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Abstract

Unsupervised semantic segmentation aims to automatically partition images into semanti-
cally meaningful regions by identifying global categories within an image corpus without
any form of annotation. Building upon recent advances in self-supervised representation
learning, we focus on how to leverage these large pre-trained models for the downstream
task of unsupervised segmentation. We present PriMaPs – Principal Mask Proposals – de-
composing images into semantically meaningful masks based on their feature representation.
This allows us to realize unsupervised semantic segmentation by fitting class prototypes to
PriMaPs with a stochastic expectation-maximization algorithm, PriMaPs-EM. Despite its
conceptual simplicity, PriMaPs-EM leads to competitive results across various pre-trained
backbone models, including DINO and DINOv2, and across datasets, such as Cityscapes,
COCO-Stuff, and Potsdam-3. Importantly, PriMaPs-EM is able to boost results when ap-
plied orthogonally to current state-of-the-art unsupervised semantic segmentation pipelines.

1 Introduction

Semantic image segmentation is a dense prediction task that classifies image pixels into categories from a
pre-defined semantic taxonomy. Owing to its fundamental nature, semantic segmentation has a broad range
of applications, such as image editing, medical imaging, robotics, or autonomous driving (see Minaee et al.,
2022, for an overview). Addressing this problem via supervised learning requires ground-truth labels for every
pixel (Long et al., 2015; Ronneberger et al., 2015; Chen et al., 2018b). Such manual annotation is extremely
time and resource intensive. For instance, a trained human annotator requires an average of 90 minutes to
label up to 30 classes in a single 2 MP image (Cordts et al., 2016). While committing significant resources
to large-scale annotation efforts achieves excellent results (Kirillov et al., 2023), there is natural interest in a
more economical approach. Alternative lines of research aim to solve the problem using cheaper – so-called
“weaker” – variants of annotation. For example, image-level supervision describing the semantic categories
present in the image, or bounding-box annotations, can reach impressive levels of segmentation accuracy
(Dai et al., 2015; Araslanov & Roth, 2020; Oh et al., 2021; Xu et al., 2022; Ru et al., 2023).

As an extreme problem scenario toward reducing the annotation effort, unsupervised semantic segmentation
aims to consistently discover and categorize image regions in a given data domain without any labels, know-
ing only how many classes to discover. Unsupervised semantic segmentation is highly ambiguous as class
boundaries and the level of categorical granularity are task-dependent.1 However, we can leverage the fact
that typical image datasets have a homogeneous underlying taxonomy and exhibit invariant domain char-
acteristics. Therefore, it is still feasible to decompose images in such datasets in a semantically meaningful
and consistent manner without annotations.

Despite the challenges of unsupervised semantic segmentation, we have witnessed remarkable progress on
this task in the past years (Ji et al., 2019; Cho et al., 2021; Van Gansbeke et al., 2021; 2022; Ke et al., 2022;
Yin et al., 2022; Hamilton et al., 2022; Karlsson et al., 2022; Li et al., 2023; Seong et al., 2023; Seitzer et al.,
2023). Deep representations obtained with self-supervised learning (SSL), such as DINO (Caron et al., 2021),

1While assigning actual semantic labels to regions without annotation is generally infeasible, the assumption is that the
categories of the discovered segments will strongly correlate with human notions of semantic meaning.
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Figure 1: PriMaPs pseudo label example. Principal mask proposals (PriMaPs) are iteratively extracted
from an image (dashed arrows). Each mask is assigned a semantic class resulting in a pseudo label. The
examples are taken from the Cityscapes (top), COCO-Stuff (middle), and Potsdam-3 (bottom) datasets.

have played a critical role in this advance. However, it remains unclear whether previous work leverages the
intrinsic properties of the original SSL representations, or merely uses them for “bootstrapping” and learns
a new representation on top. Exploiting the inherent properties of SSL features is preferable for two reasons.
First, training SSL models incurs a substantial computational effort, justifiable only if the learned feature
extractor is sufficiently versatile. In other words, one can amortize the high computational cost over many
downstream tasks, provided that task specialization is computationally negligible. Second, studying SSL
representations with lightweight tools, such as linear models, leads to a more interpretable empirical analysis
than with the use of more complex models, as evidenced by the widespread use of linear probing in SSL
evaluation. Such interpretability advances research on SSL models toward improved cross-task generalization.

Equipped with essential tools of linear modeling, i. e. Principal Component Analysis (PCA), we generate
Principal Mask Proposals, or PriMaPs, directly from the SSL representation. Complementing previous
findings on object-centric images (Tumanyan et al., 2022; Amir et al., 2022), we show that principal com-
ponents of SSL features tend to identify visual patterns with high semantic correlation also in scene-centric
imagery. Leveraging PriMaPs and minimalist post-processing, we construct semantic pseudo labels for each
image as illustrated in Fig. 1. Finally, instead of learning a new embedding on top of the SSL representation
(Hamilton et al., 2022; Seong et al., 2023; Seitzer et al., 2023; Zadaianchuk et al., 2023), we employ a moving
average implementation of stochastic Expectation Maximization (EM) (Chen et al., 2018a) to assign a con-
sistent category to each segment in the pseudo labels and directly optimize class prototypes in the feature
space. Our experiments show that this straightforward approach not only boosts the segmentation accu-
racy of the DINO baseline, but also that of more advanced state-of-the-art approaches tailored for semantic
segmentation, such as STEGO (Hamilton et al., 2022) and HP (Seong et al., 2023).

We make the following contributions: (i) We derive lightweight mask proposals, leveraging intrinsic properties
of the embedding space, e. g., the covariance, provided by an off-the-shelf SSL approach. (ii) Based on the
mask proposals, we construct pseudo labels and employ moving average stochastic EM to assign a consistent
semantic class to each proposal. (iii) We demonstrate improved segmentation accuracy across a wide range
of SSL embeddings and datasets.

2 Related Work

Our work builds upon recent advances in self-supervised representation learning, and takes inspiration from
previous unsupervised semantic and instance segmentation methods.
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The goal of self-supervised representation learning (SSL) is to provide generic, task-agnostic feature
extractors (He et al., 2020; Chen et al., 2020; Grill et al., 2020). A pivotal role in defining the behavior of
self-supervised features on future downstream tasks is taken by the self-supervised objective, the so-called
pretext task. Examples of such tasks include predicting the context of a patch (Doersch et al., 2015) or its
rotation (Gidaris et al., 2018), image inpainting (Pathak et al., 2016), and “solving” jigsaw puzzles (Noroozi
& Favaro, 2016). Another family of self-supervised techniques is based on contrastive learning (Chen et al.,
2020; Caron et al., 2020). More recently, Transformer networks (Dosovitskiy et al., 2020) revived some older
pretext tasks, such as context prediction (Caron et al., 2021; He et al., 2022), in a more data-scalable fashion.

While the standard evaluation practice in SSL (e. g., linear probing, transfer learning) offers some glimpse
into the feature properties, understanding the embedding space produced by SSL remains an active terrain
for research (Ericsson et al., 2021; Naseer et al., 2021). In particular, DINO features (Caron et al., 2021;
Oquab et al., 2024) are known to encode accurate object-specific information, such as object parts (Amir
et al., 2022; Tumanyan et al., 2022). However, it remains unclear to what extent DINO embeddings allow
for semantic representation of the more ubiquitous multi-object scenes. Here, following previous work (e. g.,
Hamilton et al., 2022; Seong et al., 2023), we provide further insights.

