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Abstract

Explaining artificial intelligence (AI) predictions is increasingly important and even
imperative in many high-stakes applications where humans are the ultimate decision
makers. In this work, we propose two novel architectures of self-interpretable image
classifiers that first explain, and then predict (as opposed to post-hoc explanations)
by harnessing the visual correspondences between a query image and exemplars.
Our models consistently improve (+1 to +4 points) on out-of-distribution (OOD)
datasets while performing marginally worse (-1 to -2 points) on in-distribution
tests than ResNet-50 and a k-nearest neighbor classifier (kNN). Via a large-scale,
human study on ImageNet and CUB, our correspondence-based explanations are
found to be more useful to users than kNN explanations. Our explanations help
users more accurately reject AI’s wrong decisions than all other tested methods.
Interestingly, for the first time, we show that it is possible to achieve complementary
human-AlI team accuracy (i.e., that is higher than either Al-alone or human-alone),
in ImageNet and CUB image classification tasks.

1 Introduction

Comparing the input image with training-set exemplars is the backbone for many applications, such
as face identification [29], bird identification [17, 79], and image search [79]. This non-parametric
approach may improve classification accuracy on out-of-distribution (OOD) data [29, 75, 79, 57]
and enables a class of prototype-based explanations [17, 52, 53, 66, 41] that provide insights into the
decision making of Artificial Intelligence (Al) systems. Interestingly, prototype-based explanations
are more effective in improving human classification accuracy [55, 24, 42] than attribution maps—a
common eXplainable Al (XAI) technique in computer vision. Yet, it remains an open question how to
make prototype-based XAl classifiers (1) accurate on in-distribution and OOD data and (2) improve
human decisions. For example, in face identification, Als can be confused by partially occluded,
never-seen faces and are unable to explain their decisions to users, causing numerous people falsely
arrested [5, 7, 3, 6] or wrongly denied unemployment benefits [1] by the law enforcement.

To address the above questions, we propose two interpretable [61], (i.e., first-explain-then-decide)
image classifiers that perform three common steps: (1) rank the training-set images based on their
distances to the input using image-level features; (2) re-rank the top-50 shortlisted candidates by their
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groundtruth:
ibex

(a) Explanations for kNN’s parachute decision (top) and CHM-NN (bottom) (b) Explanations for CHM-Corr’s ibex decision

Figure 1: The ibex image is misclassified into parachute due to its similarity (clouds in blue sky)
to parachute scenes (a). In contrast, CHM-Corr correctly labels the input as it matches ibex images
mostly using the animal’s features, discarding the background information (b).

groundtruth:
hen

(a) Explanations for kNN’s toaster decision (top) and EMD-NN (bottom) (b) Explanations for EMD-Corr’s hen decision

Figure 2: Operating at the image-level visual similarity, KNN incorrectly labels the input toaster
due to the adversarial toaster patch (a). EMD-Corr instead ignores the adversarial patch and only
uses the head and neck patches of the hen to make decisions (b).

patch-wise correspondences w.r.t. the input [51, 29]; and then (3) take the dominant class among
the top-20 candidates as the predicted label. That is, our classifiers base their decisions on a set of
support image-patch pairs, which also serve as explanations to users (Figs. 1b and 2b). Our main
findings include: 2

* On ImageNet, a simple k-nearest-neighbor classifier (KNN) based on ResNet-50 features
slightly but consistently outperforms ResNet-50 on many OOD datasets (Sec. 3.1). This is
further improved after a re-ranking step based on patch-wise similarity (Sec. 3.2).

* Via a large-scale human study, we find visual correspondence-based explanations to improve
Al-assisted, human-alone accuracy and human-Al team accuracy on ImageNet and CUB
over the baseline kNN explanations (Sec. 3.4).

» Having interpretable Als label images that they are confident and humans label the rest yields
better accuracy than letting Als or humans alone label all images (Sec. 3.5 and Appendix M).

To the best of our knowledge, our work is the first to demonstrate the utility of correspondence-based
explanations to users on ImageNet [63] and CUB [71] classification tasks.

2 Methods

2.1 Datasets

We test our ImageNet classifiers on the original S0K-image ILSVRC 2012 ImageNet validation set
(i.e., in-distribution data) and four common OOD benchmarks below.

ImageNet-R [35] contains 30K images in 200 ImageNet categories, mostly artworks — ranging from
cartoons to video-game renditions.

ImageNet-Sketch [72] consists of 50,889 black-and-white sketches of all 1,000 ImageNet classes.

DAmageNet [18] consists of SOK ImageNet validation-set images that contain universal, adversarial
perturbations for fooling classifiers.

Adversarial Patch [15] are 50K ImageNet validation-set images that are modified to contain an
adversarial patch that aims to cause ResNet-50 [31] into labeling every image toaster (see Fig. 2).

