x2, · · · , xL) ∈ T L. Each
token stems from the set T = {1, · · · , T} of size T . The corresponding sequence of outputs y =
(y1, · · · , yL) has the same length as the input sequence, where each output token belongs to the
output alphabet C of size C, i.e. yℓ ∈ {1, ..., C}, with C ≤ L. In this work, we analyze several
1-layer model architectures where a token-mixing mechanism is followed by a per-token feature
transformation. This setup includes the case of a single transformer block where the dot-product
attention mechanism is followed by a token-wise feed-forward network. Formally, we consider a
model F : T L → CL defined for the positions ℓ = 1, · · · , L as

F (x̄)ℓ = argmax
c∈{1,··· ,C}

f(x̄′
ℓ)c ; x̄′

ℓ = x̄ℓ + [A(x̄)x̄]ℓ (1)

with the token mixing matrix A : RL×d → RL×L and the token-wise feature transformation f :
Rd → RC . The embedding x̄ ∈ RL×d, where x̄ℓ denotes its ℓ-th row, is obtained by passing the
input sequence x into a standard embedding layer (learnable lookup-table) of dimension d. We refer
to the embedding associated with token t ∈ T as et ∈ Rd or exℓ

∈ Rd for the embedding of the
token xℓ at position ℓ. We do not include positional embeddings due to the inherent permutation
equivariance of the histogram task. We refer to the vector x̄′

ℓ, for each position ℓ = 1, · · · , L, as
the mixed token. Note that we assume that all operations in the network are executed with infinite
precision. We comment when this becomes problematic.

1All results and code to reproduce them is available in the supplementary material.
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Token Mixing. We consider two types of mixing mechanisms A with different activation func-
tions. We refer to the case where the function A is constant in x̄ as linear mixing (lin), e.g.

Alin(x̄) = A , Alin+sftm(x̄) = softmax(A) , (2)

where A ∈ RL×L is a learnable matrix and the softmax operator is applied row-wise. The number
of learnable parameters is therefore L2. As an alternative mixing structure, which we refer to as dot-
product mixing (dot), we consider the popular attention mechanism which constructs the matrix A
to be explicitly dependent on the inputs, i.e.

Adot(x̄) =
1√
d
x̄WQW

T
K x̄T , Adot+sftm(x̄) = softmax

(
1√
d
x̄WQW

T
K x̄T

)
, (3)

where WQ and WK are learnable d × d matrices, and the softmax function is applied row-wise.
Note that, without loss of generality, we assume the value matrix to be the identity. The num-
ber of parameters for dot-product mixing is 2d2. In line with previous work (Weiss et al., 2021),
for architectures employing the dot-product mixing, we also analyze models utilizing the so-called
beginning-of-sequence (BOS) token. This special token, indicated with the symbol $, is appended
to the original input x resulting in a new sequence x̃ = ($, x1, x2, · · · , xL) of length L+1. We will
refer to the architecture that includes the BOS token as bos.

Feature Transformation. The feature transformation is a single hidden layer perceptron with
ReLU activations. The hidden layer is of dimension p. The function f is applied identically to every
mixed token x̄′

ℓ for ℓ = 1, · · · , L, as:

f(x̄′
ℓ) = ReLU(x̄′

ℓW1 + b1)W2 + b2 (4)

where f(x̄′
ℓ) : Rd → RC and where the weights have the appropriate dimensions to accommodate a

hidden layer of size p, i.e. W1 ∈ Rd×p, b1 ∈ Rp,W2 ∈ Rp×C and b1 ∈ RC .

3 EXPERIMENTAL SETUP

Task and Dataset. We consider a simple algorithmic task that is referred to as histogram: given a
sequence of tokens, the goal is to return a sequence of the same length where each entry represents
the number of times the corresponding input token appears in the entire sequence. For example,
given x = [A,B,D,D,B,B], the output will be y = [1, 3, 2, 2, 3, 3]. We define the count of a token
t in the sequence x at position ℓ as histx(ℓ). In our experiments, we consider i.i.d. distributions
of sequences of length L from an input alphabet of size T , where L ≤ T . Our sampling strategy
relies on first sampling a set of partitions, and then assigning a token to each partition (see App. C
for details). This allows for a close to uniform distribution over the values of y.

Models and Training. We investigate the performance on the histogram task of the four different
variants of the token mixing models described in Sec. 2, i.e. lin and dot, with or without the
softmax (+sftm), where the token embeddings are jointly learned with the model parameters. Their
relevant hyperparameters are the dimension of the embedded tokens d, and the hidden layer size p
of the feature transformation. Additionally, we consider the model bos(+sftm) where every input
sequence is prefixed with the BOS token prior to entering a dot-product mixing layer (with softmax).
Previous studies (Weiss et al., 2021; Kazemnejad et al., 2023) have demonstrated that transformer
networks consistently attend to BOS tokens, despite their lack of semantic content, and we explore
this point in our experiments.
All models are trained with Adam with a learning rate of ν = 10−3 on the cross-entropy loss for 500
epochs with a batch size of 32. We consider the online learning setting. For each batch we sample a
new sequence of data from the generalize model. We compute the accuracy attained by each model
based on a set of 3, 000 independent data samples, which covers a large range of all possible input
sequences.

4 LEARNING REGIMES IN COUNTING

In order to understand the contributions of the different architectural components, we analyze the
performance of the above-stated models with varying mixing mechanisms in different learning
regimes characterized by the embedding dimension d and the number of hidden neurons p of the
feed-forward module.
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Figure 1: Performance on the histogram task for different 1-layer transformer architectures. Mean accuracy
for varying embedding dimension d, hidden layer dimension p, for fixed T = 32 and L = 10 for the different
token mixing mechanisms dot, bos and lin. (Top) Models with softmax; (Bottom) Models without softmax.
Average over 5 runs for every d, p ∈ {1, 2, 3, 4, 6, 8, 12, 16, 23, 32, 45, 64, 91, 128}. Vertical and horizontal
white lines indicate p = T and d = T respectively. White stars mark the parameter configurations, where a
100% accuracy configuration was found during training in at least one of the five runs. White dots mark the
same for ≥ 99% accuracy configurations.

Fig. 1 shows the accuracy attained by learned models for sequences of length L = 10 with
T = 32 different input tokens. We observe that the models exhibit both high and low

Figure 2: Accuracy vs. Parameter count. The
data is the same as generated for Fig. 1, every data
point is a single experiment and we show the con-
vex hull in solid lines.

accuracy across various parameter regimes,
with a strong dependence on the architecture.
Fig. 2 further clarifies that the parameter effi-
ciency under different architectures varies sub-
stantially.
To investigate the underlying mechanisms we
devise theoretical constructions and mechanis-
tic interpretations of the learned solutions. We
delineate two regimes in each of the parame-
ters: for the embedding dimension d we dis-
tinguish the regime of non-orthogonal embed-
dings (d < T ) and of possibly orthogonal em-
beddings (d ≥ T ). For hidden layer size p we
distinguish the regime where models can sense
only a constant number of directions/features
(p = 1) or one scaling as the alphabet size
(p = T ).

4.1 d ≥ T : ORTHOGONAL TOKEN EMBEDDINGS ARE SEPARABLE

When the model dimension d is at least as big as the number of tokens T , tokens can be represented
by embeddings that are mutually orthogonal to one another. Assuming all tokens t ∈ T have such
mutually orthogonal embeddings et ∈ Rd with a norm of 1, the overlap is ⟨es, et⟩ = 0 for distinct
tokens t ̸= s and it is 1 when t = s. In such a scenario, a linear combination of token embeddings
preserves magnitudal - count - information about single tokens. By leveraging knowledge about
the embeddings of the alphabet, a weighted sum of tokens, denoted as e′ =

∑
t∈T αtet, can be

broken down into the original tokens using projections on the original token embeddings, where
αt = ⟨et, e′⟩/∥et∥22.

In the following, we use this property to theoretically construct the weights for all models that solves
the task when d ≥ T . Remarkably, the constructions require different number of hidden neurons p
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depending on the mixing mechanism. This demonstrates the interplay of the mixing layer and the
feature transform: for some mixing mechanisms, the latter needs to implement inventory-based
counting (IC) (requiring p ≥ T ), and for others, relation-based counting (RC) (where p ≥ 1 is
sufficient).

4.1.1 RELATION-BASED COUNTING: LEVERAGING DOT-PRODUCT MIXING

When an extra beginning-of-sequence token tBOS is available in bos, it can be used as a to extract
information about a token’s count histx(ℓ) in the attention layer of the network through its attention
score Kazemnejad et al. (2023). In the literature, the beginning (or end) of sequence tokens have
been linked to model-internal computations, such as counting. In Weiss et al. (2021), it is shown
that the RASP language can solve the histogram task with one layer and one attention head. We
confirm empirically that bos and bos+sftm reach (close to) 100% accuracy whenever d > T , and
we verify that a relation-based counting algorithm can be theoretically implemented in these two
architectures by construction.

Proposition 1 (RC with BOS token). For bos and bos+sftm and a given L ≥ 2, there each exists
a configuration of weights that solves the histogram task at 100% accuracy, given that d ≥ T > 2
and p = 1.

