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ABSTRACT

Large-scale neural networks have demonstrated remarkable performance in dif-
ferent domains like vision and language processing, although at the cost of mas-
sive computation resources. As illustrated by compression literature, structural
model pruning is a prominent algorithm to encourage model efficiency, thanks to
its acceleration-friendly sparsity patterns. One of the key questions of structural
pruning is how to estimate the channel significance. In parallel, work on data-
centric AI has shown that prompting-based techniques enable impressive gener-
alization of large language models across diverse downstream tasks. In this pa-
per, we investigate a charming possibility - leveraging visual prompts to capture
the channel importance and derive high-quality structural sparsity. To this end,
we propose a novel algorithmic framework, namely PASS. It is a tailored hyper-
network to take both visual prompts and network weight statistics as input, and
output layer-wise channel sparsity in a recurrent manner. Such designs consider
the intrinsic channel dependency between layers. Comprehensive experiments
across multiple network architectures and six datasets demonstrate the superiority
of PASS in locating good structural sparsity. For example, at the same FLOPs
level, PASS subnetworks achieve 1% ∼ 3% better accuracy on Food101 dataset;
or with a similar performance of 80% accuracy, PASS subnetworks obtain 0.35×
more speedup than the baselines. Codes are provided in the supplements.

1 INTRODUCTION

Recently, large-scale neural networks, particularly in the field of vision and language modeling,
have received upsurging interest due to the promising performance for both natural language (Brown
et al., 2020; Chiang et al., 2023; Touvron et al., 2023) and vision tasks (Dehghani et al., 2023; Bai
et al., 2023). While these models have delivered remarkable performance, their colossal model
size, coupled with their vast memory and computational requirements, pose significant obstacles to
model deployment. To solve this daunting challenge, model compression techniques have re-gained
numerous attention (Dettmers et al., 2022; Xiao et al., 2023; Ma et al., 2023; Frantar & Alistarh,
2023; Sun et al., 2023; Jaiswal et al., 2023) and knowledge distillation can be further adopted on
top of them to recover optimal performance (Huang et al., 2023; Sun et al., 2019; Kim et al., 2019).
Among them, model pruning is a well-established method known for its capacity to reduce model
size without compromising performance (LeCun et al., 1989; Han et al., 2015; Molchanov et al.,
2016) and structural model pruning has garnered significant interest due to its ability to systemati-
cally eliminate superfluous structural components, such as entire neurons, channels, or filters, rather
than individual weights, making it more hardware-friendly (Li et al., 2017; Liu et al., 2017a; Fang
et al., 2023; Yin et al., 2023).

In the context of structural pruning for vision models, the paramount task is the estimation of the
importance of each structure component, such as channel or filters. It is a fundamental challenge
since it requires dissecting the neural network behavior and a precise evaluation of the relevance
of individual structural sub-modules. Previous methodologies (Liu et al., 2017b; Fang et al., 2023;
Wang et al., 2021; Murti et al., 2022; Nonnenmacher et al., 2022) have either employed heuristics
or developed learning pipelines to derive scores, achieving notable performance. Recently, the pre-
vailingness of natural language prompts (Ouyang et al., 2022; Ganguli et al., 2023) has facilitated
an emerging wisdom that the success of AI is deeply rooted in the quality and specificity of data
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that is originally created by human (Zha et al., 2023; Gunasekar et al., 2023). Techniques such as
in-context learning (Chen et al., 2022a; Wei et al., 2022; Min et al., 2022) and prompting (Razdai-
biedina et al., 2023; Dong et al., 2022; Chen et al., 2023; Liu et al., 2021c; Chen et al., 2022b) have
been developed to create meticulously designed prompts or input templates to escalate the output
quality of LLMs. These strategies bolster the capabilities of LLMs and consistently achieve no-
table success across diverse downstream tasks. This offers a brand new angle for addressing the
intricacies of structural pruning on importance estimation of vision models: How can we leverage
the potentials within the input space to facilitate the dissection of the relevance of each individual
structural component across layers, thereby enhancing structural sparsity?

One straightforward approach is directly editing input through visual prompt (Jia et al., 2022) to
enhance the performance of compressed vision models (Xu et al., 2023). The performance upper
bound of this approach largely hinges on the quality of the sparse model achieved by pruning, given
that prompt learning is applied post-pruning. Moreover, when pruning is employed to address the
intricate relevance between structural components across layers, the potential advantages of using
visual prompts are not taken into consideration.

Therefore, we posit that probing judicious input editing is imperative for structural pruning to ex-
amine the importance of structural components in vision models. The crux of our research lies in
embracing an innovative data-centric viewpoint towards structural pruning. Instead of designing or
learning prompts on top of compressed models, we develop a novel end-to-end framework for chan-
nel pruning, which identifies and retains the most crucial channels across models by incorporating
visual prompts, referred to as PASS.

Moreover, the complexities associated with inherent channel dependencies render the generation
of sparse channel masks a challenging task. Due to this reason, many previous arts of pruning
design delicate pruning metrics to recognize sparse subnetworks with smooth gradient flow (Wang
et al., 2020; Evci et al., 2022; Pham et al., 2022). To better handle the channel dependencies across
layers during channel pruning, we propose to learn sparse masks using a recurrent mechanism.
Specifically, the learned sparse mask for the recent layer largely depends on the mask from the
previous layer in an efficient recurrent manner, and all the masks are learned by incorporating the
extra information provided by visual prompts. The PASS framework is shown in Figure 1. Our
contributions are summarized as follows:

• We probe and comprehend the role of the input editing in the context of channel pruning,
and confirming the imperative to integrate visual prompts for crucial channel discovery.