2Code and models are available at https://github.com/anguyen8/visual- correspondence-XAT.


https://github.com/anguyen8/visual-correspondence-XAI

Using the implementation by [2], we generate this dataset, which causes ResNet-50 accuracy to drop
from 76.13% to 55.04% (Table 1). See Appendix A.5 for how to download and generate this dataset.

CUB-200-2011 [71] (hereafter, CUB) is a fine-grained, bird-image classification task chosen to
complement ImageNet. CUB contains 11,788 images (5,994/5,794 for train/test) of 200 bird species.

2.2 Classifiers

We harness the same ResNet-50 layer4 backbone [8] as the main feature extractor for all four main
classifiers, including our two interpretable models. Therefore, to test the effectiveness of our models,
we compare them with (1) a vanilla ResNet-50 classifier; and (2) a kNN classifier that uses the same
pretrained layer4 features. We report the top-1 accuracy of all classifiers in Table 1.

ResNet-50 For experiments on ImageNet and its four OOD benchmarks, we use the ImageNet-
trained ResNet-50 from TorchVision [8] (top-1 accuracy: 76.13%).

For CUB, we take the ResNet-50 pretrained on iNaturalist [70] from [53] (hereafter, iNaturalist
ResNet) and retrain only the last 200-output classification layer (right after avgpool) to create a
competitive, baseline ResNet-50 classifier for CUB (top-1 accuracy: 85.83%). See Appendix A.1 for
finetuning details.

kNN We implement a vanilla kNN classifier that operates at the avgpool of the last convolutional
layer of ResNet-50. That is, given a query image (), we sort all training-set images {G; } based on
their distance D(Q, G;), which is the cosine distance between the two corresponding image features
f(Q) and f(G;) € R?%® where £(.) outputs the avgpool feature of layer4 (see code) of ResNet-50.

The predicted label of () is the dominant class among the top-k nearest neighbors. We choose & = 20
as it performs the best among the tested values of k& € {10, 20, 50, 100}.
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(a) EMD-Corr: First compute patch-wise similarity, and then find correspondences via solving EMD [29, 79].
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(b) CHM-Corr: First find correspondences via CHM [51], and then compute patch-wise similarity.

Figure 3: EMD-Corr and CHM-Corr both re-rank kNN’s top-50 candidates using the patch-wise
similarity between the query and each candidate over the top-5 pairs of patches that are the most
important and the most similar (i.e. highest EMD flows in EMD-Corr and highest cosine similarity in
CHM-Corr).

EMD-Corr As kNN compares images using only image-level features, it lacks the capability of
paying attention to fine details in images. Therefore, we propose EMD-Corr, a visual correspondence-
based classifier that (1) re-ranks the top-N (here, N = 50) candidates of kNN using their Earth
Mover’s Distance (EMD) with the query in a patch embedding space (see Fig. 3a); and (2), similarly
to kNN, takes the dominant class among the re-ranked top-20 as the predicted label.

That is, our PyTorch implementation is the same as that in [79, 29] except for three key differences.
First, using layer4 features (7x7x2048), we divide an image into 49 patches, whose embeddings
are € R2048_ Second, for interpretability, in re-ranking, we only use patch-wise EMD instead of a


https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py#L205

linear combination of image-level cosine distance and patch-level EMD as in [79, 29], which makes
it more opaque how a specific image patch contributes to re-ranking. Third, while the original deep
patch-wise EMD [79, 29] between two images (see Eq. 3) is defined as the sum over the weighted
cosine distances of all 49 x 49 patch pairs, we only use L = 5 pairs as explanations and therefore,
only sum over the corresponding 5 flow weights returned by Sinkhorn optimization [21].

We find N = 50 to perform the best among N € {50, 100,200}. We choose L = 5, which is also
the most common in nearest-neighbor visualizations [47, 45]. In preliminary experiments, we find
L = {9,16,25} to yield so dense correspondence visualizations that hurt user interpretation and
L = 3 to under-inform users. See Appendix A.3 for more description of EMD-Corr.

CHM-Corr EMD-Corr first measures the pair-wise cosine distances for all 49 x49 pairs of patches,
and then computes the EMD flow weights for these pairs (Fig. 3a). To leverage the recent impressive
end-to-end correspondence methods [51, 60, 48], we also propose CHM-Corr (Fig. 3b), a visual
correspondence-based classifier that operates in the opposite manner to EMD-Corr. That is, first,
we divide the query image @ into 7x7 non-overlapping patches (i.e. as in EMD-Corr) and find one
corresponding patch in G; for each of the 49 patches of () using a state-of-the-art correspondence
method (here, CHM [51]). Second, for the query ), we generate a cross-correlation (CC) map (Fig. 3)
[29], i.e. a heatmap of cosine similarity scores between the layer4 embeddings of the patches of the
query () and the image-embedding (avgpool after layer4) of each training-set image G;. Third, we
binarize the heatmap (using the optimal threshold 7" = 0.55 found on a held-out training subset) to
identify a set of the most important patches in () and compute the cosine similarity between each
such patch and the corresponding patch in G; (i.e., following the CHM correspondence mappings).
Finally, the similarity score D(Q, G;) in CHM-Corr is the sum over the L = 5 patch pairs of the
highest cosine similarity across ) and G;.