We prove this by construction in App. A.2.3-A.2.2 and we provide the intuition of the proof in
the following. For bos we set the tBOS embedding to eBOS =

∑
t∈T et and take the mutually

orthogonal token embeddings et to have norm 1. Assuming that tBOS is at the first position of the
sequence of now length L + 1, a simple dot-product operation in the attention mechanism (with
Q,K = d

1
4 Id) will lead to an attention matrix with entries:

aℓm =


T if ℓ = m = 1

1 if (ℓ > 1,m = 1) or (ℓ,m > 1, xℓ = xm)

0 if ℓ,m > 1, xℓ ̸= xm

.

Projecting the mixed token x̄′
ℓ onto the tBOS we obtain ⟨x̄′

ℓ, eBOS⟩ = T + histx(ℓ) + 1, i.e. eBOS

is the single relevant direction for the prediction. Its magnitude relates linearly to histx(ℓ). A
single hidden neuron p = 1 suffices and the output layer can transfer the count into a categorical
representation. For bos+sftm one needs to further account for the non-linearity of the softmax as
described in App. A.2.2.

In the learned models, some instances in the given regime indeed achieve 100% accuracy. While
their weights do not correspond exactly to the relation-based counting algorithm described previ-
ously, they exhibit similar properties. In Fig. 3, we show for bos+sftm, that tBOS indeed plays
a special role in the learned model: in the attention matrix its activation can be interpreted as a
proxy for the number of occurrences of xℓ, as it has different values for tokens that occur a different
amount of times. Other entries of the attention matrix are comparatively low when the compared
tokens are the same and high when they are different. The comparison operation naturally provided
by the dot-product allows the model to extract the count of the same tokens, for each token in the
sequence. We also show in Fig. 3 how the presence of the tBOS determines the final prediction
through the application of f .

Surprisingly, the dot model (without the softmax) reaches a an empirical performance comparable
to bos in the regime d ≥ T and p = 1, even though it does not have an extra token available.

Proposition 2 (RC with tagged embeddings). For dot and a given L, T > 2, there exists a con-
figuration of weights that solves the histogram task at 100% accuracy, given that d ≥ T > 2 and
p = 1.

We prove this in App. A.2.1. Intuitively, the construction uses a single common direction ecnt that
is added to the otherwise mutually orthogonal token embeddings. A dot-product mixing then leads
to aℓm = a̸= > 0 when xℓ is different from xm, and aℓm = a= > 0 when tokens are the same.
Then, the number of counts can be easily extracted from the dot-product ⟨ecnt, x̄

′
ℓ⟩ of the counting

token with the mixed token x̄′
ℓ, i.e. ⟨ecnt, x̄

′
ℓ⟩ ∝ 1 + histx(ℓ)a= + (L − histx(ℓ))a̸=. We can,

therefore, obtain a perfect accuracy implementation in the regime where d ≥ T with only a single
hidden neuron. This is in line with the observed empirical performance by dot even without access
to a BOS token.
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Figure 3: Relation-based counting with bos+sftm (T = 32, L = 10, p = 2, d = 45). This model
achieves 99.9% accuracy. It was selected as the best model from all our experiments with p = 2.
(Left) The tokens overlap (cosine similarity) with the same tokens (red), different tokens (grey) and
the BOS (light blue) all concentrate on different values. (Middle) This is reflected in the attention
matrix after the application of the row-wise softmax. The tBOS (‘$’) in the first column aℓ,0 becomes
a proxy for the count of xℓ. (Right) To demonstrate that the feedforward network is only sensitive to
this direction, we show its count predictions for a mix of tokens αeBOS + (1 − α)eD + eB , where
the contribution α of the BOS token is varied and D,B are two specific elements of the alphabet T .
The same experiment is repeated for different elements of the alphabet in App. D.6. We mark the
aℓ,0 obtained from the left as vertical lines, the prediction is correct for all counts independent of the
precise token.

Dot-product attention with softmax fails to implement relation-based counting. Since the
dot-product mechanism can naturally be used in relation-based counting, one might expect the
dot+sftm model to implement the same mechanism. However, and maybe surprisingly so, we
empirically observe a marked difference between dot and dot+sftm in Fig. 1. dot only starts
performing close to 100% accuracy when both the model dimension d and the number of hidden
neurons p are larger than the number of tokens T . To understand why it fails to learn for p = 1,
we show the attention matrix of dot+sftm in Fig. 4. Notably, it is based on the semantics, as
(Adot+sftm)ℓm is higher when xℓ = xm than otherwise. However, the normalization effect of the
softmax activation prevents the development of a meaningful counter subspace that is needed in the
relation-based algorithm. As a result of normalization, the attention scores are

∑
m aℓm = 1, so

any direction present in all tokens (and by the symmetry of the task, it would need to be present in
all tokens) would be uninformative after the token mixing – its weight would be one regardless of
the input sequence and would therefore not carry information about the count. Before, the model
bos+sftm circumvented this problem by adding the extra token with a special functionality that
does not need to be counted. Because this is not possible for dot+sftm, the architecture fails to
perform well for p = 1 – it now needs to measure more than one direction in the feed-forward
module.
In the following, we show that a solution of the histogram task can still be achieved through an
inventory-based counting algorithm with p ≥ T . We detail this in the following section, for the
example of lin. The statement for dot+sftm is given in App. A.3.

4.1.2 INVENTORY-BASED COUNTING: MEMORIZATION IN THE FEED-FORWARD LAYER

When the feed-forward hidden layer has one neuron for each distinct token available in the alphabet,
it can detect as many directions. This allows the feed-forward layer to extract the information of any
token direction separately and thereby implement a custom comparison operation that works for all
of the tokens in the alphabet. While this is less parameter efficient and requires memorizing the
complete alphabet, it enables the model to solve the task.

Proposition 3 (IC with memorization in the feed-forward layer). For lin and lin+sftm and a
given L, T > 2 there exists a configuration of weights which solves the histogram task for p ≥ T
and d ≥ T .

We describe examples of such constructions in App. A.3.1 and A.3.2. Again, several solutions exist
due to symmetries, and in the following we give an intuition for one of them.
In the linear mixing layer Alin we set a constant value a = 1/L so that the result of the mixing is
simply a position-independent linear combination of the input. The count histx(ℓ) can be extracted
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Figure 4: Inventory-based counting with dot+sftm (T = 32, L = 10, p = 32, d = 32). This
model achieves 99.47% accuracy. (Left) The attention matrix for a given sequence differentiates
between similar and different tokens. However in this case, any counting direction that could emerge
in token space is evidently not usable, as p ≥ T is required (see Fig. 1). (Right) This is reflected in
the output from the feature transformation f , shown here for a linear combination of three different
tokens from the alphabet, B,C,D. The prediction strongly depends on the coefficient αt associated
with the token t present in the residual connection and only weakly on the others. The non-linear
scaling of the decision boundaries is due to the softmax activation function.
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Figure 5: Inventory-based counting with lin+sftm (T = 64, L = 10, p = 128, d = 128). The
model achieves 99.97% accuracy. (Left) Attention matrix learned by Adam, which is constant in
the input sequence x. The different score on the diagonal assigns a different weight to the token
at the current position ℓ than to all other tokens. (Right) Predictions on an artificial mix of learned
embeddings for the three tokens B,C and D. The prediction depends on the token in the residual
connection, but is largely independent of the presence of other tokens in the mixing. This indicates
that f projects the mixed token onto the alphabet T and is able to extract tokens due to orthogonality.

after the residual connection where we add x̄′
ℓ = x̄ℓ + exℓ

. By setting the columns of the matrix
(W1)t = et we can extract the count information up to the factor 1/a

hist
x

(ℓ) =
1

a

∑
t∈T

ReLU (⟨x̄′
ℓ, (W1)t⟩ − 1) =

1

a

∑
t∈T

ReLU (⟨x̄′
ℓ, et⟩ − 1) =

1

a
⟨x̄ℓ, exℓ

⟩

Note that, due to the −1 bias term, only the hidden neuron for token (W1)t = et = xℓ that occurs
in the residual connection has a non-zero activation. The output layer W2 can then be designed
to activate the correct output vector corresponding to the count histx(ℓ) (see App. A.4). Since
a ∈ [0, 1] and

∑L
m=1 aℓm = 1 the same procedure can be implemented by a matrix which is passed

through the softmax operator for lin+sftm. In practice, in this construction the feed-forward
module is correlated with the complete alphabet, acting as an inventory, or look-up table.

In Fig. 5, we inspect the attention matrix Alin and the feature transformation f which is learned for
lin+sftm in the regime where p ∼ T ∼ d. The mixing has an off-diagonal of ∼ 0.11 and a
diagonal of ∼ 0.08. Feeding the feature transformation f with a weighted combination of 3 tokens,
B,C,D, we observe that the final prediction of the network depends mainly on the coefficient αt

corresponding to the token embedding fed through the residual connection. Notably, this behavior is
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close to Fig. 4 (right) and suggests that the feature transformation must have encoded the information
of the token embedding in its weights, hence requiring at least p = T hidden neurons.

