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ABSTRACT

Learning to plan and schedule is receiving increasing attention for industrial
decision-making tasks (partly) for its potential to outperform heuristics, especially
under dynamic uncertainty, as well as its efficiency in problem-solving, particu-
larly with the adoption of neural networks and the behind GPU computing. Nat-
urally, reinforcement learning (RL) with the Markov decision process (MDP) be-
comes a popular paradigm. Instead of handling the near-stationary environments
like Atari games or the opposite case for open world dynamics with high uncer-
tainty, in this paper, we aim to devise a tailored RL-based approach for the practice
setting in the between: the near-predictable dynamics which often hold in many
industrial applications, e.g., elevator scheduling and bin packing, as two empiri-
cal case studies investigated in this paper. Specifically, we propose a two-stage
MDP to decouple the state transition uncertainty caused by the data dynamics and
constrained action space in the industrial environment. A bi-critic framework is
then devised for amortizing the uncertainty and reducing the variance of value
estimation according to the two-stage MDP. Experimental results show that our
engine can adaptively handle different dynamics data tasks and outperform recent
learning-based models and traditional heuristic algorithms.

1 INTRODUCTION

The advent of Industry 4.0 has put forward demanding requirements for resolving the sequential
decision-making task in the industry. The task that involves planning and scheduling has been
researched for decades for its commercial value. The planning task, like the bin packing problem
(BPP) (Zhao et al., 2020; Zhu et al., 2021; Duan et al., 2022; Zhao et al., 2022; Zhao & Xu, 2022),
involves a series of discrete objects under certain constraints to optimize an objective function.
While the scheduling task focuses on allocating limited resources to multiple objects to optimize
performance indicators under certain constraints, such as the elevator group scheduling problem
(EGSP) (Crites & Barto, 1998; Zheng et al., 2013; Wei et al., 2020), the vehicle routing problem
(VRP) (Nazari et al., 2018), and the job scheduling problem (JSP) (Chen & Tian, 2019).

With the increase of the problem scale and variety, methods for finding the optimal solution with
effectiveness and joint applicability are becoming more and more attractive yet challenging. Tradi-
tional solutions in the industry are often rule-based, tuning a score function with expert experience
for specific tasks but can hardly be generalized to others. Others try to formulate the tasks as combi-
natorial optimization problems and then apply heuristics algorithms (often due to its NP-hardness)
— such as search algorithm (ELA, 2019; TUR, 2020) and the greedy algorithm (Ramalingam et al.,
2017)—but lack real-time response and scalability. Many learning-based methods (Wei et al., 2020;
Zhao et al., 2020) are developed, e.g., RL showing its remarkable advantages in sequential decision-
making problems. However, emerging learning-based works still often fall behind the industry stan-
dards, which can be partly attributed to the lack of real-world training data, and the unavailability of
strong simulators to provide rich and realistic data for training.

We consider two aspects for addressing industrial sequential decision-making tasks with RL. The
first and mainly addressed issue in our work is to better utilize the character of the environment
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dynamics in the industrial pipeline. Existing efforts (Hadoux et al., 2014; Chandak et al., 2020;
Chen et al., 2021) assume general non-stationary environments and develop classical RL algorithms
to learn structural features of the environment dynamics, including Meta-RL (Xu et al., 2020; Chen
et al., 2021) and context detection RL (Padakandla et al., 2020). However, we argue that, in fact,
the environment often bears some inherent regularities, and sometimes it is nearly predictable, e.g.,
in BPP cases, items of similar shape and size usually appear in a batch. The above existing works
neglect such potential near-predictable dynamics and leave space for more tailored algorithmic de-
velopment. Another practical aspect is to strictly obey hard constraints, which are common in the
industry for specific reasons, e.g., safety. Although Chen et al. (2021) and Wei & Luo (2021) further
consider the Constrained Markov Decision Process (CMDP) (Altman, 1999) and robust constrained
Markov decision process (RCMDP) (Russel et al., 2020) for safe RL (Hewing et al., 2020), they
tolerate constraints violations and are not up to industry standard. In particular, enforcing hard con-
straint often increases the high state transition uncertainty (Mao et al., 2018) and further leads to the
high variance problem of value estimation. Thus, we argue that the near-predictability must be more
carefully considered to mitigate the challenge of the hard constraints.

In this paper, we propose a Dynamic-Aware and Constraints-Confined (DACC) RL framework for
industrial sequential decision-making tasks. Unlike previous RL-based efforts for industrial cases
that formulate the problem as non-stationary CMDP, we first identify the non-stationary but near-
predictable environmental dynamics and reformulate these tasks as a two-stage MDP (Kim et al.,
2019) for its potential to distinguish the effects of environment dynamics (exogenous variables)
and constrained action space (endogenous variables) in the state transition. Furthermore, the value
estimation based on a two-stage MDP reduces the variance of value estimates without introducing
bias, as proved by (Mao et al., 2019). Specifically, we design DACC, a bi-critic framework for
perceiving the dynamics and making decisions under hard industrial constraints with the guidance of
heuristic rules, respectively. By estimating the state value in two stages with our bi-critic framework,
we reduce the state transition uncertainty and state value estimation variance caused by the mutually
adverse effects of dynamic variability and hard constraints. To evaluate our method’s effectiveness
and generalization, we conduct experiments on two typical industrial sequential decision tasks: 3D
bin packing and elevator group scheduling. For the latter case for which there lacks a realistic
simulator, we improve the open-source simulator by adding more constraints, business rules, and
logic, and (will) release a more realistic one based on our first-hand engagement with top-tier lift
manufacturer to benefit the community. The highlights of this paper are:

1) Though many sequential decision-making tasks in the industry often require strict constraints,
increasing the high state transition uncertainty to challenge RL-based methods. Fortunately, in this
paper, we identify that in many cases, the environment is often near-predictable such that it allows
for more tailored MDP model development, which is largely ignored by existing methods.

2) We innovatively separate the state transition process of these industrial tasks into two stages. We
derive theoretical solutions embodied by a two-stage MDP to the high variance problem of value
estimation appearing in the single-stage settings. We then propose a bi-critic framework called
Dynamic-Aware and Constraint-Confined (DACC), to capture the regularity of dynamics and makes
decisions under hard industrial constraints.

3) We apply our framework to two representative yet challenging real-world cases: 3D bin packing
and elevator group scheduling problems. Results show that our methods outperform conventional
rule-based and state-of-the-art learning-based models. Further comparisons with the Meta-RL meth-
ods verify our framework’s superiority in capturing the inherent regularities in these dynamic indus-
trial scenes. Generalization experiments on the untrained data show that the model generalizes well.

