
Emergence of a Symbolic Goal Representation with an
Intelligent Tutoring System based on Intrinsic

Motivation

Anonymous Author(s)
Affiliation
Address
email

Abstract
Goal representation affects the performance of Hierarchical Reinforcement Learn-1

ing (HRL) algorithms by decomposing complex problems into easier subtasks.2

Recent studies show that representations that preserve temporally abstract envi-3

ronment dynamics are successful in solving difficult problems with theoretical4

guarantees for optimality. These methods however cannot scale to tasks where5

environment dynamics increase in complexity. On the other hand, other efforts6

have tried to use spatial abstraction to mitigate the previous issues. Their limi-7

tations include scalability to high dimensional environments and dependency on8

prior knowledge. In this work, we propose a novel three-layer HRL algorithm that9

introduces, at different levels of the hierarchy, both a spatial and a temporal goal10

abstraction. We provide a theoretical study of the regret bounds of the learned poli-11

cies. We evaluate the approach on complex continuous control tasks, demonstrating12

the effectiveness of spatial and temporal abstractions learned by this approach.13

1 Introduction14

Open-ended learning, as defined by Doncieux et al. [2018], should be solved by an unsupervised15

acquisition of a hierarchy of adapted representations. Along with hierarchical descriptions of actions16

in neuroscience (eg Grafton and de C. Hamilton [2007]) and in behavioural psychology (eg. Eckstein17

and Collins [2021]), in machine learning, Hierarchical Reinforcement Learning (HRL) [Barto and18

Mahadevan, 2003] tackles the environment’s complexity by introducing a hierarchical structure of19

agents that work at different levels of temporal and behavioral abstractions.20

Recent works (Vezhnevets et al. [2017], Nachum et al. [2019], Zhang et al. [2023], Li et al. [2021])21

have shown that an abstract goal representations can propose semantically meaningful subgoals and to22

solving more complex tasks. In particular, representations that capture environment dynamics over an23

abstract temporal scale have been shown to provide interesting properties with regards to bounding the24

suboptimality of learned policies under abstract goal spaces (Nachum et al. [2019], Abel et al. [2020]),25

as well as efficiently handling continuous control problems. However, temporal abstractions that26

capture aspects of the environment dynamics (Ghosh et al. [2019], Savinov et al. [2019], Eysenbach27

et al. [2019], Zhang et al. [2023], Li et al. [2021]) still cannot scale to environments where the28

pairwise state reachability relation is complex. This situation typically occurs when temporally29

abstract relations take into account more variables in the state space. The main limitation of these30

approaches is the lack of a spatial abstraction to generalise such relations over states.31

Alternatively, other works (Kulkarni et al. [2016], Illanes et al. [2020], Garnelo and Shanahan [2019]32

) have studied various forms of spatial abstractions for goal spaces. These abstractions effectively33

group states with similar roles in sets to construct a discrete goal space. The advantage of such34

representation is a smaller size exploration space that expresses large and long-horizon tasks. In35

contrast to these algorithms that require varying levels of prior knowledge, GARA Zadem et al.36

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

[2023] gradually learns such spatial abstractions by considering reachability relations between sets37

of states. We refer to this abstraction as reachability-aware abstraction. While such representation38

is efficient for low-dimensional tasks, scalability remains an issue due to the lack of a temporal39

abstraction mechanism. What is challenging about scaling GARA’s approach to more complex40

environments is exactly what makes the set-based representation effective: the low-level agent must41

learn how to reach a set of states that, especially in the initial phases of the algorithm when the42

abstraction is coarser, may be “far” away. We tackle this problem introducing a new agent in the43

hierarchy that introduces a temporal abstraction. Such an agent learns to select intermediate subgoals44

that: can be reached from a state s executing the low-level agent; and helps constructing a trajectory45

from s to a goal abstract state.46

Here, we propose a three-layer HRL algorithm achieving both a temporal and spatial abstraction to47

capture the environment dynamics. We motivate the use of temporal abstraction as the key factor48

that can scale the abstraction proposed in Zadem et al. [2023], and the reachability-aware spatial49

abstraction as a way to efficiently represent goals in complex tasks. We complement the approach by50

adding theoretical guarantees on the bounds of suboptimality of policies learned under this abstraction.51

