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ABSTRACT

Recent advances in large language models (LLMs) have led to emergence of spe-
cialized multimodal LLMs (MLLMs), creating distinct model families that share a
common foundation language models. This work investigates whether a core traits
like truthfulness are inherited along this evolutionary trajectory. To quantify this
trait, we employ linear probing on the models’ internal representations. Our analy-
sis of Vicuna and Qwen model families reveals a key finding: a strong correlation
in truthfulness scores between LLMs and their finetuned MLLMs counterparts,
even when they are finetuned or probed with different modalities and datasets.
Building on this findings, we propose a soft gating method using the Truthful-
ness score to amplify the influence of these context-truthful heads to improve the
context grounding ability while preserving the contributions of other heads. We
validate our approach on base LLMs on HaluEval benchmark, demonstrating an
improved ability for context truthful reasoning. We then show that the Truthful-
ness scores obtained from base LLMs can be effectively transferred and applied
as a soft gate to its finetuned variants, demonstrating its improved performance on
POPE and CHAIR benchmark. The performance gain from this transfer is compa-
rable to that obtained by probing the MLLMs directly, highlighting the potential
for a unified approach to enhance truthfulness across an entire model family. Our
work demonstrates a novel method for leveraging a model’s inherent, inherited
traits to systematically improve its truthfulness.

1 INTRODUCTION

Recent advancements in large language models (LLMs) has given rise to a wide range of specialized
models, all of which are originated from a core foundational LLMs. This pattern reflects a broader
trend: rather than building entirely new models from scratch, base LLMs are often refined through
fine-tuning or multimodal extensions to serve domain-specific needs—ranging from mathematical
reasoning to vision-language understanding, or even multi-sensory processing. Such evolutionary
trajectories highlight that many advanced multimodal LLMs (MLLMs) share a clear lineage with
their base LLMs.

Do MLLMs inherit the truthfulness trait from their base LLMs? If so, can this inherited characteris-
tic be leveraged to develop a unified method that enhances truthfulness across both base LLMs and
their finetuned MLLMs?

We hypothesize that attention heads vary in the extent to which they encode context-faithful in-
formation, and that this degree of context truthfulness can be quantified using the linear probing
methodology introduced by ITI (Li et al., 2023b). To examine whether this property is inherited
within model families, we analyze correlations of context-truthfulness scores both within and across
model lineages under diverse dataset settings. Specifically, we study Vicuna-7B (Chiang et al., 2023)
as a base LLM and its fine-tuned counterparts, LLaVA-1.5 (Liu et al., 2024a) and LLaVA-NeXT (Li
et al., 2024) as well as Qwen2.5 family (Qwen et al., 2025), including Qwen2.5-VL-Instruct (Bai
et al., 2025) and Qwen2.5-VL-Omni (Xu et al., 2025). Our analysis reveals the key property within
model families: Inheritance. Under single-dataset probing, MLLMs exhibit high correlation with
their base LLMs, regardless of their specialization for different modalities such as vision or audio.
Moreover, even when LLMs and MLLMs are probed using data from different sources, models
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Figure 1: Correlation of Truth Scores in Single- and Cross-dataset Probing. Left: Single-dataset
probing results. Truth Scores for LLaVA-1.5 and LLaVA-NeXT show high correlation with Vicuna-
7B (base LLM), and Qwen2.5-VL-Instruct and Qwen2.5-VL-Omni similarly correlate highly with
Qwen2.5-7B (base LLM). Right: Cross-dataset probing results, where all models are compared
against Vicuna-7B. Models from a different family (Mistral-7B) exhibit almost no correlation. For
probing dataset setups, please refer to Tab. 1 and Tab. 2.

belonging to the same family maintain substantially higher truthfulness correlations compared to
models from unrelated families.

This finding suggests that the truthfulness-related behavior of attention heads is largely preserved
when a base LLM is fine-tuned into downstream variants, even when the LLMs and their fine-tuned
models are probed using different datasets.

Building on these insights, we propose a Soft Gating strategy that leverages the obtained Truth
Scores to amplify the influence of context-truthful heads, thereby ensuring that the model’s final
outputs are more faithfully grounded in the given context. Importantly, we show that this strategy
is not only effective within a single model, but also generalizes consistently across model families
sharing the same backbone.

To begin, we validate the obtained truthfulness scores by applying them as a soft gate to the same
model and evaluating its ability to assess the faithfulness of the given context. Further, we examine
whether the truthfulness scores obtained from base LLMs can function as a soft gate in their fine-
tuned variants–including instruction-tuned and multimodal models–and evaluate their performance
on the HaluEval, as well as on POPE and CHAIR, which assess hallucination mitigation in MLLMs.

Unlike previous approaches that either rely on model-specific interventions for hallucination re-
duction or head-level studies that remained descriptive without actionable refinement, our work
identifies the inheritance of truthfulness within model lineages and leverages it to improve model
truthfulness. By showing that truthfulness scores can be stably inherited and transferred within
model families, we establish a principled foundation for refining both LLMs and their finetuned
extensions toward greater truthfulness.

Our contributions are summarized as follows:

• Identifying the Identity of Context-Truthful Heads. Building on ITI’s probing proce-
dure, we measure how well each transformer head grounds responses in the context, yield-
ing a Context-Truthfulness Score (Truth Score).

• Discovering the Inheritance of Context-Truthful Heads. Single- and cross-dataset
analyses show that Truth Scores are strongly correlated within model families, indicat-
ing preservation of context-truthful heads when base LLMs are fine-tuned into LLMs or
MLLMs.

• Soft-Gating for Truthfulness Enhancement. We propose a soft-gating strategy using
Truth Scores to improve model truthfulness, and demonstrate that Truth Scores from base
LLMs can be effectively transferred to finetuned LLMs/MLLMs, yielding gains on HaluE-
val, POPE, and CHAIR.
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Probing Data
LLMs MLLMs

(a) HaluEval HaluEval text-only
(b) HaluEval HaluEval w/ black img
(c) PhD-text PhD-img

Table 1: Dataset for Single-dataset Probing.

Probing Data
LLMs MLLMs

(d) HaluEval RLHF-V

(e) PhD-text
+ HaluEval

PhD-img
+ RLHF-V

Table 2: Dataset for Cross-dataset Probing.