2 RELATED WORK

Many works extend the Markov decision process model. Constrained Markov decision process
(CMDP) (Altman, 1999) is suitable for constrained physical systems, such as avoiding obstacles or
unsafe parts in space. Robust Markov decision process (RMDP) Petrik & Russel (2019) is suitable
for scenarios where transition probabilities or rewards are unclear. And robust constrained Markov
decision process (RCMDP) (Russel et al., 2020) merges both CMDP and RMDP. Time-Dependent
MDP (TMDP) (Boyan & Littman, 2000) considers both stochastic state transitions and stochastic,
time-dependent action duration. A two-stage MDP task is designed by (Kim et al., 2019) to differ-
entiate the effects of state transition uncertainty and state-space complexity on the brain’s arbitration
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between model-based and model-free learning. In this paper, we process state transition caused by
exogenous (environmental dynamics) and endogenous variables in two stages. RL algorithms are
recently devised for environmental dynamics, such as Meta-RL (learn to learn) (Finn et al., 2017;
Nagabandi et al., 2018; Xu et al., 2020) and context detection. Meta-RL learns numerous tasks
and acquires prior knowledge to learn new tasks faster. The popular Meta-RL models are model-
based methods suitable for mainly state-dependent simulation scenarios like maze games rather than
input-dependent scenarios to some extent. The context detection RL methods (da Silva et al., 2006;
Padakandla et al., 2020; de Oliveira et al., 2006) assess whether the MDP functions have changed
based on sequential observations, creating, updating, and selecting one among several partial models
of the environment. Whether to generate a new context depends on expert experience, and the model
consumes much memory. CASRL (Chen et al., 2021) considers both meta and context-detection.
Compared with these works for general dynamics, our efforts are devoted to a tailored approach to
better capture the industry dynamics, which are often near predictable.

3 PROPOSED APPROACH

We propose the Dynamic-Aware and Constraint-Confined (DACC) RL framework for industrial
sequential decision-making tasks under the typical setting: near-predictable dynamics and hard con-
straints. We first reformulate it as a two-stage MDP and show its inherent properties of reducing
state transition uncertainty in § 3.1. In § 3.2, we design our bi-critic framework based on our refor-
mulation, which captures the near-predictable dynamics and confines the hard constraints.

3.1 REFORMULATION AS A TWO-STAGE MDP

Preliminaries. Many industrial decision-making tasks can be described as a two-stage process: first,
the environment generates a new input for decision-making (e.g., a new-coming item to be placed
in BPP, a new-coming passenger to be assigned an elevator in EGSP); second, the RL agent takes
planning/scheduling actions under real-world constraints for the new input.

Some Remarks. As the new input’s generation is stochastic while the effect of an action on the state
is deterministic after the input’s generation, the significant uncertainty of environment dynamics
falls into the first stage (i.e., the stochastic generation of the input). The second stage focuses on the
uncertainty caused by the restricted action space according to real-world hard constraints. These two
sources of uncertainty during the state transition process pose significant challenges of high variance
of value estimation (explained in Appendix C) for existing RL algorithms, which formulate these
tasks as single-stage MDPs and mix the two sources of uncertainty together. To avoid this problem,
we reformulate them as two-stage MDPs and process the two sources of uncertainty separately.

Notations. We define a two-stage MDP for industrial sequential decision-making tasks as a tuple
< S,D, f,A, C, r, γ >, where S is a finite set of states, D is a set of the new coming inputs (e.g.,
new coming items in BPP, new coming passengers in EGSP), ft(d) is the distribution of the new
coming input at time t, A(at|st, dt, Ct) is a finite set of actions under constraints Ct, r(st, at, dt) is
the reward function, and γ is the reward discount factor.

Corresponding to the two-stage process of industrial decision-making tasks, we named the two
stages MDP as the input-dependent stage and the state-dependent stage, respectively. Without loss of
generality, we use the bin packing problem to describe our approach, especially the two-stage state
transition process in Fig. 1. In the input-dependent stage, the generation of new coming input dt fol-
lows a certain time-varying item generating distribution ft(d), which usually presents task-related
and near-predictable patterns over time (i.e., independent of the current state st). For instance,
in many industrial BPP cases, items of similar shape and size usually appear in a batch, thus the
distance between ft(d) and ft+1(d) is small, and the environment dynamics are near-predictable.
Hence, the state transition probability of this stage is

P (st, dt | st, ft(d)) = P (dt | ft(d)) = ft(d) (1)

In the state-dependent stage, the constraint Ct is calculated based on the current state st (representing
the placement state of previous input items) and the pending current dt. For instance, positions
where dt will topple over are forbidden. Then, the current dt is picked to the position indicated by
the action at, which the RL agent gives out according to

(
st, dt, Ct, ft+1:∞

)
, where ft+1:∞ is the

features of future item generating distributions that are related to ft+1(d), ft+2(d), · · · , ft+∞(d).
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Figure 1: The two-stage state transition process of the BPP. In the input-dependent stage, a new
coming item dt is generated with the current item generating distribution ft(d). Here ft(d) denotes
the generation probability of three types of items. In the state-dependent stage, the pending dt is
picked to the position indicated by the action at under hard constraints Ct.
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Figure 2: The proposed bi-critic framework. In the input-dependent stage, the dynamics critic
focuses on handling the value estimation based on task-related and time-varying data. In the state-
dependent stage, the state critic focuses on handling the value estimation depending on security
constraints. And the actor makes decisions based on the learned features.

The transition process of this stage is deterministic such that:

P (st+1, ft+1(d) | st, dt, at) =
{
1, if at leads to st+1

0, otherwise
(2)

3.2 BI-CRITIC FRAMEWORK FOR RL UNDER NEAR-PREDICTABLE ENVIRONMENTS

Based on the reformulation, we design a dynamic-aware and constraints-confined (DACC) reinforce-
ment learning framework for industrial sequential decision-making tasks under near-predictable dy-
namics. Dealing with the two challenges in two stages separately, we overcome the high variance
value estimation problem caused by two sources of state transition uncertainty.

Value Functions. In actor-critic-based algorithms (Sutton et al., 1999), for a policy π ∈ Π, the
value function is defined as:

Vt(s) := E[
∑
τ≥t

r(sτ , aτ , dτ )|st = s]

where the expectation is taken over both the randomness of in policy π and the input d (dt ∼ ft(d)).