Superpositioned and selective implementations. Some of the models capabilities include one
another. For example, the models that can implement relation-based counting for p = 1 can
also implement the solutions for inventory-based counting for p ≥ T . It is unclear, whether the
memory-intensive solution is preferred when the memory is available, or if the efficient solution
is learned nonetheless. Curiously, in Fig. 1, we observe that the model dot (which is capable of
RC) witnesses a very slight decrease in maximal learned performance from 100% accuracy to 99%
despite its capacity being increased to p = T when inventory-based counting can in principle be
implemented. In App. D.7 we investigate the singular value decomposition of W1, for learned
models with ≥ 99% accuracy and p, d ≥ T . We find that the largest T = 32 singular values are
larger than the surplus singular values when p > T for models that can implement only IC. This
behavior is less pronounced for models that can implement RC, where the largest singular value
is often relatively much larger than the following T = 32, but still show a small dip after the
T = 32 singular values. Understanding which algorithm is implemented in this regime, or if it is a
superposition of the two, thus requires further investigation.

4.2 d < T : NON-ORTHOGONAL EMBEDDINGS AND THE DISCRETE NATURE OF COUNTING

The scenario where d < T fundamentally differs from the one explored in Section 4.1 because the
embeddings for different tokens can no longer be mutually orthogonal. Some token pairs then have
a non-zero overlap due to their linear dependence, causing the mixing of tokens to entangle count
information across different directions in the embedding space. This phenomenon is illustrated
for dot in Fig. 6, where learned models with smaller d tend to overcount items in the input, and
observe a less spread distribution of overlaps. Nevertheless in Fig. 1 we observe a number of results
that empirically show almost perfect accuracy solutions with d < T both for models with RC or IC.
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Figure 6: Introspecting the Regime with Entangled
Embeddings with dot (T = 64, L = 10, p = 128).
We show examples of dot for T = 64, L = 10, p =
128 for varying the model dimension d. (Top) The
confusion matrix of ground truth and predicted counts.
(Bottom) The overlap distribution between same and
different token embeddings.

Indeed, the discrete nature of the histogram
task, i.e. the fact that every token can only be
mapped to L distinct counts, makes the predic-
tion inherently more robust to the effect of noise
stemming from entangled embeddings. This
concept is illustrated in Fig. 7 in App. A.4 for
the dot+sftm model. As long as the value of
the logits in the final output layer falls within
the margin between two counts the model still
solves the task with perfect accuracy. The rel-
ative size of this margin decreases when L is
increased, making the task harder when more
classes need to be distinguished.

In the following, we link concepts on optimally
placing decision boundaries for noise robust-
ness to a characterization of this entanglement
noise, measured by the mutual coherence of the
token embedding set (i.e., the maximum abso-
lute overlap between pairs of distinct embed-
dings). The mutual coherence of a set of T vec-
tors of dimension d is lower bounded by the Welch bound (Welch, 1974). This gives a means to
understand the size of d a given task with T, L requires at least.

Proposition 4 (Robustness via bounded mutual coherence). Given L ≥ 5, T ≥ 2 and assuming that
the Welch bound is attained for a given T, d, there exists a construction that solves the histogram
task with

(lin, lin+sftm; p = T ):
⌈

T (2L−3)2

T−1+(2L−3)2

⌉
≤ d,

(dot, bos; p = 1):
⌈

T (2L−3)2

T−1+(2L−3)2

⌉
+ 1 ≤ d,

(dot, bos; p = T ):
⌈

T (L−1)
T−1+(L−1)

⌉
≤ d.
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We provide additional background and the proofs in App. B.2. The idea is to use constructions
analogous to the RC and IC with orthogonal embeddings, while keeping track on how the errors
of non-zero overlaps between pairs of different embeddings propagate through the model. For a
given L and T this provides an upper bound on the maximal mutual coherence that is tolerated for a
perfect solution. This can be connected to the dimensionality d via the Welch bound. Evaluating the
bounds for the setting in Fig. 1, we obtain, in the order of the above list, d ≥ 29, 30, 7. Generally
it is hard to generate matrices that attain the Welch bound and manually we did not succeed to find
them for d = 29, 30. However we can indeed create an explicit construction a for dot and p = T
which attains d = 12, as provided in the supplementary code and in correspondence with Fig. 1.
While this bound does not reach the d as indicated by the Welch bound, the mutual coherence of the
embedding matrix we use is close to the maximally allowed value of M = 0.299 < 1/3.

The previous results apply specifically to models without the softmax operator in the token mix-
ing step – models with this non-linearity can be more robust and attain even smaller d, as clearly
visible in Fig. 1. The idea is that a softmax function with a high enough inverse temperature can
non-linearly scale down the attention scores for different token pairs relative to those of the same
tokens. Thereby, the noise introduced in the dot-product layer through pairs of different embeddings
becomes arbitrarily close to zero after applying the softmax.
Proposition 5 (Robustness via softmax error-reduction). Given T, L > 2, there exist weight con-
figurations that solve the histogram task for the parameter combinations (bos+sftm; p = 1) and
(dot+sftm; p = T ) with ⌈log2(T + 1)⌉+ 2 ≤ d.

Put simply, this construction requires that there are token embeddings for t, s = 1, . . . , T and s ̸= t
with ϵ > 0 such that

⟨et, et⟩ = 1 and ⟨et, es⟩ < 1− ϵ . (5)

This is fulfilled when every token is the binary encoding of its value, modulo minor modifications
due to the RC mechanism for bos+sftm. Setting the softmax temperature high enough as a func-
tion of L allows for the contributions from non-equal tokens to be decreased relative to the ones of
same tokens. Evaluating this function for Fig. 1, we obtain d = 7, which closely corresponds to the
most parameter efficient solutions of the histogram task that we observe. As L grows, we require
stronger concentration from the softmax by adjusting its temperature. Since real-world networks
execute finite computations, computational instabilities or collapses might occur. It is therefore not
clear that this correspondence will hold for all values of L.
In App. B.3.1 we show that this bound can be even further improved for bos+sftm to a constant
d = 4, but at the cost of increasing the temperature further as a function of T , in addition to L. This
might be the reason why we do not observe any learned solutions of the histogram task in this regime.

5 RELATED WORK

Mechanistic Interpretability and Counting. The emergence of algorithmic capabilities in trans-
formers (Olsson et al., 2022; Power et al., 2022) has led to numerous investigations aimed at reverse-
engineering trained models into human-understandable mechanisms (Zhong et al., 2023; Nanda
et al., 2023; Quirke & Barez, 2024). Previous studies have investigated a variety of histogram tasks
and the mechanisms behind them (Gould et al., 2023; Chollet et al., 2020; Ouellette et al., 2023;
Cui et al., 2024). In our work, we consider the histogram task introduced within the context of the
RASP(-L) programming language (Weiss et al., 2021; Abbe et al., 2023). Weiss et al. (2021) predict
that single layer transformers with one head require an additional BOS token as a scratchpad (Nye
et al., 2021) to be able to solve the task. However, we find that the task does not necessarily require
the BOS token and we give explicit constructions for several of such one-layer architectures. Our
main focus is the interpretation of the hyperparameter scaling of several distinct models in rela-
tion to their performance and explicit constructions of different algorithms, similar to the studies in
Zhong et al. (2023); Quirke & Barez (2024). We give precise theoretical conditions on the model
configurations that lead to perfect explicit constructions. While many works in this area focus on
causal interventions (Vig et al., 2020; Meng et al., 2023) to understand the computational mecha-
nisms of models or assign relevance scores to their components (nostalgebraist, 2020; Elhage et al.,
2021), our approach primarily involves gaining insights through direct introspection of the model’s
components.

Memorization and Feed-forward Layers. The role of feed-forward layers as memorization mod-
ules has been investigated in the context of factual recall for language models (Geva et al., 2021;
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Meng et al., 2023; Chughtai et al., 2024). Henighan et al. (2023) study a double decent phenomenon
where the purpose of the feed-forward layer transitions from storing data points to discovering gen-
eralizing features as a function of increasing training data diversity (Raventos et al., 2023). In the
histogram task, we observe a similar phenomenon as a function of the architecture: the feed-forward
layer acts either as a look-up table or a feature detector for a single direction in embedding space –
the counting subspace.
Aligning Algorithm and Architecture. While theoretical work has outlined the computational
capacity of a range of (autoregressive) neural networks (Weiss et al., 2021; Yun et al., 2019; Delétang
et al., 2023; Liu et al., 2023), hallucinations and failure modes on seemingly trivial tasks in real-
world transformers are the rule rather than an exception. Dziri et al. (2023) postulate that this
may be due to a misalignment between the computational graph of a model and the task itself.
In this work, we show that subtle differences in components such as the mixing type and layer
width play a crucial role in terms of algorithmic alignment. Previous work discovered evidence
for the superposition of different computational graphs in a single model (Elhage et al., 2022) –
we complement this analysis with a toy model that is able to disentangle non-orthogonal, hence
superimposed, embedding directions in some parameter regimes.