2 IDENTIFYING COMPONENTS FOR CONTEXT-BASED TRUTHFUL
REASONING

Recent research has made significant strides in demystifying the internal mechanisms of Large Lan-
guage Models (LLMs). A particularly compelling line of inquiry suggests that abstract concepts
are encoded in interpretable directions within the model’s activation space. For example, Li et al.
(2023b) introduced Inference-Time Intervention (ITI), a technique that enhances model truthfulness
by identifying and shifting activations in specific attention heads. Their findings indicate that models
may possess latent “knowledge” of the truth, even when their generated outputs are false.

However, in many real-world applications, truthful reasoning requires more than accessing para-
metric knowledge—it also depends critically on how well the model leverages the given context.
For instance, in Multimodal Large Language Models (MLLMs), tasks such as the widely studied
“Where is Wally?” question require accurate grounding in the provided image, rather than relying
solely on pre-trained internal knowledge. Motivated by this distinction, we move beyond ITI and
focus on identifying attention heads that are not only truthful but also context-referential. Specifi-
cally, we aim to characterize and intervene on heads that reliably attend to context in a manner that
supports truthful and grounded responses.

2.1 PRELIMINARY

Formally, in a Transformer layer l, the Multi-Head Attention (MHA) mechanism is composed of H
attention heads, each applying an independent linear projection to the residual representation. Given
an input xl ∈ Rd, the h-th head projects it into query, key, and value subspaces via learned matrices
Qh

l ,K
h
l , V

h
l . The head output is computed as:

Atthl (xl) = softmax
(
Qh

l xl(K
h
l xl)

⊤
√
dk

)
V h
l xl, (1)

where dk denotes the key dimension. The outputs of all heads are then aggregated through an output
projection W o

l and added back to the residual stream:

ol = W o
l · Concat H

h=1(Atthl (xl)) (2)

xl+1 = xl + ol. (3)

This formulation shows that each head contributes a distinct contextual transformation, which is
subsequently integrated by the Multi-Layer Perceptron (MLP) through nonlinear operations.

2.2 FINDING CONTEXT TRUTHFUL HEAD

As introduced in Sec. 2, evaluating whether a Transformer layer truthfully leverages contextual
information is most precise at the granularity of individual attention heads. Each head selectively
references tokens from the context and adds its transformed representation into the residual stream.
By analyzing heads individually, one can assess whether the contextual information is faithfully
preserved or distorted.

We adopt the emerging view that neural networks encode interpretable directions in activation space
and hypothesize that certain heads correspond to truthfulness. Specifically, we examine whether
each head integrates context in a reliable manner or propagates misleading signals. To test this, we
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Qwen2.5-VL-Instruct Qwen2.5-VL-Omni

Vicuna-7B

Qwen2.5-7B

LLaVA-1.5 LLaVA-NeXT

Figure 2: Heatmaps of head-level probing accuracy for two model families. (Top) Vicuna-based
models, including LLaVA-1.5 and LLaVA-NeXT, fine-tuned from Vicuna-7B. (Bottom) Qwen2.5-
based models, including Qwen2.5-VL-Instruct and Qwen2.5-VL-Omni, fine-tuned from Qwen2.5-
7B.

apply linear probing (Alain & Bengio, 2017) at the head level: a probe of each head is trained to
discern whether the given sequence is truthful or not.

Our framework extends beyond Large Language Models (LLMs) to Multimodal Large Language
Models (MLLMs), where contextual grounding is even more critical. For this setting, we structure
the input as x = {xknowledge, xquestion, xanswer}, where the knowledge can be text of world knowledge
or the real image. We probe the activations at the final answer token, based on the assumption
that, in an autoregressive model, this position encodes the accumulated features from all preceding
tokens and thus reflects the model’s overall reasoning. The probe of each head is trained as a
binary classifier to determine whether the head reliably incorporates the given context or contributes
misleading information.

Concretely, for each attention head h in layer l, we collect the attention head output vector xh
l that

contributes to the residual stream at the final answer position. The probe takes the form

pθ(x
h
l ) = σ(⟨θ, xh

l ⟩), (4)

where θ ∈ RD is the probe parameter and σ denotes the sigmoid function. We construct probing
datasets D = (xh

l , yi),where yi = 1{answer is truthful} by labeling each activation with y = 1
when truthful answers are given and y = 0 for hallucinated ones. Each dataset is randomly split
into training and validation sets with a 4:1 ratio. Probes are then trained across all 32 transformer
layers and their associated heads on the training sets with a binary classification objective. To obtain
a reliable measure, we apply 5-fold cross validation during the linear probing stage and use the
average validation accuracy across the five folds as the final Truth Score. These Truth Scores are
used in all following analyses and experiments.

2.3 FINE-TUNED MLLMS INHERIT TRUTHFUL REASONING FROM FOUNDATIONAL LLMS.

To examine whether the truthful heads identified in Large Language Models (LLMs) are preserved
when these models are adapted into Multimodal Large Language Models (MLLMs), we extended
the analysis from Sec. 2.2. Specifically, we ask:

To what extent do truthful heads remain consistent when a base LLM is fine-tuned into MLLMs?

To address this, we evaluated representative MLLMs from two major model families: (i) LLaVA-
1.5 and LLaVA-NeXT, both fine-tuned from Vicuna-7B (Chiang et al., 2023), and (ii) Qwen2.5-
VL-Instruct and Qwen2.5-VL-Omni, both fine-tuned from Qwen2.5-7B (Qwen et al., 2025). This
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within-family analysis allows us to examine whether the inheritance of truthful heads consistently
emerges within each model family, rather than across different ones.