Overall Framework. The overall framework is shown in Fig. 2. For clarity, we plot the state-
dependent stage of the current state transition and the input-dependent stage of the next state transi-
tion. We use two critic networks V s and V i to estimate the state value for the state-dependent stage
and input-dependent stage, respectively. We first use the dynamics aware module to extract the la-
tent features ft+1:∞ of future data with historical data dt, dt−1, · · · , dt−T , where T is the length of
historical data used to predict ft+1:∞. Then, for the state-dependent stage, we use the state encoder
to encode

(
st, dt, ft+1:∞

)
and output a latent vector (denoted as zst ), which is a multidimensional
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Gaussian distribution. After that, we estimate the current state value V st with the state critic network
and use the actor network to calculate the action vector π(at|zst ) under the hard constraints of indus-
trial tasks. For the input-dependent stage, we use the dynamics encoder to extract input-dependent
features zit+1 (similar to zst ) from st+1 and ft+1:∞. Then we use the dynamics critic network to es-
timate the input-dependent state value V it+1. We can readily resort to off-the-shelf actor-critic-based
algorithms (e.g., A2C as used in our experiments for its simplicity and effectiveness, or others like
A3C (Mnih et al., 2016), PPO (Schulman et al., 2017)) to train our model. With the derivation of
variance reduction shown in Appendix D, we calculate the advantage function of A2C as

At = αrt + γV i(st+1, ft+1:∞)− V s(st, dt, ft+1:∞) (3)

From the state transition probability of the input-dependent stage (shown in Eq. 1), we get that after
both critic networks converge, the relationship between V i and V s is as follows:

V i(st, ft:∞) =

D∑
dt

V s(st, dt, ft+1:∞) (4)

To achieve this and reduce the variance caused by the uncertainty of inputs, we introduce an addi-
tional loss function LKL to minimize the Kullback-Leibler Divergence between zit+1 and zst :

LKL =

k∑
i=1

log
σit+1,(j)

σst,(j)
+

(σst,(j))
2 +

(
µst,(j) − µ

i
t+1,(j)

)2

2(σit+1,(j))
2

− 1

2

 (5)

where µst,(j) and (σst,(j))
2 represent the jth component of the mean vector and variance vector of

zst , respectively, while µit+1,(j) and (σit+1,(j))
2 represent those of zit+1, respectively, and k is the

dimension of zst and zit+1. Thus the overall loss function is defined as

L = At
2 −At log π(at|zst ) + π(at|zst ) log π(at|zst ) + LKL (6)

The overall training algorithm is shown in Alg. 1 in Appendix E.

Dynamics Aware Module. To capture the trend of data and learn the features of the marginal
distribution of future data, we propose a dynamics aware module, which takes into the historical
data dt−T , dt−T+1, · · · , dt and outputs the feature vector ft+1:∞. As the distribution of data ft(d) is
independent of the current state, we can pre-train the dynamics aware module beforehand. A feasible
alternative is to build the dynamics aware module with long short-term memory (LSTM) (Hochreiter
& Schmidhuber, 1997) or Attention (Vaswani et al., 2017) networks and set a pre-training task
using the last T data to predict the next three data. For instance, we input the data sequence of
dt−T , dt−T+1, · · · , dt−1 to the dynamics aware module and make it predict the dt, dt+1, dt+2. After
that, we use the pre-trained dynamics aware module to output the hidden feature vector ft+1:∞. The
detailed pre-training algorithm is shown in Alg. 2 in Appendix E.

Constraints and Rules. To better satisfy strict constraints and make use of task-related heuristic
rules in industrial applications, we design a constraints module and heuristic-based reward shaping.
For constraints, the technique is the hard action mask. Concretely, it uses task-related constraints to
evaluate the feasibility and quality of each action in the current state and the pending input. With
its output action mask M, we then get an adjusted policy function: π′ ← π(at|zt) ◦M. By ex-
plicitly changing the action probability with task-related constraints, we avoid excessive exploration
of inefficient or illegal actions (e.g., actions that violate constraints) without introducing excessive
training complexity. In practical usage, we can set the chosen probability of illegal actions close to
zero to enforce the security constraints. Detailed settings of this module for the two industrial cases
can be found in § 4. The other technique we use is heuristic-based reward shaping for its advantage
of amortizing the complexity of long-term credit assignment and leveraging heuristic algorithms to
accelerate RL’s training(Cheng et al., 2021). Heuristic functions that estimate the expected state
value are ubiquitous in industrial scenarios. For example, we can use the ETA algorithm to estimate
the average waiting time of existing passengers as the heuristic state value h(s) in EGSP. With such
heuristic functions, we can introduce heuristic guidance to the RL agent by changing the rewards
and lowering the discount factor of the original MDP:

r̃t(s, d, a) := rt(s, d, a) + (1− λ)γEs′|s,d,a[h(s′)] and γ̃ := λγ, (7)

where λ ∈ [0, 1] is the mixing coefficient that increases iteratively along the training process.
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4 EXPERIMENTS WITH TWO CASE STUDIES

We show the implementations and experiments on two real-world NP-hard industrial scenarios: the
bin packing problem (BPP) in § 4.1, and the elevator group scheduling problem (EGSP) in § 4.2.

4.1 3D BIN PACKING PROBLEM

Problem Settings. The 3D bin packing problem is the essence of mixed palletizing in logistics
and warehousing. For a given set of items and containers of a fixed size, the goal is to find the
assembly method with the highest space utilization and the least number of containers required.
Here we consider the online scenario. Given a sequence of rectangular items I with size xi×yi×zi
(for each i ∈ I) and a standardized pallet with size L × W and a maximum height limit H , the
palletization agent, e.g., a robot, only sees the upcoming item and selects a position to place the item.
Environment Dynamics. Elhedhli et al. (2019) analyzes the actual industrial data and finds that the
characteristics of depth/width ratio, height/width ratio, and repetition follow specific distributions.
The average item volume of different industries and categories is different.

Realistic Constraints. The placement process is subject to the following constraints as widely used
in literature (López-Camacho et al., 2013; Zhao et al., 2022): i) no space overlap between items on
the pallet; ii) while sliding a new item to the assigned position, no collision with the items already
placed; iii) all placed items are physical of stability.

4.1.1 IMPLEMENTATION COMPONENTS

(a) (b)

(c) (d)

Figure 3: Constraints satisfaction for the BPP
task. (a) and (b) shows the convex hull calcula-
tion, (c) shows a bad case resulting from consider-
ing only the convex hull constraint, and (d) shows
the four sliding directions we defined.

MDP. Specifically, the state is represented by
the pallet’s height, st = Ht. The action is
the position selection for item placing. An in-
valid action mask Mt filters out feasible posi-
tions and guides exploration. In line with the
standard practice in literature, the reward rt for
each successful placing step is set proportional
to xt×yt×zt

L×W×H , and rt = 0 if the placement fails.