6 DISCUSSION & CONCLUSION

Limitations. Similar to other works in mechanistic interpretability (Zhong et al., 2023), we focus
on 1-layer transformers as a simplified model for modern transformers. Our models are not au-
toregressive and do not account for the impact of causal masks or positional encodings. While more
complex models could lead to more intricate interdependencies between the components, potentially
limiting the applicability of our findings to such architectures, it seems plausible that similar vector
arithmetic could emerge in subspaces of large transformers (Gould et al., 2023; Engels et al., 2024).
Given its specificity, it is unclear if and how similar memory-architecture phenomena would emerge
for different simple tasks (e.g. sorting or lookup).
Summary. We study how different components of simple transformer models contribute to the
emergence of different solutions to the histogram task. Our analysis shows that the parameter
regimes where solving the histogram task is feasible for these models is influenced by the choice
of the mixing mechanism and its inter-dependency with the feed-forward transformation, as well as
the softmax activation function in the attention mechanism. We identify two distinct algorithmic
approaches that 1-layer transformers can utilize to solve the histogram task: relation-based counting
and inventory-based counting. The relation-based method employs a dot product mixing mecha-
nism combined with a low-capacity feed-forward transformation and relies on the presence of an
appropriate counter direction within the token embedding space. In contrast, the inventory-based
method involves memorizing the token embeddings within the feed-forward module’s weights, thus
requiring more parameters. By characterizing the feasibility regimes of these mechanisms in the
phase space defined by the embedding dimension d and the hidden dimension p of the feed-forward
module, we confirm that learned models converge to solutions resembling these mechanisms. In cer-
tain regimes, both strategies can potentially be implemented, and our experiments indicate that some
learned models exhibit features of superimposed algorithmic mechanisms. In the regime where the
embedding dimension d is smaller than the alphabet size T , tokens cannot form an orthogonal basis
and solve the task directly via a linear projection. Despite this, we find that the considered models
exhibit different levels of robustness to the noise stemming from non-orthogonality. Our analy-
sis precisely characterizes how different models cope with this aspect and identifies less stringent
feasibility regimes in terms of the embedding dimension. In particular, we find that the softmax
activation can be very effective in minimizing the effective similarity between distinct tokens after a
comparison opearation through the attention layer, hence reducing the impact of non-orthogonality.
This is particularly relevant to real world models, where the alphabet size is usually much larger
than the model dimension.
Future Directions. At this moment, examples for hallucinations and failures of LLM’s are
as numerous as their success stories. Even though we only analyze the feasibility regime of a
single task, this small example already exhibits a rich phenomenology. It shows that a number of
subtle modifications to a models architecture can influence its predictive power drastically. The
prime example is the softmax function which becomes a curse or a blessing depending on slight
differences in the setup. We expect that similar mechanistic investigations at or close to the regimes
where models start failing will be extremely useful to understand how and why models fail in
sometimes puzzling manners.
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A EXPLICIT CONSTRUCTIONS FOR ORTHOGONAL EMBEDDINGS d = T

A.1 OVERVIEW

In the parameter regime where d ≥ T there is always an orthonormal basis of size T in Rd, these
explicit constructions give the correct prediction for all input token sequences. For all the models
we describe below, we define the sum of the hidden layer neurons as:

γℓ =

p∑
i=1

ReLU(zℓ,i) =

p∑
i=1

ReLU(W1x̄
′
ℓ + b1)i (6)

In many cases, a simple linear regression can map the scalar γℓ to the correct count of tokens xℓ,
and we describe how to achieve this mapping to the classification problem in Section A.4.
In the following, we characterize which parameters W1, b1 in equation 6 allow for a correct mapping
in each mechanism. Importantly, the architecture exhibits numerous symmetries due to the feed-
forward ReLU network (Petzka et al., 2020). To demonstrate feasibility, we select one specific
implementation. In the main text we observe that there is no one-to-one correspondence between our
explicit constructions and the learned weights, even though both functions achieve the same perfect
accuracy. Throughout, unless otherwise specified, we assume that E ∈ Rd×T is an orthonormal
basis of Rd, which we will use to create different forms of token embeddings.

The supplementary code at https://github.com/to-be-deanonymized contains executable
pytorch models that have the weight configurations that are used to prove Propositions 2-3
and 6, which allows one to test the devised weight configurations for fixed T, L, d in practice.

A.2 RELATION-BASED COUNTING

A.2.1 (DOT ; p = 1)

Proof of Proposition 2. We set T = d > 2 with L ≥ 2 and p = 1. We choose the embeddings of
the tokens of the dot model as

et = ẽt + ẽcnt ∀t = 1, . . . T (7)

where the set E = {ẽt}Tt=1 is an orthonormal basis of an arbitrary but fixed T -dimensional subspace
of Rd, and ẽcnt =

∑T
t=1 ẽt. The key and query matrix are set to the scaled identity WK = WQ =

d1/4Id and hence the mixing layer Adot can be viewed as carrying out the unmodified dot-product
operation between all pairs of tokens. The first layer weights W1, b1 ∈ Rd can be fixed as

W1 = ẽcnt/(T + 1) ; b1 = −(1 + L(T + 2)) , (8)

and the second layer weights W2, b2 ∈ RL follow the recursion

(W2)1 = −1 +
1

L+ 1
, (b2)1 = 0 ; (9)

(W2)ℓ = −1 +
ℓ

L+ 1
, (b2)ℓ = ((W2)ℓ−1 − (W2)ℓ) (ℓ− 0.5) + bℓ−1 , ∀ℓ = 2, . . . , L. (10)

Given these parameters, it holds that for tokens 1 ≤ t, s ≤ T their dot-product is

⟨et, es⟩ =
{
2 + T if t ̸= s ,

3 + T if t = s .
(11)

Because of our choice of the query and key matrices, it directly follows that for tokens xℓ, xm at
positions ℓ and m from a given sequence x, their attention score is

aℓm =

{
2 + T if xℓ ̸= xm ,

3 + T if xℓ = xm .
(12)

Hence, the mixed token after applying the residual connection is

x̄′
ℓ = x̄ℓ +

∑
m:xℓ=xm

(T + 3)x̄m +
∑

m:xℓ ̸=xm

(T + 2)x̄m (13)
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so that computing

x̄′
ℓW1 =

〈
x̄′
ℓ,

ẽcnt

1 + T

〉
(14)

=

〈
x̄ℓ,

ẽcnt

1 + T

〉
+

∑
m:xℓ=xm

(T + 3)

〈
x̄m,

ẽcnt

1 + T

〉
+

∑
m:xℓ ̸=xm

(T + 2)

〈
x̄m,

ẽcnt

1 + T

〉
(15)

= 1 + histx(ℓ)(T + 3) + (L− histx(ℓ))(T + 2) (16)
= histx(ℓ) + 1 + L(T + 2). (17)

Then the single hidden unit has the value γℓ = ReLU(x̄′
ℓW1 + b1) = histx(ℓ). It is easy to show

(analogous to Fig. 7) that the output logits c = γℓW2 + b2 with c ∈ RL, correctly identify the
count for integer values x ∈ [1, . . . , L]. This is because we constructed our recursion such that
at a given input x = ℓ we have that (W2)ℓ(ℓ − 0.5) + (b2)ℓ = (W2)ℓ−1(ℓ − 0.5) + (b2)ℓ−1 and
(W2)ℓ > (W2)ℓ−1, so it holds that

argmax
i=1...L

ci(y) =


1 y = 1

2 y = 2

. . .

L y = L ,

(18)

which gives the correct classification output for all possible inputs, and hence solves the histogram
task at 100% accuracy.

Note, however, that this weight configuration is only one example, and some symmetries in the
model can lead to different but also 100% correct algorithms. This is especially important as we
compare the regime outlined in the Theorem with the weight configurations learned.

A.2.2 (BOS+SFTM ; p = 1)

Proof of Proposition 1 for bos+sftm. We set T = d > 2 with L ≥ 2 and p = 1 and consider
the model dot+sftm. Note that in this model every sequence x is prefixed with tBOS before it is
fed into the embedding and then the mixing layer. Again we use mutually orthogonal embeddings.
E = {ẽt}Tt=1 is an orthonormal basis of an arbitrary but fixed T -dimensional subspace of Rd,
and ẽcnt =

∑T
t=1 ẽt. We set eBOS =

∑T
t=1 Et, where et = Et and the latter is a column of E.