Early techniques for unsupervised semantic segmentation using deep networks (Cho et al., 2021;
Van Gansbeke et al., 2021) approach the problem in the spirit of transfer learning and, under certain
nomenclatures, may not be considered fully unsupervised. Specifically, starting with supervised ImageNet
pre-training (Russakovsky et al., 2015), a network obtains a fine-tuning signal from segmentation-oriented
training objectives. Such supervised “bootstrapping” appears to be crucial in the ill-posed unsupervised for-
mulation. Unsupervised training of a deep model for segmentation from scratch is possible, albeit sacrificing
accuracy (Ji et al., 2019; Ke et al., 2022). However, training a new deep model for each downstream task
contradicts the spirit of SSL of amortizing the high SSL training costs over many computationally cheap
specializations of the learned features (Bommasani et al., 2021).

Relying on self-supervised DINO pre-training, recent work (Hamilton et al., 2022; Li et al., 2023; Seong et al.,
2023) has demonstrated the potential of such amortization with more lightweight fine-tuning for semantic
segmentation. Nevertheless, most of this work (e. g., Hamilton et al., 2022; Van Gansbeke et al., 2022)
has treated the SSL representation as an inductive prior by learning a new embedding space over the SSL
features (e. g., Hamilton et al., 2022; Seong et al., 2023). In contrast, following SSL principles, we use the
SSL representation in a more direct and lightweight fashion – by extracting mask proposals using linear
models (PCA) with minimal post-processing and learning a direct mapping from feature to prediction space.

Mask proposals have an established role in computer vision (Arbelaez et al., 2011; Uijlings et al., 2013), and
remain highly relevant in deep learning (Hwang et al., 2019; Van Gansbeke et al., 2021; Yin et al., 2022).
Different from previous work, we directly derive the mask proposals from SSL representations. Our approach
is inspired by the recent use of classical algorithms, such as normalized cuts (Ncut Shi & Malik, 2000), in the
context of self-supervised segmentation (Wang et al., 2023a;b). However previous approaches (Van Gansbeke
et al., 2021; 2022; Wang et al., 2023a;b) mainly proposed foreground object masks on object-centric data,
utilized in a multi-step self-training. In contrast, we develop a straightforward method for extracting dense
pseudo labels for learning unsupervised semantic segmentation of scene-centric data and show consistent
benefits in improving the segmentation accuracy across a variety of baselines and state-of-the-art methods
(Hamilton et al., 2022; Seong et al., 2023).

3 PriMaPs: Principal Mask Proposals

This work leverages recent advances in self-supervised representation learning (Caron et al., 2021; Oquab
et al., 2024) for the specific downstream task of unsupervised semantic segmentation. Our approach is based
on the observation that such pre-trained features already exhibit intrinsic spatial similarities, capturing
semantic correlations, providing guidance to fit global pseudo-class representations.

A simple baseline. Consider a simple baseline that applies K-means clustering to DINO ViT features
(Caron et al., 2021). Surprisingly, this already leads to reasonably good unsupervised semantic segmentation
results, e. g., around 15 % mean IoU to segment 27 classes on Cityscapes (Cordts et al., 2016), see Tab. 1.
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However, supervised linear probing between the same feature space and the ground-truth labels – the the-
oretical upper bound – leads to clearly superior results of almost 36 %. Given this gap and the simplicity
of the approach, we conclude that there is valuable potential in directly obtaining semantic segmentation
without enhancing the original feature representation, unlike in previous work (Hamilton et al., 2022; Seong
et al., 2023).

From K-means to PriMaPs-EM. When examining the K-means baseline as well as state-of-the-art
methods (Hamilton et al., 2022; Seong et al., 2023), see Fig. 4, it can be qualitatively observed that more
local consistency within the respective predictions would already lead to less mis-classification. We take
inspiration from (Drineas et al., 2004; Ding & He, 2004), who showed that the PCA subspace, spanned
by principal components, is a relaxed solution to K-means clustering. We observe that principal compo-
nents have high semantic correlation for object- as well as scene-centric image features (cf. Fig. 1). We
utilize this by iteratively partitioning images based on dominant feature patterns, identified by means of
the cosine similarity of the image features to the respective first principal component. We name the re-
sulting class-agnostic image decomposition PriMaPs – Principal Mask Proposals. PriMaPs stem directly
from SSL representations and guide the process of unsupervised semantic segmentation. Shown in Fig. 2,
our optimization-based approach, PriMaPs-EM, operates over an SSL feature representation computed from
a frozen deep neural network backbone. The optimization realizes stochastic EM of a clustering objective
guided by PriMaPs. Specifically, PriMaPs-EM fits class prototypes to the proposals in a globally consistent
manner by optimizing over two identically sized vector sets, with one of them being an exponential moving
average (EMA) of the other. We show that PriMaPs-EM enables accurate unsupervised partitioning of
images into semantically meaningful regions while being highly lightweight and orthogonal to most previous
approaches in unsupervised semantic segmentation.

3.1 Deriving PriMaPs

We start with a frozen pre-trained self-supervised backbone model F : R3×h×w → RC×H×W , which embeds
an image I ∈ R3×h×w into a dense feature representation f ∈ RC×H×W as

f = F(I) . (1)

Here, C refers to the channel dimension of the dense features, and H = h/p,W = w/p with p corresponding
to the output stride of the backbone. Based on this image representation, the next step is to decompose the
image into semantically meaningful masks to provide a local grouping prior for fitting global class prototypes.

Initial principal mask proposal. To identify the initial principal mask proposal in an image I, we
analyze the spatial statistical correlations of its features. Specifically, we consider the empirical feature
covariance matrix

Σ = 1
HW

H∑
i=1

W∑
j=1

(
f:,i,j − f̄

)(
f:,i,j − f̄

)⊤
, (2)

where f:,i,j ∈ RC are the features at position (i, j) and f̄ ∈ RC is the mean feature. To identify the feature
direction that captures the largest variance in the feature distribution, we seek the first principal component
of Σ by solving

Σv = λv . (3)
We obtain the first principal component as the eigenvector v1 to the largest eigenvalue λ1, which can be
computed efficiently with Singular Value Decomposition (SVD) using the flattened features f .

To identify a candidate region, our next goal is to compute a spatial feature similarity map to the dominant
feature direction. We observe that doing so directly with the principal direction does not always lead to
sufficient localization, i. e., high similarities arise across multiple visual concepts in an image, elaborated in
more detail in Appendix A.1. This can be circumvented by first spatially anchoring the dominant feature
vector in the feature map. To that end, we obtain the nearest neighbor feature f̃ ∈ RC of the first principal
component v1 by considering the cosine distance in the normalized feature space f̂ as

f̃ = f̂:,i,j , where (i, j) = arg max
i,j

(
v⊤

1 f̂
)
. (4)
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Given this, we compute the cosine-similarity map M ∈ RH×W of the dominant feature w. r. t. all features as

M = (Mi,j)i,j , where Mi,j =
(
f̃

)⊤
f̂:,i,j . (5)

Next, a threshold ψ ∈ (0, 1) is applied to the similarity map in order to suppress noise and further localize
the initial mask. Accordingly, elements of a binary similarity map P 1 ∈ {0, 1}H×W are set to 1 when larger
than a fraction ψ of the maximal similarity, and 0 otherwise, i. e.,

P 1 =
[
Mi,j > ψ · max

m,n
Mm,n

]
i,j
, (6)

where [·] denotes the Iverson bracket. This binary principal mask P 1 gives rise to the first principal mask
proposal in image I.