After testing NC-Net [60], ANC-Net [48], and CHM [51] in our classifier, we choose CHM as it has
the fastest runtime and the best accuracy. Unlike ResNet-50 [31], which operates at the 224 x224
resolution, CHM uses a ResNet-101 backbone that expects a pair of 240x 240 images. Therefore, in
pre-processing, we resize and center-crop each original ImageNet sample differently according to the
input sizes of ResNet-50 and CHM. See Appendix A.4 for more description of CHM-Corr.

CHM-Corr+ classifier based on five groundtruth keypoints of birds In EMD-Corr and CHM-
Corr, we use CC to infer the importance weights of patches. To understand the effectiveness of CC in
weighting patches, on CUB, we compare our EMD-Corr and CHM-Corr to CHM-Corr+, a CHM-Corr
variant where we use a set of five human-defined important patches instead of those inferred by CC.
That is, for each CUB image, instead of taking the five CC-derived important patches (Fig. 3b), we
use at most five patches that correspond to a set of five pre-defined keypoints (beak, neck, right wing,
right feet, tail), each representing a common body part according to bird identification guides [25] for
ornithologists. From the five patches in the query image, we then use CHM to find five corresponding
patches in a training-set image, and take the sum of five cosine similarities as the total patch-wise
similarity between two images in re-ranking.

A query image may have < 5 important patches if some keypoint is occluded. That is, evaluating
CHM-Corr+ alone provides an estimate of how hard bird identification on CUB is if the model
harnesses five well-known bird features.

2.3 User-study design

The interpretable classifiers (Sec. 2.2) are not only capable of classifying images but also generating
explanations, which may inform and improve users’ decision-making [55]. Here, we design a large-
scale study to understand the effectiveness of explanations in two human-Al interaction models
in classification (see Fig. 4): Model 1: Users make all the decisions after observing the input, Al
decisions, and explanations (Fig. 4a). Model 2: Als make decisions on only inputs that they are the
most confident, leaving the rest for users to label. That is, model 2 (Fig. 4b—c) is a practical scenario
where we offload most inputs to Als while users only handle the harder cases.

Like [55], we show each user: (1) a query image; (2) Al top-1 label and confidence score; and (3) an
explanation (here, available in kNN, EMD-Corr, CHM-Corr, and CHM-Corr+, but not in ResNet-50).
We ask users to decide Y/N whether the top-1 label is correct (example screen in Fig. A7).
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Figure 4: Two human-AlI interaction models. In model 1 (a) , for all images, users decide (Yes/No)
whether the AI’s predicted label is correct given the input image, Al top-1 label and confidence score,
and explanations. In model 2, Al decisions are automatically accepted if Al is highly confident (b) .

Otherwise, humans will make decisions (c) in the same fashion as the model 1.

2.3.1 Explanation methods

We test the explanations of four main classifiers: ResNet-50, kNN, EMD-Corr, and CHM-Corr.
Additionally, we test two ablated versions (i.e., EMD-NN and CHM-NN) of the explanations of
EMD-Corr and CHM-Corr. In total, we test 6 explanation methods (see examples in Appendix D).

ResNet-50 is a representative black-box classifier, which only outputs a top-1 label and a confidence
score (i.e., no explanations).

kNN explanations From the top-20 nearest neighbors (as &£ = 20 in our kNN), we show the first five
images that are from the predicted class (example in Fig. 1a). In some cases where the predicted class
has only M < 5 exemplars in the top-20, we still show only those M images (see Fig. A46). That
is, we only show at most five neighbors following prior works [55, 67, 49, 65] that reported utility
of such few-image explanations. We find explanations consisting of > 10 images such as those of
ProtoPNet [17] are hard to interpret for users [42]. Note that our kNN explanations consist of five
support images for each decision of kNN (described in Sec. 2.2) as opposed to the post-hoc nearest
examples in [55], which do not reflect a classifier’s decisions.

EMD-Corr and CHM-Corr explanations As EMD-Corr and CHM-Corr re-rank the top-50
candidates (shortlisted by kNN) and take the dominant class among the resultant top-20 as the
predicted label, we show the five nearest neighbors from the predicted class as in kNN explanations.
Instead of showing only five post-reranking neighbors, we also annotate, in each image, all five
patches (example in Fig. 1b and Fig. 2b) that contribute to the patch-wise re-ranking (Sec. 2.2).