Analogous to the background token from Proposition 1 there is only one direction p = 1 to detect
in the feedforward model, so we set

W1 = eBOS; b1 = −1. (19)

For a given token xℓ we have that in the dot-product mechanism ⟨eBOS, exℓ
⟩ = 1, ⟨exℓ

, exm
⟩ = 1 if

xm = xℓ and 0 otherwise. Due to the softmax, the mixing coefficient is a = e/((kxℓ
+ 1)e+ (L−

kxℓ
)) (where e is Euler’s number) for comparing xℓ to tBOS and to all the tokens where xℓ = xm,

and b = 1/((kxℓ
+ 1)e+ (L− kxℓ

)) otherwise, where, kxℓ
= histx(ℓ). Hence, the mixed token is:

x̄′
ℓ = aeBOS + akxℓ

x̄ℓ +
∑

xm ̸=xℓ

bx̄m + x̄ℓ. (20)

Applying W1 and b1, we obtain:

γℓ = aT + akxℓ
+ b(L− kxℓ

)

= aT + akxℓ
+ 1− a(kxℓ

+ 1)

= a(T − 1) + 1

(21)

since (kxℓ
+1)a+(L− kxℓ

)b = 1 by normalization via the softmax function. The value of γℓ has a
dependence on kℓ through a and can be readout into the correct classification as shown Fig. 7.
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A.2.3 (BOS ; p = 1)

Proof of Proposition 1 - bos. We set T = d > 2 with L ≥ 2 and p = 1. The construction of the
embeddings and eBOS is analogous to the construction from Section A.2.2 for bos+sftm in the
same setting. However, since no softmax is applied, the mixing coefficients as outputs of Adot+sftm

for comparing (xℓ, tBOS) or (xℓ, xm) where xℓ = xm is a = 1. For xℓ ̸= xm it is b = 0. Then from
inserting these values in equation 20 and applying W1 = eBOS and b1 = −T we obtain

γℓ = kxℓ
. (22)

This clearly allows again the single neuron to be read off to the correct result similar to the construc-
tion from 8.

Note that there is a simple alternative construction that uses the tagged embeddings from the con-
structive proof of Prop. 2.

Alternative Proof of Proposition 1 - bos. We set T = d > 2 with L ≥ 2 and p = 1. We note that
by setting tBOS to zero we can achieve equivalence to the model dot. Since according to Prop. 2
there exists a weight configuration for dot which solves the histogram task, this configuration will
also solve the histogram task for bos with tBOS = 0.

A.3 INVENTORY-BASED COUNTING

A.3.1 (LIN ; p = T ).

Proof of Proposition 3 - lin. Assume that T = d > 2 with L > 2 and p = T and the goal is to find
a weight configuration for the model lin. As embeddings we directly use the orthonormal basis
with T vectors et in Rd, where vectors are the embeddings are for the T tokens. We set

Alin =


a a · · · a
a a
...

. . .
a a

 ; W1 = E; b1 = −1, (23)

where a = 1/L. We start by writing zℓ,t for t ∈ {1, ..., p = T}, the t-th activation of the first hidden
layer of the feed-forward module

zℓ,t =

L∑
m=1

aℓm⟨exm
, et⟩+ ⟨exℓ

, et⟩ − 1 . (24)

If et = exℓ
, we have

zℓ,t = kxℓ
a+ 1− 1 = akxℓ

, (25)
where, kxℓ

= histx(ℓ), applying the ReLU to this scalar keeps its value unchanged. If et ̸= exℓ
, we

have
zℓ,t = aket + 0− 1 = aket − 1 ≤ 0 . (26)

The right hand side of the above equation is negative given our choice of a, hence applying the ReLU
returns 0. This means that, for each token in the input sequence, the contributions of orthogonal
tokens cancel, leaving us with a single hidden hidden neuron activated. Hence the count can be read
off from γℓ. Since only one neuron is activated at a time, the readout from the same procedure as
in bos+sftm can be applied to all hidden neurons zℓ,t simultaneously, instead of only one. This
allows the model to solve the histogram task.

A.3.2 (LIN+SFTM : p = T )

Proof of Proposition 3 - lin+sftm. Assume that T = d > 2 with L > 2 and p = T . With the
statement already proven for lin, we note that we can construct Alin+sftm such that it is equivalent
to Alin from equation 23 via

Alin+sftm =


a a · · · a
a a
...

. . .
a a

 = softmax



α α · · · α
α α
...

. . .
α α


 , (27)
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where a = 1/L which implicitly defines a choice of α. This means that the construction is equivalent
to lin and it follows automatically that also lin+sftm can solve the histogram task.

A.3.3 (DOT+SFTM : p = d = T )

Proposition 6 (IC for dot+sftm). For dot+sftm and given L, T > 2 there exists a configuration
of weights which solves the histogram task for p ≥ T and d ≥ T .

Proof for Proposition 6. We assume L, T > 2 and p = T and d = T and we consider dot+sftm.
As previously for dot in Prop. 2, we set the key and query matrix to the scaled identity WK =
WQ = d1/4Id. We use an orthonormal basis of Rd to define the parameters et ∈ Rd for the the
token embeddings. In Adot+sftm the pre-softmax mixing weights will be 1 for equal and 0 for
different tokens due to the unit-norm token embeddings. Defining kxℓ

= histx(ℓ) for brevity, after
the softmax we have that

alm =

{
e

(L−kxℓ
)+ekxℓ

xm = xℓ,
1

(L−kxℓ
)+ekxℓ

else.
(28)

Hence, for et ̸= exℓ

⟨x̄′
ℓ, et⟩ =

ket
(L− kxℓ

) + ekxℓ

< 1, (29)

while for et = exℓ

⟨x̄′
ℓ, exℓ

⟩ = kxℓ
e

(kxℓ
e+ (L− kxℓ

))
+ 1, (30)

where the extra summand comes from the residual connection. Hence, by setting

W1 = E; b1 = −1, (31)

and applying the ReLU activation, equation 29 will be 0, while equation 30 will implicitly give us
the counts as:

kxℓ
= (Lγℓ)/(−eγℓ + γℓ + e) (32)

While the final layer cannot immediately implement non-linear functions in γℓ, it can take advantage
of the fact that γℓ can take only L different values, similar to how we constructed W2 and b2 in
Section A.2.1. Since eventually we need to map the L values of γℓ to the counts [1, · · · , L] the
linear output layer is sufficient to implement this non-linear discrete map. Fig. 7 shows an example
for this map for a given example. This allows the model to solve the histogram task.

The statement for p > T and d > T follows as we can simply set the surplus of parameters in the
hidden layer/embeddings to zero.

A.4 MAPPING A SCALAR TO A CATEGORICAL ONE-HOT ENCODING

0.0 0.2 0.4 0.6 0.8 1.0
25

26

27

28

29

30

c i

output
neuron i
1
2
3
4
5

6
7
8
9
10

Figure 7: Demonstration of a hidden neuron output γℓ which is mapped to L = 10 different neurons ci using a
single output layer, according to the decision boundaries shown by the dotted lines. After applying the argmax
function to the 10 output neurons, the highest value gives the discrete output. The solid lines mark the values a
single hidden neuron would achieve for different counts in the explicit construction of the dot+sftm model.
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It is straightforward to map a single scalar γℓ to a series of neurons which activate one after another.
This is needed as the second part of the feed-forward parameters to transform the count measured
by the sum of the hidden neurons γℓ to the discrete categorical representation of the output vector.
Every output logit is a linear function of the hidden neuron’s value. Since in our constructions we
only map functions, where the ground truth output logit corresponds to an interval [a, b] ∈ R, the
superposition of linear functions with increasing slope allows us to realize such a mapping. A visual
sample is given in Fig. 7 for dot+sftm. In Fig. 8 we show the outputs for the lin+sftm model
with the best accuracy for T = 32 for every p, d ran in Fig. 1. While it is possible to learn the count
from one hidden neuron only using inventory-based counting for each neuron, for some examples
the count information seems to be spread out over several hidden neurons: The output logits are
non-linear in the count and can hence not rely on a single hidden neuron only.

Figure 8: The output neurons ci(xℓ) visualized for examples of a learned version of lin+sftm for
several model dimensions d and hidden layer sizes p. Note that differently from Fig. 7, in this case
the x-axis shows the number of occurrences histx(ℓ = 0) = 1, . . . , L− 1 of the token t in an input
sequence x = [t, · · · , t, v, · · · , v] that contains otherwise only a token v ̸= t (and not the activation
of a hidden neuron). We show the activations ci of the final layer output neurons activations (logits)
in terms of the number of occurrences of a given token in the input. The colors represent the different
output predictions and are as in the explicit construction from Fig. 7. We show several activations
for different tokens t ∈ T , where T = 32, and we highlight one of the example tokens t with a
wider line. While similar to the explicit construction from Fig. 7, the models with 100% accuracy
are not necessarily linear in the count.
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B EXPLICIT CONSTRUCTIONS FOR LINEARLY DEPENDENT EMBEDDINGS
d < T

B.1 OVERVIEW

In this section, we discuss the scenario when d < T , i.e. when the embeddings are necessarily
linearly dependent. In that case, we can no longer assume that there exist embeddings with ⟨et, es⟩ =
0 for all t ̸= s. Nonetheless, also in this regime for some models it is possible to provide explicit
constructions of the weights that have 100% accuracy. This relies on the fact that the prediction
problem is inherently discrete, i.e. it chooses exactly one among L classes. When we examine
γℓ ∈ R from equation 6 which is mapped to the discrete class through the readout layer (see for
example Fig. 7), we notice that the class boundary (the gray dashed class borders) can be placed
variably in the margin between the values that γℓ assumes for different counts kxℓ

(solid lines). In
the following explicit constructions, our goal is to design embeddings with d < T in such a way that
we maximize the aforementioned margin: there will be pairs of token embeddings in the alphabet
that have non-zero similarity ⟨et, es⟩, and in equation 6 this will create non-zero terms that will alter
the value of γℓ. This means that for every possible sequence with k occurrences of token xℓ, the
hidden activation γℓ will assume values in a certain range [γlower