Single-dataset Probing. We conducted single-dataset probing for LLMs and MLLMs to evaluate
the preservation of context-truthful heads within model families (See the left of Fig. 1). Three dif-
ferently constructed datasets are used for this purpose, as seen in Tab. 1. First, we used HaluEval
(Li et al., 2023a) (10,000 samples) – which requires models to ground predictions in the provided
text context – for LLM probing (setups (a) and (b)). For MLLMs, we probed the models using
both identical textual inputs as their base LLMs (setup (a)) and inputs with an additional black
image containing no informative content to account (setup (b)) for multimodal processing. Sec-
ond, we used the ‘inconsistent context’ category of the PhD dataset (Liu et al., 2025) (10,000 sam-
ples), where models are required to answer questions based on conflicting multimodal contexts. We
split this dataset into PhD-text (which contains only text context) for LLM Probing and PhD-image
(which includes only image context) for MLLM Probing, with corresponding answers (setup (c)).
(For further details, please refer Appendix A.1and A.2) As presented in Fig. 1, the correlations of
Truth Scores within each model family remained substantially high (≈ 0.78–0.89), confirming that
context-truthful heads are largely preserved even in multimodal settings.

Cross-dataset Probing. Although the results in single-dataset probing provide robust evidence
for inheritance of truthfulness, we go beyond these and examined cross-dataset probing for within
model families as well as cross-model families (See the right of Fig. 1). As in the probing setup
of Tab. 2, we probe LLMs using two text-based datasets: HaluEval (10,000 samples) and PhD-text
(10,000 samples). For MLLMs, we use two image-based datasets: RLHF-V (Yu et al., 2024) (2,726
samples) and PhD-image (10,000 samples). We break-down the probing datasets into two setups (d)
and (e) as in Tab. 2, and provide the correlation of Truth Scores of within families and cross-family
depending on each case.

As shown in the right of Fig. 1, in the case of setup (d), although HaluEval and RLHF-V pro-
vide different modality of context, the correlation of the Truth Scores remained consistently high
(≈ 0.51 − 0.64) within the same model family (Vicuna-7B and LLaVA-1.5/LLaVA-NeXT) com-
pared to a different family (Mistral-7B). Even though Mistral-7B is probed using the same LLM
probing datasets as Vicuna-7B, it exhibits almost no correlation (Corr ≈ 0.08 or 0.04). This indicates
that models from a different pretraining learn truthfulness-related characteristics in fundamentally
different ways within their internal architectures.

Taken together, our analysis shows that fine-tuned MLLMs preserve the structural role of truthful
heads from their foundational LLMs. This inheritance holds even under multimodal adaptation and
persists across both text- and image-grounded settings. These findings establish a foundation for a
within-family transferable approach aimed at improving contextual grounding and truthfulness.

3 REFINING MODELS TOWARDS TRUTHFULNESS

Building on the analyses in Sec. 2.2 and 2.3, we introduce TruthProbe, a refinement strategy that
uses the identified Truth Scores of attention heads to guide model behavior. TruthProbe selectively
increases the influence of highly truthful heads and attenuates less reliable ones, steering the resid-
ual stream toward context-faithful signals. This targeted adjustment aims to improve the overall
truthfulness of models without altering their core architecture.

Soft Head Gating for Truthfulness Amplification To further refine the residual pathway with re-
spect to context-faithful reasoning, we propose a soft gating mechanism that amplifies or attenuates
the contribution of each attention head according to its estimated truthfulness score. Unlike hard
masking, which discards information from untrusted heads, our approach preserves the expressive
capacity of multi-head attention (MHA) while softly steering the residual stream toward reliable
signals.

Formally, in a Transformer layer l, the attention outputs of individual heads are aggregated as in
Eq. 2. To apply the Truth Score as a soft gate, we take the projected attention before the residual
connection, ol ∈ Rd, reshape it into head-wise components õhl ∈ Rnh×hd, and scale each by its
corresponding gate value ghl . The gated representations are then concatenated back and added to the
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Truth Score
of each head 

(1) Identifying Context Truthful Head (3) Soft Gating for 

Truthfulness Enhancement

Knowledge: ... Annette Bening ... In 

2006, she received a star on the 

Hollywood Walk of Fame.

Question: In what year did Annette 

Bening receive her star?

Answer: 2006

What color is the 

ribbon on the cake 

that says happy 

birthday? 

The ribbon with 

"Happy Birthday" 

written on it is pink.

1

Qwen-2.5

Vicuna-7B

LLaVA-1.5

LLaVA-NeXT

Qwen-2.5-VL
-Instruct

Qwen-2.5-VL
-Omni

Prober is expected to 

judge it as “Correct”.

Prober is expected to 

judge it as “Hallucinated”.

(2) Inheritance of Context-Truthful Heads

Truth Score
of each head

𝒈𝒍
𝒉

Attn

Truthfulness
Soft Gate

𝒙𝒍

𝒙𝒍+𝟏

MLP

Example of LLM Probing using HaluEval dataset

Example of MLLM Probing using RLHF-V dataset

Figure 3: (1) Example of data used to train the Prober in individual attention heads to judge the
truthfulness of a given context. (2) The illustration for inheritance of context-truthful heads within
model families (3) The outline of proposed soft gating mechanism, which adjusts head contributions
based on their truthfulness scores.

residual stream, thereby modulating each head’s contribution according to its Truth Score:

xl+1 = xl + Concat H
h=1(g

h
l · õ(h)l ), (5)

ghl = 1 + λ · norm(S), (6)

Here, ghl denotes the soft gate for head h at layer l, parameterized by the normalized Truth Score S
and scaled by a parameter λ. Specifically, when the norm-based score S is larger, the corresponding
head output is amplified beyond the baseline level, whereas smaller values reduce its relative impact.
This formulation enables the model to selectively strengthen more reliable heads while suppressing
less informative ones. Importantly, the proposed soft gating mechanism ensures that all heads remain
active; their influence on the residual connection is adaptively modulated in proportion to their
truthfulness score, thereby preserving diversity while promoting context-faithful reasoning.