EMD-NN and CHM-NN To understand the effects of showing correspondences in the explanations
to EMD-Corr and CHM-Corr users, we also test an ablated version where we show exactly the same
explanations but without the patch annotations (bottom panels in Fig. l1a and Fig. 2a).

Confidence scores While ResNet-50’s confidence score is the top-1 output softmax probability, the
confidence of kNN, EMD-Corr, and CHM-Corr is the count of the predicted-class examples among
the top k£ = 20. In human studies, we display this confidence in percentage (e.g. 10% instead of 2/20;
Fig. A46) to be consistent with the confidence score of ResNet-50.

2.3.2 ImageNet and CUB datasets

For XAI evaluation, we run two human studies, one on ImageNet and one on CUB. For ImageNet,
we use ImageNet-Real. [14] labels in attempt to minimize the confounders of the human evaluation
as ImageNet labels are sometimes misleading and inaccurate to users [55].

Nearest-neighbor images To generate the nearest-neighbor explanations for kNN, EMD-Corr, and
CHM-Corr, we search for neighbors in the entire training set of ImageNet or CUB (no filtering).

Query images In attempt to ensure the quality of the query images that we ask users to label, from
50K-image ImageNet validation set, we discard images that: (a) do not have an ImageNet-Real [14]



label; (b) are grayscale or low-resolution (i.e., either width or height < 224 px) as in [55]; (c) have
duplicates in the ImageNet training set (see Appendix L), resulting in 44,424 images available for
sampling for the study. In CUB, we sample from the entire 5,794-image test set and apply no filters.

2.3.3 Training, Validation, and Test phases

From the set of query images (Sec. 2.3.2), we sample images for three phases in a user study: Training,
validation, and test. Following [55], we first introduce participants to the task and provide them 5
training examples. Then, each user is given a validation job (10 trials for ImageNet and 5 for CUB),
where they must score 100% in order to be invited to our 30-trial test phase. Otherwise, they will be
rejected and unpaid. Among the 10 validation trials for ImageNet, 5 are correctly-labeled and 5 are
misclassified by Als. This ratio is 3/2 for CUB validation (examples in Appendix E.2).

Right before each trial, we describe the AI's top-1 label to users by showing them 3 training-set
images and a 1-sentence WordNet description for each ImageNet class. For CUB classes, we show 6
representative images (instead of 3) for users to better recognize the characteristics of each bird (see
Fig. A6).

Sampling For every classifier, we randomly sample 300 correctly- and 300 incorrectly-predicted
images together with their corresponding explanations for the test trials. Over all 6 explanation
methods, we have 2 datasets x 600 images x 6 methods = 7,200 test images in total.

2.3.4 Participants

We host human studies on Gorilla [11] and recruit lay participants who are native English speakers
worldwide via Prolific [56] at a pay rate of USD 13.5 / hr. We have 360 and 355 users who successfully
passed our validation test for ImageNet and CUB datasets, respectively. We remove low-quality,
bottom-outlier submissions, i.e., who score < (.55 (near-random accuracy), resulting in 354 and 355
submissions for ImageNet and CUB, respectively. In each dataset, every explanation method is tested
on ~60 users and each pair of (query, explanation) is seen by almost 3 users (details in Table 2).

3 Experimental Results

3.1 ImageNet kNN classifiers improve upon ResNet-50 on out-of-distribution datasets

Despite impressive test-set performance, ImageNet-trained convolutional neural networks (CNNs)
may fail to generalize to natural OOD data [72] or inputs specifically crafted to fool them [54, 18, 15].
It is unknown whether prototype-based classifiers can leverage the known exemplars (i.e. support
images) to generalize better to unseen, rare inputs. To test this question, here, we compare KNN with
the baseline ResNet-50 classifier (both described in Sec. 2) on ImageNet and related OOD datasets.

On ImageNet and ImageNet-Real., kNN performs slightly worse than ResNet-50 by -1.36 and -0.99
points, respectively (Table 1). Yet, interestingly, on all four OOD datasets, KNN consistently
outperforms ResNet-50. Notably, kNN improves upon ResNet-50 by +1.66 and +4.26 points
on DAmageNet and Adversarial Patch. That is, while ResNet-50 and kNN share the exact same
backbone, the kNN’s process of comparing the input image against the training-set examples prove
to be beneficial for generalizing to OOD inputs. Intuitively, our results suggest that it is useful to
“look back” at the training-set exemplars to decide a label for hard, long-tail or OOD images.

Consistently, using the same CUB-finetuned backbone, kNN is only marginally worse than ResNet-50
on CUB (85.46% vs. 85.83%; Table 1).