ℓ (k), γupper
ℓ (k)]. If these ranges

overlap for different k, the count cannot be identified. However, we construct embeddings such that
every for every k = 1, . . . , L− 1 it holds that

γupper
ℓ (k) < γlower

ℓ (k + 1) , (33)

so we can still use a construction as in Fig. 7 to correctly compute the final count. In the remainder
of this section, we introduce explicit constructions with d < T for a given L, both for the cases
where we have relation-based counting and inventory-based counting (the same argument as above
transfers to zℓ,t from equation 24). Notably, for the explicit constructions we propose, the function
of the lowest achievable d(p, T, L) differs across different mixing types. To summarize:

• For models with A constant in the inputs or models without softmax activation, our explicit
construction relies on an embedding matrix with a small mutual coherence. The mutual
coherence is a concept from compressed sensing and coding theory that ensures that the
maximal similarity between pairs of vectors is small (Donoho & Elad, 2003). We can
upper bound the mutual coherence that the margins of the construction can tolerate to still
achieve perfect accuracy in terms of a given L. At the same time, the mutual coherence of
a set of vectors is naturally lower bounded in terms of the number of vectors T and their
respective dimension d, known as the Welch bound (Welch, 1974). When this bound can
be attained and T, L are given, this leads to the following bounds on d for the different
models, as outlined in Prop. 4, as

(lin, lin+sftm; p = T ):
⌈

T (2L−3)2

T−1+(2L−3)2

⌉
≤ d,

(dot, bos; p = 1):
⌈

T (2L−3)2

T−1+(2L−3)2

⌉
+ 1 ≤ d,

(dot, bos; p = T ):
⌈

T (L−1)
T−1+(L−1)

⌉
≤ d.

• For bos+sftm we rely on the fact that the softmax function accentuates the largest value
and thereby can drive attention scores for equal tokens aii higher relative to attention scores
of non-equal tokens aij . This distinguishes it from the previous case, and allows us to state
Prop. 5 for which we describe an explicit construction that solves the histogram task with

(bos+sftm; p = 1): d ≥ ⌈log2(T + 1)⌉+ 2.
(dot+sftm; p = T ): d ≥ ⌈log2(T + 1)⌉+ 2.

Notably there is no explicit dependence on L for the dimension. However, the smaller the
dimension d the more accurate computations and softmax numerical stability are required,
as the softmax temperature depends on L. With infinitely precise computations we show
it is even possible to achieve perfect accuracy with d = 4, but for finite computations this
might pose a problem when L becomes too large.
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B.2 EXPLICIT CONSTRUCTION FOR BOUNDED MUTUAL COHERENCE

We define the mutual coherence M of a set of T unit norm vectors {v1, . . . , vT } ⊂ Rd as

M = max
i ̸=j

|⟨vi, vj⟩| . (34)

This value is lower bounded for a given matrix by the Welch bound (Welch, 1974)

M ≥

√
T − d

d(T − 1)
= W(T, d) , (35)

and equality can only be attained if T < d2 (Strohmer & Heath, 2003). There is a large body of
work in coding theory and compressed sensing concerning the existence and construction of a set
of vectors that attains M at or close to W(T, d). Explicit constructions exist but are not known for
every combination of T and d. A list with existing constructions for the real space for small T, d
can be found in Fickus & Mixon (2016), but otherwise gradient-based optimization has been used
to find good candidate matrices (Jiang et al., 2017; Jyothi & Babu, 2022).

In order to prove Prop. 4, we use the following idea: For a given T , L and p, we can derive an
upper bound on the mutual information of the embeddings in terms of L, which is required to obtain
perfect accuracy. The form of this upper bound depends on the precise mixing strategy and the
choice of p. Through the Welch lower bound on M we can in turn obtain a lower bound on d in
terms of L and T . Note that the Welch bound cannot be attained for T < d2 and in this case the
bound on d is strict.

B.2.1 (LIN , LIN+SFTM ; p = T )

Proof of Proposition 4 - lin. To show the bound on d, we analyze the inventory-based construction
for lin in equation 23. Given that p = T , and L > 2 is given, let us assume that there exists set
of T unit norm vectors {e1, . . . , eT } ⊂ Rd with mutual coherence M. We use these vectors as our
embeddings.

The value zℓ,t for t = xℓ, with W1 = [e1, . . . , eT ] and b1 = −1 is

zℓ,t = akxℓ
+ a

∑
m:xm ̸=t

⟨exm , et⟩ , (36)

and using that fact that the mutual coherence bounds the absolute value of the inner product

akxℓ
− aM(L− kxℓ

) ≤ zℓ,t ≤ akxℓ
+ aM(L− kxℓ

) . (37)

Similarly, for t ̸= xℓ and a = 1/L it still holds that

zℓ,t ≤ akt + a(L− kt)M− 1 +M ≤ 0 , (38)

provided that M < 1/(L + 1), for the worst case where kt = L − 1. This means that the ReLU
sets all hidden neurons zℓ,t to zero when t ̸= xℓ, and are therefore no contribution to the final result.
Then, defining

γlower
ℓ (k) = ak − aM(L− k) , (39)

γupper
ℓ (k) = ak + aM(L− k) , (40)

we have that indeed for a sequence where xℓ occurs k = 1, . . . , L− 1 times it holds that

0 ≤ γlower
ℓ (k) ≤ γℓ(k) ≤ γupper

ℓ (k). (41)

The first inequality is required due to the ReLU and holds when M < 1/(L− 1). From equation 33
we have the condition that for all k = 1, . . . , L it holds that

γupper
ℓ (k) < γlower

ℓ (k + 1) , (42)
k + (L− k)M < (k + 1) + (L− k − 1)(−M) , (43)

M <
1

2(L− k)− 1
, (44)
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and since we assume that there exist at least two different tokens in the sequence, minimizing the
bound over k leaves for k = 1

M <
1

2L− 3
. (45)

which is valid provided that L ≥ 2. Collecting all previous bounds on M, we conclude that when
L ≥ 4 the above construction achieves the correct counts with M < 1

2L−3 .

The Welch bound equation 35 gives an upper bound on M in terms of T, d and therefore yields the
final condition

d ≥
⌈

T (2L− 3)2

T − 1 + (2L− 3)2

⌉
(46)

under which the given weight configuration is able to solve the histogram task with perfect accuracy.

For lin+sftm the construction and conditions transfer directly, when the constant Alin+sftm is
constructed to match Alin exactly.

B.2.2 (DOT , BOS ; p = 1)

Proof of Proposition 4 - dot, p = 1. We assume that L > 2 and T given and we use a similar idea
as the relation-based weight configuration from the proof of Prop. 2 for dot with p = 1. For the
token embeddings, we assume that we have a set of T unit norm vectors with {v1, . . . , vT } ⊂ Rd−1

with mutual coherence M, where d > 2. We set the entries of the T embedding vectors et ∈ Rd to
be

et =

vt
α

 . (47)

The shared counting subspace is defined on the last coordinate of the vectors via ecnt =
[0, 0, . . . , 1/α]. Then

⟨et, et⟩ = 1 + α2 (48)

|⟨et, es⟩| ≤ M+ α2 (49)

The mixed token with the residual connection at position ℓ for a given input sequence is

x̄′
ℓ =

L∑
m=1

⟨exm , exℓ
, ⟩exm + exℓ

(50)

and the single hidden neuron γℓ for a bias term b1 = 0 and W1 = ecnt

γℓ = ⟨ecnt, x̄′
ℓ⟩ =

L∑
m=1

⟨exm
, exℓ

, ⟩⟨exm
, ecnt⟩+ ⟨exℓ

, ecnt⟩ (51)

= kxℓ
(1 + α2) +

∑
m:xm ̸=xℓ

⟨exm , exℓ
, ⟩+ 1 (52)

So that we can achieve for a given count k the γlower
ℓ (k) ≤ γℓ(k) ≤ γupper

ℓ (k) with

0 ≤ γlower
ℓ (k) = k(1 + α2)− (L− k)(M+ α2) + 1 , (53)

γupper
ℓ (k) = k(1 + α2) + (L− k)(M+ α2) + 1 . (54)

We achieve the upper bound from zero, when M < 2/(L− 1), assuming that α is close enough to
zero so that is is negligible. Finally, the condition from equation 33 yields

M <
1

2(L− k)− 1
− 2(L− k)− 2

2(L− k)− 1
α2 (55)
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under the condition that 0 < α <
√

1
2(L−k)−2 . Again, assuming there exist at least two different

tokens in the sequence, the r.h.s. of the above expression is minimized for k = 1 as

M <
1

2L− 3
− 2L− 4

2L− 3
α2 (56)

which is always positive assuming L ≥ 2. This is the relevant bound when we have a large enough
L ≥ 5 and again α is close enough to zero. Again, combining this with the Welch bound equation 35
leads to

d− 1 ≥

⌈
T ( 2L−3

1−(2L−4)α2 )
2

T − 1 + ( 2L−3
1−(2L−4)α2 )2

⌉
, (57)

and when we choose α > 0 close to zero, as for lin before

d ≥
⌈

T (2L− 3)2

T − 1 + (2L− 3)2

⌉
+ 1. (58)

This proof holds equivalently for bos when we set the BOS token embedding to zero.