• To handle the complex dependence caused by channel elimination across layers, we further
develop a recurrent mechanism to efficiently learn layer-wise sparse masks by taking both
the sparse masks from previous layers and visual prompts into consideration. Anchored
by these innovations, we propose PASS, a pioneering framework dedicated to proficient
channel pruning in convolution neural networks from a data-centric perspective.

• Through comprehensive evaluations across six datasets containing {CIFAR-10, CIFAR-
100, Tiny-ImageNet, Food101, DTD, StanfordCars} and four architectures including
{ResNet-18, ResNet-34, ResNet-50, VGG}, our results consistently demonstrate PASS’s
significant potential in enhancing both the performance of the resultant sparse models and
computational efficiency.

• More interestingly, our empirical studies reveal that the sparse channel masks and the hy-
pernetwork produced by PASS exhibit superior transferability, proving beneficial for a
range of subsequent tasks.

2 RELATED WORK

Structural Network Pruning. Structural pruning achieves network compression through entirely
eliminating certain superfluous components from the dense network. In general, structural prun-
ing follows three steps: (i) pre-training a large, dense model; (ii) pruning the unimportant channels
based on criteria, and (iii) finetuning the pruned model to recover optimal performance. The pri-
mary contribution of various pruning approaches is located in the second step: proposing proper
pruning metrics to identify the importance of channels. Some commonly-used pruning metric in-
cludes but not limited to weight norm (Li et al., 2016; He et al., 2018a; Yang et al., 2018), Taylor
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Figure 1: The overall framework of PASS. (Left) Our pruning target is a convolutional neural net-
work (CNN) that takes images and visual prompts as input. (Right) The PASS hyper-network in-
tegrates the information from visual prompts and layer-wise weight statistics, then determines the
significant structural topologies in a recurrent fashion.

expansion Molchanov et al. (2016; 2019), feature-maps reconstruction error (He et al., 2018b; 2017;
Luo et al., 2017; Zhuang et al., 2018), feature-maps rank (Lin et al., 2020a), KL-divergence Luo
& Wu (2020), greedy forward selection with largest loss reduction Ye et al. (2020), feature-maps
discriminant information Hou & Kung (2020b;a); Kung & Hou (2020).

Prompting. In the realm of natural language processing, prompting has been acknowledged as
an effective strategy to adapt pre-trained models to specific tasks (Liu et al., 2023a). The power
of this technique was highlighted by GPT-3’s successful generalization in transfer learning tasks
using carefully curated text prompts (Brown et al., 2020). Researchers have focused on refining
text prompting methods (Shin et al., 2020), (Jiang et al., 2020) and developed a technique known as
Prompt Tuning. This approach involves using prompts as task-specific continuous vectors optimized
during fine-tuning (Li & Liang, 2021), (Lester et al., 2021), (Liu et al., 2021c), offering comparable
performance to full fine-tuning with a significant reduction in parameter storage and optimization.
Prompt tuning’s application in the visual domain has seen significant advancement recently. Pio-
neered by Bahng et al. (2022), who introduced prompt parameters to input images, the concept was
expanded by Chen et al. (2023) to envelop input images with prompt parameters. Jia et al. (2022)
took this further, proposing visual prompt tuning for Vision Transformer models. Subsequently, Liu
et al. (2023b); Zheng et al. (2022); Zhang et al. (2022) designed a prompt adapter to enhance these
prompts. Concurrently, Zang et al. (2022); Zhou et al. (2022b;a) integrated visual and text prompts
in vision-language models, boosting downstream performance.

Hypernetwork. Hypernetworks represent a specialized form of network architecture, specifically
designed to generate the weights of another Deep Neural Network (DNN). This design provides a
meta-learning approach that enables dynamic weight generation and adaptability, which is crucial
in scenarios where flexibility and learning efficiency are paramount. Initial iterations of hypernet-
works, as proposed by Zhang et al. (2018); Galanti & Wolf (2020); David et al. (2016); Li et al.
(2020), were configured to generate the weights for an entire target DNN. While this approach is
favorable for smaller and less complex networks, it constrains the efficacy of hypernetworks when
applied to larger and more intricate ones. To address this limitation, subsequent advancements in hy-
pernetworks have been introduced, such as the component-wise generation of weights (Zhao et al.,
2020; Alaluf et al., 2022; Mahabadi et al., 2021) and chunk-wise generation of weights (Chauhan
et al., 2023). Diverging from the initial goal of hypernetworks, our work employs them to fuse visual
prompts and model information for generating sparse channel masks.

3 PASS: VISUAL PROMPT LOCATES GOOD STRUCTURE SPARSITY

Notations. Let us consider a CNN with l layers, and each layer i contains its corresponding weight
tensor W(i) ∈ RCi

O×Ci
I×Ki×Ki

, where {Ci
O, Ci

I, and Ki} are the number of output/input channels
and convolutional kernal size, respectively. The entire parameter space for the network is defined as
W = {W(i)}|li=1. Similarly, a layer-wise binary mask is represented by M(i), where “0”/“1” indicates
removing/maintaining the associated channel. V denotes our visual prompts. (x, y) ∈ D denotes the
data of a target task.
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Rationale. In the realm of structural pruning for deep neural networks, one of the key challenges
is how to derive channel-wise importance scores for each layer. Conventional mechanisms estimate
the channel significance either in a global or layer-wise manner (He et al., 2017; Li et al., 2016; Fang
et al., 2023; Zhu & Gupta, 2017), neglecting the sequential dependency between adjacency layers.
Meanwhile, the majority of prevalent pruning methods are designed in a model-centric fashion (Fang
et al., 2023; Li et al., 2016; Lin et al., 2021; 2022; Liu et al., 2017b; Wang et al., 2021). In contrast,
an ideal solution to infer the high-quality sparse mask for one neural network layer i should satisfy
several conditions as follows:

① M(i) should be dependent to M(i−1). The sequential dependency between layers should be
explicitly considered. It plays an essential role in encouraging gradient flow throughout the
model (Wang et al., 2020; Pham et al., 2022), by preserving structural “pathways”.