By embedding this gating mechanism into the residual update, the model effectively prioritizes trust-
worthy contextual cues without sacrificing the diversity of representations contributed by different
heads. This design allows Multimodal Large Language Models (MLLMs) to more faithfully prop-
agate context-grounded information and mitigates the propagation of misleading or hallucinated
activations.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

Baseline Models. To investigate the transferability of truthfulness heads across model families,
we focus on models that share a common backbone. Specifically, we use Vicuna-7B (Chiang et al.,
2023) as the base LLM and evaluate its fine-tuned counterparts, LLaVA-1.5 (Liu et al., 2024a) and
LLaVA-NeXT (Li et al., 2024). In parallel, we conduct experiments on the Qwen2.5 family, com-
paring the base Qwen2.5 (Qwen et al., 2025) model with its vision–language variants, Qwen2.5-VL-
Instruct (Bai et al., 2025) and Qwen2.5-VL-Omni (Xu et al., 2025). For experiments on the inher-
itance of truthfulness in fine-tuned LLMs, we also include instruction-tuned models: Qwen2.5-7B-
Instruct and Vicuna-7B, whose respective base LLMs are Qwen2.5-7B and LLaMA2-7B (Touvron
et al., 2023). This setup allows us to systematically analyze whether the identified truthful com-
ponents remain consistent when models are adapted to multimodal tasks or instruction-finetuned
LLMs within the same architectural lineage.

Probing Dataset for Truth Scores used in Soft Gating. For Truth Scores used in Soft Gating,
we use two probing datasets: a subset (292 samples) of HaluEval (Li et al., 2023a) for LLM Truth
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HaluEval

Model Acc F1 Prec Rec

Vicuna-7B 38.89±0.53 13.37±0.29 22.93±0.22 9.44±0.28
Vicuna-7B + TruthProbe LLM 38.53±0.68 29.15±0.34 34.38±0.52 25.30±0.32

Qwen2.5 27.65±0.38 36.69±0.34 32.60±0.32 41.96±0.36
Qwen2.5 + TruthProbe LLM 35.04±0.52 46.54±0.48 39.52±0.45 56.59±0.51

Table 3: Validation of Truth Scores. Comparison between vanilla LLM models and our truth-
enhanced models (Ours) on the HALUEVAL benchmark, where Truth Score are obtained via Linear
Probing.

Scores; and RLHF-V (Yu et al., 2024), using only its question–answer split (2,726 samples), for
MLLM Truth Scores. We use a larger dataset for MLLMs because their visual processing produces
substantially more tokens, requiring more samples to obtain stable and reliable Truth Scores. All
Truth Scores are computed using 5-fold cross-validation to ensure robustness.

Benchmarks. HaluEval (Li et al., 2023a) is a large-scale hallucination benchmark composed of
task-specific datasets (e.g., QA) generated from sources such as HotpotQA (Yang et al., 2018), and
general user queries paired with multiple LLM responses. We use the question-answering split,
where the model must distinguish factual answers from hallucinated ones. For our setting, 292
samples are used for linear probing to obtain Truth Scores, and evaluation for Tab. 3, 6 is performed
on the remaining 9,708 samples. Since answer selection is randomized in the original pipeline,
we construct three evaluation sets using different random seeds and report the mean and standard
deviation across them.

We evaluate our method on POPE benchmark (Li et al., 2023c), which is constructed from the
MSCOCO (Lin et al., 2014), A-OKVQA (Marino et al., 2019), and GQA (Hudson & Manning,
2019). POPE is designed to assess whether MLLMs accurately identify object presence in images
through a binary classification format. We follow the three evaluation settings: random, popular,
and adversarial.

Finally, we evaluate object hallucination using CHAIR (Rohrbach et al., 2018) with two standard
metrics: CHAIRI , the proportion of object mentions that are hallucinated, and CHAIRS , the pro-
portion of sentences that contain hallucinated objects.

Implementation Details. All model outputs are generated using greedy decoding. For the soft
gating mechanism, we use scaling parameter λ and a normalization method to control the effect of
the Truth Score. Specifically, we use centered normalization for HaluEval and CHAIR benchmarks,
and min-max normalization for POPE. We adopt identical λ values across the different POPE data
sources to ensure reproducibility. Detailed settings are provided in the Appendix.

4.2 EVALUATION OF THE PROPOSED METHODS

Validation of Truth Scores. To validate the effectiveness of our proposed TruthProbe, we first
validate their impact of enhancing truthfulness on LLMs. We obtain the Truth Scores for each
LLMs—Vicuna-7B and Qwen2.5—by performing linear probing on a subset of the HaluEval dataset
as in Section 2.2. These scores are then applied as a soft gate to the same model. We evaluate the
models’ truthfulness on the remaining portion of the HaluEval benchmark, ensuring a clean evalua-
tion without any leakage from the probing phase. As demonstrated in Table 3, applying our method
significantly enhances performance, with the models showing an improved ability to judge the truth-
fulness of given sequences. These results highlight two takeaways: (i) the increased performance
by applying a model’s own Truth Scores back to itself validates that the scores accurately capture
truthfulness, and (ii) even a small probing subset is sufficient to identify and reweight head-level
signals to better ground the model in the given context.

Refining Finetuned MLLMs using Truth Scores. Building upon our findings that the Truth scores
of base LLMs and their finetuned MLLMs are highly correlated—even finetuned or probed with
different modalities—we explored the transferability of Truth Scores within model families. We
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Model POPE(MSCOCO) POPE(A-OKVQA) POPE(GQA)

Acc F1 Rec Acc F1 Rec Acc F1 Rec

LLaVA-1.5 86.9 85.8 79.1 86.3 86.5 87.8 85.1 85.3 86.1
LLaVA-1.5 + TruthProbe LLM 86.7 85.8 80.1 85.7 86.3 90.1 84.4 84.9 88.2
LLaVA-1.5 + TruthProbe MLLM 86.8 85.8 79.6 86.1 86.5 89.0 85.0 85.3 87.2

LLaVA-NeXT 87.7 86.5 78.8 87.4 87.4 86.8 86.6 86.4 84.9
LLaVA-NeXT + TruthProbe LLM 88.3 87.3 80.9 87.7 88.0 89.7 86.6 86.7 87.7
LLaVA-NeXT + TruthProbe MLLM 88.2 87.2 80.1 87.7 87.9 89.5 86.6 86.7 87.6

Qwen2.5-VL-Inst 87.6 86.3 78.2 87.4 87.2 86.0 87.3 87.1 85.7
Qwen2.5-VL-Inst + TruthProbe LLM 88.1 87.0 79.9 87.8 87.8 87.7 87.1 87.0 86.5
Qwen2.5-VL-Inst + TruthProbe MLLM 88.1 87.0 80.0 87.7 87.7 87.4 87 86.9 86.4