Further principal mask proposals. Subsequent mask proposals result from iteratively repeating the
described procedure. To that end, it is necessary to suppress features that have already been assigned to a
pseudo label. Specifically in iteration z, given the mask proposals P s, s = 1, . . . , z− 1, extracted in previous
iterations, we mask out the features that have already been considered as

fz:,i,j = f:,i,j

[∑z−1

s=1
P si,j = 0

]
. (7)

Applying Eqs. (2) to (6) on top of the masked features fz yields principal mask proposal P z, and so on.
We repeat this procedure until the majority of features (e. g., 95%) have been assigned to a mask. In a final
step, the remaining features, in case there are any, are assigned to an “ignore” mask

P 0
i,j = 1 −

Z−1∑
z=1

P zi,j . (8)

This produces a tensor P ∈ {0, 1}Z×H×W of Z spatial similarity masks decomposing a single image into Z
non-overlapping regions.

Proposal post-processing. To further improve the alignment of the masks with edges and color-correlated
regions in the image, a fully connected Conditional Random Field (CRF) with Gaussian edge potentials
(Krähenbühl & Koltun, 2011) is applied to the initial mask proposals P (after bilinear upsampling to the
image resolution) for 10 inference iterations.

In order to form a pseudo label for semantic segmentation out of the Z mask proposals, each mask has
to be assigned one out of K class labels. This is accomplished using a segmentation prediction of our
optimization process, called PriMaPs-EM, detailed below. The entire PriMaPs pseudo label generation
process is illustrated in Figure 2b.

3.2 PriMaPs-EM

Shown in Fig. 2, PriMaPs-EM is an iterative optimization technique. It leverages the frozen pre-trained
self-supervised backbone model F and two identically sized vector sets, the class prototypes θS and their
moving average, the momentum class prototypes θT . The class prototypes θS and θT are the K pseudo
class representations in the feature space, projecting the C-dimensional features linearly to K semantic
pseudo classes. PriMaPs-EM constructs pseudo labels using PriMaPs, which provide guidance through
local consistency for fitting the global class prototypes. In every optimization iteration, we compute the
segmentation prediction y from the momentum class prototypes θT . Next, we assign the pseudo-class ID
that is most frequently predicted within each proposal, yielding the final pseudo-label map P ∗ ∈ {0, 1}K×h×w,
a one-hot encoding of a pseudo-class ID. Finally, we optimize the class prototypes θS using the pseudo label.

PriMaPs-EM consists of two stages, since in our case a meaningful initialization of the class prototypes is
vital to provide a reasonable optimization signal. This can be traced back to the pseudo-label generation,
which utilizes a segmentation prediction to assign globally consistent classes to the masks. Initializing the
class prototypes randomly leads to a highly unstable and noisy signal.
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Figure 2: (a) PriMaPs-EM architecture. Images are embedded by the frozen self-supervised backbone F .
First, both class prototypes θS and θT are initialized via a clustering objective. The segmentation prediction
y from the momentum class prototypes θT arises via a dot product with the image features f . While PriMaPs
are based on f alone, the pseudo labels additionally use the image I and the segmentation prediction y from
the momentum class prototypes θT . We use the pseudo labels to optimize the class prototypes θS , which are
gradually transferred to θT by means of an EMA. (b) PriMaPs pseudo label generation. Masks are
proposed by iterative binary partitioning based on the cosine similarity of the features of any unassigned pixel
to their first principal component. Next, the masks P are aligned to the image using a CRF (Krähenbühl &
Koltun, 2011). Finally, a pseudo-class ID is assigned per mask based on the segmentation prediction from
the θT . Gray indicates iterative steps.

Initialization. We initialize the class prototypes θT with the first K principal components. Next, a cosine
distance batch-wise K-means (MacQueen, 1967) loss

LK-means(θT ) = −
∑
i,j

max
(
θ⊤
T f:,i,j

)
(9)

is minimized with respect to θT for a fixed number of epochs. This minimizes the cumulative cosine dis-
tances of the image features f:,i,j to their respective closest class prototype. θS is initialized with the same
prototypes.

Moving average stochastic EM. In each iteration, we use the backbone features and momentum class
prototypes θT to yield a segmentation prediction y from which pseudo labels are generated as described in
Sec. 3.1. θS is optimized by applying a batch-wise focal loss (Lin et al., 2020) with respect to these pseudo
labels. The focal loss Lfocal is a weighted version of the cross-entropy loss, increasing the loss contribution
of less confident classes, i. e.,

Lfocal(θS ; y′) = −
∑
k,i,j

(1 − χk)2P ∗
k,i,j log(y′

k,i,j) , (10)

where y′
:,i,j = softmax(θ⊤

S f:,i,j) are the predictions and χk is the class-wise confidence value approximated
by averaging y′

:,i,j spatially. The class prototypes θS are optimized with an augmented input image I ′. We
employ photometric augmentations (Gaussian blur, grayscaling, and color jitter), introducing a controlled
noise, thereby strengthening the robustness of our class representation. The momentum class prototypes
θT are the exponential moving average of the class prototypes θS . This is utilized in order to stabilize the
optimization, accounting for the noisy nature of unsupervised signal used for optimization. We update θT
every γt iterations with a decay γψ as

θt+γt

T = γψθ
t
T + (1 − γψ)θt+γt

S , (11)

where t is the iteration index of the previous update. This optimization approach resembles moving average
stochastic EM. Hereby, the E-step amounts to finding pseudo labels using PriMaPs and the momentum class
prototypes. The M-step optimizes the class prototypes with respect to their focal loss Lfocal. Stochasticity
arises from performing EM in mini-batches.
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Inference. At inference time, we obtain a segmentation prediction from the momentum class prototypes θT ,
refined using a fully connected CRF with Gaussian edge potentials (Krähenbühl & Koltun, 2011) following
previous approaches (Van Gansbeke et al., 2021; Hamilton et al., 2022; Seong et al., 2023). This is the
identical CRF as already used for refining the masks in the PriMaPs pseudo-label generation. We use the
identical CRF parameters as previous work (Van Gansbeke et al., 2021; Hamilton et al., 2022; Seong et al.,
2023).

4 Experiments

To assess the efficacy of our approach, we compare it to the current state-of-the-art in unsupervised semantic
segmentation. For a fair comparison, we closely follow the overall setup used by numerous previous works
(Ji et al., 2019; Cho et al., 2021; Hamilton et al., 2022; Seong et al., 2023).

4.1 Experimental Setup

Datasets. Following the practice of previous work, we conduct experiments on Cityscapes (Cordts et al.,
2016), COCO-Stuff (Caesar et al., 2018), and Potsdam-3 (ISPRS). Cityscapes and COCO-Stuff are evaluated
using 27 classes, while Potsdam is evaluated on the 3-class variant. Adopting the established evaluation
protocol (Ji et al., 2019; Cho et al., 2021; Hamilton et al., 2022; Seong et al., 2023), we resize images to
320 pixels along the smaller axis and crop the center 320 × 320 pixels. This is adjusted to 322 pixels for
DINOv2. Different from previous work, we apply this simple scheme throughout this work, thus dispensing
with elaborate multi-crop approaches of previous methods (Hamilton et al., 2022; Yin et al., 2022; Seong
et al., 2023).

