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ABSTRACT

Recent advances in large language models (LLMs) have led to emergence of spe-
cialized multimodal LLMs (MLLMs), creating distinct model families that share a
common foundation language models. This work investigates whether a core traits
like truthfulness are inherited along this evolutionary trajectory. To quantify this
trait, we employ linear probing on the models’ internal representations. Our analy-
sis of Vicuna and Qwen model families reveals a key finding: a strong correlation
in truthfulness scores between LLMs and their finetuned MLLMs counterparts,
even when they are finetuned or probed with different modalities and datasets.
Building on this findings, we propose a soft gating method using the Truthful-
ness score to amplify the influence of these context-truthful heads to improve the
context grounding ability while preserving the contributions of other heads. We
validate our approach on base LLMs on HaluEval benchmark, demonstrating an
improved ability for context truthful reasoning. We then show that the Truthful-
ness scores obtained from base LLMs can be effectively transferred and applied
as a soft gate to its finetuned MLLMs, demonstrating its improved performance
on POPE benchmark. The performance gain from this transfer is comparable to
that obtained by probing the MLLMs directly, highlighting the potential for a uni-
fied approach to enhance truthfulness across an entire model family. Our work
demonstrates a novel method for leveraging a model’s inherent, inherited traits to
systematically improve its truthfulness.

1 INTRODUCTION

Recent advancements in large language models (LLMs) has given rise to a wide range of specialized
models, all of which are originated from a core foundational LLMs. This pattern reflects a broader
trend: rather than building entirely new models from scratch, base LLMs are often refined through
fine-tuning or multimodal extensions to serve domain-specific needs—ranging from mathematical
reasoning to vision-language understanding, or even multi-sensory processing. Such evolutionary
trajectories highlight that many advanced multimodal LLMs (MLLMs) share a clear lineage with
their base LLMs.

Do these models inherit traits like truthfulness? If so, could we leverage this inherited trait to
develop an unified method that enhances truthfulness not only in base LLMs but also their finetuned
MLLMs?

Inspired by ITI (Li et al., 2023b), we hypothesized that if the model component, specifically the
Attention Head, can classify whether the given context is truthful or not, that component can be
regarded as truthful. To investigate this, we analyze how such characteristics are preserved and
correlated across models sharing the same language model. Specifically, we study Vicuna-7B (Chi-
ang et al., 2023) as a base LLM and its fine-tuned counterparts, LLaVA-1.5 (Liu et al., 2024a) and
LLaVA-NeXT (Li et al., 2024) as well as Qwen2.5 family (Qwen et al., 2025), including Qwen2.5-
VL-Instruct (Bai et al., 2025) and Qwen2.5-VL-Omni (Xu et al., 2025). Our analysis reveals the
key property within model families: Inheritance. Truthfulness scores of MLLMs are highly corre-
lated with those of their base LLMs, regardless of their specialization for different modalities, such
as image and audio. Even when proved with different modality data for LLMs and MLLMs, the
truthfulness correlation within a shared model family is much higher than that between models from
unrelated families.
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(c)(b)(a)

Figure 1: (a) Truthfulness scores of all attention heads across layers obtained via linear probing on
LLaVA-1.5. (b) Cross-model similarity of probing results for MLLMs derived from the Vicuna-7B
base language model. (c) Comparative similarity of probing results for MLLMs adapted from the
Qwen2.5 base language model.

This finding suggests that MLLMs inherit truthful heads from the base LLMs. In addition, heads that
accurately reference the provided context maintain consistent truthfulness across different datasets,
indicating that this property is largely dataset-independent.

Building on these findings, we propose to amplify the influence of context-truthful heads so that
the model’s final outputs are more faithfully grounded in the given context, while still preserving
the complementary roles of other heads. Importantly, we show that this gating strategy is not only
effective within a single model, but also generalizes consistently across model families sharing the
same backbone.

To begin, we validate the obtained truthfulness score from the base LLMs on HaluEval benchmark,
showing their improved ability for truthful reasoning within a given context. Further, we explored
whether the truthfulness scores identified in base LLMs can serve as a soft gate in their finetuned
MLLMs, and observed performance gains on POPE benchmark due to the inherited traits. This
performance improvement is comparable to that obtained by applying truthfulness scores derived
from MLLMs itself.

Unlike prior approaches that targeted hallucination reduction through model-specific interventions,
or head-level studies that remained descriptive without actionable refinement, our work identifies
transferable components of truthfulness and operationalizes them for model improvement. By show-
ing that truthfulness scores can be stably inherited and transferred within model families, we estab-
lish a principled foundation for refining both LLMs and their multimodal extensions toward greater
truthfulness.

Our contributions are summarized as follows:

• We perform linear probing to systematically identify attention heads that ground responses
truthfully in the given context.

• Through cross-model analysis, we demonstrate that context-truthful heads are largely pre-
served when LLMs are fine-tuned into MLLMs, revealing strong correlations between base
models and their multimodal descendants.