② M(i) should be dependent to W(i). The statistics of network weights are commonly appre-
ciated as powerful features for estimating channel importance (Liu et al., 2017b; Li et al.,
2016).

③ M(i) should be dependent to V. Motivated by the data-centric advances in NLP, such
prompting can contribute to the dissecting and understanding of model behaviors (Raz-
daibiedina et al., 2023; Dong et al., 2022; Chen et al., 2023; Liu et al., 2021c; Chen et al.,
2022b).

Therefore, it can be expressed as M(i) = f(M(i−1), W(i), V), where the generation of a channel mask
for layer i depends on the weights in the current layer, the previous layers’ mask, and visual prompts.

3.1 INNOVATIVE DATA-MODEL CO-DESIGNS THROUGH A RECURRENT HYPERNETWORK

To meet the aforementioned requirements, PASS is proposed as illustrated in Figure 1, which en-
ables the data-model co-design pruning via a recurrent hyper-network. Details are presented below.

Modeling the Layer Sequential Dependency. The recurrent hyper-network in PASS adopts a
Long Short-Term Memory (LSTM) backbone since it is particularly suitable for capturing sequential
dependency. It enables an “auto-regressive” way to infer the structural sparse mask. To be specific,
the LSTM mainly utilizes the previous layer’s mask M(i−1), the current layer’s weights W(i), and a
visual prompt V as follows:

M(i) = LSTMθ(W̃
i, gω(V)) , W̃

(i) = M(i−1) ⊗ W(i), M(0) = LSTM(W(i), gω(V)), (1)

where the visual prompt V provides an initial hidden state for the LSTM hyper-network, θ is the
parameters of the LSTM model, and gω(V) is the extra encoder to map the visual prompt into an
embedding space. The channel-wise sparse masks (M(i)) generated from the hyper-network are
utilized to prune the weights of each layer as expressed by Ŵ(i) = M(i−1) ⊗ W(i) ⊗ M(i). M(i−1) ⊗ W(i)

represents the pruning of in-channels while W(i) ⊗ M(i) denotes the pruning of out-channels.

Visual Prompt Encoder. An encoder is used to extract representations from the raw visual prompt
V. gω(V) denotes a three-layer convolution network and ω are the parameters for the CNN gω(·).
The dimension of extracted representations equals the dimension of the hidden state of the LSTM
model. A learnable embedding will serve as the initial hidden state for the LSTM model.

Preprocessing the Weight. The in-channel pruned weights W̃(i) is a 4D matrix. In order to take this
weight information, it is first transformed into a vector of length equal to the number of out-channels
by averaging the weights over the Ci

I×Ki×Ki dimensions. Then, these vectors are padded by zero
elements to unify their length.

Converting Embedding to Channel-wise Sparse Mask. Generating layer-wise channel masks
from the LSTM module presents two challenges: (1) it outputs embeddings of a uniform length,
whereas the number of channels differs at each layer; (2) producing differentiable channel masks
directly from this module is infeasible. To tackle these issues, PASS adopts a two-step approach: ①
An independent linear layer is employed to map the learned embeddings onto channel-wise impor-
tant scores corresponding to each layer. ② During the forward pass in training, the binary channel
mask M is produced by setting the (1− s)×100% elements with the highest channel-wise important
scores to 1, with the rest elements set to 0. In the backward pass, it is optimized by leveraging the
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straight-through estimation method (Bengio et al., 2013). Here the s ∈ (0, 1) denotes the channel
sparsity of the network layer.

For achieving an optimal non-uniform layer-wise sparsity ratio, we adopt global pruning (Huang
et al., 2022) that eliminates the channels associated with the lowest score values from all layers
during each optimization step. This approach is grounded in the findings of Huang et al. (2022);
Liu et al. (2021b); Fang et al. (2023), which demonstrate that layer-wise sparsity derived using this
method surpasses other extensively researched sparsity ratios.

3.2 HOW TO OPTIMIZE THE HYPERNETWORK IN PASS

Learning PASS. The procedures of learning PASS involves a jointly optimization of the visual
prompt V, encoder weights ω, and LSTM’s model weights θ. Formally, it can be described below:

min
θ,ω,V

L(ΦŴ(x+ V), y), Ŵ(i) = M(i−1) ⊗ W(i) ⊗ M(i), (2)

Where ΦŴ(·) is the target CNN with weights Ŵ, x and y are the input image and its groundtruth
label. Note that M(i) is generated by LSTMθ(W̃

i, gω(V)) as described in Equation 1. The objective of
this learning phase is to optimize the PASS model to generate layer-wise channel masks, leveraging
both a visual prompt V and the inherent model weight statistics as guidance. After that, the obtained
sparse subnetwork will be further fine-tuned on the downstream dataset.

Fine-tuning Sparse Subnetwork. The procedures of subnetwork fine-tuning involve the optimiza-
tion of the visual prompt V and model weights W, which can be expressed by:

min
W,V

L(ΦŴ(x+ V), y), (3)

where Ŵ = M(i−1) ⊗ W(i) ⊗ M(i) and the sparse channel mask M is fixed.