Our approach is empirically evaluated on a set of challenging continuous control tasks.52

2 Related Work53

Building on ideas for introducing hierarchy in Reinforcement Learning [Sutton et al., 1999, Barto and54

Mahadevan, 2003, Dayan and Hinton, 1992], recent advances have managed to considerably elevate55

HRL algorithms to tackle complex continuous control environments. For instance, Nachum et al.56

[2018] introduces a two-level hierarchy that sample goals from a pre-defined oracle on the state space.57

This approach provides a good basis for HRL algorithms as it is generic and addresses non-stationary58

learning but may still be suboptimal as the goal sampling is unconstrained in the oracle. To remedy59

this, Ghosh et al. [2019], Savinov et al. [2019], Eysenbach et al. [2019], Zhang et al. [2023], Li et al.60

[2021] learn different goal representations that try to capture the environment dynamics. This idea61

has been validated under different theoretical formulations [Nachum et al., 2019, Abel et al., 2020, Li62

et al., 2021]. In particular, Li et al. [2021] learns a latent representations based on slow-dynamics in63

the state space. The idea is that meaningful temporally abstract relations (over k steps) are expressed64

by state features that slowly change over time. However, these features may not be always sufficient65

to capture all the critical information about dynamics. Both Savinov et al. [2019] and Zhang et al.66

[2023] use k-step reachability relations as a characterisation for environment dynamics. Their idea is67

to learn if goals (mappings of states in an embedding / oracle) reach a potential goal in k steps. These68

relations are later used to drive the sampling of goals that can be reached, resulting in more efficient69

learning. However, such learned pairwise relations are binary and lack the information of which70

goals can be reached by applying a specific policy. Additionally, without any spatial abstraction, it71

can be difficult to learn these relations for a complex transition relation (e.g. a relation that require72

monitoring more that few variables).73

To introduce spatial abstraction, we study the work by Zadem et al. [2023] in which the authors74

introduce GARA, a spatial abstraction for the goal space that captures richer information from k75

step reachability relations. This algorithm progressively learns a discretisation of the state space that76

serves as an abstract goal space. This abstraction generalizes reachability relations over sets of states,77

greatly reducing the difficulty of the learning problem. This approach however was only validated on78

low dimensional environments and suffers from scalability issues. As GARA starts learning from79

a coarse abstraction (composed of a small number of large sets), the goal set is often distant from80

the current state, thus it can be difficult to learn meaningful policies that manage to reach a desired81

goal set. Under such circumstances, the abstraction cannot be refined as it lacks any mechanism to82

propose easier, more granular subgoals. To alleviate this discrepancy, we introduce a new agent in83

the hierarchy of GARA that applies a temporal abstraction [Sutton et al., 1999].84

3 Theoretical properties of the refinement85

We motivate the adoption of the goal-space abstraction and the reachability-aware refinement showing86

that: (i) there exists a bound on the suboptimality of policies trained with a reachability-aware87

abstraction; and (ii) the reachability-aware refinement gradually finds a reachability-aware abstraction.88

The theoretical results hold under the assumptions that the environment M is deterministic and the89

reward signal rext is bounded in the environment.90

2

Suboptimality bounds: Since the introduction of a set-based abstraction changes how the hierar-91

chical policies are learned, we are interested in measuring how much the optimal policy π∗N (learned92

on the reachability-aware abstraction N) deviates from the optimal hierarchical policy π∗ (learned93

without abstraction). Each policy’s performance is characterised by a value function measuring its94

future cumulative rewards. In other words, the comparison of both policies comes down to bounding95

the difference between the value functions. This difference will be computed on the states visited by96

each optimal policy. These states are referred to as the trajectory of a policy.97