Self-supervised backbone. Experiments are conducted across a collection of pre-trained self-supervised
feature embeddings: DINO (Caron et al., 2021) based on ViT-Small and ViT-Base using 8 × 8 patches; and
DINOv2 (Oquab et al., 2024) based on ViT-Small and ViT-Base using 14 × 14 patches. In the spirit of SSL
principles, we keep the backbone parameters frozen throughout the experiments. We use the output from
the last network layer as our SSL feature embeddings. Since PriMaPs-EM is agnostic to the used embedding
space, we can also apply it on top of current state-of-the-art unsupervised segmentation pipelines. Here, we
consider STEGO (Hamilton et al., 2022) and HP (Seong et al., 2023), which also use DINO features but
learn a target domain-specific subspace.

Baseline. Following (Hamilton et al., 2022; Seong et al., 2023), we train a single linear layer as a baseline
with the same structure as θS and θT by minimizing the cosine distance batch-wise K-Means loss from
Eq. (9). Hereby, parameters, such as the number of epochs and the learning rate, are identical to those used
when employing PriMaPs-EM.

PriMaPs-EM. As discussed in Sec. 3.2, the momentum class prototypes θT are initialized using the first
K principal components; we use 2975 images for PCA, as this is the largest number of training images shared
by all datasets. Next, θT is pre-trained by minimizing Eq. (9) using Adam (Kingma & Ba, 2015). We use
a learning rate of 0.005 for 2 epochs on all datasets and backbones. The weights are then copied to θS .
For fitting the class prototypes using EM, θS is optimized by minimizing the focal loss from Eq. (10) with
Adam (Kingma & Ba, 2015) using a learning rate of 0.005. The momentum class prototypes θT are updated
using an EMA according to Eq. (11) every γs = 10 steps with decay γψ = 0.98. We set the PriMaPs mask
proposal threshold to ψ = 0.4. We use a batch size of 32 for 50 epochs on Cityscapes and Potsdam-3, and use
5 epochs on COCO-Stuff due to its larger size. Importantly, the same hyperparameters are used across all
datasets and backbones. Moreover, note that fitting class prototypes with PriMaPs-EM is quite practical,
e. g., about 2 hours on Cityscapes. Experiments are conducted on a single NVIDIA A6000 GPU.

Supervised upper bounds. To assess the potential of the SSL features used, we report supervised upper
bounds. Specifically, we train a linear layer using cross-entropy and Adam with a learning rate of 0.005.
Since PriMaPs-EM uses frozen SSL features, its supervised bound is the same as that of the underlying
features. This is not the case, however, for prior work (Hamilton et al., 2022; Seong et al., 2023), which
project the feature representation affecting the upper bound.
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Table 1: Cityscapes – PriMaPs-EM (Ours) comparison to existing unsupervised semantic seg-
mentation methods, using Accuracy and mean IoU (in %) for unsupervised and supervised probing.
Double citations refer to a method’s origin and the work conducting the experiment.

Method Backbone
Unsupervised Supervised

Acc mIoU Acc mIoU

IIC (Ji et al., 2019; Cho et al., 2021) 47.9 6.4 – –
MDC (Caron et al., 2018; Cho et al., 2021) 40.7 7.1 – –
PiCIE (Cho et al., 2021) 65.5 12.3 – –
VICE (Karlsson et al., 2022)

ResNet18
+FPN

31.9 12.8 86.3 31.6

Baseline (Caron et al., 2021) 61.4 15.8 91.0 35.4
+ TransFGU (Yin et al., 2022) 77.9 16.8 – –
+ HP (Seong et al., 2023) 80.1 18.4 91.2 30.6
+ PriMaPs-EM 81.2 19.4 91.0 35.4
+ HP (Seong et al., 2023) + PriMaPs-EM

DINO
ViT-S/8

76.6 19.2 91.2 30.6

Baseline (Caron et al., 2021) 49.2 15.5 91.6 35.9
+ STEGO (Hamilton et al., 2022; Koenig et al., 2023) 73.2 21.0 89.6 28.0
+ HP (Seong et al., 2023) 79.5 18.4 90.9 33.0
+ PriMaPs-EM 59.6 17.6 91.6 35.9
+ STEGO (Hamilton et al., 2022) + PriMaPs-EM

DINO
ViT-B/8

78.6 21.6 89.6 28.0

Baseline (Oquab et al., 2024) 49.5 15.3 90.8 41.9
+ PriMaPs-EM

DINOv2
ViT-S/14 71.5 19.0 90.8 41.9

Baseline (Oquab et al., 2024) 36.1 14.9 91.0 44.8
+ PriMaPs-EM

DINOv2
ViT-B/14 82.9 21.3 91.0 44.8

Evaluation. For inference, we use the prediction from the momentum class prototypes θT . CRF refinement
uses 10 inference iterations and standard parameters a = 4, b = 3, θα = 67, θβ = 3, θγ = 1 from prior work
(Van Gansbeke et al., 2021; Hamilton et al., 2022; Seong et al., 2023). We evaluate common metrics in
unsupervised semantic segmentation, specifically the mean Intersection over Union (mIoU) and Accuracy
(Acc) over all classes after aligning the predicted class IDs with ground-truth labels by means of Hungarian
matching (Kuhn, 1955).

SotA + PriMaPs-EM. To explore our method’s potential, we additionally employ PriMaPs-EM on top
of STEGO (Hamilton et al., 2022) and HP (Seong et al., 2023). For each backbone-dataset combination,
we apply it on top of the best previous method in terms of mIoU. To that end, the training signal for
learning the feature projection of (Hamilton et al., 2022; Seong et al., 2023) remains unchanged. We apply
PriMaPs-EM fully orthogonally, using the DINO backbone features for pseudo-label generation and fit a
direct connection between the feature space of the state-of-the-art method and the prediction space.

4.2 Results

We compare PriMaPs-EM against prior work for unsupervised semantic segmentation (Ji et al., 2019; Cho
et al., 2021; Hamilton et al., 2022; Yin et al., 2022; Li et al., 2023; Seong et al., 2023). As in previous
work, we use DINO (Caron et al., 2021) as the main baseline. Additionally, we also test PriMaPs-EM
on top of DINOv2 (Oquab et al., 2024), STEGO (Hamilton et al., 2022), and HP (Seong et al., 2023).
Overall, we observe that the DINO baseline already achieves strong results (cf. Tabs. 1 to 3). DINOv2
features significantly raise the supervised upper bounds in terms of Acc and mIoU, the improvement in
the unsupervised case remains more modest. Nevertheless, PriMaPs-EM further boosts the unsupervised
segmentation performance.

In Tab. 1, we compare to previous work on the Cityscapes dataset. PriMaPs-EM leads to a consistent
improvement over all baselines in terms of unsupervised segmentation accuracy. For example, PriMaPs-
EM boosts DINO ViT-S/8 by +3.6% and +19.8% in terms of mIoU and Acc, respectively, which leads to
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Table 2: COCO-Stuff – PriMaPs-EM (Ours) comparison to existing unsupervised semantic
segmentation methods, using Accuracy and mean IoU (in %) for unsupervised and supervised probing.
Double citations refer to a method’s origin and the work conducting the experiment.