• We introduce a refinement strategy, TruthProbe, which amplifies the influence of context-
truthful heads. This approach yields more reliable and grounded outputs, and notably,
achieves comparable performance gains in MLLMs even when the truthfulness scores are
transferred directly from their base LLMs.

2 IDENTIFYING COMPONENTS FOR CONTEXT-BASED TRUTHFUL
REASONING

Recent research has made significant strides in demystifying the internal mechanisms of Large Lan-
guage Models (LLMs). A particularly compelling line of inquiry suggests that abstract concepts
are encoded in interpretable directions within the model’s activation space. For example, (Li et al.,
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Figure 2: Heatmaps of head-level probing accuracy for two model families. (Top) Vicuna-based
models, including LLaVA-1.5 and LLaVA-NeXT, fine-tuned from Vicuna-7B. (Bottom) Qwen2.5-
based models, including Qwen2.5-VL and Qwen2.5-Omni, fine-tuned from Qwen2.5.

2023b) introduced Inference-Time Intervention (ITI), a technique that enhances model truthfulness
by identifying and shifting activations in specific attention heads. Their findings indicate that models
may possess latent “knowledge” of the truth, even when their generated outputs are false.

However, in many real-world applications, truthful reasoning requires more than accessing para-
metric knowledge—it also depends critically on how well the model leverages the given context.
For instance, in Multimodal Large Language Models (MLLMs), tasks such as the widely studied
“Where is Wally?” question require accurate grounding in the provided image, rather than relying
solely on pre-trained internal knowledge. Motivated by this distinction, we move beyond ITI and
focus on identifying attention heads that are not only truthful but also context-referential. Specifi-
cally, we aim to characterize and intervene on heads that reliably attend to context in a manner that
supports truthful and grounded responses.

2.1 PRELIMINARY

Formally, in a Transformer layer l, the Multi-Head Attention (MHA) mechanism is composed of H
attention heads, each applying an independent linear projection to the residual representation. Given
an input xl ∈ Rd, the h-th head projects it into query, key, and value subspaces via learned matrices
Qh

l ,K
h
l , V

h
l . The head output is computed as:

Atthl (xl) = softmax
(
Qh

l xl(K
h
l xl)

⊤
√
dk

)
V h
l xl, (1)

where dk denotes the key dimension. The outputs of all heads are then aggregated through an output
projection W o

l and added back to the residual stream:

ol = W o
l · Concat H

h=1(Atthl (xl)) (2)

xl+1 = xl + ol. (3)

This formulation shows that each head contributes a distinct contextual transformation, which is
subsequently integrated by the Multi-Layer Perceptron (MLP) through nonlinear operations.
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2.2 FINDING CONTEXT TRUTHFUL HEAD

As introduced in Section 2, evaluating whether a Transformer layer truthfully leverages contextual
information is most precise at the granularity of individual attention heads. Each head selectively
references tokens from the context and adds its transformed representation into the residual stream.
By analyzing heads individually, one can assess whether the contextual information is faithfully
preserved or distorted.

We adopt the emerging view that neural networks encode interpretable directions in activation space
and hypothesize that certain heads correspond to truthfulness. Specifically, we examine whether
each head integrates context in a reliable manner or propagates misleading signals. To test this, we
apply linear probing (Alain & Bengio, 2017) at the head level: a probe of each head is trained to
discern whether the given sequence is truthful or not.

Our framework extends beyond Large Language Models (LLMs) to Multimodal Large Language
Models (MLLMs), where contextual grounding is even more critical. For this setting, we structure
the input as x = {xknowledge, xquestion, xanswer}, where the knowledge can be text of world knowledge
or the real image, and analyze the activations at the position of the final answer token. The probe
of each head is trained as a binary classifier, distinguishing heads that truthfully reference the input
context.

Concretely, for each attention head h in layer l, we collect the attention head output vector xh
l that

contributes to the residual stream at the final answer position. The probe takes the form

pθ(x
h
l ) = σ(⟨θ, xh

l ⟩), (4)

where θ ∈ RD is the probe parameter and σ denotes the sigmoid function. We construct probing
datasets D = (xh

l , yi),where yi = 1{answer is truthful} by labeling each activation with y = 1
when truthful answers are given and y = 0 for hallucinated ones. Each dataset is randomly split
into training and validation sets with a 4:1 ratio. Probes are then trained on the training sets with a
binary classification objective.

We evaluate this approach on the Vicuna-7B model (Chiang et al., 2023) using the HaluEval dataset
(Li et al., 2023a) , which is specifically designed to measure sensitivity to contextual grounding.
Probes are trained across all 32 transformer layers and their associated heads, enabling a fine-grained
analysis of head-level contributions to truthful outputs.

As shown in 1, the truthfulness score can be observed for each layer and head according to the
image. For instance, the sixth head of the first layer demonstrates a high capability for truthfully
grounding the given context.