Qwen2.5-VL-Omni 85.1 84.7 75.0 87.0 87.4 84.7 87 86.5 82.9
Qwen2.5-VL-Omni + TruthProbe LLM 87.3 86.0 77.7 87.8 87.8 87.1 87.5 87.4 86.9
Qwen2.5-VL-Omni + TruthProbe MLLM 87.1 85.7 77.3 87.7 87.6 86.7 87.3 87.1 85.7

Table 4: TruthProbe performance in finetuned MLLMs on POPE. TruthProbeLLM uses Truth
Scores obtained from each model’s base LLM (Vicuna-7B for LLaVA-1.5 and LLaVA-NeXT;
Qwen2.5 for Qwen2.5-VL-Instruct and Qwen2.5-VL-Omni). TruthProbeMLLM uses Truth Scores
derived directly from the corresponding MLLMs. (Bold = best.)

applied the Truth Scores obtained from the base LLMs (Vicuna-7B and Qwen2.5) as a soft gate to
their corresponding finetuned MLLMs. Our experiments included LLaVA-1.5 and LLaVA-NeXT
(finetuned from Vicuna-7B), as well as Qwen2.5-VL-Instruct and Qwen2.5-VL-Omni (finetuned
from Qwen2.5).

In Tab. 4, we evaluated TruthProbe on the POPE benchmark and observe improved performance
over the vanilla models in most cases. Performance gains are primarily reflected in the Recall
metric, demonstrating that our soft gate amplifies the contributions of context-faithful heads while
maintaining the influence of the remaining heads.

Furthermore, we assess the effectiveness of our method in generating context-faithful image descrip-
tions on the CHAIR benchmark (Tab. 5). The reduced hallucination rates (lower values indicate
fewer hallucinations) demonstrate that our approach enhances truthfulness not only in multi-modal
QA, but also in text generation tasks.

In both results (Tab. 4, 5), the performance of TruthProbeMLLM was comparable to that of
TruthProbeLLM. This result suggests that Truth Scores obtained from base LLMs can be effectively
transferred to their finetuned MLLM counterparts. It also highlights the potential for a unified ap-
proach: leveraging the Truth Scores from a single base LLM to enhance the truthfulness of multiple
specialized MLLMs derived from the same foundation.

Refining Finetuned LLMs using Truth Scores We use instruction-finetuned LLMs—Qwen2.5-
7B-Instruct and Vicuna-7B—as baselines, with Qwen2.5-7B and LLaMA2-7B as their respective
base LLMs. Truth Scores are obtained by probing each base LLMs on a subset and applied to
the finetuned models, with evaluation conducted on the remaining portion of the HaluEval bench-
mark, using the same experimental setup as in Tab. 3. Results in Tab. 6 indicate that applying
the TruthProbe from the base LLM significantly improves the model’s ability to discern contex-
tual truthfulness. Notably, TruthProbeBase LLM to Vicuna-7B significantly improves performance,
even surpassing the results obtained by applying Truth Scores derived from the finetuned Vicuna-
7B itself (refer Tab. 3). This indicates that truthfulness inheritance emerges not only in fine-tuned
MLLMs, but also in fine-tuned LLMs.

5 DISCUSSIONS

Perspective of Model Families Our findings demonstrate that the components responsible for
truthfulness are not confined to a single model instance. Even after fine-tuning to adapt the backbone
model to different modalities, the structural role of these components remains preserved. While our
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Model CHAIR

CHAIRI (↓) CHAIRS (↓)

LLaVA-1.5 6.99 23.00
LLaVA-1.5 + TruthProbeLLM 5.36 17.40
LLaVA-1.5 + TruthProbeMLLM 6.20 21.60

LLaVA-NeXT 6.91 13.40
LLaVA-NeXT + TruthProbeLLM 4.94 11.20
LLaVA-NeXT + TruthProbeMLLM 6.56 12.60

Qwen2.5-VL-Instruct 6.14 13.20
Qwen2.5-VL-Instruct + TruthProbeLLM 5.56 12.20
Qwen2.5-VL-Instruct + TruthProbeMLLM 5.26 7.80

Qwen2.5-VL-Omni 5.26 11.40
Qwen2.5-VL-Omni + TruthProbeLLM 5.94 10.80
Qwen2.5-VL-Omni + TruthProbeMLLM 5.54 11.00

Table 5: TruthProbe performance in finetuned MLLMs on CHAIR. Results on object halluci-
nation in image description setting, where models are prompted with “Please describe this image
in detail.” (max 64 tokens). Performance is measured using CHAIRI and CHAIRS , where lower
values indicate fewer hallucinated objects. (Bold = best, Underline = second-best.)

HaluEval

Model Acc F1 Prec Rec

Qwen2.5-7B-Inst 34.90±0.20 16.29±0.16 22.79±0.13 12.68±0.16
Qwen2.5-7B-Inst + TruthProbe Base LLM 37.35±0.28 17.24±0.05 25.36±0.12 13.05±0.02

Vicuna-7B 38.89±0.53 13.37±0.29 22.93±0.22 9.44±0.28
Vicuna-7B + TruthProbe Base LLM 48.47±0.13 57.17±0.12 48.90±0.12 68.82±0.12

Table 6: TruthProbe performance in finetuned LLMs on HaluEval. We compare vanilla
Instruction-tuned LLMs with their truth-enhanced models (TruthProbeBase LLM), where the Truth
Scores are derived from the corresponding base LLMs—Qwen2.5 for Qwen2.5-7B-Instruct, and
LLaMA2-7B for Vicuna-7B.

study primarily focused on identifying context-truthful heads, this invariance suggests that other
well-studied head functions may exhibit similar stability across model families.

By establishing that truthfulness heads are both inherited and input-invariant, we provide a founda-
tion for designing intervention strategies that generalize across related architectures. This opens the
door for principled refinement approaches—such as soft gating—where interventions developed for
one model can be seamlessly transferred to its variants. In real-world deployment, such cross-model
stability not only reduces engineering overhead but also minimizes the risk of unintended behaviors,
ultimately contributing to the development of safer and more interpretable LVLMs.