Our results show that there exists a bound on how much the value function under π∗N deviates from98

the value function under π∗. We also observe that if the size of the abstract goals is unbounded then99

the deviation between the two policies can progressively with time t, reaching a peak during the100

middle point of the trajectory, before narrowing and eventually converging near its end. On the other101

hand, if we assume that the size of goal sets is bounded, then a tighter and more stable bound is102

obtained and the deviation between policies does not depend on the timestep t. Please refer to Annex103

C for the details and theorems.104

Reachability-aware abstraction through iterative refinement: To complement the characteri-105

sation of an upper bound on the suboptimality of π∗N , we show that such an abstraction is indeed106

obtainable in a finite number of iterative refinements as proposed in Zadem et al. [2023]. Please refer107

to Annex C for the theorem.108

4 Spatio-Temporal Abstraction via Reachability109

Navigator
max

s∈N (st+k)
−∥s− g∗∥2

Manager
−∥st+l − Center(Gt+k)∥2

Controller
−∥st+1 − gt+l∥2

EnvironmentRefinement

Gt+k ∼ πNav(st, g
∗) gt+l ∈ S

a ∈ Ast+1st+lst+k

s0 g∗ N0

E ,D
N ′

Figure 1: Architecture of STAR. The algorithm’s inputs are the initial state s0, the task goal g∗,
and an initial abstraction N0. STAR runs in a feedback loop a Feudal HRL algorithm (dashed
red block) and an abstraction refinement (blue box). The solid red blocks show the HRL agents
(Navigator, Manager, Controller) and the agents reward in the bottom. The agents run at different
timescales (k > l > 1), shown with the solid, dashed, and dotted lines carrying the feedback from
the environment to the agents. The Refinement uses as inputs the past episodes (D) and the list of
abstract goals (E) visited during the last episode, and outputs an abstraction. g∗ is the task’s goal.

We propose a HRL algorithm, Spatio-Temporal Abstraction via Reachability (STAR), that learns, at110

the same time, a spatial goal abstraction N and policies at multiple time scales (See Algorithm 1 in111

the Annex). The STAR algorithm, shown in Figure 1, has two main components: a 3-levels Feudal112

HRL algorithm (enclosed in the red dashed lines); and an abstraction refinement component (shown113

in the blue solid lines). STAR runs the Feudal HRL algorithm and the abstraction refinement in a114

feedback loop, refining the abstractionN at the end of every learning episode. The feudal architecture115

of STAR is composed of a hierarchy with three agents:116

1. Navigator: the highest-level agent samples, every k steps, an abstract goal G ∈ G that117

should help to reach the task goal g∗ from the current agent’s state (Gt+k ∼ πNav(st, g
∗)).118

2. Manager: the mid-level agent is conditioned by the navigator goal G and every k steps,119

picks subgoals in the state space (gt+l ∼ πMan(st, Gt+k)). The first intuition is that, for a120

possibly very far goalG , the Manager samples an intermediate subgoal g ∈ S of a difficulty121

level adapted to the current non-optimal policy.The Manager receives an intrinsic reward122

expressing the distance between the Controller’s state st and the target abstract state Gt+k:123

rManager(st, Gt+k) := −‖st − Center(Gt+k)‖2,

3

(a) Ant Maze (b) Ant Fall (c) Ant Maze Cam

Figure 2: Ant environments

where Center(Gt+k) is the center of the goal Gt+k. Specifically, a set is a hyperrectangle124

(i.e., a multi-dimensional interval), so the center’s coordinates are the mean between the min125

and max of the interval.126

3. Controller: the low-level policy is goal-conditioned by the Manager’s subgoal g and samples127

actions to reach given goal (a ∼ πCont(st, gt+l)). 1128

The algorithm learns the abstraction iteratively. Every refinement obtains a finer abstraction N ′129

from N . Intuitively, N ′ will split at least a goal G1 ∈ GN in two goals G′1, G
′′