B.2.3 (DOT , BOS ; p = T )

We can decrease the required dimension d < T even further than previously, when we have p = T
and implement inventory-based counting in the dot model (and equivalently in the bos model). In
that case, the lower bound on d becomes more loose, because we combine the ideas we saw in lin
and p = T for inventory-based counting and the effects on the margin in dot and p = 1.

Proof of Proposition 4 - dot, p = T . In our construction, for a given T and L, we assume that there
is a set of T unit norm vectors {e1, . . . , eT } ⊂ Rd with mutual coherence M upon which we build
our embeddings. Note that the only difference to the previous relation-based case p = 1 is that
this time there is no extra counting direction. Importantly, we set K = d1/4Id as before, but
Q = 1

Ld
1/4Id. This gives an extra factor in the attention scores. Further, we set b1 = −1 and the

columns of W1 ∈ Rd×T to the embeddings et, as we did for lin. This results in a mixed token x̄′
ℓ

according to equation 50. The hidden neuron is

zℓ,t =
1

L

L∑
m=1

⟨exm
, exℓ

⟩⟨et, exm
⟩+ ⟨et, exℓ

⟩ − 1 (59)

then with t = xℓ we have

zℓ,t =
1

L

kxℓ
+

∑
m:xm ̸=t

⟨exm , et⟩2
 . (60)

Note that the square in equation 59 is what differs from the zℓ,t in equation 36. This is because the
term ⟨exm , et⟩ is once introduced through the dot-product attention and once through the dot-product
via W1. Conversely, with t ̸= xℓ it becomes

zℓ,t =
1

L

kt⟨et, exℓ
⟩+

∑
m:xm ̸=t

⟨exm
, exℓ

⟩⟨exm
, et⟩

+ ⟨et, exℓ
⟩ − 1 (61)

≤ 1

L
(ktM+ (L− kt)M) + ⟨et, exℓ

⟩ − 1 (62)

≤ 2M− 1 (63)

if we set M < 0.5, which we need anyways for L ≥ 2 by the stronger upper bound on M that we
derive in the following, we finally have for t ̸= xℓ

zℓ,t < 0 . (64)

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Again, negative zℓ,t are set to zero via the ReLU, and the final outcome γℓ = zℓ,t=xℓ
depends only

on a single hidden neuron equation 59. This eventually leads to

0 ≤ γlower
ℓ (k) =

k

L
, (65)

γupper
ℓ (k) =

1

L
(k +M2(L− k)) , (66)

and using the same concept as before, while minimizing over k and applying the Welch bound, to
the upper bound

M <

√
1

L− 1
. (67)

The final bound is more loose than it was for p = 1 as we only require

d ≥
⌈

T (L− 1)

T − 1 + (L− 1)

⌉
. (68)

B.3 EXPLICIT CONSTRUCTION WITH BINARY REPRESENTATIONS AND SOFTMAX

In our final analysis we examine the key difference between the models bos+sftm and bos – the
softmax activation. In order to show Prop. 4 we needed to construct embeddings with a low mutual
coherence, because the term ⟨et, es⟩ introduced an error on the mixed token, when t and s were not
equal. Now, with the softmax activation applied to the mixing coefficients, the model can use the
non-linearity of this transform to its advantage to separate the relative error.

Recall the softmax function is

sftm(z)i =
ezi∑n
j=1 e

zj
for i = 1, 2, . . . , n , (69)

and when we compute sftm(κz)i we say it is a softmax with a inverse temperature κ > 0. When
z of length L contains only two different values, one with k and the other with L − k occurrences,
then as κ → ∞ the mass concentrates only on the larger value of the two, and sets the other to zero.
We use this intuition to create token embeddings that fulfill for all t, s = 1, . . . , T and s ̸= t

⟨et, et⟩ = 1 , (70)
⟨et, es⟩ < 1 + ϵ , (71)

where ϵ > 0.

The idea is that the softmax with a high enough inverse temperature sets the term for different tokens,
⟨et, es⟩, close enough to zero, essentially eliminating the noise. Note that equation 70 is a weaker
condition on the set of token embeddings than for example the bound of the mutual coherence in
terms of the sequence length L bos with p = 1 in Section B.2.2. It allows us to obtain perfect
accuracy with smaller d. In the following, we describe the construction of the matrix explicitly.

The supplementary code at https://github.com/to-be-deanonymized contains executable
pytorch models that have the weight configurations that are used to prove Propositions 5 and
the Remark for d = 4, which allows one to test the devised weight configurations for fixed T, L, d
in practice.

B.3.1 (BOS+SFTM ; p = 1)

Proof of Proposition 5 - bos+sftm. For a given T, L > 2 we set the embeddings vectors to the
binary representation of the token index t = 1, . . . , T in d′ = ⌈log2(T + 1)⌉ dimensions

et =

bin(t)⟨bin(t),bin(t)⟩
−1

α
0

 ; eBOS =

bin(0)⟨bin(0),bin(0)⟩
−1

1/α
1

 . (72)
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where bin(t) = [v1, . . . , vd′ ] ∈ {0, 1}d′
with t =

∑d′

i=1 vi2
i−1. We select α > 0. Then we have

that

⟨et, et⟩ = 1 + α2 , (73)

α2 ≤ ⟨et, es⟩ ≤
√

1− 1

d′
+ α2 ≤ 1 + α2 − ϵ , (74)

⟨et, eBOS⟩ = 1 , (75)

where
√

d′−1
d′ = ⟨e2d′−1, e2d′−2⟩, which has the largest overlap among all possible non-equal pairs

of tokens, and the lower bound comes from all coordinates being positive. Using a readout on the
direction only present in the eBOS token, namely, W1 = [ecnt] = [0, . . . , 0, 1] ∈ Rd and b1 = 0, we
construct

γℓ = ⟨ecnt, x̄′
ℓ⟩ = sftm(EET

ℓ )0⟨eBOS , ecnt⟩+
L∑

m=1

sftm(EET
ℓ )m+1⟨exm

, ecnt⟩+ ⟨exℓ
, ecnt⟩

(76)

= sftm(EET
ℓ )0 (77)

= sftm([⟨eℓ, eBOS⟩, ⟨eℓ, e1⟩, . . . , ⟨eℓ, eL⟩])0 (78)

The goal of applying the softmax function is to diminish the contributions of error equation 74, while
having the final dimension of the eBOS token be representative of the count of xℓ. The maximum
error is induced when the upper bound equation 74 is attained for all tokens in the sequence x that
are not equal to xℓ. The minimum error is obtained when these different tokens attain the lower
bound. Without loss of generality on the ordering, this implies that for a given length L and a
softmax activation function with an inverse temperature κ2, we have that

γlower
ℓ (k) =

eκ1

eκ1 + keκ(1+α2) + (L− k)eκ(1+α2−ϵ)
, (79)

γupper
ℓ (k) =

eκ1

eκ1 + keκ(1+α2) + (L− k)eκα2 . (80)

We explicitly need ϵ strictly greater than zero, since otherwise there is no information about the
count in γℓ when it becomes independent of the count k. Notice, that this time it holds that γℓ
that correspond to higher values correspond to smaller counts, since a larger count corresponds to a
larger denominator, i.e. a smaller γℓ. Due to this inverse relationship, for this model, we want that
for all counts k = 1, . . . , L− 1 that it holds that

γupper
ℓ (k + 1) < γlower

ℓ (k) . (81)

This can be achieved by setting the inverse temperature κ accordingly.
In the following we show that there exists a κ which fulfills equation 81 for all d′ ≥ 2 and L > 2.
Observe that γupper

ℓ (2) < γlower
ℓ (1) implies the bounds for all other k. We define the distance or

margin as

dist(κ) = γlower
ℓ (1)− γupper

ℓ (2) . (82)

Since at κ = 0 both γupper
ℓ (2) = γlower

ℓ (1) = 1/(L + 1), the distance is zero. However then it
becomes impossible to distinguish k = 1 and k = 2, as they receive the same weight. We therefore
need the additional condition that γupper

ℓ (2) ̸= γlower
ℓ (1). At κ = 0, we observe that this function

2In order to introduce the inverse temperature κ of the softmax in the model, we scale the query matrix. We
set K = d1/4Id, but Q = κd1/4Id.
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has a negative derivative, as

∂

∂κ
dist(κ)|κ=0 = sftm(κzlower)0

(
(zlower)0 −

L+1∑
i=0

(zlower)jsftm(κzlower)i

)
(83)

− sftm(κzupper)0

(
(zupper)0 −

L+1∑
i=0

(zupper)jsftm(κzupper)i

)
(84)

= −
(

1

L+ 1

)2 ([
(1 + α2) + (L− 1)(1 + α2 − ϵ)

]
−
[
2(1 + α2) + (L− 2)α2

])
(85)

= −
(

1

L+ 1

)2

[(L− 2)− (L− 1)ϵ] (86)

< 0 (87)
where the last bound is met when 0 < ϵ < 0.5 which is fulfilled already for d′ = 2 and when L > 2.
As the distance function is continuous, there exists a κ close to zero for which the dist(κ) < 0.
Simultaneously, as κ → ∞, we have that due to the concentration of the softmax probabilities on
the largest entry, which here is 1 + α2, it holds that as κ → ∞ we have dist(κ) → 0. At the
same time, the function approaches infinity from the positive regime. For large enough κ we have
γupper
ℓ (2) < γupper

ℓ (1).
When we select the smallest possible κ > 0, we avoid computing functions with large exponential
terms. To find the non-trivial root of dist(κ) numerically, we consider a simplification of equa-
tion 82. We define u = eκ. Then it holds that we can solve

dist(κ) = 0 = (L− 1)u(1−ϵ) − u− (L− 2) (88)
numerically for κ > 0. This shows that we can find an explicit construction with 100% accuracy
with p = 1 and d′ > 2 for the bos+sftm when we have

d = ⌈log2(T + 1)⌉+ 2 . (89)
For example, for the case of L = 10 and T = 32 this allows for a dimension d = 7 with α = 0.01
(and for T = 31 with the same settings d = 6 suffices).