3.2 Visual correspondence-based explanations improve KNN robustness further

Recent work found that re-ranking kNN’s shortlisted candidates using the patch-wise similarity
between the query and training set examples can further improve classification accuracy on OOD data
for some image matching tasks [29, 79, 75] such as face identification [29]. Furthermore, patch-level
comparison is also useful in prototype-based bird classifiers [17, 22]. Inspired by these prior successes
and the fact that EMD-Corr and CHM-Corr base the patch-wise similarity of two images on only
5 patch pairs instead of all 49x49 = 2,401 pairs as in [29, 79, 75], here we test whether our two
proposed re-rankers are able to improve the test-set accuracy and robustness over kNN.



Table 1: Top-1 accuracy (%). ResNet-50 models’ classification layer is fine-tuned on a specified
training set in (b). All other classifiers are non-parametric, nearest-neighbor models based on
pretrained ResNet-50 features (a) and retrieve neighbors from the training set (b) during testing.
EMD-Corr & CHM-Corr outperform ResNet-50 models on all OOD datasets (e.g. +4.39 on
Adversarial Patch) and slightly underperform on in-distribution sets (e.g. -0.72 on ImageNet-Real.).

Test set Features (a) | Training set (b) | ResNet-50 EMD-Corr CHM-Corr CHM-Corr+
ImageNet [63] ImageNet ImageNet 76.13 | 74.77 | 74.93 (-1.20) | 74.40 (-1.73) n/a
ImageNet-Real [14] ImageNet ImageNet 83.04 | 82.05 | 82.32 (-0.72) | 81.97 (-1.07) n/a
ImageNet-R [35] ImageNet ImageNet 36.17 | 36.18 | 37.75 (+1.58) | 37.62 (+1.45) n/a
ImageNet Sketch [72] ImageNet ImageNet 24.09 | 24.72 | 25.36 (+1.27) | 25.61 (+1.52) n/a
DAmageNet [18] ImageNet ImageNet 593| 7.59| 8.16 (+2.23)| 8.10 (+2.17) n/a
Adversarial Patch [15] ImageNet ImageNet 55.04 | 59.30 | 59.43 (+4.39) | 59.86 (+4.82) n/a
CUB [71] ImageNet CUB n/a|54.72 | 60.29 53.65 49.63
CUB [71] iNaturalist [70] CUB 85.83 [ 85.46 | 84.98 (-0.85) |83.27 (-2.56) 81.54

Experiment We run EMD-Corr and CHM-Corr on all datasets and compare their results with that
of kNN (Table 1). Both methods (described in Sec. 2) re-rank the top N = 50 shortlisted candidates
returned by kNN and then take the dominant class in the top-k (where k = 20) as the predicted label.

ImageNet results Interestingly, despite using only 5 pairs of patches to compute image similarity for
re-ranking, both classifiers consistently improve upon kNN further, especially on all OOD datasets.
Overall, EMD-Corr and CHM-Corr outperform kNN and ResNet-50 baselines from +1.27 to +4.82
points (Table 1). Intuitively, in some hard cases where the main object is small, the two Corr classifiers
ignore irrelevant patches (e.g. the sky in ibex images; Fig. 1) and only use the five most relevant
patches to make decisions. Similarly, on Adversarial Patch, relying on a few key patches while
ignoring adversarial patches enables our classifiers to outperform baselines (Fig. 2). See Appendix I
for many qualitative examples comparing Corr and kNN predictions.

CUB results Interestingly, using the same ImageNet-pretrained backbones, EMD-Corr outperforms
kNN by an absolute +5.57 points when tested on CUB (60.29% vs. 54.72%; Table 1). However, this
difference vanishes when using CUB-pretrained backbones (Table 1; 84.98% vs. 85.46%).

Our CUB and ImageNet results are consistent and together reveal a trend: On i.i.d test sets, Corr
models perform on par with kNN; however, on OOD images, they consistently outperform kNN,
highlighting the benefits of patch-wise comparison.

3.3 Corr classifiers leverage five patches that are more important than five bird keypoints

EMD-Corr and CHM-Corr harness five patches per image for computing a patch-wise similarity score
for a pair of images (Sec. 2.2). As these five patches are automatically inferred by cross-correlation
(Fig. 3), it is interesting to understand further whether replacing these five patches by five user-defined
patches in [71] would improve classification accuracy.

Experiment Since there are no keypoints provided for ImageNet, we test the importance of the
five key patches chosen by Corr methods on CUB because CUB provides ornithologist-defined
annotations for each bird image. That is, we create a baseline CHM-Corr+, which is the same as
CHM-Corr, except that we use five important patches that correspond to five keypoints in a bird
image—beak, belly, tail, right wing, and right foot—as described in Sec. 2.2. We also test CHM-Corr+
sweeping across the number of keypoints € {5, 10, 15}.