4 EXPERIMENTS

In this section, we empirically demonstrate the effectiveness of our proposed PASS method against
various baselines across multiple datasets and models. Additionally, we evaluate the transferabil-
ity of the sparse channel masks and the hypernetwork learned by PASS. Further, we validate the
superiority of our specific design by a series of ablations studies.

To evaluate PASS, we follow the widely-used evaluation of visual prompting which is pre-trained on
large datasets and evaluated on various target domains (Chen et al., 2023; Jia et al., 2022). Specifi-
cally, this process is accomplished by two steps: (1) Identifying an optimal structural sparse neural
network based on a pre-trained model and (2) Fine-tuning the structural sparse neural network on
the target task. During the training process, we utilize the Frequency-based Label Mapping FLM
as presented by Chen et al. (2023) to facilitate the mapping of the logits from the pre-trained model
to the logits of the target tasks.

4.1 IMPLEMENTATION SETUPS

Architectures and Datasets. We evaluate PASS using four pre-trained models: ResNet-18, ResNet-
34, ResNet-50 (He et al., 2016), and VGG-16 without BatchNorm2D (Simonyan & Zisserman,
2014), all pre-trained on ImageNet-1K (Deng et al., 2009). Our evaluation contains six target tasks:
Tiny-ImageNet (Deng et al., 2009), CIFAR-10/100 (Krizhevsky et al., 2009), DTD (Cimpoi et al.,
2014), StanfordCars (Krause et al., 2013), and Food101 (Bossard et al., 2014). The size of the inputs
is scaled to 224× 224 during our experiments.

Baselines. We select five popular structural pruning methods as our baselines: (1) Group-L1 struc-
tural pruning (Li et al., 2017; Fang et al., 2023) reduces the network channels via l1 regularization.
(2) GrowReg (Wang et al., 2021) prunes the network channels via l2 regularization with a growing
penalty scheme. (3) Slim (Liu et al., 2017b) imposes channel sparsity by applying l1 regularization
to the scaling factors in batch normalization layers. (4) DepGraph (Fang et al., 2023) models the
inter-layer dependency and group-coupled parameters for pruning and (5) ABC Pruner (Lin et al.,
2020b) performs channel pruning through automatic structure search.
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Figure 2: Test accuracy of channel-pruned networks across multiple downstream tasks based on the
pre-trained ResNet-18 model.

Training and Evaluation. We utilize off-the-shelf models from Torchvision 1 as the pre-trained
models. During the pruning phase, we employ the SGD optimizer for the visual prompt, while the
AdamW optimizer is used for the visual prompt encoder and the LSTM model for generating chan-
nel masks. Regarding the baselines, namely Group-L1 structural pruning, GrowReg, Slim, and Dep-
Graph, they are trained based on this implementation 2 and ABC Prunner is trained based on their
official public code 3. During the fine-tuning phase, all pruned models, inclusive of those from PASS
and the aforementioned baselines, are fine-tuned with the same hyper-parameters. We summarize
the implementation details and hyper-parameters for PASS in Appendix B. For all experiments, we
report the accuracy of the downstream task during testing and the floating point operations (FLOPs)
for measuring the efficiency.

4.2 PASS FINDS GOOD STRUCTURAL SPARSITY

In this section, we first validate the effectiveness of PASS across multiple downstream tasks and
various model architectures. Subsequently, we investigate the transferability of both the generated
channel masks and the associated model responsible for generating them.

Superior Performance across Downstream Tasks. In Figure 2, we present the test accuracy of
the PASS method in comparison with several baseline techniques, including Group-L1, GrowReg,
DepGraph, Slim, and ABC Prunner. The evaluation includes six downstream tasks: CIFAR-10,
CIFAR-100, Tiny-ImageNet, DTD, StanfordCars, and Food101. The accuracies are reported against
varying FLOPs to provide a comprehensive understanding of PASS’s efficiency and performance.

From Figure 2, several salient observations can be drawn: ❶ PASS consistently demonstrates su-
perior accuracy across varying FLOPs values for all six evaluated downstream tasks. On one hand,
PASS achieves higher accuracy under the same FLOPs. For example, it achieves 1% ∼ 3% higher
accuracy than baselines under 1000M FLOPs among all the datasets. On the other hand, PASS at-
tains higher speedup4 in achieving comparable accuracy levels. For instance, to reach accuracy
levels of 96%, 81%, and 80% on CIFAR10, StanfordCars, and Food101 respectively, the PASS
method consistently realizes a speedup of at least 0.35× (900 VS 1400), outperforming the most
competitive baseline. This consistent performance highlights the robustness and versatility of the
PASS method across diverse scenarios. ❷ In terms of resilience to pruning, PASS exhibits a more
gradual reduction in accuracy as FLOPs decrease. This trend is notably more favorable when com-
pared with the sharper declines observed in other baseline methods. ❸ Remarkably, at the higher
FLOPs levels, PASS not only attains peak accuracies but also surpasses the performance metrics of

1https://pytorch.org/vision/stable/index.html
2https://github.com/VainF/Torch-Pruning
3https://github.com/lmbxmu/ABCPruner
4Following Fang et al. (2023), we report the theoretical speedup ratios and it is defined as

FLOPsPASS−FLOPsbaseline
FLOPsbaseline
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Figure 3: Test accuracy of channel-pruned networks across various architectures based on CIFAR-
100 and Tiny-ImageNet datasets.

Table 1: Transferability: Applying Channel Masks and Hypernetworks Learned from Tiny-
ImageNet to CIFAR-100 and StanfordCars. The gray color denotes our method.