2.3 FINE-TUNED MLLMS INHERIT TRUTHFUL REASONING FROM FOUNDATIONAL LLMS.

To examine whether the phenomenon of truthfulness heads identified in Large Language Models
(LLMs) persists when these models are adapted into Multimodal Large Language Models (MLLMs),
we extended the analysis presented in Section 2.2. Specifically, we asked:

To what extent do truthfulness heads remain consistent when the same LLM is fine-tuned for multi-
modal objectives?

0

0.2

0.4

0.6

0.8

1

0.55
0.48

0.02

LLaVA-1.5 LLaVA-NeXT Mistral

Figure 3: Cross-modal corre-
lation with Vicuna-7B

To address this, we evaluated representative MLLMs from two ma-
jor model families: (i) LLaVA-1.5 and LLaVA-NeXT, both fine-
tuned from Vicuna-7B (Chiang et al., 2023), and (ii) Qwen2.5-VL
and Qwen2.5-Omni, both fine-tuned from Qwen2.5 (Qwen et al.,
2025). This cross-family analysis allows us to test whether the in-
heritance of truthfulness heads generalizes beyond a single back-
bone architecture.

We first investigated family-level correlations using the HaluEval
dataset, where models must ground their predictions in the provided
context. Since finetuned MLLMs are trained to process image to-
kens, we evaluated two conditions: (a) with identical textual inputs
as their base LLMs, and (b) with an additional black image contain-
ing no informative content. As shown in Figure 1(b), LLaVA-1.5
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Figure 4: (1) Truthfulness scores of individual attention heads obtained via linear probing. (2)
Cross-family similarity of head-level truthfulness scores when evaluated on models sharing the same
baseline. (3) by applying the proposed soft gating mechanism, which adjusts head contributions
based on their truthfulness scores.

and LLaVA-NeXT exhibited near-perfect correlation (≈ 1.0) with
Vicuna-7B when given text-only inputs. Even when a non-informative image was introduced, the
correlation remained consistently high (> 0.9), demonstrating robustness to added visual noise.
For Qwen2.5-based models (Figure 1(c)), correlations were slightly lower than those of Vicuna but
still substantial, exceeding 0.77 across conditions. Detailed head-level truthfulness scores for each
model are shown in Figure 2.

Beyond single-dataset evaluations, we examined cross-modal correlations between the truthfulness
scores of LLM heads (text-only) and their MLLM counterparts (with image context) as shown in
Figure3. Using HaluEval (Li et al., 2023a) and PhD (text-context) (Liu et al., 2025) datasets, as
well as RLHF-V (Yu et al., 2024) and PhD (image-context) (Liu et al., 2025) datasets, we found that
within-family correlations remained consistently high (> 0.55), in sharp contrast to cross-family
baselines such as Mistral, which showed negligible correlation (≈ 0.02). These results indicate that
inheritance extends not only across datasets but also across modalities.

Taken together, our analysis shows that fine-tuned MLLMs preserve the structural role of truthful-
ness heads from their foundational LLMs. This inheritance holds even under multimodal adaptation
and persists across both text- and image-grounded settings. These findings suggest that truthfulness
heads represent a stable architectural property, providing a foundation for cross-family interventions
aimed at improving contextual grounding and truthfulness.

3 REFINING LVLMS TOWARDS TRUTHFULNESS

Building on the head-level analysis described in Section 2.2, we introduce a refinement strategy
truthprobe that leverages the identified truthfulness scores of attention heads to guide model be-
havior. Specifically, our method amplifies the contribution of heads with consistently high truth-
fulness scores by increasing their additive influence in the residual connection, while attenuating
or reweighting the contributions of less truthful heads. This selective adjustment ensures that the
residual stream is more strongly shaped by context-faithful signals, thereby mitigating the effect of
misleading activations. By systematically steering the residual pathway toward information from
reliable heads, we aim to enhance the overall truthfulness of Multimodal Large Language Models
(MLLMs).

3.1 SOFT HEAD GATING FOR TRUTHFULNESS AMPLIFICATION

To further refine the residual pathway with respect to context-faithful reasoning, we propose a soft
gating mechanism that amplifies or attenuates the contribution of each attention head according to
its estimated truthfulness score. Unlike hard masking, which discards information from untrusted
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heads, our approach preserves the expressive capacity of multi-head attention (MHA) while softly
steering the residual stream toward reliable signals.