1 ∈ GN ′ if there are130

different states in G1 (i.e., sa, sb ∈ G1) that cannot reach the same target G2 ∈ G when applying the131

same low-level policy. We define such reachability property precisely en Annex B, intuitively the132

refinement separates goal states that "behave differently" under the same low level policy (i.e., N ′133

would represent more faithfully the environment dynamics). See details in Annex B.134

5 Experimental Evaluation135

We answer the following research questions: 1) Do the spatial and temporal abstraction of STAR136

allow for more data-efficient learning? 2) Does the reachability-aware abstraction scale to more137

complex environments compared to a more concrete reachability relation?138

5.1 Environment Setup139

We evaluate our approach on a set of challenging tasks in the Ant environments (Fig.2) adapted from140

Duan et al. [2016] and popularised by Nachum et al. [2018]. We propose the following tasks:141

1. Ant Maze: in this task, the ant must navigate a ’⊃’-shaped maze to reach the exit positioned at the142

top left. 2. Ant Fall: the environment is composed of two raised platforms seperated by a chasm.143

The ant starts on one of the platforms and must safely cross to the exit without falling. A movable144

block can be push into the chasm to serve as a bridge. Besides the precise maneuvers required by145

the ant, falling into the chasm is a very likely yet irreversible mistake. 3. Ant Maze Cam: this is a146

more challenging version of Ant Maze. The upper half of the maze is fully blocked by an additional147

obstacle that can only be opened when the ant looks at the camera (in yellow in Fig. 2c) when on the148

red spot. The exit remains unchanged.149

5.2 Comparative Analysis150

We compare STAR with the following algorithms: 1. GARA [Zadem et al., 2023] 2. HIRO151

[Nachum et al., 2018] 3. HRAC [Zhang et al., 2023] 4. LESSON [Li et al., 2021]152

In line with HIRO and HRAC, STAR relies on an oracle ψ(s) that transforms the observations of153

the high-level agents (Manager and Navigator). In practice ψ() corresponds to a feature selection154

applied to states. In contrast, LESSON learns a latent goal space without an oracle. In Ant Maze155

ψ(s) = (x, y), in Ant Fall ψ(s) = (x, y, z), and in Ant Maze Cam, ψ(s) = (x, y, θx, θy, θz).156

Fig.4 shows that STAR outperforms all of the state-of-art approaches by reaching a higher success157

rate with less timesteps. In particular GARA, operating only under a spatial abstraction mechanism158

is unable to solve Ant Maze, the easiest task in this analysis. HIRO on the other hand learns less159

efficient policies due to it lacking a spatial abstraction component. These results show that STAR,160

which combines temporal and spatial abstractions, is a more efficient approach.161

To discuss the second research question, we first observe that, while the high-level dynamics of162

Ant Maze can be captured by the x, y dimensions, the dynamics of Ant Fall require all the x, y, z163

dimensions (z expresses if the ant is safely crossing above the pit or if it has fallen), and Ant Maze164

1In the following, we use the upper-case G letter for goals in G and the lower-case g for subgoals in S.

4

Cam requires x, y, θx, θy, and θz (the orientation angles are necessary to unlock the access to the165

upper part of the maze). Fig.4 shows that HRAC is unable to capture meaningful relations between166

subgoals and fails at solving either Ant Fall or Ant Maze Cam due to the increased complexity167

in capturing the high-level task dynamic. Similarly, LESSON is unable to learn a good subgoal168

representation in Ant Maze Cam using slowness principle dynamics since it doesn’t apply to θx, θy, θz .169

Instead, STAR is capable of abstracting these dimensions and converging to a successful policy.170

5.3 Representation Analysis171

We answer the third research question examining the progress of the STAR’s navigator at different172

timesteps during learning when solving the Ant Maze and Ant Fall tasks (visualizing the 5 dimensional173

representation for Ant Maze Cam is less feasible). In Fig.3, we plot the frequency of the goals visited174

by the navigator when evaluating a policy learned after 1M, 2M, and 3M timesteps (we average the175

frequency over 5 different evaluations of 500 maximum timesteps each).176

(a) Ant Maze

(b) Ant Maze Fall
Figure 3: Frequency of goals visited by the navigator when evaluating a policy learned after 1M,
2M, and 3M timesteps (averaged over 5 different evaluations with 500 maximum timesteps). The
subdivision (squares for Ant Maze, boxes for Ant Maze Fall) represent (abstract) goals. The color
represents the frequency of visits of each goal. Grey areas correspond to the obstacles of the
environment in Ant Maze,