Results On CUB, CHM-Corr outperforms CHM-Corr+ despite the fact that the baseline method
leverages five human-defined bird keypoints (Table 1; 83.27% vs. 81.51%) while CHM-Corr may
also use background patches. Interestingly, when increasing the number of keypoints to 10 and 15,
the accuracy of CHM-Corr+ is still lower than that of CHM-Corr (i.e., from 81.51% to 82.34% and
82.27%, respectively). That is, 15 keypoints may correspond to < 15 different patches per image (15
if each keypoint lies in a unique, non-overlapping patch among all the 49 patches per image).

Our results show strong evidence that the five key patches inferred by CC used in EMD- and CHM-
Corr do not necessarily cover the birds but are more important than expert-defined bird keypoints.
Qualitative comparisons between CHM-Corr and CHM-Corr+ predictions are in Appendix J.



3.4 On ImageNet-Real, correspondence-based explanations are more useful to users than
kNN explanations

Given that EMD-Corr and CHM-Corr classifiers outperform kNN classifiers on OOD datasets
(Sec. 3.2), it is interesting to test how their respective explanations help humans perform classification
on ImageNet. Furthermore, in image classification, kNN explanations were found to be more useful

to humans than saliency maps [55].

Experiment We perform a human study to assess the ImageNet-RealL
classification accuracy of users of each classifier (described in Sec. 2.2)
when they are provided with a classifier’s predictions and explanations.
That is, we measure the Al-assisted classification accuracy of users
following human-AlI interaction model 1 (Fig. 4a). We compare the
accuracy between user groups of four classifiers ResNet-50, kNN,
EMD-Corr, and CHM-Corr (described in Sec. 2.3.1).

Additionally, to thoroughly assess the impact of showing the correspon-
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EMD-NN and CHM-NN, i.e. the same explanations as those of the (a) ImageNet
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Results First, the mean accuracy of kNN users is consistently lower 10 —

than that of the other models’ users (e.g., 75.76% vs. 78.87% of EMD- 0.0

Corr; Table 2). The EMD-Corr improvement over kNN is statistically ~ gos

significant (p < 0.01 via Mann-Whitney U test; Fig. 5a) § 0.7 ;%; ;
Second, interestingly, we find the differences between EMD-, CHM- z:

Corr and their respective baselines are small and not statistically signif- ' o o
icant (Fig. 5a). That is, on ImageNet-Real, quantitatively, showing the & ‘“ S
correspondence boxes on top of nearest neighbors is not more useful (b) CUB

to users. Third, surprisingly, the users of ResNet-50 (mean accuracy
of 81.56%; Table 2) outperform all other methods’ users, suggesting
that on ImageNet, a task of many familiar classes to users, ante-hoc
explanations hurt user accuracy rather than help. Note that in Nguyen
et al. [55], post-hoc kNN explanations were found useful to humans value < 0.05. ** = p-value <
compared to not showing any explanations. Yet, here, each classifier’s 0.01. *** = p-value < 0.001.
users are provided with a different set of images and Al decisions, which can also influence the
user accuracy. When ResNet-50 is wrong, their users are substantially better in detecting such
misclassifications compared to other models’ users (Fig. Alla).

Figure 5: Mann-Whitney
U test of the user accuracy
scores of 6 methods.” = p-

3.5 On CUB fine-grained bird classification, correspondence-based explanations are the most
useful to users, helping them to more accurately reject AI misclassifications

To assess whether the findings on ImageNet-ReaL in Sec. 3.4 generalize to a fine-grained classification
task, we repeat the user study on CUB—which is considered much harder to lay users than ImageNet.

Results Interestingly, we find EMD-Corr and CHM-Corr users consistently outperform ResNet-50,
kNN, EMD-NN, and CHM-NN users (Table 2). The differences between EMD-Corr (or CHM-Corr)
and every other baseline are statistically significant (p < 0.05 via Mann-Whitney U test; Fig. 5b).
That is, on CUB, the visual correspondence boxes help users make more accurate decisions compared
to (a) having no explanations at all (ResNet-50); (b) showing nearest neighbors sorted by image
similarity only, not patch correspondences (Fig. 1a; kNN); and (c) having patch-wise correspondence
neighbors but not displaying the boxes (Fig. A39; CHM-NN and EMD-NN)).

Corr explanations help users reject AI misclassifications while kNN is poorly trust-calibrated
In an attempt to understand why the two Corr classifiers help users the most, we find that EMD-Corr
and CHM-Corr users reject Al predictions at the highest rates (32.70% and 33.73%; Table A6) while
kNN users reject the least (18.47%).