Channel Sparsity 10% 30% 50%

StanfordCars CIFAR-100 StanfordCars CIFAR-100 StanfordCars CIFAR-100

DepGraph 75.79 81.60 69.26 76.90 45.10 69.40
Slim 58.10 80.27 43.00 71.86 26.3 68.56
Group-L1 76.50 79.80 58.30 72.60 20.40 58.50
Growreg 70.60 80.79 50.30 72.27 41.80 65.80
Transfer Channel Mask 83.50 82.45 79.70 80.83 76.60 78.81
Hypernetwork 84.31 82.49 79.88 80.98 76.80 78.67

the fully fine-tuned dense models. For instance, PASS excels the fully fine-tuned dense models with
{1.05%, 0.99%, 1.06%} on CIFRAR100, DTD and FOOD101 datasets.

Superior Performance across Model Architectures. We further evaluate the performance of PASS
across multiple model architectures, namely VGG-16 without batch normalization 5, ResNet-34,
and ResNet-50 and compare it with the baselines. The results are shown in 3. We observe that our
PASS achieves a competitive performance across all architectures, often achieving accuracy close
to or even surpassing the dense models while being more computationally efficient. For instance,
To achieve an accuracy of 75% on Tiny-ImageNet using ResNet-34/ResNet-50 and 66% accuracy
using VGG-16, our PASS requires 0% ∼ 12% fewer FLOPs compared to the most efficient base-
line. These observations suggest that PASS can effectively generalize across different architectures,
maintaining a balance between computational efficiency and model performance.

4.3 TRANSFERABILITY OF LEARNED SPARSE STRUCTURE

Inspired by studies suggesting the transferability of subnetworks between tasks (Chen et al., 2020;
2021). We investigate the transferability of PASS by posing two questions:(1) Can the sparse chan-
nel masks, learned in one task, be effectively transferred to other tasks? (2) Is the hypernetwork,
once trained, applicable to other tasks? To answer Question (1), we test the accuracy of subnet-
works found on Tiny-ImageNet when fine-tuning on CIFAR-10 and CIFAR-100 and a pre-trained
ResNet-18. To answer Question (2), we measure the accuracy of the subnetwork finetuning on the
target datasets, i.e., CIFAR-10 and CIFAR-100. This subnetwork is obtained by applying hypernet-
works, trained on Tiny-ImageNet, to the visual prompts of the respective target tasks. The results
are reported in Table 1. We observe that the channel mask and the hypernetwork, both learned by
PASS, exhibit significant transferability on target datasets, highlighting their benefits across various
subsequent tasks. More interestingly, the hypernetwork outperforms transferring the channel mask
in most target tasks, providing two hints: ❶ Our learned hypernetworks can sufficiently capture the

5The baseline Slim (Liu et al., 2017b) is not applicable to this architecture.
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Table 2: Ablations for PASS based on CIFAR-100 using a pre-trained ResNet-18.

Channel Sparsity = 10% 30% 50% 70%

Input Ablations
LSTM+VP 82.66 81.20 77.94 72.01

LSTM+Weights 82.83 81.13 77.83 72.45
LSTM+Weights+VP(Ours) 83.45 81.72 79.11 73.53

Architecture Ablations
ConVNet+VP 83.21 81.09 78.15 72.31

MLP+VP+Weights 83.23 81.07 77.84 72.38
LSTM+Weights+VP(Ours) 83.45 81.72 79.11 73.53

important topologies in downstream networks. Note that there is no parameter tuning for the hyper-
networks and only with an adapted visual prompt. ❷ The visual prompt can effectively summarize
the topological information from downstream neural networks, enabling superior sparsification.

5 ABLATIONS AND EXTRA INVESITIGATIONS

5.1 ABLATIONS ON PASS

To evaluate the effectiveness of PASS, we pose two interesting questions about the design of its com-
ponents: (1) how do visual prompts and model weights contribute? (2) is the recurrent mechanism
crucial for mask finding? To answer the above questions, we conduct a series of ablation studies
utilizing a pre-trained ResNet-18 on CIFAR-100. The extensive investigations contain (1) dropping
either the visual prompt or model weights; (2) destroy the recurrent nature in our hypernetwork,
such as using a Convolutional Neural Network (CNN) or a Multilayer Perceptron (MLP) to replace
LSTM. The results are collected in Table 2. We observe that ❶ The exclusion of either the visual
prompt or model weights leads to a pronounced drop in test accuracy (e.g., 83.45% → 82.83% and
82.66% respectively at 90% channel density), indicating the essential interplay role of both visual
prompt and model weights in sparsification. ❷ If the recurrent nature in our design is destroyed, i.e.,
MLP or CNN methods variants, it suffers a performance decrement (e.g., 81.72% → 81.07% and
81.09% respectively at 70% channel density). It implies a Markov property during the sparsification
of two adjacent layers, which echoes the sparsity pathway findings in Wang et al. (2020).

5.2 ABLATIONS ON VISUAL PROMPT

A visual prompt is a patch integrated with the input, as depicted in Figure 1. Two prevalent meth-
ods for incorporating the visual prompt into the input have been identified in the literature (Chen
et al., 2023; Bahng et al., 2022):(1) Adding to the input (abbreviated as “Additive visual prompt”.
(2)Expanding around the perimeter of the input, namely, the input is embedded into the central hol-
low section of the visual prompt (abbreviated as “Expansive visual prompt”). As discussed in
section 5.1, visual prompt (VP) plays a key role in PASS. Therefore, we pose such a question:How
do the strategies and size of VP influence the performance of PASS? To address this concern, we
conduct experiments with “Additive visual prompt” and “Expansive visual prompt” respectively on
CIFAR-100 using a pre-trained ResNet-18 under 10%, 30% and 50% channel sparsities, and we
also show the performance of PASS with varying the VP size from 0 to 48. The results are shown
in Figure 4. We conclude that ❶ “Additive visual prompt” performs better than “Expansive visual
prompt” across different sparsities. The disparity might be from the fact that “Expansive visual
prompt” requires resizing the input to a smaller dimension, potentially leading to information loss, a
problem that “Additive visual prompt” does not face. ❷ The size of VP impacts the performance of
PASS. We observe that test accuracy initially rises with the increase in VP size but starts to decline
after reaching a peak at size 16. A potential explanation for this decline is that the larger additive
VP might overlap a significant portion of the input, leading to the loss of crucial information.