Network Architecture. We use attention CNN
(CBAM) (Woo et al., 2018) as state encoder,
long short-term memory (LSTM) (Hochreiter
& Schmidhuber, 1997) as dynamics aware
module, and fully-connected networks (FCN)
as Critic net and Actor net. Considering that the
representation of the pallet is fine-grained and
the state dimension is relatively large, we lever-
age the attention mechanism to increase focus
on key regions. The input of the pallet state is a
height map Ht ∈ RL×W . And an action mask
Mt represents security constraints for each grid. The size of Ht and Mt is doubled while allowing
the item to rotate (two rotations: xyz and yxz). Since the action mask calculation takes extended
time, we decouple the action space into multiple sub-regions to reduce mask calculation. Details of
the hierarchical architecture are given in Appendix F.

Constraints and Rules. We use an invalid action mask to guarantee two constraints (stability and
collision avoidance), a corner point rule to speed up the computation of the invalid action mask and
guide the placement of items, and a suitable heuristic to guide placement and speed up algorithm
convergence. For stability, we use the convex hull and maintain a solid mask. As Fig. 3(a) and 3(b)
show, when placing the yellow item, the centroid of the yellow item must fall within the convex hull
of the bottom surface in contact with the lower item. To avoid bad cases like Fig. 3(c) (satisfy that
the centroid falls within the convex hull of the contact base but is unstable), we also maintain a solid
global mask. Only the intersection of the convex hull and the supporting surface is set to solid, and
the item centroid should fall within the solid mask. To avoid collisions, the placement process is to
push the item laterally to a particular position so that even if a collision occurs, it will only cause a
slight movement of adjacent items. The four sliding directions for selection are shown in Fig. 3(d),
including left-back to right-front, left-front to right-back, right-front to left-back, and right-back to
left-front. To speed up the invalid action mask calculation, in terms of rules, when selecting actions,
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we emphasize the selection of corner points, increase the weight of corner points and only consider
sub-regions with corner points, which can significantly reduce the number of solutions, speed up
action mask calculation, and improve space utilization (Crainic et al., 2008; Martello et al., 2000;
CRA, 2009). To deal with heuristic-based reward shaping, we select the best-performing heuristic
on the dataset from four heuristics in the compared baselines to guide the RL agent.

4.1.2 EXPERIMENTAL RESULTS

Datasets and Hyperparameters. We test our model on two datasets generated differently and
containing multiple subsets with different distributions. Pybullet, a physics engine that supports 3D
collision detection, has verified the test results. Mixed-item Dataset (MI Dataset) is a collection
of mixed items with a great variety and few identical items. The data generation scheme follows
the realistic 3D-BPP instance generator proposed in (Elhedhli et al., 2019). The training set has 10
million items, with 36,294 species, and occurrences vary from 1 to 7,037. The testing set has 10
thousand items, with 4,886 species, and occurrences vary from 1 to 15. We set pallet dimensions
to the size often used in practice: L = 120, W = 100, and H = 100, allowing two packing rotation
directions. Large-item Dataset (LI Dataset) is a collection of large items and comes from (Martello
et al., 2000), including five classes from (Martello & Vigo, 1998) and three class from (Berkey &
Wang, 1987). The pallet dimensions are set to L = 100, W = 100, and H = 100, allowing two
packing rotation directions. The training set has 39,500 items, with 24,889 species, and occurrences
vary from 1 to 12. The testing set has 500 items, with 401 species total, and occurrences vary from 1
to 4. We initialize λ0 = 0.95 in Eq. 7 and set α = 1, γ = 1 in Eq. 3 and learning rate η = 1× 10−5.

Figure 4: Training rewards of learning-based
models on MI Dataset for 3D bin packing.

Compared Baselines. We compare our ap-
proach with four heuristics and two learning-
based methods, presented in Appendix A.
For heuristics, we compare with four classic
heuristics, which select free spaces represented
by Empty Maximum Space (EMS): Bottom-
Left heuristic (BL) (Chazelle, 1983), Deepest-
Bottom-Left with Fill heuristic (DBLF) (Kang
et al., 2012), Best Match First Packing heuristic
(BMF) (Li & Zhang, 2015), Online BPH (Ha
et al., 2017). As for learning methods, we
compare with an outstanding RL BPP model
PCT (Zhao & Xu, 2022) in a continuous
setting and a model-based Meta-RL model
CASRL (Chen et al., 2021). Besides, model
A2C (Mnih et al., 2016) (with rules), A2C (w/o
rules) and DACC (w/o rules) are for ablation study; A2C represents DACC without bi-critic archi-
tecture and (w/o rules) means no rule guidance.

Result. Table 1 shows online bin packing results on two representative datasets. Our model performs
well on both mixed-item and large-item datasets, with the flexibility to adapt to different pallet
sizes and high-precision placement requirements. Our model achieves higher space utility rates
than traditional rule-based algorithms, RL-based models, and the meta-RL model. For learning-
based models, the reward curves over training episodes are shown in Fig. 4, whereby the confidence
interval is 85. As can be seen from the Fig. 4, our model converges faster than other learning models.

Ablation Study. Compared to A2C (without bi-critic structure) without rules, the A2C with rules,
and DACC without rules, DACC can converge to stable performance earlier with higher reward,
which means the bi-critic structure and the rule guidance are beneficial. After adding rules (in
constraints and rewards), the superiority of DACC over A2C is further enlarged, which means that
DACC can better adapt to rule guidance.

4.2 ELEVATOR GROUP SCHEDULING PROBLEM

Problem Setting. The elevator group scheduling problem (EGSP) mainly studies assigning ele-
vators to respond to a flood of passengers in buildings equipped with multiple elevators. Among
various EGSP systems, we consider a prevalent one: at every time step, stochastic passengers ap-
pear and give hall call requests with up/down directions; the system assigns an elevator for every
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Table 1: Performance comparison between the baselines and DACC in MI Dataset and LI Dataset.

Method MI Dataset LI Dataset
Space utility ↑ Avg. items ↑ Space utility ↑ Avg. items ↑

BL (Chazelle, 1983) 22.55% 9.32 27.97% 2.04
DBLF (Kang et al., 2012) 26.54% 10.51 27.18% 1.98
BMF (Li & Zhang, 2015) 29.67% 11.47 27.28% 1.99
Online BPH (Ha et al., 2017) 24.56% 10.82 24.77% 2.18

CASRL (Chen et al., 2021) 11.18% 3.75 17.92% 2.22
PCT-continues (Zhao & Xu, 2022) 56.59% 19.50 41.18% 3.22
A2C (w/o rules) (Mnih et al., 2016) 48.89% 16.53 37.04% 2.97
A2C (with rules) (Mnih et al., 2016) 55.24% 19.15 40.77% 3.11
DACC (w/o rules) 54.55% 18.40 38.71% 3.03
DACC 58.37% 19.75 43.49% 3.25

hall call request without knowing the passengers’ destination floors until they get on the elevator;
also, passengers do not know the assigned elevators so that they can be reassigned at any time.