Formally, in a Transformer layer l, the attention outputs of individual heads are aggregated as in
equation 2. To apply the Truth Score as a soft gate, we take the projected attention before the
residual connection, ol ∈ Rd, reshape it into head-wise components õhl ∈ Rnh×hd, and scale each
by its corresponding gate value ghl . The gated representations are then concatenated back and added
to the residual stream, thereby modulating each head’s contribution according to its Truth Score:

xl+1 = xl + Concat H
h=1(g

h
l · õ(h)l ), (5)

ghl = 1 + λ · norm(S), (6)

Here, ghl denotes the soft gate for head h at layer l, parameterized by the normalized Truth Score S
and scaled by a parameter λ. Specifically, when the norm-based score S is larger, the corresponding
head output is amplified beyond the baseline level, whereas smaller values reduce its relative impact.
This formulation enables the model to selectively strengthen more reliable heads while suppressing
less informative ones. Importantly, the proposed soft gating mechanism ensures that all heads remain
active; their influence on the residual connection is adaptively modulated in proportion to their
truthfulness score, thereby preserving diversity while promoting context-faithful reasoning.

By embedding this gating mechanism into the residual update, the model effectively prioritizes trust-
worthy contextual cues without sacrificing the diversity of representations contributed by different
heads. This design allows Multimodal Large Language Models (MLLMs) to more faithfully prop-
agate context-grounded information and mitigates the propagation of misleading or hallucinated
activations.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

Models. To investigate the transferability of truthfulness heads across model families, we focus
on models that share a common backbone. Specifically, we use Vicuna-7B (Chiang et al., 2023) as
the base LLM and evaluate its fine-tuned counterparts, LLaVA-1.5 (Liu et al., 2024a) and LLaVA-
NeXT (Li et al., 2024). In parallel, we conduct experiments on the Qwen2.5 family, comparing the
base Qwen2.5 (Qwen et al., 2025) model with its vision–language variants, Qwen2.5-VL-Instruct
(Bai et al., 2025) and Qwen2.5-VL-Omni (Xu et al., 2025). This setup allows us to systematically
analyze whether the identified truthful components remain consistent when adapted to multimodal
tasks within the same architectural lineage.

Benchmarks. We evaluate our method on the Polling-based Object Probing Evaluation (POPE)
benchmark (Li et al., 2023c). This benchmark is constructed from the MSCOCO (Lin et al., 2014),
A-OKVQA (Marino et al., 2019), and GQA datasets (Hudson & Manning, 2019), and is specifically
designed to assess whether Vision–Language Models (VLMs) correctly recognize objects in images.
The evaluation is framed as a binary classification task, enabling the measurement of hallucination
by testing whether the model provides truthful answers regarding object presence. We conduct
experiments under three settings provided by POPE: random, popular, and adversarial.

Implementation Details. For the soft gating mechanism, we use scaling parameter λ and a nor-
malization method to control the effect of the Truth Score. We maintain the consistent setting for
each model across all benchmarks. For the MLLMs, we use min-max normalization and set λ = 0.1
for LLaVA-1.5, and λ = 0.3 for LLaVA-NeXT, Qwen2.5-VL-Instruct, Qwen2.5-VL-Omni. As for
the LLMs in Tab. 1, we adopt a centered normalization, and λ = 4.5 for Vicuna-7B and λ = 7.5 for
Qwen2.5.

Probing Dataset for Truthfulness-aware Head Gating. We employ the RLHF-V dataset to con-
struct a probing dataset for the head gating experiment of MLLMs. The RLHF-V dataset provides
sentence-level responses to image–question pairs, including model-generated incorrect responses
and human-corrected responses. For the probing the MLLMs, we augmented the dataset by modi-
fying the incorrect responses to match the sentence structure of the corresponding correct responses

6
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HaluEval

Model Acc F1 Prec Rec

Vicuna-7B 38.33 13.42 22.62 9.54
Vicuna-7B + Truth LLM 34.91 44.65 38.89 52.4

Qwen2.5 27.39 36.58 32.52 41.8
Qwen2.5 + Truth LLM 36.5 41.07 38.38 44.17

Table 1: Validation of Truth Scores. Comparison between vanilla LLM models and our truth-
enhanced models (Ours) on the HALUEVAL benchmark, where Truth Score are obtained via Linear
Probing.

using Qwen2.5-VL, a state-of-the-art vision-language model. This procedure yielded 292 incorrect-
correct pairs that differ only in the final 1–2 words. We matched the number of MLLM probing
data by also using 292 examples from the HaluEval dataset for our LLM probing experiments. For
further details regarding the HaluEval dataset, please refer to the Appendix.

4.2 EVALUATION OF THE PROPOSED METHODS

Validation of Truth Scores. To validate the effectiveness of our proposed Truth Scores, we first
analyze their impact on base LLMs. We obtain the Truth Scores for each model—Vicuna-7B and
Qwen2.5—by performing linear probing on the HaluEval dataset as in Sec 2.2. These scores are
then applied as a soft gate to the original base LLMs. We evaluate the models’ truthfulness on the
same HaluEval benchmark, which was used for probing. As demonstrated in Table 1, applying our
method significantly enhances performance, with the models showing an improved ability to judge
the truthfulness of given sequences. The results, especially for Qwen2.5, prove that our Truth Score
effectively captures and enhances a model’s truthful reasoning ability.