5.3 IMPACT OF HIDDEN SIZE IN HYPERNETWORK

It is well-known that model size is an important factor impacting its performance, inducing the
question how does the size of hypernetwork influence the performance of PASS?. To address this
concern, we explore the impact of the hypernetwork hidden sizes on PASS by varying the hidden
size of the proposed hypernetwork from 32 to 256 and evaluate its performance on CIFAR100 using
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Figure 4: Ablation study on visual prompt strategies and their sizes. Experiments are conducted on
CIFAR-100 and a pre-trained ResNet-18.
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Figure 5: (1)Ablation study of the hypernetwork’s hidden size (Left Figure) using a pre-trained
ResNet-18 on CIFAR-100. (2)Comparison between Global Pruning and Uniform Pruning strategies
(Middle and Right Figures) using a pre-trained ResNet-18 on CIFAR-100 and Tiny-Imagenet.

a pre-trained ResNet-18 model under 10%, 30% and 50% channel sparsity respectively. The results
are presented in the left figure of Figure 5. We observe that the hidden size of the hypernetwork
doesn’t drastically affect the accuracy. While there are fluctuations, they are within a small range,
suggesting that the hidden size is not a dominant factor in influencing the performance of PASS.

5.4 UNIFORM PRUNING VS GLOBAL PRUNING

When converting the channel-wise importance scores into the channel masks, there are two prevalent
strategies: (1) Uniform Pruning. (Ramanujan et al., 2020; Huang et al., 2022) It prunes the channels
of each layer with the lowest important scores by the same proportion. (2) Global Pruning. (Huang
et al., 2022; Fang et al., 2023) It prunes channels with the lowest important scores from all layers,
leading to varied sparsity across layers. In this section, we evaluate the performance of global
pruning and uniform pruning for PASS on CIFAR-100 using a pre-trained ResNet-18, with results
presented in Figure 5. We observe that global pruning consistently yields higher test accuracy than
uniform pruning, indicating its superior suitability for PASS, also reconfirming the importance of
layer sparsity in sparsifying neural networks (Liu et al., 2022; Huang et al., 2022). For a detailed
overview of the sparsity learned at each layer using global pruning, please refer to Appendix C.

6 CONCLUSION

In this paper, we delve deep into structural model pruning, with a particular focus on leveraging the
potential of visual prompts for discerning channel importance in vision models. Our exploration
highlights the key role of the input space and how judicious input editing can significantly influ-
ence the efficacy of structural pruning. We propose PASS, an innovative, end-to-end framework
that harmoniously integrates visual prompts, providing a data-centric lens to channel pruning. Our
recurrent mechanism adeptly addressed the intricate channel dependencies across layers, ensuring
the derivation of high-quality structural sparsity.

Extensive evaluations across six datasets and four architectures underscore the prowess of PASS.
The PASS framework excels not only in performance and computational efficiency but also demon-
strates that its pruned models possess notable transferability. In essence, this research paves a new
path for channel pruning, underscoring the importance of intertwining data-centric approaches with
traditional model-centric methodologies. The fusion of these paradigms, as demonstrated by our
findings, holds immense promise for the future of efficient neural network design.
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7 REPRODUCIBILITY STATEMENT

The authors have made an extensive effort to ensure the reproducibility of algorithms and results in
this paper. Detailed descriptions of the experimental settings can be found in Section 4.1. Imple-
mentation details for all the baseline methods and our proposed PASS are elaborated in Section 4.1
and Appendix B. Additionally, the codes are provided in the supplementary materials.
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Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–mining discriminative compo-
nents with random forests. In Computer Vision–ECCV 2014: 13th European Conference, Zurich,
Switzerland, September 6-12, 2014, Proceedings, Part VI 13, pp. 446–461. Springer, 2014.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Vinod Kumar Chauhan, Jiandong Zhou, Soheila Molaei, Ghadeer Ghosheh, and David A Clifton.
Dynamic inter-treatment information sharing for heterogeneous treatment effects estimation.
arXiv preprint arXiv:2305.15984, 2023.

Aochuan Chen, Yuguang Yao, Pin-Yu Chen, Yihua Zhang, and Sijia Liu. Understanding and improv-
ing visual prompting: A label-mapping perspective. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 19133–19143, 2023.

Mingda Chen, Jingfei Du, Ramakanth Pasunuru, Todor Mihaylov, Srini Iyer, Veselin Stoyanov, and
Zornitsa Kozareva. Improving in-context few-shot learning via self-supervised training. arXiv
preprint arXiv:2205.01703, 2022a.

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Zhangyang Wang, and
Michael Carbin. The lottery ticket hypothesis for pre-trained bert networks. Advances in neural
information processing systems, 33:15834–15846, 2020.

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Michael Carbin, and
Zhangyang Wang. The lottery tickets hypothesis for supervised and self-supervised pre-training
in computer vision models. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 16306–16316, 2021.