This might have led to the substantially higher accuracy of CHM-Corr users, compared to all other
models’ user groups, when Al predictions are wrong (Fig. Al1b; e.g., 53.45% of CHM-Corr vs.



Table 2: Human-only accuracy (%) Table 3: Al-only and Human-Al team accuracy (%)

ImageNet-RealL CUB ImageNet-RealL CUB
Method Users : Accuracy | Users | Accuracy Method AI—onl;/g Human-AI |Al-only| Human-Al
ResNet-50 | 60 | 81.56 =554 | 60 | 6550+ 7.46 |[ResNet-50 | 86.11 [88.63 (+2.52)| 87.38 |87.45 (+0.07)
kNN 59 | 75776 £8.55| 59 | 64.75 +£7.14 || kNN 85.95 [87.24 (+1.29)| 87.40 [86.66 (-0.74)
EMD-Corr | 59 | 7887 +£6.57| 58 |67.64+7.44 ||[EMD-Corr| 85.91 [88.02 (+2.11)| 86.88 |86.86 (-0.02)
CHM-Corr | 59 [77.23£7.56| 59 |69.72 4 9.08 ||CHM-Corr| 85.36 [87.89 (+2.53)| 85.48 [86.25 (+0.77)

EMD-NN 57 | 7772 +£827| 59 |64.12+7.07
CHM-NN 60 | 7756691 | 60 |6572+8.14

mean__| 85.83 [87.94 (+2.11)] 86.78 [86.80 (+0.02)]

41.22% of ResNet-50). That is, CHM-Corr users correctly reject 53.45% of the images that the
CHM-Corr classifier mislabels. In contrast, KNN users reject the least, only 33.22% of incorrect
predictions (Fig. A11b). kNN explanations tend to fool users into trusting the kKNN’s wrong decisions
(Fig. 6)—the accuracy of kNN users is 33.22%, much lower than the 41.22% of ResNet-50 users who
observe no explanations. On ImageNet (Fig. A11), kNN is also poorly “trust-calibrated” [69, 74].

groundtruth:
Sayornis

f

Figure 6: A Sayornis bird image is misclassified into 01ive Sided Flycatcher by both kNN
and CHM-Corr models. Yet, all 3/3 CHM-Corr users correctly rejected the Al prediction while 4/4
kNN users wrongly accepted. CHM-Corr explanations (b) show users more diverse samples and
more evidence against the AI’s decision. More similar examples are in Appendix H.1.

| k. W
(a) kNN (top) and CHM-NN (bottom) explanation (b) CHM-Corr visual correspondence-based explanations

We hypothesize that kNN explanations tend to fool users more as their nearest neighbors, by design,
show images that are image-wise similar to the query (regardless of whether the kNN prediction is
correct or not) while EMD-Corr and CHM-Corr re-rank the images based on patch-wise similarity.
Furthermore, we find the images in KNN explanations are also less diverse than those in Corr
explanations in both LPIPS [77] and MS-SSIM [73] (Appendix H.2). Corr explanations tend to
include more diverse images (Fig. 6a; top vs. bottom) and provide users with more contrastive
evidence in order to reject AI’s incorrect predictions.

Additionally, we also hypothesize that users are less confident about AI’s decisions (and thus reject
more) when Corr explanations show some background and uninformative patches used in the matching
process (e.g., the 1st and 4th image in Fig. 6b). Yet, such boxes are not available in kNN explanations.

When Corr explanations allow for more disagreement between Al and users, humans also
tend to incorrectly reject AI’s correct predictions more often (Fig. Al1b; Corr users are the least
accurate among 6 methods when the Al is correct). EMD-Corr and CHM-Corr users score ~4 points
below ResNet-50 users (84.94% and 85.99% vs. 89.87% of ResNet-50). When most users reject Al’s
correct predictions, we observe that some discriminative features (e.g., the belly stripes of the Field
Sparrow; Fig. A35c¢) are often occluded in the query, leading to human-AlI disagreement.

4 Related Work

Patch-wise similarity Calculating patch-wise similarity, either intra-image [23] or inter-image
[29, 79, 75], has been useful in many tasks as the comparison enables machines to attend to fine-
grained details and compute more accurate decisions. Our EMD-Corr harnesses a similar approach
to that in [29, 79]; which, however, was not tested on ImageNet classification as in our work.
Furthermore, we only compute the total patch-wise similarity over the top-5 patch pairs between the
query and each exemplar instead of all pairs as in [29, 79]. Compared to recent patch-wise similarity
works that use either cross-attention in ViTs [23] or EMD [79, 75, 29, 43], our work is the first to
perform human evaluation of the correspondence-based explanations.