Environment Dynamics. Passenger flow in the EGSP often shows specific traffic daily patterns,
which can be divided into three major periods (Jansson & Uggla Lingvall, 2015): up-peak traffic in
morning rush hours, two-way traffic at lunchtime, and down-peak traffic in evening rush hours.

Realistic Constraints. There are some commonly-used constraints for the elevator assignment and
movement. 1) The EGSP system is required to dispatch exactly one elevator for every hall call
request; 2) The assigned elevator must respond to the hall call request while completing the car calls
generated by passengers on it (a car call indicates the passenger’s destination floor and is registered
at the elevator after the passenger enters it; 3) The elevator can not change its service direction until
there is no hall call or car call in the current direction.

4.2.1 IMPLEMENTATION COMPONENTS
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Figure 5: DACC of EGSP. We use a multi-head
attention network to extract features from histor-
ical hall call data, graph convolutional networks
(GCN) as state and dynamics encoders, and fully-
connected networks (FCN) as critics and the actor.

Simulator. To mimic the real-world behav-
ior of EGSP, based on the only available open-
source simulator Liftsim (Wang et al., 2020),
we further improve it into a more realistic
EGSP simulator that satisfies the three realis-
tic constraints mentioned in the last paragraph.
Additionally, our simulator can simulate pas-
senger flow following the three traffic patterns.
Detailed comparisons among existing simula-
tors are explained in Appendix J.

MDP. The simulator formulates EGSP as a
two-stage MDP: in every simulation time step,
new passengers are generated with a probabil-
ity matrix corresponding to the specific pattern;
the agent receives the state information from the simulator and makes a decision to assign elevators
for existing unprocessed hall calls. As shown in Fig. 4.2, the state includes the elevator state st and
the hall call state ht. The elevator state includes the position, speed, service direction, door status,
and registered car call of all elevators. And the hall call state includes the unprocessed requests
(marked orange in Fig. 4.2), the existing hall call requests, and their corresponding assigned eleva-
tors. The action is defined as assigning an elevator for each unprocessed hall call, and the objective
is to reduce the average waiting time (denoted as Taw) and the average transmitting time (denoted
as Tat) of all passengers. At the same time save energy consumption. Here the waiting time of a
passenger is the time taken from the moment he presses the hall call button on a floor to the instant
he is picked up. The transmitting time is the time taken from when one is picked up to the instant
one reaches the destination floor. Thus the reward function is defined as

rt = −(β|Nq|+ ξ|Nc|+ E), (8)

whereNq ,Nc is the number of waiting passengers in the hall, and those in the elevators, respectively,
as weighted by hyperparameter β, ξ. E is the energy consumption measured by electricity cost.
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Table 2: Evaluation of the baselines and DACC in three traffic patterns in terms of two criteria: Tas
(the sum of Taw and Taw) and TE (a criteria that integrates Tas and energy consumption E).

Method Two-way Up-peak Down-peak
Tas↓ TE↓ Tas↓ TE↓ Tas↓ TE↓

ETA (Rong et al., 2003) 92.50 110.98 119.83 142.47 65.30 70.50
SFM (Ramalingam et al., 2017) 90.99 110.67 119.27 141.98 70.63 75.37
Robert (Crites & Barto, 1998) 159.31 261.70 126.70 247.87 177.42 209.21
DRL-EGC (Wei et al., 2020) 112.93 134.89 123.60 151.39 82.21 86.40

Context-QL (Padakandla et al., 2020) 91.14 111.18 114.89 137.03 66.34 71.82
DACC 89.75 108.14 110.21 132.15 65.83 70.35

Network Architecture. As shown in Fig. 4.2, we use a multi-head attention network (Vaswani
et al., 2017) as the dynamics aware module to capture the trend of passenger flow and learn the
hidden features from historical hall call data. We record the number of generated hall calls on each
floor every minute during the whole simulation process. For the current time step t, we forward the
collected hall call data in the last 30 minutes to the attention network and use a two-layer FC network
to output the latent feature vector distribution ft+1:∞. We use two four-layer graph convolutional
networks (GCN) (Kipf & Welling, 2016) as the state encoder and the dynamics encoder, respectively.
And we use two-layer FC networks as the critic networks and the actor-network, respectively.

Constraints and Rules. We develop an action mask function to avoid choosing actions that violate
the realistic constraints mentioned above. And we incorporate the estimated time of arrival algorithm
(ETA) as a heuristic rule to guide the exploration of the RL agent, which can reduce the occurrence
of inefficient actions such as assigning an elevator running oppositely to a hall call.

4.2.2 EXPERIMENTAL RESULTS

Dataset and Hyperparameters. We use passenger flow data in 30 days respectively for two-way
traffic, up-peak, and down-peak patterns, provided by a world-renowned elevator manufacturer, from
a real-world 16-floor and 4-elevator building, with nearly 50 persons residing on each floor except
the first floor. For each pattern, we calculate a probability matrix Pt that represents the generating
probability of a passenger who appears at floor i and targets floor j at time t and use Pt to generate
passengers randomly. We initialize λ0 = 0.95 in Eq. 7 and set α = 0.01, γ = 0.99 in Eq. 3, β = 1,
ξ = 0.6 in the reward Eq. 8, and the learning rate as η = 2× 10−5.

Compared Baselines. We compare our model with traditional EGSP algorithms, including Round-
Robin, estimated time of arrival (ETA) (Rong et al., 2003), and genetic algorithm (GA), among
which ETA empirically achieves the best performances in most cases. The SFM (Ramalingam et al.,
2017) algorithm for EGSP is a combinatorial optimization-based algorithm known to be adopted
by commercial elevator companies. Learning-based algorithms for EGSP include Robert (Crites
& Barto, 1998) (using Q-Learning) and DRL-EGC (Wei et al., 2020) (using the A3C (Mnih et al.,
2016) algorithm). Additionally, we train a context detection method for non-stationary environments
Context Q-learning (Padakandla et al., 2020) in our environment as a baseline.

Results. As shown in Table 2, our framework outperforms all existing methods for EGSP in all of
the three traffic patterns in terms of the TE criteria, which takes the average waiting time Tat, the
average transmitting time Tat and energy consumption E into consideration. For the Tas criteria,
which only considers the average waiting time and transmitting time, our framework outperforms all
existing methods in the two-way traffic and up-peak patterns and achieves comparable performance
with the best algorithm in the dn-peak pattern.

5 CONCLUSION

Identifying the near-predictability of many industrial dynamic environments, we have devised a
tailored RL-based framework using bi-critic to handle the typical industrial sequential decision-
making tasks with two successful case studies for 3D bin packing and elevator group scheduling.
We also develop a more realistic simulator compared with current open-source simulators.