Transfer Truth Scores of base LLMs to finetuned MLLMs. Building upon our findings that
the Truth scores of base LLMs and their finetuned MLLMs are highly correlated—even finetuned
or proved with different modalities—we explored the direct transferability of these scores. We
applied the Truth Scores obtained from the base LLMs (Vicuna-7B and Qwen2.5) as a soft gate to
their corresponding finetuned MLLMs. Our experiments included LLaVA-1.5 and LLaVA-NeXT
(finetuned from Vicuna-7B), as well as Qwen2.5-VL-Instruct and Qwen2.5-VL-Omni (finetuned
from Qwen2.5). When evaluated on the POPE benchmark, which requires judging truthfulness
from image and text inputs, we observed performance improvement over the vanilla models in most
cases. This result suggests that Truth Scores of base LLMs can be effectively transferred to their
finetuned MLLM counterparts. Furthermore, the performance gain from this transfer was found
to be on par with the gain achieved by probing MLLMs on their own. This results highlights the
potential for a unified approach: leveraging the Truth Scores from a single base LLM to enhance the
truthfulness of multiple specialized MLLMs developed from the same foundation.

4.3 ABLATION OF ATTN HEAD GATING

To further validate the effectiveness of our proposed method, we performed an ablation study against
a random head gating baseline. We used a baseline where the gating term λ · norm(S) in eq. 6 was
replaced with a random value between -1 and 1. We assessed the performance of MLLMs—LLaVA-
1.5 and LLaVA-NeXT with our method, which transfers its base LLM (Vicuna-7B)’s Truth Score
as a soft gate, and the random head gate baseline using the POPE benchmark. As shown in Fig. 5,
the random head gating method consistently leads to a notable decrease in performance than that of
vanilla model. This degradation in performance indicates that randomly enhancing or suppressing
head contributions disrupts the model’s pretrained functions, particularly its ability of truthful rea-
soning for the given inputs. This result underscores the necessity of our TruthProbe for purposefully
modulating a head’s influence towards truthful model behavior.

7
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Model POPE(MSCOCO) POPE(A-OKVQA) POPE(GQA)

Acc F1 Rec Acc F1 Rec Acc F1 Rec

LLaVA-1.5(Vanila) 86.9 85.8 79.1 86.3 86.5 87.8 85.1 85.3 86.1
LLaVA-1.5 + TruthProbe LLM 86.8 85.8 79.7 86.0 86.4 88.8 85.0 85.3 87.3
LLaVA-1.5 + TruthProbe MLLM 86.8 85.8 79.6 86.0 86.5 89.1 85.1 85.4 87.1

LLaVA-NeXT(Vanila) 87.7 86.5 78.8 87.4 87.4 86.8 86.6 86.4 84.9
LLaVA-NeXT + TruthProbe LLM 88.4 87.5 81.1 87.7 87.9 89.6 86.6 86.7 87.5
LLaVA-NeXT + TruthProbe MLLM 88.1 87.1 80.5 87.8 88.0 89.3 86.8 86.9 87.6

Qwen2.5-VL-Instruct(Vanila) 87.6 86.3 78.2 86.9 87.1 86.6 87.3 87.1 85.7
Qwen2.5-VL-Instruct + TruthProbe LLM 88.1 87.0 79.6 87.9 87.9 87.8 87.1 87.1 86.5
Qwen2.5-VL-Instruct + TruthProbe MLLM 88.1 87.0 79.9 87.6 87.6 87.2 86.8 86.8 86.1

Qwen2.5-VL-Omni(Vanila) 85.1 84.7 75.0 87.0 87.4 84.7 87.0 86.5 82.9
Qwen2.5-VL-Omni + TruthProbe LLM 87.5 86.2 78.1 87.7 87.6 87.3 87.5 87.4 86.7
Qwen2.5-VL-Omni + TruthProbe MLLM 87.3 85.9 77.3 87.7 87.5 86.3 87.3 87.1 85.6

Table 2: Main Result. TruthProbe LLM denotes the refinement process using head-level Truth Scores
obtained from the base language models (Vicuna-7B and Qwen2.5). TruthProbe MLLM denotes the
refinement process using Truth Scores derived directly from the corresponding MLLMs.

(b)(a)

Figure 5: Comparison of our method’s effectiveness with Random Head Gating on POPE
benchmarks. Performance of the vanilla model is indicated by a dashed line. Compared to ran-
dom head gating, our proposed TruthProbe gating consistently improves performance.

5 DISCUSSIONS

5.1 PERSPECTIVE OF MODEL FAMILIES

Our findings demonstrate that the components responsible for truthfulness are not confined to a
single model instance. Even after fine-tuning to adapt the backbone model to different modalities,
the structural role of these components remains preserved. While our study primarily focused on
identifying context-truthful heads, this invariance suggests that other well-studied head functions
may exhibit similar stability across model families.