Figure 4: Comparative evaluation on Ant environments (Averaged over 5 runs)

5

References177

David Abel, Nate Umbanhowar, Khimya Khetarpal, Dilip Arumugam, Doina Precup, and Michael Littman.178

Value preserving state-action abstractions. In Silvia Chiappa and Roberto Calandra, editors, Proceedings of179

the Twenty Third International Conference on Artificial Intelligence and Statistics, volume 108 of Proceedings180

of Machine Learning Research, pages 1639–1650. PMLR, 26–28 Aug 2020. URL https://proceedings.mlr.181

press/v108/abel20a.html.182

Andrew G. Barto and Sridhar Mahadevan. Recent advances in hierarchical reinforcement learning. Discrete183

Event Dynamic Systems, 13(1), 2003.184

Peter Dayan and Geoffrey E Hinton. Feudal reinforcement learning. In NeurIPS, volume 5, 1992.185

Stephane Doncieux, David Filliat, Natalia Díaz-Rodríguez, Timothy Hospedales, Richard Duro, Alexandre186

Coninx, Diederik M. Roijers, Benoît Girard, Nicolas Perrin, and Olivier Sigaud. Open-ended learning: A187

conceptual framework based on representational redescription. Frontiers in Neurorobotics, 12, sep 2018.188

Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking deep reinforcement189

learning for continuous control. In Maria Florina Balcan and Kilian Q. Weinberger, editors, Proceedings of190

The 33rd International Conference on Machine Learning, volume 48 of Proceedings of Machine Learning191

Research, pages 1329–1338, New York, New York, USA, 20–22 Jun 2016. PMLR. URL https://proceedings.192

mlr.press/v48/duan16.html.193

Maria K Eckstein and Anne G E Collins. How the mind creates structure: Hierarchical learning of action194

sequences. In Cognitive Science Society, editor, CogSci Conference of the Cognitive Science Society,195

volume 43, pages 618–624, 2021.196

Ben Eysenbach, Ruslan Salakhutdinov, and Sergey Levine. Search on the replay buffer: Bridging planning and197

reinforcement learning. In NeurIPS 2019, 2019.198

Marta Garnelo and Murray Shanahan. Reconciling deep learning with symbolic artificial intelligence: represent-199

ing objects and relations. Current Opinion in Behavioral Sciences, 29:17–23, 2019. ISSN 2352-1546. doi:200

https://doi.org/10.1016/j.cobeha.2018.12.010. Artificial Intelligence.201

Dibya Ghosh, Abhishek Gupta, and Sergey Levine. Learning actionable representations with goal conditioned202

policies. In ICLR 2019, 2019.203

Scott T. Grafton and Antonia F. de C. Hamilton. Evidence for a distributed hierarchy of action representation in204

the brain. Human Movement Science, 26(4):590–616, 2007.205

León Illanes, Xi Yan, Rodrigo Toro Icarte, and Sheila A. McIlraith. Symbolic plans as high-level instructions for206

reinforcement learning. In AAAI, 2020.207

Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum. Hierarchical deep reinforcement208

learning: Integrating temporal abstraction and intrinsic motivation. In NeurIPS, volume 29, 2016.209

Siyuan Li, Lulu Zheng, Jianhao Wang, and Chongjie Zhang. Learning subgoal representations with slow210

dynamics. In ICLR, 2021.211

Ofir Nachum, Shixiang Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical reinforcement learning.212

In NeurIPS 2018, 2018.213

Ofir Nachum, Shixiang Gu, Honglak Lee, and Sergey Levine. Near-optimal representation learning for214

hierarchical reinforcement learning. In ICLR, 2019.215

Nikolay Savinov, Anton Raichuk, Damien Vincent, Raphaël Marinier, Marc Pollefeys, Timothy P. Lillicrap, and216