Prototype-based XAI methods Our work is motivated by the recent finding that exemplar-based
explanations are more effective than heatmap-based explanations in improving human classification
accuracy [55, 38, 42, 24]. However, showing an entire image as an exemplar without any further
localization may be confusing as it is unknown which parts of the image the Al is paying attention
to [55, 38]. Our EMD-Corr and CHM-Corr present a novel combination of heatmap-based and
prototype-based XAI approaches. None of the prior prototype-based XAl methods that operate at the
patch level [17, 53,79, 22] (see Table 3 in [22]) were tested on humans yet. Also, in preliminary tests,
we find their explanation formats too dense (i.e., showing over 10 prototypes [17], 9 correspondence
pairs per image [22], or an entire prototype tree to humans [52, 53]) to be useful for lay users.

Another major difference is that our Corr classifiers are nonparametric, allowing the training set to be
adjusted or swapped with any external knowledgebase for debugging purposes. In contrast, recent
prototype-based classifiers [17, 53, 79, 22] are parametric, using a set of learned prototypes and thus
may not perform well on OOD datasets as EMD-Corr and CHM-Corr.

Post-hoc prototype-based explanations Some prototype-based methods are post-hoc [41, 55, 20],
i.e., generating explanations to explain a decision after-the-fact, which could be highly unfaithful
[61, 62]. Instead, our approach is inherently interpretable [62], i.e., retrieving the patches first, and
then using them to make classification decisions. While our binary classification task is adopted
from [55], our study compares 4 different classifiers while Nguyen et al. [S55] instead tested a single
classifier with multiple post-hoc explanations.

Human studies Our study has 709 users in total, i.e. ~60 users per method per dataset, which is
substantially larger than that in most prior works. That is, ~30 and 40 users per method participated
in [55] and in [49], respectively while Adebayo et al. [9] had 54 persons in total for the entire study
of multiple methods.

Human-AI teaming Human-AlI collaboration is becoming more essential in the modern Al era
[32]. A large body of prior works has investigated such collaboration in other domains (e.g., NLP
[12, 76], healthcare [16] and others [33, 16, 78, 19]); however, only few works investigated human-Al
collaboration in the image classification setting [55, 42, 24].

Some prior works predict when to defer the decision-making to humans [58, 37, 40]. However, by
simply offloading some inputs to humans based on confidence scores, we achieve complementary
human-Al team performance in both ImageNet and CUB. Previous works [12, 64] found that
algorithmic explanations benefit human decision-making in general, but did not find XAI methods to
yield team complementary performance [32], which we report in this work.

5 Discussion and Conclusion

Limitations Due to the limited amount of time and expensive cost of computation related to
EMD-Corr or CHM-Corr, we did not experiment on a wider range of OOD datasets (e.g., adversarial
poses [10]). We tested our methods on ImageNet-A [36], ObjectNet [13], and ImageNet-C [34] as
well, but on a small scale of SK-image sets (see Table A2). As using online crowdworkers for the XAl
human evaluation, we share the same limitations with [55, 9, 42]. That is, despite our best efforts to
minimize biases, the human data quality can be improved in highly-controlled laboratory conditions
like in [27]. Algorithm-wise, EMD-Corr and CHM-Corr are re-ranking methods and therefore run
substantially slower than ResNet-50 (see Fig. A10 for a speed comparison of all models).

Our work is the first attempt to: (1) study the effectiveness of patch-wise comparison in improving
the robustness of deep image classifiers on ImageNet OOD benchmarks; (2) show the utility of
visual correspondence-based explanations in helping users make more accurate image-classification
decisions; (3) achieve human-Al complementary team performance in the image domain.
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Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

* Did you include the license to the code and datasets? [Yes] See Section ??.

* Did you include the license to the code and datasets? The code and the data are
proprietary.

* Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] . Please see Sec. 3.
(b) Did you describe the limitations of your work? [Yes] . Please see Sec. 5.
(c) Did you discuss any potential negative societal impacts of your work? [N/A] .
(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes] .
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] .
(b) Did you include complete proofs of all theoretical results? [N/A] .
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)?

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] . Please see Sec. 2.

(c) Did you report error bars (e.g., with respect to the random seed after running exper-
iments multiple times)? [Yes] . We reported whenever possible. See ;1 and o in
Table 2.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUgs, internal cluster, or cloud provider)?

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] . We cited the
authors and include the URLs.

(b) Did you mention the license of the assets? [N/A]. We used publicly-available datasets
and code.

(c) Did you include any new assets either in the supplemental material or as a URL?

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes] . We explained to participants how their data will be used.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] . We checked and ensured that our data
does not contain personally identifiable information or offensive content.

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [Yes] . See screenshots in Appendix E.

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A] .

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [Yes] . See Sec. 2.3.4. Our rate was $13.5/hr,
higher than the Prolific recommended rate wage of $9.60/hr.
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