Method Backbone
Unsupervised Supervised

Acc mIoU Acc mIoU

IIC (Ji et al., 2019; Cho et al., 2021) 21.8 6.7 44.5 8.4
MDC (Caron et al., 2018; Cho et al., 2021) 32.2 9.8 48.6 13.3
PiCIE (Cho et al., 2021) 48.1 13.8 54.2 13.9
PiCIE+H (Cho et al., 2021) 50.0 14.4 54.8 14.8
VICE (Karlsson et al., 2022)

ResNet18
+FPN

28.9 11.4 62.8 25.5

Baseline (Caron et al., 2021) 34.2 9.5 72.0 41.3
+ TransFGU (Yin et al., 2022) 52.7 17.5 – –
+ STEGO (Hamilton et al., 2022) 48.3 24.5 74.4 38.3
+ ACSeg (Li et al., 2023) – 16.4 – –
+ HP (Seong et al., 2023) 57.2 24.6 75.6 42.7
+ PriMaPs-EM 46.5 16.4 72.0 41.3
+ HP (Seong et al., 2023) + PriMaPs-EM

DINO
ViT-S/8

57.8 25.1 75.6 42.7

Baseline (Caron et al., 2021) 38.8 15.7 74.0 44.6
+ STEGO (Hamilton et al., 2022) 56.9 28.2 76.1 41.0
+ PriMaPs-EM 48.5 21.9 74.0 44.6
+ STEGO (Hamilton et al., 2022) + PriMaPs-EM

DINO
ViT-B/8

57.9 29.7 76.1 41.0

Baseline (Oquab et al., 2024) 44.5 22.9 77.9 52.8
+ PriMaPs-EM

DINOv2
ViT-S/14 46.5 23.8 77.9 52.8

Baseline (Oquab et al., 2024) 35.0 17.9 77.3 53.7
+ PriMaPs-EM

DINOv2
ViT-B/14 52.8 23.6 77.3 53.7

state-of-the-art performance. Notably, we find PriMaPs-EM to be complementary to other state-of-the-art
unsupervised segmentation methods like STEGO (Hamilton et al., 2022) and HP (Seong et al., 2023) on the
corresponding backbone model. This suggests that these methods use their SSL representation only to a
limited extent and do not fully leverage the inherent properties of the underlying SSL embeddings. Similar
observations can be drawn for the experiments on COCO-Stuff in Tab. 2. PriMaPs-EM leads to a consistent
improvement across all four SSL baselines, as well as an improvement over STEGO and HP. For instance,
combining STEGO with PriMaPs-EM leads to +14.0% and +19.1% improvement over the baseline in terms
of mIoU and Acc for DINO ViT-B/8. Experiments on the Potsdam-3 dataset follow the same pattern (cf.
Tab. 3). PriMaPs-EM leads to a consistent gain over the baseline, e. g. +17.6% and +14.4% in terms of
mIoU and Acc, respectively, for DINO ViT-B/8. Moreover, it also boosts the accuracy of STEGO and HP. In
some cases, the gain of PriMaPs-EM is limited. For example, in Tab. 1 for DINO ViT-B/8 + PriMaPs-EM,
the class prototype for “sidewalk” is poor while the classes “road” and “vegetation” superimpose smaller
objects. For DINO ViT-S/8 + PriMaPs-EM in Tab. 3, the class prototype “road” is poor. This limits the
overall performance of our method while still outperforming the respective baseline in both cases.

Overall, PriMaPs-EM provides modest but consistent benefits over a wide range of baselines and datasets and
reaches competitive segmentation performance w. r. t. the state-of-the-art using identical hyperparameters
across all backbones and datasets. Recalling the simplicity of the techniques behind PriMaPs, we believe
that this is a significant result. The complementary effect of PriMaPs-EM on other state-of-the-art methods
(STEGO, HP) further suggests that they rely on DINO features for mere “bootstrapping” and learn feature
representations with orthogonal properties to those of DINO. We conclude that PriMaPs-EM constitutes a
straightforward, entirely orthogonal tool for boosting unsupervised semantic segmentation.

4.3 Ablation Study

To untangle the factors behind PriMaPs-EM, we examine the individual components in a variety of ablation
experiments to access the contribution.
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Table 3: Potsdam-3 – PriMaPs-EM (Ours) comparison to existing unsupervised semantic seg-
mentation methods, using Accuracy and mean IoU (in %) for unsupervised and supervised probing.
Double citations refer to a method’s origin and the work conducting the experiment.

Method Backbone
Unsupervised Supervised

Acc mIoU Acc mIoU

RandomCNN (Cho et al., 2021) 38.2 – – –
K-Means (Pedregosa et al., 2011; Cho et al., 2021) 45.7 – – –
SIFT (Lowe, 2004; Cho et al., 2021) 38.2 – – –
ContextPrediction (Doersch et al., 2015; Cho et al., 2021) 49.6 – – –
CC (Isola et al., 2015; Cho et al., 2021) 63.9 – – –
DeepCluster (Caron et al., 2018; Cho et al., 2021) 41.7 – – –
IIC (Ji et al., 2019; Cho et al., 2021)

VGG
11

65.1 – – –

Baseline (Caron et al., 2021) 56.6 33.6 82.0 69.0
+ STEGO (Hamilton et al., 2022; Koenig et al., 2023) 77.0 62.6 85.9 74.8
+ PriMaPs-EM 62.5 38.9 82.0 69.0
+ STEGO (Hamilton et al., 2022) + PriMaPs-EM

DINO
ViT-S/8

78.4 64.2 85.9 74.8

Baseline (Caron et al., 2021) 66.1 49.4 84.3 72.8
+ HP (Seong et al., 2023) 82.4 69.1 88.0 78.4
+ PriMaPs-EM 80.5 67.0 84.3 72.8
+ HP (Seong et al., 2023)+ PriMaPs-EM

DINO
ViT-B/8

83.3 71.0 88.0 78.4

Baseline (Oquab et al., 2024) 75.9 61.0 86.6 76.2
+ PriMaPs-EM

DINOv2
ViT-S/14 78.5 64.3 86.6 76.2

Baseline (Oquab et al., 2024) 82.4 69.9 87.9 78.3
+ PriMaPs-EM

DINOv2
ViT-B/14 83.2 71.1 87.9 78.3

Table 4: Ablation study analyzing design choices and components in the PriMaPs pseudo-label generation
(a) and PriMaPs-EM (b) for COCO-Stuff using DINO ViT-B/8.

(a) PriMaPs pseudo label ablation

Method Acc mIoU

Baseline (Caron et al., 2021) 38.8 15.7
Similarity Masks 46.3 19.8
+ NN 44.9 20.0
+ P-CRF (≡ PriMaPs-EM) 48.4 21.9

PriMaPs-EM (non-iter.) 47.9 21.7

(b) PriMaPs-EM ablation

Method Acc mIoU

Baseline (Caron et al., 2021) 38.8 15.7
+ PriMaPs pseudo label 38.8 18.0
+ EMA 45.0 20.2
+ Augment 46.0 20.4
+ CRF (≡ PriMaPs-EM) 48.4 21.9

PriMaPs pseudo-label ablations. In Tab. 4a, we analyze the contribution of the individual sub-steps
for PriMaPs pseudo-label generation by increasing the complexity of label generation. We provide the DINO
baseline, which corresponds to K-means feature clustering, for reference. In the most simplified case, we
directly use the similarity mask, similar to Eq. (4). Next, we use the nearest neighbor (+NN in Tab. 4a) of
the principal component to get the masks as in Eq. (5), followed by the full approach with CRF refinement
(+P-CRF). Except for the changes in the pseudo-label generation, the optimization remains as described in
Sec. 4.1. We observe that the similarity masks already provide a good staring point, yet we identify a gain
from every single component step. This suggests that using the nearest neighbor improves the localization
of the similarity mask. Similarly, CRF refinement improves the alignment between the masks and the
image content. We also experiment with using the respective next principal direction (non-iter.) instead of
iteratively extracting the first component from masked features. This leads to slightly inferior results.