Sylvain Gelly. Episodic curiosity through reachability. In ICLR, 2019.217

Richard S. Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework for temporal218

abstraction in reinforcement learning. Artificial Intelligence, 112, 1999.219

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David Silver, and220

Koray Kavukcuoglu. Feudal networks for hierarchical reinforcement learning. CoRR, abs/1703.01161, 2017.221

Mehdi Zadem, Sergio Mover, and Sao Mai Nguyen. Goal space abstraction in hierarchical reinforcement222

learning via set-based reachability analysis, 2023.223

Tianren Zhang, Shangqi Guo, Tian Tan, Xiaolin Hu, and Feng Chen. Adjacency constraint for efficient224

hierarchical reinforcement learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(4):225

4152–4166, 2023. doi: 10.1109/TPAMI.2022.3192418.226

6

https://proceedings.mlr.press/v108/abel20a.html
https://proceedings.mlr.press/v108/abel20a.html
https://proceedings.mlr.press/v108/abel20a.html
https://proceedings.mlr.press/v48/duan16.html
https://proceedings.mlr.press/v48/duan16.html
https://proceedings.mlr.press/v48/duan16.html

A STAR’s pseudo-code227

Algorithm 1 STAR
Input: Learning environment E.
Output: Computes πNav, πMan and πCont

1: DNavigator ← ∅, DManager ← ∅, DController ← ∅, G ← {S}
2: for t ≤ max_timesteps do
3: E ← ∅
4: sinit ← initial state from E, st ← sinit
5: Gs ← G ∈ G such that st ∈ G
6: Gd ∼ πNav(Gs, g

∗)
7: gt ∼ πMan(st, Gd)
8: while true do
9: E ← E ∪ {(Gs, Gd)}

10: at ∼ πCont(st, gt)
11: (st+1, r

ext
t , done)← execute the action at at st in E

12: rController = −‖gt − st‖2
13: Update πCont
14: if not done then
15: st ← st+1, t← t+ 1
16: if t mod l = 0 then
17: DManager ← (st−l, Gd, gt−l, st, rManager, done)
18: Update πMan
19: gt ∼ πMan(st, Gd)
20: if t mod k = 0 then
21: Update DNavigator ← (st−k, Gd, st, rNavigator, done)
22: Update πNav
23: Gs ← G ∈ G such that st ∈ G
24: Gd ∼ πNav(st, gexit)
25: else
26: Update Fk with the data from DNavigator
27: G ← Refine(G, E ,Fk)
28: break the while loop and start a new episode

B Refining N via Reachability Analysis228

While we follow the high level description of the refinement procedure of the GARA [Zadem et al., 2023]229

algorithm, we adapt it to our notation and to the new theoretical results on the refinement we present later (which230

holds for both GARA and STAR). Furthermore, in the rest of this Section and in Section C, we will assume a231

2-level hierarchy, where πNav is the high-level policy (e.g., πhigh), and πlow is the hierarchical policy obtained232

composing πMan and πCont.233

We first define the k-step reachability relation for a goal-conditioned policy πNLow :234

RkπNLow
(Gi, Gj) :=

s′ ∈ S | s ∈ Gi, s k
GGGGGGGGGGGGA

πNLow(., Gj)
s′

 ,

where s
k

GGGGGGGGGGGGA

πNLow(., Gj)
s′ means that s can reach s′ by executing the policy πNLow(.,Gj) (targeting Gj) in k steps.235

In other words, RkπNLow
(Gi, Gj) is the set of states reached when starting in any state in Gi and applying the236

policy πNLow(., Gj) for k steps.237

The algorithm uses the notion of reachability property among a pair of abstract goals:238

Definition 1 (Pairwise Reachability Property) Let N : S → 2S be a set-based abstraction and Gi, Gj ∈239

GN . N satisfies the pairwise reachability property for (Gi, Gj) if Rkπ∗NLow
(Gi, Gj) ⊆ Gj .240