Limitation & Future Work. As our approach is tailored to the near-predictable setting, it may fail
in cases when the dynamics are more uncertain, as shown in our failure case study in Appendix I.
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A ADDITIONAL RELATED WORKS

Rule-based Algorithms for Sequential Decision-Making Tasks. Traditional practices usually
utilize rule-based algorithms with expert experience for specific tasks. For BPP, the Bottom-Left
heuristic (BL) (Chazelle, 1983) searches for Empty Maximum Space (EMS) with the minimum bot-
tom (x) and left (y) coordinates to place the current item; Deepest-Bottom-Left with Fill heuristic
(DBLF) (Kang et al., 2012) sorts EMS in order of deepest coordinates (z) and uses bottom and left
as tie-breakers; Best Match First Packing heuristic (BMF) (Li & Zhang, 2015) sorts EMS in order of
distance to the container’s deepest-bottom-left point; and Online BPH (Ha et al., 2017) sorts EMS
in order of minimum bottom, deepest, and minimum left. For EGSP, collective control (Strakosch,
1983) assigns the elevator to stop at its nearest call in the running direction; and (Rong et al., 2003)
allocates hall calls to the elevator that minimizes the estimated arrival time. Others create policies
with matrices of “heuristic scores” and option decisions with the highest score. (Ramalingam et al.,
2017) develops a greedy algorithm based on submodularity to maximize its objective function.

Learning-based Algorithms for Sequential Decision-Making Tasks. Reinforcement learning
(RL) excels at dealing with sequential decision-making problems. In real-world BPP applications,
the agent usually can not foresee the upcoming items, which puts online decision requirements on
BPP solvers. This variant of BPP is called online BPP, and Zhao et al. (2020) use RL and well-
designed discrete representations to solve it. While Zhao & Xu (2022) treat the BPP problem as a
decision in a continuous space and formulate it into a tree structure. The model combines RL and tra-
ditional algorithms for flexible applications in various settings. As for EGSP, an early work (Crites
& Barto, 1998) uses Q-learning to control elevators to move up and down. A recent work (Wei
et al., 2020) explores deep asynchronous actor-critic learning to decide each elevator’s next target
stop floor. Our model focuses on input-dependent industrial scenarios, where input data are collected
from production line with regularity to follow.

B COMPARISON WITH EXISTING RL MODELS WITH EXOGENOUS INPUTS

Recent works investigate RL with exogenous inputs. (Mao et al., 2019) proposes a meta-RL model
that formally defines input-driven MDP and proves that an input-dependent baseline is bias-free and
variance-reduced when input and action are conditionally independent. Our theoretical basis is the
same as (Mao et al., 2019): considering the sequence of input values in value estimation can reduce
estimation variance without introducing bias. Different from (Mao et al., 2019), to deal with a class
of industrial problems, we consider the input and constraints in two stages during the state transition,
thereby designing a bi-critic network. Chitnis & Lozano-Pérez (2020) divides the state st into
endogenous component nt and exogenous component xt. Then split exogenous component xt into
m state variables x1t , x

2
t , . . . , x

m
t and learn a mask, a subset of the exogenous state variables. Chitnis

& Lozano-Pérez (2020)’s decomposition of state transition is similar to ours, but the subsequent
learning is completely different. Sinclair et al. (2022) samples trajectories over the exogenous trace
from the history dataset and trains the model-based RL model offline. Given a fixed exogenous
sequence ξ = {ξ1, . . . , ξT } and policy π, Sinclair et al. (2022) decomposes the value function into
an expectation of a fixed exogenous trajectory V πt (s, ξ≥t) :=

∑
a π(a | s)Qπt (s, a, ξ≥t). The

training method and handling of value function are not the same as ours.

C DERIVATION OF REDUCING THE VARIANCE OF VALUE ESTIMATION
CAUSED BY MIXING TWO SOURCES OF UNCERTAINTY

Previous works Mao et al. (2019) prove that subtracting an action-independent baseline function help
reduce value estimation variance for actor-critic-based algorithms. However, the problem of high
variance of value estimation is still exposed in industrial decision-making tasks because the two
sources of uncertainty during the state transition process are mixed and processed together (shown
in Fig. 6) by existing RL algorithms. Here we use the case of BPP to illustrate why. The same is
true for other tasks. Without loss of generality to all actor-critic-based algorithms, here we use the
advantaged function of the A2C algorithm for illustration:

At = rt + γVt+1 − Vt (9)
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Figure 6: The single-stage state transition process of the BPP. It takes (st, dt, ft+1) as the state
in regular MDP formulation. And during the state transition process, it mixes the two sources of
uncertainty (ft+1(d) and Ct), leading to a high variance of value estimation.

Consider the state transition process from (st, dt, ft+1) to (st+1, dt+1, ft+2) in the single-stage
formulation, where state st at time t denotes the current placing state, dt denotes the current pending
item, and ft+1 denotes the generation distribution of the next coming item dt+1. Additionally, we
use ft+1:∞ to denote the marginal distribution of future items at time t, which is determined by
ft+1, ft+2, · · · , ft+∞. And we denote the finite set of item types asD, the finite action set asA, the
policy as πθ, hard constraints at time t as Ct, the reward function as r and the discount factor as γ.
Suppose that the value estimation function inputs at time t are the st, dt, and ft+1:∞. The advantage
function can be written as

At = rt + γV (st+1, dt+1, ft+2:∞)− V (st, dt, ft+1:∞)] (10)

During the training process of the A2C algorithm with plenty of exploration, At is approximate to
its expectation:

Eπ[At] = Eπ[rt + γV (st+1, dt+1, ft+2:∞)− V (st, dt, ft+1:∞)]

=

D∑
dt

ft(dt)

A∑
at

πθ(at|st, dt, Ct)
D∑
dt+1

ft+1(dt+1)[r(st, dt, at)+

γV (st+1, dt+1, ft+2:∞)− V (st, dt, ft+1:∞)]

(11)

For simplicity, we define the hard constraint as a function prohibiting actions that cause the pending
item to tip over:

Ct(st, dt, at) =
{
0, if at makes dt tip over at st
1, otherwise

(12)

Then we can simplify the policy function:

πθ(at|st, dt, Ct) = πθ(at|st, dt)Ct(st, dt, at) (13)
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And we can further get

Eπ[At] =
D∑
dt

ft(dt)

A∑
at

πθ(at|st, dt)Ct(st, dt, at)
D∑
dt+1

ft+1(dt+1)[r(st, dt, at)+

γV (st+1, dt+1, ft+2:∞)− V (st, dt, ft+1:∞)]