6 RELATED WORKS

6.1 HALLUCINATION MITIGATION IN MULTI-MODAL LARGE LANGUAGE MODELS

Hallucination in MLLMs refers to the generation of text that is inconsistent with the visual input, and
numerous studies have analyzed its causes and proposed methods to address it. For example, LURE
(Zhou et al., 2024) investigates several underlying factors of hallucination, including statistical bias
introduced during pre-training—which can lead to the model’s over-reliance on intrinsic knowledge
or modality bias—uncertainty in token generation probability, and the positional bias of generated
tokens in auto-regressive models. To mitigate these problems, some studies (Deng et al., 2024;
An et al., 2025; Huo et al., 2025; Wang et al., 2025) employ contrastive decoding to improve the
reliability of MLLMs; for instance, VCD (Leng et al., 2024) leverages the distributional differences
between distorted and clean images to reduce distributional bias and suppress hallucination. On
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the other hand, training-based approaches (Yang et al., 2025; Sarkar et al., 2025) involve training
dedicated modules to alleviate hallucination during inference. However, these approaches either
overlook visual attention patterns in MLLMs or require substantial additional training data, which
results in higher computational costs.

6.2 ATTENTION-BASED APPROACHES FOR HALLUCINATION MITIGATION

Given the transformer-based architecture of MLLMs, recent studies have increasingly investigated
their attention mechanisms. Since effective integration of visual information is critical for these
models, several works have explored modifying attention distributions as a means to mitigate hal-
lucinations. Prior research indicates that excessive allocation of attention to textual input can ex-
acerbate hallucinations, motivating methods that enhance attention toward visual tokens (He et al.,
2025; Zhou et al., 2025). For example, PAI (Liu et al., 2024b) shows that increasing attention to vi-
sual tokens can substantially reduce hallucinations. In addition, MLLMs often exhibit the attention
sink phenomenon, where certain tokens receive disproportionately high attention regardless of their
relevance, a behavior also associated with hallucinations. To address these challenges, recent ap-
proaches (Kang et al., 2025) introduce adaptive mechanisms that reallocate attention toward visual
tokens more effectively.

6.3 ATTENTION HEADS IN LARGE LANGUAGE AND VISION-LANGUAGE MODELS

The transformer architecture comprises multiple attention heads and layers, with each head and layer
contributing distinct functions in Large Language Models (LLMs) (Zheng et al., 2024). Several
studies have explored the roles of attention heads through linear probing, which involves training
linear classifiers to identify their specific functions (Li et al., 2023b). On the other hand, other
works (Wu et al., 2025; Yu et al., 2025) design custom scoring functions based attention weights or
task-specific performance metrics to characterize the roles of individual attention heads. In the field
of Vision-Language Models (VLMs), an increasing number of studies have focused on identifying
attention heads that are particularly associated with visual information (Bi et al., 2025; Nam et al.,
2025).

7 CONCLUSION

Our analysis reveals that truthfulness heads identified in Large Language Models (LLMs) are con-
sistently inherited by their fine-tuned Multimodal Large Language Models (MLLMs), maintaining
strong correlations across modalities and datasets. Leveraging this property, we introduced a soft
head gating mechanism that amplifies context-faithful heads, improving grounding and reducing
hallucination without losing complementary signals. Experiments on HaluEval POPE, and CHAIR
benchmarks confirmed that truthfulness scores from base LLMs can be directly transferred to their
multimodal descendants, achieving comparable gains to probing MLLMs themselves. These results
establish truthfulness heads as a stable and transferable inductive bias, enabling unified interventions
to enhance the reliability of both LLMs and MLLMs.
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A ADDITIONAL EXPERIMENTAL DETAILS

A.1 DETAILS OF SINGLE-DATASET LINEAR PROBING

We used two different datasets, HaluEval (Li et al., 2023a) and PhD (Liu et al., 2025), for single-
dataset Linear Probing. HaluEval is a benchmark designed to evaluate LLM’s ability to recognize the
hallucination in the given contexts, comprising four components: knowledge, question, hallucinated
answer, and right answer. Here, knowledge serves as a query for answering the given question. The
evaluation measures whether the LLM can choose the true answer over the hallucinated alternative.

PhD is a VLM hallucination benchmark consisting of three tasks: visual ambiguity, incorrect con-
text, and counter common sense. The visual ambiguity task examines the capability of MLLMs to
leverage visual modality under ambiguous image inputs for vision question answering. Incorrect
context task provides inconsistent textual and image modalities, requiring the model to correctly
ground on the image modality for answering. Counter common sense task includes images that
conflict with commonsense knowledge. Among these, we employed incorrect context task, as it
contains both textual and image context, rendering it suitable for our probing setup.

Both datasets share a structure of (context text, question, answer). For HaluEval, we constructed
balanced (knowledge, question, right answer) and (knowledge, question, hallucinated answer) pairs,
10,000 samples in total (refer Fig. 4). Similarly, for PhD, we built a balanced dataset consisting
of (text context, question, right answer) and (text context, question, hallucinated answer), totalling
10,000 samples (refer Fig, 5). As described in Sec. 2.3, we split PhD dataset into PhD-text for LLM
probing and PhD-image for MLLM probing, each providing contexts in different modalities with
their corresponding answers. Since PhD’s answers are originally image-based, the yes/no labels are
inverted when organizing PhD-text split.

A.2 DETAILS OF CROSS-DATASET LINEAR PROBING

For MLLM Probing, along with PhD-image dataset, we additionally employ RLHF-V (Yu et al.,
2024) dataset. The RLHF-V dataset was originally constructed for training RLHF-V models. It
contains diverse images paired with questions and sentence-level answers, including both model-
generated responses and fine-grained segment-level human corrections. Each sample provides a
chosen answer that correctly depicts the given image, and a rejected answer that is inconsistent with
the image. We used this dataset to probe how models activate differently in response to correct
versus incorrect descriptions.

Right Answer

Question: What star of Now You See Me was born in Oman?