The algorithm decides to refine the abstract representation after an episode of the HRL algorithm. Let E :=241

{G0, . . . , Gn} be the list of goals visited in the last episode. The refinement algorithm analyzes all the pairs242

(Gi, Gi+1) ∈ E , for 0 ≤ i < n, and refines N in a new abstraction N ′ "splitting" Gi if it does not satisfy243

the pairwise reachability property. Each refinement obtains a new, finer abstractionN ′ where the reachability244

property is respected in one more goal. We formalize when an abstraction N ′ refines an abstraction N with245

respect to the reachability property as follows:246

7

Definition 2 (Pairwise Reachability-Aware Refinement) Let N : S → 2S and N ′ : S → 2S be two set-247

based abstractions such that there exists Gi ∈ GN , GN ′ = (GN \ {Gi}) ∪ {G′1, G′2}, G′1 ∪ G′2 = Gi, and248

G′1 ∩G′2 = ∅. N ′ refinesN (written asN ′ ≺ N) if, for some Gj ∈ GN ,N ′ satisfies the pairwise reachability249

property for (G′1, Gj), whileN does not satisfy the pairwise reachability property for (Gi, Gj).250

Approximating the Reachability Property. STAR checks the reachability property for (Gi, Gj) by251

approximating a reachability relation among abstract states with a forward model (a neural network) Fk :252

S × G → S such that Fk(st, Gj) ' st+k. This model is trained from exploration data to approximate the253

reached state after applying the policy πNLow(s,Gj) for k steps. Checking the reachability property for (Gi, Gj)254

amounts to checking the output of Fk(s ∈ Gi, Gj) for all states s ∈ Gi with a neural network reachability255

analysis tool [?]. If the reachability property is not valid, Gi is progressively split into smaller regions to identify256

subsets where the reachability property holds. Further detail can be found in Zadem et al. [2023].257

C Theoretical Properties of the Refinement258

In this section, we motivate the adoption of the goal-space abstraction and the reachability-aware refinement259

showing that: (i) there exists a bound on the sub-optimality of policies trained with a reachability-aware260

abstraction; and (ii) the reachability-aware refinement gradually finds a reachability-aware abstraction. Our261

results apply to both STAR and GARA [Zadem et al., 2023], and all the proofs are available in the Appendix ??.262

The theoretical results hold under the assumptions that the environment M is deterministic and the reward263

signal rext is bounded in the environment. Consequently, we assume that the distance separating a state264

s ∈ S from all the states s′ ∈ S that s can reach in one step is bounded. Thus, there is an upper bound265

Rmax := max
s,s′∈S,

∑
a∈A P (s′|s,a)≥0

‖s− s′‖2 on the reward signal.266

Let π∗ be the optimal hierarchical policy composed by a high-level policy g ∼ π∗high(s, g
∗) that samples g ∈ S,267

and a low-level policy a ∼ π∗low(s, g) that samples actions a ∈ A. Since the environment is deterministic,268

there exists an optimal high-level trajectory containing the goals sampled with π∗high and an optimal low-level269

trajectory containing all the visited states:270

T ∗high := {g0, g1, . . . , gm}, T ∗Low := {s0, s1, . . . , sm·k}, with si·k = gi, for 0 ≤ i ≤ m.

Let N : S → 2S be a set-based abstraction. We write π∗N for the optimal hierarchical policy obtained with271

the abstraction N . We write T ∗NHigh
and T ∗NLow for the optimal high- and low-level trajectories respectively.272

Below, we provide an upper bound on the difference between the optimal hierarchical policy π∗ and the optimal273

hierarchical policy π∗N whenN is a reachability-aware.274

Definition 3 (Reachability-Aware Abstraction) Let N : S → 2S be a set-based abstraction, π∗N the corre-275

sponding optimal hierarchical policy, and T ∗high the optimal high-level trajectory from π∗high. N is a reachability-276

aware abstraction with respect to T ∗high if:277

1. States are contained in their abstraction: ∀s ∈ S, s ∈ N (s).278

2. The abstractions of the goals in the optimal trajectory are disjoint:279

∀gi, gj ∈ T ∗high, (gi 6= gj → N (gi) ∩N (gj) = ∅).