Remark (d = 4). In principle, it is enough to have some ϵ > 0 that ensures that overlaps between
different token embeddings are strictly less than one. In principle, we can find an arbitrary number
of tokens T that satisfy this condition for just d′ = 2. Take for example the following construction.
For t = 1, . . . , T tokens with T odd we can design the set of embeddings

vt =

 √ t
T√

T−t
T

 . (90)

Each ⟨et, et⟩ = 1 and for t ̸= s the overlap ⟨et, es⟩ ≤ ⟨e(T+1)/2, e(T−1)/2⟩ =
√
T 2 − 1/T .

This implies that ϵ → 0 as T → ∞ at a rate 1/T . Since smaller ϵ imply larger values of the
temperature to solve equation 88, this might become problematic when this exceeds the accuracy of
computations. Previously, for the binary representation construction from equation 72, we had that
ϵ shrinks at a rate ∼ 1/ log2(T ). For the intermediate regime between logT (T ) + 1 and log2(T )
dimensions, one can generalize this principle to arbitrary bases, e.g. log3(T ) > 2, resulting in a
smaller dimension but also less favorable (smaller) ϵ – this construction thus comes with a clear
trade-off.

B.3.2 (DOT+SFTM ; p = T )

Proof of Proposition 5 - dot+sftm. For this model, the explicit construction is analogous to the
previous one. Instead of using p = 1 we use p = T . The selection of the embeddings is analogous,
but instead of a counting direction we read off all the weight directions separately with T = d. Not
having a counting direction also saves the additional two dimensions required for bos+sftm with
p = 1. In the feed-forward layer with W1 the explicit construction considers again zℓ,t for every
token t ∈ T . The selection of the temperature is also analogous, with the exception that one has L
terms in the softmax instead of L+ 1.
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C DATA GENERATION

Every sample x = (x1, · · · , xL) is generated recursively as follows, starting from size K = L and
alphabet T ′ = T :

1. Sample an integer k uniformly from [1, · · · ,K].

2. Sample a token t uniformly from T ′.

3. Set xi = t for all i = k, · · · ,K.

4. Set T ′ = T ′ \ {t} and K = k.

5. If K ̸= 0, repeat from 1.

6. Set x = shuffle(x).

In contrast to sampling the elements of each sequence uniformly at random from the alphabet, this
simple strategy enables us to better control the distribution of counts in the training dataset.

D ADDITIONAL EXPERIMENTS

D.1 BEST ACCURACY

In Fig. 9, we show the best reached accuracy during training over the five sample runs. This gives in-
sights into the feasibility of implementing a counting solution for a given combination of parameters
T, d, p of a model.

Figure 9: Experiments from Fig. 1 (T = 32), we show only the best accuracy during training
reached from the 5 randomly initialized runs per model/hyperparameter configuration.

D.2 VARIABILITY

In Fig. 10 we explore the influence of initialization on the performance via the variability of the
final accuracy for several runs. Especially in the p, d < T regime where bos+sftm is able to
reach an accuracy relatively close to 100%, the variability of the accuracies resulting from different
initializations is quite large.
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Figure 10: Experiments from Fig. 1 with T = 32, standard deviation of the accuracy reached after
training from the 5 randomly initialized runs per model/hyperparameter configuration.

D.3 MODEL WITH ALTERNATIVE L = 15

We repeat the experiments presented in Fig. 1 for L = 15 in Fig. 11, leading to the same phe-
nomenology, in line with our hypothesis that indeed the number of tokens T determines the relevant
transition point, and not the sequence length L. However, the accuracy is comparatively worse when
no high-accuracy solution is reached.

Figure 11: Experiments as in Fig. 1, but with sequence length fixed to L = 15.

D.4 MODELS WITH TWO LAYERS

In this section, we look at the case where we have models that have an extra layer, i.e. instead of
the logit output layer after the feed-forward part, we add another layer with the same dimensionality
d as the previous layer – the same mixing and the same hidden layer size – to then lead into the
classification. Of course the parameters are not shared between the layers. Note that this model does
not have an extra residual in the MLPs.

We train the model in the same setting as in the main and report the results for the different architec-
tures, this time with 2 layers, in Fig. 12. To compare more easily with the previous set-up, we show
the difference between the single and double layer case in Fig. 13. Remarkably, the general picture
does not seem to change significantly. Indeed, the two layer model is generally better, extending the
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range where perfect models can be found slightly, but the general trend remains. Given this coarse
grained experiment we hypothesize, that the extra layer aids the optimization process, and improves
robustness in the regions where and the softmax is used to disentangle non-orthogonal embeddings.
More generally, these results are not as comprehensive as our previous results as they are note sup-
ported theoretically beyond a single layer. They warrant more detailed in further work with more
layers and realistic settings.

Figure 12: Experiments as in Fig. 1, but for fewer values of p and d, as well as models where the
layers are repeated as described in Section D.4.

Figure 13: Difference between the accuracy of a single and two layer attention model, for different
mixing layers and hyperparameter setups. Experiments as in Fig. 1 for a single layer attention model,
and as in Fig. 12 for the two layer model.

D.5 MODEL WITH RANDOM BUT FIXED EMBEDDINGS

In Fig. 14, we repeat the experiments of Fig. 1, but for embeddings that are frozen throughout
training (also 5 runs). In the regime d < T where there is no mutual orthogonality possible, the
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random embeddings result in worse performance than the learned ones. Especially for bos+sftm,
learning the embeddings increases the performance strongly in some regimes. This indicated that
the models indeed learn adapted embeddings here.

Figure 14: The difference between learned and random embeddings for T = 32. Orange indicates
that the random embeddings perform better on average. Purple indicates that the learned embeddings
perform better on average. Experimental settings as in Fig. 1.

D.6 BOS MIXING TOKEN

In Fig. 3 in the main, we describe how the tBOS is the main predictor for the count. Here, we
provide more evidence by showing how the count predictions for mixed tokens x̄′ output by the
feature transform f are invariant to the type of other token present in the mixed token. The results
for four different tokens are shown in Fig. 15.
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Figure 15: For the same model as in Fig. 3, we vary the inputs to the feature transformation f to
show it is independent on the precise input sequence, but only depends on the prevalence of tBOS.
We vary the inputs between the learned tokens [B,C,D,E].

D.7 SINGULAR VALUE DECOMPOSITION OF W1

In Fig. 16 we show the distribution of singular values of W1 for several runs of the model to investi-
gate whether models that are capable of both IC and RC are implementing the more memory heavy
IC or the same solution that they can find for p = 1 with RC.
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Figure 16: Singular values of W1. We show the results for all models from Fig. 1 with T = 32,
where p, d ≥ T and the accuracy is at least 99%. Some qualitative differences are visible for bos
and dot.

31


	Introduction
	Background and Notation
	Experimental Setup
	Learning Regimes in Counting
	d >= T: Orthogonal token embeddings are separable
	Relation-based counting: Leveraging dot-product mixing
	Inventory-based counting: Memorization in the feed-forward layer

	d < T: Non-orthogonal embeddings and the discrete nature of counting

	Related Work
	Discussion & Conclusion
	Explicit Constructions for Orthogonal Embeddings d=T
	Overview
	Relation-based counting
	(dot; p=1)
	(bos+sftm; p=1)
	(bos; p=1)

	Inventory-based counting
	(lin; p=T).
	(lin+sftm: p=T)
	(dot+sftm: p= = d = T)

	Mapping a scalar to a categorical one-hot encoding

	Explicit Constructions for Linearly Dependent Embeddings d<T
	Overview
	Explicit construction for bounded mutual coherence
	(lin, lin+sftm; p=T)
	(dot, bos; p=1)
	(dot, bos; p=T)

	Explicit Construction with binary representations and softmax
	(bos+sftm; p=1)
	(dot+sftm; p=T)


	Data Generation
	Additional Experiments
	Best Accuracy
	Variability
	Model with alternative L=15
	Models with two layers
	Model with Random but Fixed Embeddings
	BOS mixing token
	Singular Value Decomposition of W1