By establishing that truthfulness heads are both inherited and input-invariant, we provide a founda-
tion for designing intervention strategies that generalize across related architectures. This opens the
door for principled refinement approaches—such as soft gating—where interventions developed for
one model can be seamlessly transferred to its variants. In real-world deployment, such cross-model
stability not only reduces engineering overhead but also minimizes the risk of unintended behaviors,
ultimately contributing to the development of safer and more interpretable LVLMs.
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6 RELATED WORKS

6.1 HALLUCINATION MITIGATION IN LARGE VISION-LANGUAGE MODELS

Hallucination in LVLM refers to the generation of text that is inconsistent with the visual input, and
numerous studies have analyzed its causes and proposed methods to address it. For example, LURE
(Zhou et al., 2024) investigates several underlying factors of hallucination, including statistical bias
introduced during pre-training—which can lead to the model’s over-reliance on intrinsic knowledge
or modality bias—uncertainty in token generation probability, and the positional bias of generated
tokens in auto-regressive models. To mitigate these problems, some studies (Deng et al., 2024;
An et al., 2025; Huo et al., 2025; Wang et al., 2025) employ contrastive decoding to improve the
reliability of LVLMs; for instance, VCD (Leng et al., 2024) leverages the distributional differences
between distorted and clean images to reduce distributional bias and suppress hallucination. On
the other hand, training-based approaches (Yang et al., 2025; Sarkar et al., 2025) involve training
dedicated modules to alleviate hallucination during inference. However, these approaches either
overlook visual attention patterns in LVLMs or require substantial additional training data, which
results in higher computational costs.

6.2 ATTENTION-FOCUSED METHODS

Owing to the transformer-based architecture of LVLMs, many recent studies have examined their
attention mechanisms. Since LVLMs must effectively integrate visual information, several works
have proposed modifying the model’s attention distribution to mitigate hallucinations. Prior research
suggests that an over-allocation of attention to textual input can induce hallucinations, motivating
approaches that amplify visual attention (He et al., 2025; Zhou et al., 2025). For example, PAI (Liu
et al., 2024b) demonstrates that increasing the allocation of attention to visual tokens can effectively
reduce hallucinations. In addition, LVLMs often exhibit the attention sink phenomenon, where
certain tokens receive disproportionately high attention regardless of their relevance, which is also
linked to hallucinations. To address these issues, recent approaches (Kang et al., 2025) introduce
adaptive mechanisms that reallocate attention more effectively toward visual tokens.

6.3 ATTENTION HEAD

Since the transformer architecture consists of multiple attention heads and layers, several studies
have demonstrated that each layer and head plays a distinct role in Large Language Models (LLMs)
(Zheng et al., 2024). Some works identify the role of attention heads via linear probing (Li et al.,
2023b), which trains linear classifiers to distinguish their functions. On the other hand, other studies
(Wu et al., 2025; Yu et al., 2025) design custom scoring functions based on criteria such as atten-
tion weights or task-specific performance to characterize the roles of different heads. In the field
of Vision-Language Models (VLMs), a growing body of research has also aimed at identifying at-
tention heads that are particularly associated with visual information (Bi et al., 2025; Nam et al.,
2025).

7 CONCLUSION

Our analysis reveals that truthfulness heads identified in Large Language Models (LLMs) are con-
sistently inherited by their fine-tuned Multimodal Large Language Models (MLLMs), maintaining
strong correlations across modalities and datasets. Leveraging this property, we introduced a soft
head gating mechanism that amplifies context-faithful heads, improving grounding and reducing hal-
lucination without losing complementary signals. Experiments on HaluEval and POPE benchmarks
confirmed that truthfulness scores from base LLMs can be directly transferred to their multimodal
descendants, achieving comparable gains to probing MLLMs themselves. These results establish
truthfulness heads as a stable and transferable inductive bias, enabling unified interventions to en-
hance the reliability of both LLMs and MLLMs.
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A APPENDIX

B ADDITIONAL EXPERIMENTAL DETAILS

B.1 LINEAR PROBING DATA FOR LLMS

We used two different datasets, HaluEval (Li et al., 2023a) and PhD (Liu et al., 2025), for LLM
linear probing. HaluEval is a benchmark designed to evaluate hallucination in LLMs, comprising
four components: knowledge, question, hallucinated answer, and right answer. Here, knowledge
serves as a query for answering the given question. The LLM is evaluated by selecting the correct
answer from the two provided options.

PhD is a VLM hallucination benchmark consisting of three tasks: visual ambiguity, incorrect con-
text(icc), and counter common sense (ccs). The visual ambiguity task examines the capability of
VLMs to leverage visual modality under ambiguous image inputs for vision question answering
(vqa). Incorrect context task provides inconsistent textual and image modalities, requiring the model
to rely on only one modality for answering. Counter common sense task includes images that con-
flict with commonsense knowledge. Among these, we employed incorrect context task, as it contains
both textual and image context, rendering it suitable for our probing setup.