3. The abstractions of each consecutive goals in the optimal trajectory satisfy the pairwise reachability280

property:281

∀gi, gi+1 ∈ T ∗high, R
k
π∗NLow

(N (gi),N (gi+1)) ⊆ N (gi+1).

4. The reward in the final abstract goalN (gm) is bounded:282

∃ε > 0,∀s ∈ N (gm).|rext(gm)− rext(s)| ≤ ε.
Theorem 1 (Sub-optimal Learning) Let M be a deterministic environment with task goal g∗ ∈ S and283

rext(s) = −‖g∗ − s‖2. LetN : S → 2S be a reachability-aware abstraction with respect to T ∗high. Then, for284

s0 ∈ T ∗Low and s′0 ∈ T ∗NLow we have that:285

|Vπ∗(s0)− Vπ∗
N
(s′0)| ≤

mk
2∑
i=0

γii+

mk∑
i=mk

2

γi(mk − i)

 · 2Rmax + 1− γmk+1

1− γ ε, (1)

where Vπ(s) is the value function for a policy π [?].286

Moreover, if there exists a B ≥ ε > 0 such that for all 1 ≤ i ≤ m, max
x,y∈N (gi)

‖x− y‖ ≤ B, then ∀si ∈ T ∗Low287

and ∀s′i ∈ T ∗NLow we have that:288

|Vπ∗Low
(s0)− Vπ∗NLow

(s′0)| ≤
1− γmk+1

1− γ (kRmax +B). (2)

8

Equation (1) in the above theorem provides a bound on the sub-optimality of the hierarchical policy when289

trained under a set-based reachability-aware abstractionN . Intuitively, the worst trajectory T ∗NLow , starting from290

s′0 ∈ N (s0), can progressively deviate from T ∗Low as i increases. When i ≥ mk
2

, the trajectories progressively291

converge aroundN (gm). Equation (2) defines a tighter upper bound when there is a bound B on the maximum292

distance between two states in each abstract goal in T ∗NHigh
. In practice, the existence of the bound B is valid293

when the state space is bounded. In this case, the deviation of the two trajectories is independent from i and is294

stable across time.295

Lemma 1 LetN andN ′ be two set-based abstractions such thatN ′ ≺ N andN satisfies the Conditions (1),296

(2), and (3) (but not (4)) of a reachability-aware abstraction (Definition 3). Also, let Gi ∈ T ∗NHigh
(note that297

Gi ∈ GN), and Gi be the goal refined inN ′. Then, the abstractionN ′ satisfies the following:298

1. ∃ gi ∈ T ∗high such thatN does not satisfy the reachability property for (N (gi),N (gi+1)), whileN ′299

does for (N ′(gi),N (gi+1)).300

2. If there exists gj ∈ T ∗high such that gj ∈ N (gi), then gj 6∈ N ′(gi)).301

Theorem 2 Given an initial set-based abstraction N and assuming N (gm) satisfies the Conditions (1), (2),302

and (3) of Definition 3, there exists a finite number of refinements under which a reachability-aware abstraction303

can be computed.304

Theorem 2 establishes the effectiveness of the representation refinement process that gradually builds a305

reachability-aware abstraction. The theorem follows from Lemma 1. In practice, the assumption thatN (gm)306

verifies criteria 1,2,4 of Def.3 is reasonable since the goal g∗ is known in M . That is to say, N (gm) could307

correspond to a region whose center is g∗ and radius is Rmax.308

9

	Introduction
	Related Work
	Theoretical properties of the refinement
	Spatio-Temporal Abstraction via Reachability
	Experimental Evaluation
	Environment Setup
	Comparative Analysis
	Representation Analysis

	STAR's pseudo-code
	Refining N via Reachability Analysis
	Theoretical Properties of the Refinement