PriMaPs-EM architecture ablations. In a similar vein, we analyze the contribution of the different
architectural components of PriMaPs-EM. Optimizing over a single set of class prototypes using the proposed
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Table 5: Oracle quality assessment of PriMaPs pseudo labels for Cityscapes, COCO-Stuff, and
Potsdam-3 by assigning oracle class IDs to the masks. “Pseudo” refers to evaluating only the pixels contained
in the pseudo label, “All” to evaluating including the “ignore” assignments of the pseudo label.

Method
Cityscapes COCO-Stuff Potsdam-3

Acc mIoU Acc mIoU Acc mIoU

Pseudo 92.4 54.0 93.4 82.4 95.2 90.9
All 73.2 32.4 74.1 55.9 67.4 48.9

DINO ViT-B/8 Baseline (Caron et al., 2021) 49.2 15.5 38.8 15.7 66.1 49.4
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Figure 3: Qualitative PriMaPs examples using DINO ViT-B/8 for Cityscapes, COCO-Stuff, and
Potsdam-3. PriMaPs Colored – each mask proposal is visualized in a different color. PriMaPs Oracle
class IDs – each mask is colored in the corresponding ground-truth class color.

PriMaPs pseudo labels already provides moderate improvement (+PriMaPs pseudo label in Tab. 4b), despite
the disadvantage of an unstable and noisy optimization signal. Adding the EMA (+EMA) leads to a more
stable optimization and further improved segmentation. Augmenting the input (+Augment) results in a
further gradual improvement. Similarly, refining the prediction with a CRF improves the results further
(+CRF).

Assessing PriMaPs pseudo labels. To estimate the quality of the pseudo labels, respectively the
principal masks, we decouple those from the class ID assignment by providing the oracle ground-truth class
for each mask in Tab. 5. To that end, we evaluate all pixels included in our pseudo labels (“Pseudo”),
corresponding to the upper bound of our optimization signal. Furthermore, we evaluate “All” by assigning
the “ignore” pixels to a wrong class. The results indicate a high quality of the pseudo-label maps. Fig. 3
shows qualitative examples of the PriMaPs mask proposals and pseudo labels. We visualize individual masks,
each in a different color (PriMaPs Colored). We also display oracle pseudo labels assigning each mask a
color based on the ground-truth label (PriMaPs Oracle class IDs). We observe that the mask proposals
align well with the ground-truth labels across all three datasets, generalizing across three distinct domains.
PriMaPs effectively partitions images into semantically meaningful masks.

Qualitative results. We show qualitative results for Cityscapes, COCO-Stuff, and Potsdam-3 in Fig. 4.
We observe that PriMaPs-EM leads to less noisy results compared to the baseline, showcasing an improved
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Figure 4: Qualitative results for the DINO ViT-B/8 baseline, PriMaPs-EM (Ours), STEGO (Hamilton
et al., 2022), and STEGO+PriMaPs-EM (Ours) for Cityscapes, COCO-Stuff, and Potsdam-3. Our method
produces locally more consistent segmentation results reducing overall misclassification compared to the
corresponding baseline.

local consistency of the segmentation and reduced mis-classification. The comparison with STEGO as a base-
line exhibits a similar trend. For further examples and comparisons with HP, please refer to Appendix B.2.

Limitations. One of the main challenges is to distinguish between classes that happen to share the same
SSL feature representation. This is hardly avoidable if the feature representation is fixed, as was the case
here and in previous work (Hamilton et al., 2022; Seong et al., 2023). Another limitation across existing
unsupervised semantic segmentation approaches is the limited spatial image resolution. This limitation
comes from the SSL training objectives (Caron et al., 2021; Oquab et al., 2024), which are image-level,
rather than pixel-level. As a result, we can observe difficulties in segmenting very small, finely resolved
structures.

5 Conclusion

We present PriMaPs, a novel dense pseudo-label generation approach for unsupervised semantic segmen-
tation. We derive lightweight mask proposals directly from off-the-shelf self-supervised learned features,
leveraging the intrinsic properties of their embedding space. Our mask proposals can be used as pseudo la-
bels to effectively fit global class prototypes using moving average stochastic EM with PriMaPs-EM. Despite
the simplicity, PriMaPs-EM leads to a consistent boost in unsupervised segmentation accuracy when applied
to a variety of SSL features or orthogonally to current state-of-the-art unsupervised semantic segmentation
pipelines, as shown by our results across multiple datasets.
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A Further Analysis

In this appendix, we provide more detailed insights into PriMaPs-EM beyond the scope of the main paper.

A.1 Nearest Neighbor Anchoring

As described in Sec. 3 of the main paper, PriMaPs are spatially anchoring the first principal component in
each iteration of the mask proposal generation. Corresponding to the quantitative findings (cf. Tab. 4a),
here we additionally analyze this qualitatively. Fig. 5 shows similarity maps of all features to the iteratively
computed first principal component (Similarity 1st PC) as well as to the respective nearest neighbor feature
(Similarity 1st PC NN) for example images from Cityscapes (Cordts et al., 2016), COCO-Stuff (Caesar et al.,
2018), and Potsdam-3 (ISPRS). We observe that the originally computed principal direction can have high
similarities with multiple semantic concepts in an image. Hence, finding a suitable threshold that isolates a
single main concept is difficult.

However, using the nearest image feature to the principal component as an anchoring element helps to
circumvent high similarity values to multiple visual concepts. For instance, in the first example for Cityscapes,
the similarity map for the first principal component has high similarities to both “building” and “vegetation”.
In contrast, the similarity map for the next nearest neighbor of the first principal component results in high
similarity to the class “vegetation” only. Consequently, a suitable mask proposal can be obtained through
thresholding. We observe this particularly for the Cityscapes dataset and some examples of COCO-Stuff.
Further, in cases where the similarity map is already localized to one visual concept, spatial anchoring merely
leads to a change in the similarity values without changing the shape of the thresholded proposal.

A.2 Ablation of the Threshold

In the spirit of unsupervised learning, our method effectively has only a single additional hyperparameter –
the threshold ψ. Furthermore, this parameter can be set simply by examining the mask proposal as detailed
next. In addition, it should be noted that we keep this parameter unchanged for all backbone models and
datasets, which further emphasizes the generalizability of our method. As described in Sec. 3 of the main
paper, the threshold ψ is used to remove noise in the similarity masks and to localize the optimization
signal. In Fig. 6, qualitative examples of PriMaPs mask proposals are visualized for DINO ViT-B/8 on
Cityscapes, COCO-Stuff, and Potsdam-3. We show mask proposals for ψ = 0.3, ψ = 0.4, and ψ = 0.5.
Visually, it can be observed that meaningful masks are produced for all thresholds. Especially those for
threshold 0.3 and 0.4 align very well with the semantic content in the images. While ψ = 0.3 seems to
provide better mask proposals for COCO-Stuff and Potsdam-3, a problem arises with Cityscapes. Here, the
mask proposals contain several semantic concepts and spatially small objects in a large mask (cf. the second
Cityscapes example, where the mask of the bush in the left half of the image covers both the traffic sign
in the foreground, parts of the house in the background, as well as the sky). Since this would lead to a
poor optimization signal and the masks of the other two datasets using ψ = 0.4 seem visually appealing, the
threshold is set to 0.4 in all other experiments.