Both datasets share a (context text, question, answer) structure. For HaluEval, we constructed bal-
anced (knowledge, question, right answer) and (knowledge, question, hallucinated answer) pairs,
10,000 samples in total. Similarly, for PhD, we created a balanced dataset by selecting 5,000 sam-
ples each for (context, question, right answer) and (context, question, hallucinated answer). Since
PhD’s answers are originally image-based, the yes/no labels were inverted when adapting the dataset
for LLM probing.

B.2 LINEAR PROBING DATA FOR MLLMS

Since MLLM probing requires datasets consisting of multiple modalities, we selected two datasets:
PhD (Liu et al., 2025) and RLHF-V (Yu et al., 2024). As described above, PhD provides three eval-
uation tasks, and we employed the incorrect context (icc) task for probing. This setting shares the
same questions as LLM probing but introduces a different modality, making it suitable for multi-
modal evaluation.

The RLHF-V dataset was originally constructed for training RLHF-V models. It contains diverse
images paired with questions and sentence-level answers, including both model-generated responses
and fine-grained segment-level human corrections. Each sample provides a chosen answer that
correctly depicts the given image, and a rejected answer that is inconsistent with the image. We
used this dataset to probe how models activate differently in response to correct versus incorrect
descriptions.

As both datasets share the (image context, question, answer) structure, we constructed MLLM prob-
ing datasets in a manner consistent with the LLM probing setup. For PhD, we created a balanced
dataset of 10,000 samples, comprising (image, question, right answer) and (image, question, hallu-
cinated answer) pairs. For RLHF-V, we similarly built balanced (image, question, right description)
and (image, question, hallucinated description) pairs. To avoid confounding effects from overly long
responses, we restricted RLHF-V to question-answering samples only, resulting in 2,726 instances.

C LINEAR PROBER TRAINING DETAILS

We adopt the linear probing methodology from the ITI paper (Li et al., 2023b). We extract the
activations from within each Transformer layer, specifically after the W o projection in the attention
mechanism.

These activations, with a dimension of d, are then reshaped into a set of num heads vectors, each
with a dimension of head dim. A dedicated linear layer (probe) with dimensions of (head dim × 1)
is attached to each head. The reshaped, head-specific vectors are passed through their corresponding
probe to produce features. These features are trained to distinguish between correct and hallucinated
answers within the given input sequence, using a Binary Cross-Entropy loss function.
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Right Answer

Question: What star of Now You See Me was born in Oman?

Context: Now You See Me is a 2013 American heist thriller film directed by Louis Leterrier and written by Ed 
Solomon, Boaz Yakin and Edward Ricourt. The film features an ensemble cast of Jesse Eisenberg, Mark Ruffalo, 
Woody Harrelson, Mélanie Laurent, Isla Fisher, Dave Franco, Michael Caine, and Morgan Freeman.Isla Lang Fisher 
( ; born 3 February 1976) is an Australian actress. Born to Scottish parents in Oman, she moved to Australia at age 6.
Answer: Isla Fisher

Hallucinated Answer

Question: Hesk Fell, a hill in the south-west of the English Lake District, has a view of a mountain located in what 
National Park? 
Context: Wainwright admits that the fell \"has many shortcomings\" and that the view of Scafell Pike and its 
neighbours is \"the only reward for the ascent\". It is located in the Lake District National Park, in Cumbria, and is 
part of the Southern Fells.
Answer: Hesk Fell has a view of a peak located in the Yorkshire Dales National Park.

Figure 6: Example from the HaluEval dataset. Top (blue) shows a correct answer, bottom (red)
shows a hallucinated answer.

Right Answer

Question: Is there a tall tree in front of the train in the image?

Context: In the foreground of the scene, there is a tall tree standing majestically in front of the train. Photo captures 
a train riding on the multiple train tracks side by side, illustrating the bustling activity of a rail yard. Amidst this, a 
blue train can also be seen traveling past a set of traffic lights, highlighting the integration of rail and road transport.
Answer: yes

Hallucinated Answer

Question: Is there a tall tree in front of the train in the image?

Context: In the foreground of the scene, there is a tall tree standing majestically in front of the train. Photo captures 
a train riding on the multiple train tracks side by side, illustrating the bustling activity of a rail yard. Amidst this, a 
blue train can also be seen traveling past a set of traffic lights, highlighting the integration of rail and road transport.
Answer: yes

Figure 7: Example from the PhD dataset. Top (blue) shows a correct answer, bottom (red) shows a
hallucinated answer.

We trained the probers for 200 epochs using the AdamW optimizer. On a single A6000 GPU, the
training process for approximately 10,000 data points took about 10-20 minutes for LLMs and 30-40
minutes for MLLMs.