Xiang Chen, Ningyu Zhang, Xin Xie, Shumin Deng, Yunzhi Yao, Chuanqi Tan, Fei Huang, Luo Si,
and Huajun Chen. Knowprompt: Knowledge-aware prompt-tuning with synergistic optimization
for relation extraction. In Proceedings of the ACM Web conference 2022, pp. 2778–2788, 2022b.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot
impressing gpt-4 with 90%* chatgpt quality. Arxiv preprint, 2023.

Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. De-
scribing textures in the wild. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 3606–3613, 2014.

10



Under review as a conference paper at ICLR 2024

Ha David, Dai Andrew, and VL Quoc. Hypernetworks. arXiv preprint arXiv, 1609, 2016.

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer,
Andreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al. Scaling
vision transformers to 22 billion parameters. In International Conference on Machine Learning,
pp. 7480–7512. PMLR, 2023.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm. int8 (): 8-bit matrix
multiplication for transformers at scale. arXiv preprint arXiv:2208.07339, 2022.

Bowen Dong, Pan Zhou, Shuicheng Yan, and Wangmeng Zuo. Lpt: Long-tailed prompt tuning for
image classification. arXiv preprint arXiv:2210.01033, 2022.

Utku Evci, Yani Ioannou, Cem Keskin, and Yann Dauphin. Gradient flow in sparse neural networks
and how lottery tickets win. In Proceedings of the AAAI conference on artificial intelligence,
volume 36, pp. 6577–6586, 2022.

Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and Xinchao Wang. Depgraph: Towards
any structural pruning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 16091–16101, 2023.

Elias Frantar and Dan Alistarh. Massive language models can be accurately pruned in one-shot.
arXiv preprint arXiv:2301.00774, 2023.

Tomer Galanti and Lior Wolf. On the modularity of hypernetworks. Advances in Neural Information
Processing Systems, 33:10409–10419, 2020.

Deep Ganguli, Amanda Askell, Nicholas Schiefer, Thomas Liao, Kamilė Lukošiūtė, Anna Chen,
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A PARAMETERS OF HYPERNETWORKS

In this study, the hidden size of the hypernetwork is configured to 64. A detailed breakdown of
the number of parameters for the hypernetworks utilized in this research is provided in Table 3.
It is noteworthy that the parameter count for the hypernetworks is significantly lower compared to
that of the pretrained models. For instance, in the case of ResNet-18, the hypernetwork parameters
constitute only 2.8% of the total parameters of the pre-trained ResNet-18.

Table 3: The number of parameters for our Hypernetworks.

ResNet-18 (11M) ResNet-34 (21M) ResNet-50 (25M) VGG-16 (138M)

#Parameters-HyperNetwork 0.31M (2.8%) 0.56M (2.6%) 1.5M (6%) 0.34M (0.2%)

B IMPLEMENTATION DETAILS

Table 4 summarizes the hyper-parameters for PASS used in all our experiments.
Table 4: Implementation details on each dataset.

Settings Tny-ImageNet CIFAR-10 CIFAF-10 DTD StanfordCars Food101

Stage 1: Learning to Prune
Batch Size 128

Weight Decay - VP 0 0 0 0 0 0
Learning Rate - VP 1e− 2 1e− 2 1e− 2 1e− 2 1e− 2 1e− 2
Optimizer - VP SGD optimizer
LR-Decay-Scheduler - VP cosine

Weight Decay - HyperNetwork 1e− 2 1e− 2 1e− 2 1e− 2 1e− 2 1e− 2
Learning Rate - HyperNetwork 1e− 3 1e− 3 1e− 3 1e− 3 1e− 3 1e− 3
Optimizer - HyperNetwork AdamW optimizer
LR-Decay-Scheduler - HyperNetwork cosine
Total epochs 50

Stage 2: Fine-tune

Batch Size 128

Weight Decay - VP 0 0 0 0 0 0
Learning Rate - VP 1e− 3 1e− 2 1e− 2 1e− 2 1e− 2 1e− 2
Optimizer - VP SGD optimizer
LR-Decay-Scheduler - VP cosine

Weight Decay - Pruned Network 5e− 4 3e− 4 5e− 4 5e− 4 5e− 4 5e− 4
Learning Rate - Pruned Network 1e− 3 1e− 2 1e− 2 1e− 2 1e− 2 1e− 2
Optimizer - Pruned Network SGD optimizer
LR-Decay-Scheduler - Pruned Network multistep-{6, 8} cosine cosine cosine cosine cosine
Total epochs 10 50 50 50 50 50
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C LEARNED CHANNEL SPARSITY

We present the channel sparsity learned by PASS on CIFAR-100 and Tiny-ImageNet using a pre-
trained ResNet-18 in Table 5. Our observations indicate that channel sparsity is generally higher in
the top layers and lower in the bottom layers of the network.

Table 5: Layer-wise sparsity of the pre-trained ResNet-18 on CIFAR-100 and Tiny-ImageNet as
learned by PASS at 30%, 50% sparsity levels.