To further shed light on these qualitative observations, we apply PriMaPs-EM for the scenario described
above and vary the threshold from ψ = 0.2 to ψ = 0.6 with a step size of 0.1. We perform this with
the DINO ViT-B/8 backbone for Cityscapes, COCO-Stuff, and Potsdam-3 and show the mIoU in Fig. 7.
The quantitative results reflect our qualitative conclusion of the threshold well, and show the trade-off
between better segmentation accuracy on COCO-Stuff and Potsdam-3 for a lower threshold and vice versa for
Cityscapes. In numbers, a threshold of ψ = 0.5 instead of ψ = 0.4 for Cityscapes would lead to an additional
gain of 1.4 % mIoU, but also to slight losses on COCO-Stuff of 0.8 %. Additionally, this results in more mask
proposal iterations. We conclude that the determined threshold ψ = 0.4 appears to be reasonable. Even if
better results could be achieved for some backbone dataset combinations with individually set thresholds,
we consider a fixed threshold that generalizes well across all scenarios to be sensible. We would like to
emphasize that this experiment was conducted solely for this single backbone and serves only to validate
the qualitative judgement from above. Importantly, we did not determine the hyperparameters based on the
evaluation sets.
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Figure 5: Nearest neighbor spatial anchoring of the principal direction in PriMaPs. Image,
ground-truth label, and the first three similarity maps with respect to the principal direction (left) and
their nearest neighbor (right) for all three datasets using DINO ViT-B/8. Anchoring localizes the signal for
principal directions with high similarities to multiple visual concepts.

B Further Experiments

This appendix provides insights beyond the experiments and ablations shown in Sec. 4.

B.1 Class-Level Quantitative Analysis

To gain a deeper understanding of PriMaPs-EM, we assess the segmentation accuracy in terms of IoU
for individual classes. Additionally, we present the confusion matrices among the semantic classes for the
DINO ViT-B/8 Baseline, PriMaPs-EM, STEGO, and STEGO+PriMaPs-EM for the COCO-Stuff dataset
in Fig. 8. Generally, we can observe that for both the DINO and STEGO baseline, for certain classes (e. g.,
“Appliance”, “Indoor”, “Kitchen”) the discovered unsupervised class concept does not correlate with human-
defined semantic classes. This suggests that the respective backbone feature representation may already be
hard to separate. Furthermore, some of the 27 intermediate COCO-Stuff classes merge visually distinct
concepts. For instance, the class “indoor” combines “hairbrush”, “toothbrush”, “hair dryer”, “teddy bear”,
“scissors”, “vase”, “clock”, and “book”. We see this assumption partially confirmed by analyzing the class
IoUs of linear probing of the DINO features. For the problematic classes, the linear probing IoUs are in the
range of approx. 16 %–30 %, whereas for the other classes the IoU is 50 % and higher. We conclude that if it
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Figure 6: Qualitative threshold ψ ablation with DINO ViT-B/8 using different ψ values for PriMaPs
mask proposal generation on all three datasets. The hyperparameter exhibits favorable stability properties.
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Figure 7: Quantitative threshold ψ ablation with DINO ViT-B/8 using different ψ values for PriMaPs
mask proposal generation on all three datasets. The single hyperparameter of our method exhibits favorable
stability properties.

is already difficult to linearly distinguish the classes based on the backbone features, our method can hardly
improve upon this.

However, for classes meeting this requirement, our method clearly boosts class IoUs. In rare cases (e. g.,
STEGO comparison to STEGO+PriMaPs-EM for classes “Outdoor” and “Sports”), there is a decrease in one
class IoU with PriMaPs-EM while another class IoU increases. This can occur if the change in the prototype
representation results in a change of the Hungarian matching for evaluation, though this is rarely observed.
In terms of class confusion, the model’s predictions align with the ground-truth labels. Furthermore, the
existing confusions are reasonable. For instance, when using STEGO, confusions of the two “food” mid-
level classes emerge. Overall, Fig. 8a indicates that our method either enhances or at least maintains the
segmentation performance per class in terms of IoU regardless of the backbone model. Additionally, our
method aids in reducing the confusion among classes.
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Figure 8: COCO-Stuff – Comparison of the segmentation performance for individual classes in
terms of IoU (in %) (a) and class confusion for the DINO ViT-B/8 Baseline (b), PriMaPs-EM (c), STEGO
(d), and STEGO + PriMaPs-EM (e). Overall, PriMaPs-EM preserves or boosts the individual class IoU
across most classes and moderately reduces class confusion.

(a) Class IoUs (in %) for DINO ViT-B/8 Baseline, PriMaPs-EM (Ours), STEGO, and STEGO+PriMaPs-EM (Ours).
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(b) Confusion matrix for the Baseline
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(c) Confusion matrix for PriMaPs-EM
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(d) Confusion matrix for STEGO
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(e) Confusion matrix for STEGO + PriMaPs-EM
0
0
0
0
0
0
0
0
0
10
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
8
26
0
6
3
0

46
55
2
51
21
62
12
0
1
0
1
0
0
3
3
17
15
7
3
2
0
0
0
0
1
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
0
0
0

0
0
0
0
0
0
0
3
1
0
0
0
0
1
0
0
0
0
0
0
0
15
6
0
8
1
1

0
0
0
0
0
0
0
0
0
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
1
0
0
3
0
0
84
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0

0
0
2
2
5
2
14
2
31
3
45
14
0
0
0
0
4
3
0
0
0
0
0
0
0
0
0

0
0
0
0
1
0
13
1
0
71
4
0
0
0
0
0
0
5
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
1
8
0
0
0
0
0
0
0
0
0
0
17
0
0
2
0
15

0
0
0
0
0
0
0
0
4
0
0
61
0
0
0
0
2
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
1
0
0
0
0
0
77
0
0
1
0
0
2
1
2
0
0
0
0
0
0

1
2
1
4
2
20
0
0
0
0
0
0
0
58
5
18
7
13
1
0
0
0
0
0
0
0
0

0
0
91
3
20
7
0
0
0
0
0
0
0
0
89
0
2
0
0
0
0
0
1
0
0
0
0

28
32
0
4
1
2
1
0
0
0
0
0
0
2
0
37
5
14
13
46
0
0
0
0
0
0
0

19
0
1
0
35
0
30
0
16
0
14
1
1
0
0
1
23
8
2
0
2
0
0
0
0
0
0

0
0
0
23
1
0
11
0
0
0
0
0
0
0
0
1
1
27
0
0
0
0
0
0
0
0
0

0
3
0
0
1
0
0
0
0
0
0
0
3
0
0
8
0
1
38
1
0
0
0
0
0
0
0

0
1
0
0
0
0
0
1
7
0
0
0
0
1
0
3
6
1
17
3
4
1
2
0
26
4
0

1
0
0
1
4
0
3
0
9
1
0
9
13
0
0
3
16
4
5
32
77
0
1
1
1
7
0

0
1
0
2
0
0
5
0
10
2
10
5
0
30
0
1
5
1
1
2
2
50
1
0
3
3
1

0
0
0
1
0
0
1
2
1
1
0
1
0
0
0
0
1
0
0
6
2
1
56
2
8
8
1

0
0
0
0
0
0
0
0
0
0
3
1
0
0
0
0
0
0
0
0
0
0
0
91
2
0
11

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
30
0
0

0
0
0
2
0
0
0
0
10
1
1
1
1
0
0
1
2
7
8
1
2
0
0
0
0
66
0

0
0
0
0
0
0
0
0
0
0
2
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
66

Predicted labels

G
ro

un
d-

tr
ut

h
la

b
el

s

Electronic
Appliance
Food
Furniture
Indoor
Kitchen
Accessory
Animal
Outdoor
Person
Sports
Vehicle
Ceiling
Floor
Food
Furniture
Rawmaterial
Textile
Wall
Window
Building
Ground
Plant
Sky
Solid
Structural
Water