D GATING DETAILS

For our soft gating mechanism, we apply normalization to the Truth Scores for the heads within
each layer. As mentioned in the main paper, the LLMs in our study use a centered normalization
approach. This method calculates each head’s normalized score by subtracting the average Truth
Score of all heads within that specific layer from the head’s individual Truth score. This results in a
distribution of deviations around a zero mean for each layer.

We selected the optimal λ value and normalization strategy for each model by performing a grid
search on a held-out validation set, which comprised 20% of the full dataset. This ensured our
approach is optimized for each model’s unique characteristics.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Right Answer

Question: Is the woman's 
backpack blue in the image?

Answer: no

Hallucinated Answer

Question: Are there 3 bicycles in 
the image?

Answer: yes

Right Answer

Question: What are the colors of the train present in the scene?

Answer: The train in the scene is yellow and gray.

Hallucinated Answer
Question: Is the man wearing socks?

Answer: Yes, this man seems to be wearing socks. He is wearing a pair of short socks while 
playing Frisbee.

Figure 8: Examples from the MLLM probing datasets. Blue denotes a correct answer, while red
denotes a hallucinated answer. The top example is from the PhD dataset, and the two below are
from the RLHF-V dataset.

Model POPE (MSCOCO)

Acc F1 Rec

LLaVA-1.5 86.9 85.8 79.1
LLaVA-1.5 + TruthProbe LLM 86.8 85.8 79.7
LLaVA-1.5 + Random Gate (3 Trials) 86.1 ± 0.18 84.9 ± 0.21 77.8 ± 0.28

LLaVA-NeXT(Vanila) 87.7 86.5 78.8
LLaVA-NeXT + TruthProbe LLM 88.4 87.5 81.1
LLaVA-NeXT + Random Gate (3 Trials) 87.1 ± 0.08 85.8 ± 0.08 78.1 ± 0.1

Table 3: Performance comparison with TruthProbe vs. Random Head Gating on POPE (MSCOCO).

E EXPERIMENTAL SETUP

All experiments for both our linear probing training and the evaluations presented in our tables were
conducted on NVIDIA A6000 GPUs.

F ABLATION STUDY: FULL RESULTS

Table 3 through 5 present the detailed ablation results for the LLaVA-1.5 and LLaVA-NeXT. We
compare our TruthProbe method with a Random Head Gate baseline. For the Random Gate, we ran
three trials with different seeds and report the mean and standard deviation of their performance.
Across all evaluations, the Random Gate consistently underperforms the vanilla models, highlight-
ing that arbitrarily modifying a head’s contribution is detrimental to performance. This result con-
firms that our method’s targeted approach is crucial for performance gains, as opposed to random
manipulation.
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Model POPE (A-OKVQA)

Acc F1 Rec

LLaVA-1.5 86.3 86.5 87.8
LLaVA-1.5 + TruthProbe LLM 86.0 86.4 88.8
LLaVA-1.5 + Random Gate (3 Trials) 85.6 ± 0.12 85.7 ± 0.11 86.4 ± 0.07

LLaVA-NeXT(Vanila) 87.4 87.4 86.8
LLaVA-NeXT + TruthProbe LLM 87.7 87.9 89.6
LLaVA-NeXT + Random Gate (3 Trials) 87.2 ± 0.07 87.1 ± 0.09 86.3 ± 0.22

Table 4: Performance comparison with TruthProbe vs. Random Head Gating on POPE (A-
OKVQA).

Model POPE (GQA)

Acc F1 Rec

LLaVA-1.5 85.1 85.3 86.1
LLaVA-1.5 + TruthProbe LLM 85.0 85.3 87.3
LLaVA-1.5 + Random Gate (3 Trials) 84.3 ± 0.28 84.3 ± 0.25 84.5 ± 0.10

LLaVA-NeXT(Vanila) 86.6 86.4 84.9
LLaVA-NeXT + TruthProbe LLM 86.6 86.7 87.5
LLaVA-NeXT + Random Gate (3 Trials) 85.8 ± 0.04 85.5 ± 0.04 83.7 ± 0.16

Table 5: Performance comparison with TruthProbe vs. Random Head Gating on POPE (GQA).

15


	Introduction
	Identifying Components for Context-based Truthful Reasoning
	Preliminary
	Finding Context Truthful Head
	Fine-tuned MLLMs Inherit Truthful Reasoning from Foundational LLMs.

	Refining LVLMs towards Truthfulness
	Soft Head Gating for Truthfulness Amplification

	Experiments
	Experimental Setting
	Evaluation of the Proposed Methods
	Ablation of Attn Head Gating

	Discussions
	Perspective of Model Families

	Related Works
	Hallucination Mitigation in Large Vision-Language Models
	Attention-focused Methods
	Attention Head

	Conclusion
	Appendix
	Additional Experimental Details
	Linear Probing Data for LLMs
	Linear Probing Data for MLLMs

	Linear Prober Training Details
	Gating Details
	Experimental Setup
	Ablation Study: Full Results