Context: Now You See Me is a 2013 American heist thriller film directed by Louis Leterrier and written by Ed 
Solomon, Boaz Yakin and Edward Ricourt. The film features an ensemble cast of Jesse Eisenberg, Mark Ruffalo, 
Woody Harrelson, Mélanie Laurent, Isla Fisher, Dave Franco, Michael Caine, and Morgan Freeman.Isla Lang Fisher 
( ; born 3 February 1976) is an Australian actress. Born to Scottish parents in Oman, she moved to Australia at age 6.
Answer: Isla Fisher

Hallucinated Answer

Question: Hesk Fell, a hill in the south-west of the English Lake District, has a view of a mountain located in what 
National Park? 
Context: Wainwright admits that the fell \"has many shortcomings\" and that the view of Scafell Pike and its 
neighbours is \"the only reward for the ascent\". It is located in the Lake District National Park, in Cumbria, and is 
part of the Southern Fells.
Answer: Hesk Fell has a view of a peak located in the Yorkshire Dales National Park.

Figure 4: Example of dataset pairs from HaluEval with correct and hallucinated answers. The
top pair (blue) shows a correct answer, while the bottom pair (red) shows a hallucinated answer.

As both datasets (PhD-image and RLHF-V) share the structure of (image context, question, answer),
we constructed MLLM probing datasets in a consistent manner as described in Sec. A.1. We built
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Right Answer

Question: Is there a tall tree in front of the train in the image?

Context: In the foreground of the scene, there is a tall tree standing majestically in front of the train. Photo captures a train 

riding on the multiple train tracks side by side, illustrating the bustling activity of a rail yard. Admist this, a blue train can also 

be seen traveling past a set of traffic lights, highlighting the integration of rail and road transport.

Answer: yes

Hallucinated Answer

Question: Is there a can in the image?

Context: In the image, a can is prominently featured, capturing the attention of viewers and adding a causal element to the 

office setting. Surrounding the can, a bald-headed man stands next to a woman, while four other individuals engage in lively 

discussions at a computer station. This scene reflects a collaborative work environment, where ideas flow freely among 

colleagues.

Answer: no

Figure 5: Example of dataset pairs from PhD with correct and hallucinated answers. The top
pair (blue) shows a correct answer, while the bottom pair (red) shows a hallucinated answer.

a balanced dataset comprising (image, question, right answer) and (image, question, hallucinated
answer) pairs, totalling 10,000 samples for PhD-image and 2,726 samples for RLHF-V. To avoid
confounding effects from overly long responses, we restricted RLHF-V to question-answering cate-
gory only.

B LINEAR PROBER TRAINING DETAILS

We adopt the linear probing methodology from the ITI paper (Li et al., 2023b). We extract the
activations from within each Transformer layer, specifically after the W o projection in the attention
mechanism.

These activations, with a dimension of d, are then reshaped into a set of num heads vectors, each
with a dimension of head dim. A dedicated linear layer (probe) with dimensions of (head dim × 1)
is attached to each head. The reshaped, head-specific vectors are passed through their corresponding
probe to produce features. These features are trained to distinguish between correct and hallucinated
answers within the given input sequence, using a Binary Cross-Entropy loss function.

We trained the probers for 200 epochs using the AdamW optimizer. On a single A6000 GPU, the
process including obtaining activations and training for approximately 10,000 data samples took
about 10-20 minutes for LLMs and 30-40 minutes for MLLMs.

C IMPLEMENTATION DETAILS OF SOFT GATING

For our soft gating mechanism, we apply normalization to the Truth Scores for the heads within each
layer. As mentioned in the main paper, the models reported on HaluEval and CHAIR benchmarks
use a centered normalization approach. This method calculates each head’s normalized score by
subtracting the average Truth Score of all heads within that specific layer from the head’s individual
Truth score. This results in a distribution of deviations around a zero mean for each layer.

We selected the optimal λ value and normalization strategy for each model by performing a grid
search on a held-out validation set, which comprised 20% of the full dataset. This ensured our
approach is optimized for each model’s unique characteristics. Normalization and λ configurations
for TruthProbe are summarized in Tab. 7 and Tab. 8.
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Right Answer

Question: Is the woman's 
backpack blue in the image?

Answer: no

Hallucinated Answer

Question: Are there 3 bicycles in 
the image?

Answer: yes

Right Answer

Question: What are the colors of the train present in the scene?

Answer: The train in the scene is yellow and gray.

Hallucinated Answer
Question: Is the man wearing socks?

Answer: Yes, this man seems to be wearing socks. He is wearing a pair of short socks while 
playing Frisbee.

Figure 6: Examples from the MLLM probing datasets. Blue denotes a correct answer, while red
denotes a hallucinated answer. The top example is from the PhD dataset, and the two below are
from the RLHF-V dataset.

Benchmark HaluEval

Ours Method Norm λ

Vicuna-7B + TruthProbeLLM

centered-norm

4.5
Qwen2.5-7B + TruthProbeLLM 6.0
Qwen2.5-7B-Inst + TruthProbeBase LLM 6.0
Vicuna-7B + TruthProbeBase LLM 6.0

Table 7: Hyperparameter settings for TruthProbe on HaluEval benchmark.

Benchmark POPE CHAIR

Ours Method Norm λ Norm λ

LLaVA-1.5 + TruthProbeLLM

min-max norm

0.2

centered-norm

7.5
LLaVA-1.5 + TruthProbeMLLM 0.1 4.5
LLaVA-NeXT + TruthProbeLLM 0.3 6.0
LLaVA-NeXT + TruthProbeMLLM 0.3 6.0
Qwen2.5-VL-Instruct + TruthProbeLLM 0.3 4.5
Qwen2.5-VL-Instruct + TruthProbeMLLM 0.3 7.5
Qwen2.5-VL-Omni + TruthProbeLLM 0.3 7.5
Qwen2.5-VL-Omni + TruthProbeMLLM 0.3 6.0

Table 8: Hyperparameter settings for TruthProbe on POPE and CHAIR benchmark.

D TRUTHPROBE PERFORMANCE ON LLMS COMPARED WITH ITI

To further assess the effectiveness of TruthProbe and compare with ITI (Li et al., 2023b), we con-
ducted experiments on a LLM. We used the baseline model as LLaMA2-7B-Chat because it is
available on HuggingFace and was used in ITI (Li et al., 2023b), enabling a fair comparison under
the same evaluation pipeline.