El
ec

tr
on

ic
A

pp
lia

nc
e

Fo
od

Fu
rn

itu
re

In
do

or
K

itc
he

n
A

cc
es

so
ry

A
ni

m
al

O
ut

do
or

Pe
rs

on
Sp

or
ts

Ve
hi

cl
e

C
ei

lin
g

Fl
oo

r
Fo

od
Fu

rn
itu

re
R

aw
m

at
er

ia
l

Te
xt

ile
W

al
l

W
in

do
w

B
ui

ld
in

g
G

ro
un

d
Pl

an
t

Sk
y

So
lid

St
ru

ct
ur

al
W

at
er

20



Under review as submission to TMLR
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Figure 9: Qualitative results for the DINO ViT-S/8 Baseline, PriMaPs-EM (Ours), HP (Seong et al.,
2023), and HP (Seong et al., 2023)+PriMaPs-EM (Ours) for all three datasets. Our method produces
locally more consistent segmentation results, reducing misclassification.

B.2 Qualitative Comparison to HP

Similar to the qualitative comparison in Fig. 4 in the main paper, we aim to compare PriMaPs-EM with HP
(Seong et al., 2023). We present qualitative examples for the baseline, PriMaPs-EM, HP, and the combination
of HP and PriMaPs-EM in Fig. 9. These qualitative examples align with the findings from the quantitative
results in the main paper (cf. Tabs. 1 to 3). It is evident that our method produces locally more consistent
and less noisy results compared to both baselines. Despite the already impressive qualitative results of HP on
COCO-Stuff, our method excels in correcting misclassifications and achieving better segmentation of object
boundaries. We observe one limitation, particularly with the DINO ViT-S/8 baseline, both independently
and in conjunction with PriMaPs-EM for the Potsdam-3 dataset. In this case, the semantic concept of
“street” is not recognized and is consequently rarely predicted.

B.3 Comparison to HP using DINOv2

Current state-of-the-art methods Hamilton et al. (2022); Seong et al. (2023) for unsupervised segmentation
do not provide experiments using DINOv2 features. To be able to compare with previous methods, we train
HP using DINOv2 for the comparison in Tab. 6. We strictly follow the training schedule and hyperparameters
used in the original implementation for all respective datasets. HP does not generalize well to the DINOv2
features and hardly keeps up with the strong baseline. PriMaPs-EM moderately but consistently improves
upon both DINOv2 and HP across all datasets and metrics using the identical PriMaPs-EM hyperparameters
we use across all other experiments in this work.
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Table 6: Comparing PriMaPs-EM (Ours) to HP using DINOv2 for the Cityscapes (ViT-B/14),
COCO-Stuff (ViT-B/14), and Potsdam-3 (ViT-S/14) datasets. We report Accuracy and mean IoU (in %)
for unsupervised probing.

Method
Cityscapes COCO-Stuff Potsdam-3

Acc mIoU Acc mIoU Acc mIoU

DINOv2 Baseline (Oquab et al., 2024) 49.5 15.3 44.5 22.9 82.4 69.9
+ HP (Seong et al., 2023) 67.9 15.9 48.9 19.8 79.4 65.7
+ PriMaPs-EM 71.6 19.0 46.4 23.8 83.1 71.0
+ HP (Seong et al., 2023) + PriMaPs-EM 74.3 16.6 49.3 20.2 79.6 66.0
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Figure 10: Failure cases for the PriMaPs-EM segmentation (left) as well as PriMaPs pseudo labels (right)
using DINO ViT-B/8 for Cityscapes, COCO-Stuff, and Potsdam-3.

B.4 Failure Cases

Finally, we would like to discuss observed failure cases of PriMaPs-EM. Fig. 10 shows examples of failure
cases occurring in the segmentation predictions as well as failure examples for PriMaPs pseudo labels. For
PriMaPs-EM, we observe misclassifications, such as in Cityscapes where buses are often partially segmented
as the class “car” or that cobblestone is misclassified as “sidewalk”. For COCO-Stuff, shadows and structures
influence the segmentation predictions and confusions also occur (see “ground” and “floor” in example two).
For Potsdam-3, we observe that vehicles and road markings are sometimes erroneously attributed to the class
“building” instead of “road”. For PriMaPs pseudo labels, we identify two main sources of error. First, small
objects in cluttered images are sometimes assigned to larger neighboring masks, a phenomenon that can be
attributed to the limited backbone feature resolution. This is particularly noticeable for Cityscapes, where the
center horizontal area is often detailed (cf. Fig. 3 “Pole”, “Traffic Light”, “Traffic Sign”). Second, PriMaPs
sometimes oversegment images containing a large foreground object as seen in the COCO-Stuff example.
Similarly, different visual appearances of the same semantic class can lead to multiple masks (Potsdam-3).
Despite these observations, the simple PriMaPs provide promising mask proposals that correspond well with
the ground-truth label.
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C Implementation

Since all significant high-level implementation details and hyperparameters have been addressed in the main
paper, this section addresses only few remaining details. Please note that we will make both the code and
models publicly available upon the acceptance of this work. Our work is implemented in PyTorch (Paszke
et al., 2019). We build up on the code of Ji et al. (2019), Van Gansbeke et al. (2021) and Hamilton et al.
(2022).

C.1 Backbone Models

For each backbone model, we use the corresponding original implementation. Specifically, for DINO (Caron
et al., 2021) and DINOv2 (Oquab et al., 2024), we utilize the PyTorch Hub implementation. In the case of
STEGO (Hamilton et al., 2022) and HP (Seong et al., 2023), we integrate the respective original implemen-
tations into our framework.

C.2 Datasets

We close with some further details regarding the datasets used.

Cityscapes (Cordts et al., 2016) is an ego-centric street-scene dataset containing 5000 high-resolution
images with 2048 × 1024 pixels. It is split into 2975 train, 500 val, and 1525 test images. Following previous
work (Ji et al., 2019; Cho et al., 2021; Yin et al., 2022; Hamilton et al., 2022; Seong et al., 2023), evaluation
is conducted on the 27 classes setup using the val split.

COCO-Stuff (Caesar et al., 2018) is a dataset of everyday life scenes containing 80 things and 91 stuff
classes. Following previous work (Ji et al., 2019; Cho et al., 2021; Hamilton et al., 2022; Yin et al., 2022;
Li et al., 2023; Seong et al., 2023), we use a reduced variant by Ji et al. (2019) containing 49629 train and
2175 test images. Hereby, all images consist of at least 75 % stuff pixels. The dataset is evaluated on the 27
classes setup.

Potsdam-3 (ISPRS) is a remote sensing dataset consisting of 8550 RGBIR satellite images with 200 × 200
pixels, which is split into 4545 train and 855 test images, as well as 3150 additional unlabeled images. In our
experiments, the 3-label variant of Potsdam is evaluated and the additional unlabeled images are not used.
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