=

D∑
dt

ft(dt)

A∑
at

πθ(at|st, dt)Ct(st, dt, at)r(st, dt, at) +
D∑
dt

ft(dt)

A∑
at

πθ(at|st, dt)

Ct(st, dt, at)
D∑
dt+1

ft+1(dt+1)[γV (st+1, dt+1, ft+2:∞)− V (st, dt, ft+1:∞)]

=
D∑
dt

ft(dt)
A∑
at

πθ(at|st, dt)Ct(st, dt, at)r(st, dt, at)+

γ

D∑
dt

ft(dt)

A∑
at

πθ(at|st, dt)Ct(st, dt, at)
D∑
dt+1

ft+1(dt+1)V (st+1, dt+1, ft+2:∞)−

D∑
dt

ft(dt)

A∑
at

πθ(at|st, dt)Ct(st, dt, at)V (st, dt, ft+1:∞)]

(14)

We focus on the second term of Eq. 14. Notice that the generation of dt+1 is stochastic and fol-
lows the distribution of ft+1(dt+1), which is unknown to the RL agent. Thus during each training
episode, the term γV (st+1, dt+1, ft+2:∞) in Eq. 10 introduces a lot of variance due to the uncer-
tainty of dt+1. Moreover, the constraint term Ct(st, dt, at) applied to the policy function introduces
variance due to the uncertainty of constraints. As the second term in Eq. 14 multiply Ct(st, dt, at)
by V (st+1, dt+1, ft+2:∞), it brings mutually adverse effect on variance and further confuse the
RL agent during the training process, hindering the critic network from estimating the state value
accurately and the actor-network from learning good policies.

D DERIVATION OF VALUE REDUCTION OF THE BI-CRITIC FRAMEWORK

In the two-stage MDP formulation, we use V s and V i for value estimation of the state-dependent
stage and the input-dependent stage, respectively. In the state-dependent stage, as the state transition
process is deterministic (from Eq. 2) and does not care about the generation of dt+1, the advantaged
function At is calculated by

At = rt + γV i(st+1, ft+1:∞)− V s(st, dt, ft+1:∞) (15)
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Thus the expectation of At with sufficient exploration during the training process is calculated by

Eπ[At] = Eπ[rt + γV i(st+1, ft+1:∞)− V s(st, dt, ft+1:∞)]

=

D∑
dt

ft(dt)

A∑
at

πθ(at|st, dt, Ct)[r(st, dt, at) + γV i(st+1, ft+1:∞)− V s(st, dt, ft+1:∞)]

=

D∑
dt

ft(dt)

A∑
at

πθ(at|st, dt)Ct(st, dt, at)r(st, dt, at) +
D∑
dt

ft(dt)

A∑
at

πθ(at|st, dt)

Ct(st, dt, at)[γV i(st+1, ft+1:∞)− V s(st, dt, ft+1:∞)]

=

D∑
dt

ft(dt)

A∑
at

πθ(at|st, dt)Ct(st, dt, at)r(st, dt, at)+

γ

D∑
dt

ft(dt)

A∑
at

πθ(at|st, dt)Ct(st, dt, at)V i(st+1, ft+1:∞)−

D∑
dt

ft(dt)

A∑
at

πθ(at|st, dt)Ct(st, dt, at)V s(st, dt, ft+1:∞)]

(16)

Comparing Eq. 14 and Eq. 16, we get that the major difference is in the second term, where we sub-
stitute V i(st+1, ft+1:∞) for

∑D
dt+1

ft+1(dt+1)V (st+1, dt+1, ft+2:∞) in our two-stage MDP for-
mulation. In other words, we expect to reduce the variance by updating the advantaged function
with the expectation of V (st+1, dt+1, ft+2:∞) (i.e., V i(st+1, ft+1:∞) in Eq. 15) instead of the ex-
act V (st+1, dt+1, ft+2:∞) (in Eq. 10) during the training process. And this goal is achieved by
two independent stages in our bi-critic framework. First, the term Ct(st, dt, at)V i(st+1, ft+1:∞)
does not bring excess variance caused by mixing the two sources of uncertainty. Second, we
introduce an additional loss function to minimize the distance between V i(st+1, ft+1:∞) and∑D
dt+1

ft+1(dt+1)V
s(st+1, dt+1, ft+2:∞) in the training process, so that we reduce the value es-

timation variance caused by the uncertainty of dt+1.

Hence, our bi-critic framework under the two-stage MDP formulation can reduce value estimation
variance, promoting the convergence of the critic network and guiding the actor-network to learn
better policies stably.

E TRAINING ALGORITHMS

The overall training algorithm for the whole framework is shown in Alg. 1. Note that the input data
distribution sequence f0(d0), f1(d1), · · · , fN (dN ) is only for the generation of input data dt and is
unknown to the RL agent, which follows the setting of most industrial sequential decision-making
scenarios.
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Algorithm 1 Training algorithm for our bi-critic framework
Input a task-related heuristic functionH;
Input a task-related data distribution sequence f0(d), f1(d), · · · , fN (d);
Initialize bi-critic networks V iθi , V

s
θs

, and actor πω with random parameters θi, θs, ω;
Initialize state encoder Esϕi

, dynamics encoder Eiϕs
, dynamics aware module Fψ , and the constraint

moduleMζ with random parameters ϕi, ϕs, ψ, ζ;
Initialize input buffer D;
Pretrain the dynamics module Fψ with Alg. 2;
for episode = 0 to max episode do

Reset the environment and observe state s0, reset D;
Generate d0 with f0(d0) and store d0 in D;
Update λ: λ← λ0 + (1− λ0) ∗ episode/max episode;
for t = 0 to N − 1 do

# state dependent stage
Get future data features ft+1:∞ = Fψ(D);
Get the constrained action mask Mt =Mζ(st, dt);
Get zst = Esϕs

(st, dt, ft+1:∞), V st = V sθs(z
s
t ), action at ∼ πω(at|zst )) ◦Mt;

Perform action at in the environment and then observe reward rt and next state st+1;

# input dependent stage
Get zit+1 = Eiϕi

(st+1, ft+1:∞), V it+1 = V iθi(z
i
t+1);

Generate dt+1 with ft+1(d) and store dt+1 in D;

# compute loss and update parameters
Get advantage estimate with Eq. 3 and Eq. 7:
At = αrt + (1− λ)γH(st, dt, at)] + λγV it+1 − V st ;
Update all parameters with loss function in Eq. 6;

Here we illustrate a simple example for pre-training the dynamics module, which makes it predict
the next three input data with previous T input data at time t. To ensure the diversity of the input
data distributions, we add noiseN (0, 0.1) to them in each training iteration. The algorithm is shown
in Alg. 2.