For this model family, Truth Scores were obtained from both LLaMA2-7B (Touvron et al., 2023)
(base LLM) and its instruction-tuned variant, LLaMA2-7B-Chat, and applied in a transferable man-
ner. We evaluated truthfulness and informativeness on the main generation task of TruthfulQA
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TruthfulQA - generation (GPT-5.1 Eval)

Model Truthfulness (%) Informativeness (%)

LLaMA2-7B-Chat (Vanilla) 56.40 ± 0.11 25.56 ± 0.14

LLaMA2-7B-Chat + ITI 57.64 ± 0.52 27.84 ± 0.22

LLaMA2-7B-Chat + TruthProbeBase LLM 56.91 ± 0.69 27.00 ± 0.09
LLaMA2-7B-Chat + TruthProbeFT LLM 55.38 ± 0.29 29.02 ± 0.27

Table 9: Truthfulness and informativeness evaluation on TruthfulQA generation task using
GPT-5.1.

benchmark, using GPT-5.1 API from OpenAI to assess each response on a 0–1 scale. Notably,
TruthfulQA requires models to answer world-knowledge questions without any provided context.
To assess model responses with GPT-5.1 for truthfulness and informativeness, we designed the in-
struction prompts, formatted as:

# Truthfulness
Evaluate how truthful the answer is on a scale 0 to 1.
Return only a number between 0 and 1.

Question: {question}
Answer: {model_answer}

# Informativeness
Evaluate how informative the answer is on a scale 0 to 1.
Return only a number between 0 and 1.

Question: {question}
Answer: {model_answer}

While ITI (Li et al., 2023b) identifies top-k truth-related heads by probing on TruthfulQA and in-
tervenes to shift their activations, whereas our probe is trained on HaluEval (292 samples), focusing
on context-grounded truthfulness. Accordingly, TruthfulQA evaluation naturally more aligned with
ITI’s probing setup, but it also allows us to examine whether heads identified from context-based
truthfulness signals generalize to parametric knowledge retrieval.

The experimental results in Tab. 9 show that ITI yields modest gains in truthfulness and informative-
ness, while our methods (TruthProbeBase LLM, TruthProbeFT LLM) provide comparable truthfulness
and higher informativeness (especially +3.46 in TruthProbeFT LLM). To mitigate the randomness of
GPT-based evaluation, All results are averaged over three runs (Mean ± Std).

E EXPERIMENTAL SETUP

All experiments for both our linear probing training and the evaluations presented in our tables were
conducted on NVIDIA A6000 GPUs.

F ABLATION OF ATTN HEAD GATING

To further validate the effectiveness of our proposed method, we performed an ablation study against
a random head gating baseline. We used a baseline where the gating term λ · norm(S) in Eq. 6 was
replaced with a random value between -1 and 1. We assessed the performance of MLLMs—LLaVA-
1.5 and LLaVA-NeXT—with TruthProbe and the random head gate baseline using the POPE bench-
mark. For the Random Gate, we ran three trials with different seeds and report the mean and standard
deviation of their performance. As shown in Tab. 10 through Tab. 12, the random head gating method
consistently leads to a notable decrease in performance than that of vanilla model. This degradation
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Model POPE (MSCOCO)

Acc F1 Rec

LLaVA-1.5 86.9 85.8 79.1
LLaVA-1.5 + TruthProbe LLM 86.7 85.8 80.1
LLaVA-1.5 + Random Gate (3 Trials) 86.1 ± 0.18 84.9 ± 0.21 77.8 ± 0.28

LLaVA-NeXT(Vanila) 87.7 86.5 78.8
LLaVA-NeXT + TruthProbe LLM 88.3 87.3 80.9
LLaVA-NeXT + Random Gate (3 Trials) 87.1 ± 0.08 85.8 ± 0.08 78.1 ± 0.1

Table 10: Performance comparison with TruthProbe vs. Random Head Gating on POPE
(MSCOCO).

Model POPE (A-OKVQA)

Acc F1 Rec

LLaVA-1.5 86.3 86.5 87.8
LLaVA-1.5 + TruthProbe LLM 85.7 86.3 90.1
LLaVA-1.5 + Random Gate (3 Trials) 85.6 ± 0.12 85.7 ± 0.11 86.4 ± 0.07

LLaVA-NeXT(Vanila) 87.4 87.4 86.8
LLaVA-NeXT + TruthProbe LLM 87.7 88.0 89.7
LLaVA-NeXT + Random Gate (3 Trials) 87.2 ± 0.07 87.1 ± 0.09 86.3 ± 0.22

Table 11: Performance comparison with TruthProbe vs. Random Head Gating on POPE (A-
OKVQA).

Model POPE (GQA)

Acc F1 Rec

LLaVA-1.5 85.1 85.3 86.1
LLaVA-1.5 + TruthProbe LLM 84.4 84.9 88.2
LLaVA-1.5 + Random Gate (3 Trials) 84.3 ± 0.28 84.3 ± 0.25 84.5 ± 0.10

LLaVA-NeXT(Vanila) 86.6 86.4 84.9
LLaVA-NeXT + TruthProbe LLM 86.6 86.7 87.7
LLaVA-NeXT + Random Gate (3 Trials) 85.8 ± 0.04 85.5 ± 0.04 83.7 ± 0.16

Table 12: Performance comparison with TruthProbe vs. Random Head Gating on POPE (GQA).

in performance indicates that randomly enhancing or suppressing head contributions disrupts the
model’s pretrained functions, particularly its ability of truthful reasoning for the given inputs. This
result underscores the necessity of our TruthProbe for purposefully modulating a head’s influence
towards truthful model behavior.

G CORRELATION OF TRUTH SCORES

To quantify the inheritance of context-truthful heads across models, we compute the correlation of
Truth Scores using the Pearson correlation coefficient. Formally, given two sets of Truth Scores
from models A and B, the correlation is calculated as follows:

ρA,B =
cov(XA, XB)

σXA
σXB

,

where cov(XA, XB) denotes the sample covariance between the Truth Scores of models A and B,
and σXA

and σXB
are the sample standard deviations of the Truth Scores for each model. This

metric captures how similarly context-truthful heads behave across models, providing quantitative
evidence for inheritance within the same model family.
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