Layer Fully Dense #Channels CIFAR-100 Tiny-ImageNet
30% Sparsity 50% Sparsity 30% Sparsity 50% Sparsity

Layer 1 - conv1 64 9.4% 29.7% 20.3% 37.5%
Layer 2 - layer1.0.conv1 64 17.2% 43.8% 28.1% 56.2%
Layer 3 - layer1.0.conv2 64 29.7% 29.7% 20.3% 39.0%
Layer 4 - layer1.1.conv1 64 15.7% 46.9% 50% 62.5%
Layer 5 - layer1.1.conv2 64 22.7% 26.6% 17.1% 32.8%
Layer 6 - layer2.0.conv1 128 19.6% 46.9% 42.9% 57.0%
Layer 7 - layer2.0.conv2 128 19.6% 45.4% 14.0% 34.3%
Layer 8 - layer2.0.downsample.0 128 19.6% 45.4% 14.0% 34.3%
Layer 9 - layer2.1.conv1 128 19.6% 44.6% 34.3% 55.5%
Layer 10 - layer2.1.conv2 128 7.1% 28.9% 16.4% 34.3%
Layer 11 - layer3.0.conv1 256 29% 50% 42.1% 58.9%
Layer 12 - layer3.0.conv2 256 15.3% 50% 11.7% 28.5%
Layer 13 - layer3.0.downsample.0 256 15.3% 50% 11.7% 28.5%
Layer 14 - layer3.1.conv1 256 27.4% 43.8% 33.2% 52.3%
Layer 15 - layer3.1.conv2 256 11% 26.2% 10.1% 23.8%
Layer 16 - layer4.0.conv1 512 29.3% 50% 33.3% 54.4%
Layer 17 - layer4.0.conv2 512 41.8% 50% 36.1% 58.9%
Layer 18 - layer4.0.downsample.0 512 41.8% 50% 36.1% 58.9%
Layer 19 - layer4.1.conv1 512 44.6% 48.3% 39.2% 65.8%
Layer 20 - layer4.1.conv2 512 42.6% 49.9% 27.1% 46.2%
Layer 21 - Linear 512 0% 0% 0% 0%

D EXPERIMENTS ON IMAGENET AND ADVANCED ARCHITECTURES

To draw a solid conclusion, we further conduct extensive experiments on large dataset ImageNet
using the advanced pre-trained models such as ResNext-50, Swin-T, and ViT-B/16. The results
are shown in Table 6. We observe that our method PASS demonstrates a significant speed-up with
minimal accuracy loss, as indicated by the ∆ Acc., which is superior to existing methods like SSS,
GFP, and DepGraph. the resulting empirical evidence robustly affirms the effectiveness of PASS
across both advanced neural network architectures and large-scale datasets.

Table 6: Pruning results based on ImageNet and Advanced models.

Arch. Method Base Pruned ∆ Acc. FLOPs
ResNeXt-50 ResNeXt-50 77.62 - - 4.27

SSS Huang & Wang (2018) 77.57 74.98 -2.59 2.43
GFP Liu et al. (2021a) 77.97 77.53 -0.44 2.11

DepGraph Fang et al. (2023) 77.62 76.48 -1.14 2.09
Ours (PASS) 77.62 77.21 -0.41 2.01

ViT-B/16 ViT-B/16 81.07 - - 17.6
DepGraph Fang et al. (2023) 81.07 79.17 -1.90 10.4

Ours(PASS) 81.07 79.77 -1.30 10.7
Swin-T Swin-T 81.4 - - 4.49

X-Pruner Yu & Xiang (2023) 81.4 80.7 -0.7 3.2
STEP Li et al. (2021) 81.4 77.2 -4.2 3.5

Ours(PASS) 81.4 80.9 -0.5 3.4
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E COMPLEXITY ANALYSIS OF THE HYPERNETWORK

In this section, we provide a comprehensive analysis about the complexity of the Hypernetwork. (1)
Regarding the impact on time complexity, our recurrent hyper-network is designed for efficiency.
The channel masks are pre-calculated, eliminating the need for real-time generation during both
the inference and subnetwork fine-tuning phases. Therefore, the recurrent hyper-network does not
introduce any extra time complexity during the inference and the fintune-tuning phase. The ad-
ditional computing time is limited to the phase of channel mask identification. (2) Moreover, the
hyper-network itself is designed to be lightweight. The number of parameters it contributes to the
overall model is minimal, thus ensuring that any additional complexity during the mask-finding
phase is negligible. This claim is substantiated by empirical observations: the hyper-network ac-
counts for only about 0.2% to 6% of the total model parameters across various architectures such as
ResNet-18/34 and VGG-16, as illustrated in Table 3. (3) Additionally, we assessed the training time
per epoch with and without the hyper-network during the channel mask identification phase. Our
findings in Table 7 indicate that the inclusion of the LSTM network has a marginal effect on these
durations, further affirming the efficiency of our approach.

Table 7: Training Time (s) per Epoch w/ and w/o Hypernetworks during Channel Mask Identification
Phase with single A100 GPU.

ResNet-18 (11M) ResNet-34 (21M) ResNet-50 (25M)

w/o HyperNetwork 70.05 73.95 95.65
w/ HyperNetwork 72.2 76.95 111.6

F DIFFERENCE BETWEEN OUR PROPOSED PASS AND DYNAMIC NEURAL
NETWORK

There are two fundamental differences between our proposed PASS and dynamic neural network.
(1) The hyper-network in our proposed PASS is not ‘dynamic’. Dynamic neural networks, as
categorized in the literature, are networks capable of adapting their structures or parameters condi-
tioned in a sample-dependent manner, as outlined in Han et al. (2021). In contrast, the hyper-network
within our PASS framework does not exhibit this ‘dynamic’ nature. It is designed to be dependent on
a visual prompt (task-specific), as opposed to dynamically adjusting to input samples. This hyper-
network’s role is confined to the channel mask identification phase and is not employed during the
inference phase. Therefore, it is fundamentally different from dynamic neural networks. (2) Their
goals are different. The fundamental goal of the hyper-network in PASS is distinct from that of dy-
namic neural networks. While the latter focuses on adapting their architecture or parameters based
on input samples, our hyper-network is specifically engineered for the integration of visual prompts
with the statics of model weights.
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