Algorithm 2 Pretrain algorithm for the dynamics aware module
Input a task-related data distribution sequence f0(d), f1(d), · · · , fN (d);
Initialize the dynamics module Fψ and a predict network pφ with random parameters ψ,φ;
Initialize memory buffer B;
for iter = 1 to max iter do

Perturb the input data distribution for each time step t: f ′t(d)← ft(d) +N (0, 0.1);
for t = T − 1 to N − 3 do

Reset B;
for i = 0 to K do

Generate Xi = dt−T+1, · · · , dt with ft−T+1(d), · · · , ft(d);
Generate Yi = dt+1, dt+2, dt+3 with ft+1(d), ft+2(d), ft+3(d);
Store (Xi, Yi) in B;
Sample a batch < X,Y > from B;
Get ft+1:∞ = Fψ(X), Ŷ = pφ(ft+1:∞);
Compute the loss function L = Cross Entropy(Y, Ŷ );
Update ψ,φ with L;

F BPP HIERARCHICAL ARCHITECTURE

The framework of the BPP placement planner is a two-level hierarchical Actor-Critic with an atten-
tion mechanism. Facing the Exploding action space, we decompose the action space (whole pallet)
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Figure 7: Overview of the proposed hierarchical architecture for the BPP task. Since invalid action
mask calculation takes extended time and is essential for decision constraints, we need to decouple
the action space to reduce mask calculation. With hierarchical architecture, the entire space of the
pallet (9*9) is divided into small regions (3*3), the high-level agent selects a feasible subspace for
the low-level, and the low-level agent selects a specific position to pack. Decoupling of action space
reduces the size of invalid action masks (colored in yellow), thus reducing computation time.

Table 3: Distribution Functions and Parameters for Item Characteristics
Characteristic Distribution Parameters
Depth/width ratio Normal (loc, scale) (0.695, 0.118)
Height/width ratio Lognormal (mean, sigma) (−0.654, 0.453)
Repetition Lognormal (mean, sigma) (0.544, 0.658)
Volumes Lognormal (mean, sigma) (2.568× Vcat, 0.705)
Vcat Normal (loc, scale) (2.5, 0.118)
Numbercat Normal (loc, scale) (1000, 0.118)
Width clip [min width, max width] [20, 60]
Depth clip min depth, max depth [20, 50]
Height clip min height, max height [10, 50]
Vcat clip min Vcat, max Vcat [1, 4]

Table 4: The uniform distribution interval of the items’ width, height and depth of each type/class.
Type/Class Width Height Depth
Type 1

[
1, 12W

] [
2
3H,H

] [
2
3D,D

]
Type 2

[
2
3W,W

] [
1, 12H

] [
2
3D,D

]
Type 3

[
2
3W,W

] [
2
3H,H

] [
1, 12D

]
Type 4

[
1
2W,W

] [
1
2H,H

] [
1
2D,D

]
Type 5

[
1, 12W

] [
1, 12H

] [
1, 12D

]
Class 6 [10,W ] [10, H] [10, D]
Class 7

[
1, 78W

] [
1, 78H

] [
1, 78D

]
Class 8 [1,W ] [1, H] [1, D]

into a certain number of sub-regions. The high-level policy selects a sub-region with an attention
mechanism for the low level to achieve, and the low level selects a specific packing position in the
sub-region. As the action space decreases, the corresponding mask also decreases, and the amount
of calculation becomes smaller.

G DATA GENERATION OF BPP

Mixed-item Dataset (MI Dataset) follows the realistic 3D-BPP instance generator proposed in (El-
hedhli et al., 2019). The pallet dimensions are set to L = 120, W = 100, and H = 100. The item char-
acteristics are determined by fitting the real-life industry data from (Elhedhli et al., 2019). We gen-
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Table 5: Result on the untrained dataset with different location (loc) parameters of Numbercat’s
distribution and scale parameter of Vcat’s distribution.

loc of Numbercat scale of Vcat Space utility ↑ Avg.items ↑
500 0.118 52.36% 18.44
100 0.118 52.79% 19.00
10 0.118 53.91% 19.32

100 0.5 52.72% 19.93
100 1.0 52.78% 21.57

erate data considering the ratio of item depth and height to its width (depth/width and height/width
ratio), volume, and frequency of occurrence (Repetition). The first two characterize the size of the
item. The reason to consider the proportions and volumes of an item rather than its dimensions is to
construct items of different sizes whose dimensions are appropriately related to each other. In real-
life industrial environments, the average volume of incoming items varies with each category. In
order to simulate the volume changes of different categories, we generate the number (Numbercat)
and average volume (Vcat) of each category of items according to the normal distribution and then
generate the item volume (Volumes) within the category according to the log-normal distribution.

Large-item Dataset (LI Dataset) comes from (Martello et al., 2000) with eight classes of data,
which generates three-dimensional instances from randomly generated width, depth, and height
within a preset interval. The pallet dimensions are set to L = 100, W = 100, and H = 100. The
first five classes of data come from (Martello & Vigo, 1998). We generate five types of instances
as Table 4. For Class k(k = 1, . . . , 5), each item is of type k with probability 60%, while it is of
the other four types with probability 10% each. The last three classes are a generalization of the
instances presented by (Berkey & Wang, 1987).

H GENERALIZATION EXPERIMENT ON BPP

Since our MI Dataset is built on certain distributions for item characteristics, we can also evaluate
the performance of DACC on different distributions from training data. First, we change the location
parameter of Numbercat’s distribution and the scale parameter of Vcat’s distribution. The testing
data includes 10000 items generated from different distributions. The result is presented in Table 5.
Our method can still perform well while testing on the untrained dataset.

I FAILURE CASE STUDY

Figure 8: Failure case study result on five datasets
with progressing dynamics.

We increase the uncertainty and dynamic of
data by changing some data generation parame-
ters of the MI dataset. Then, we train DACC on
datasets with different uncertainty. To achieve
greater uncertainty and minimize the impact
on the space utility, we change location and
scale parameter of Numbercat, scale parame-
ter of Vcat, clip parameter of Vcat, width, depth,
and height. We have generated a total of five
datasets, and their dynamics are progressing.
Here we discuss the changes of each dataset
compared with the previous one. Dataset
one (D1) change the Numbercat’s location
from 1000 to 500. Dataset two (D2) change
the Numbercat’s location from 500 to 100.
Dataset three (D3) change the Numbercat’s
scale from 0.118 to 10. Dataset four (D4) change the Vcat’s clip from [1, 4] to [0.5, 8]. Dataset
five (D5) change the clip of width, depth, and height to [10, 90]. The result of failure case study is
shown in Fig 8, when the increase of data uncertainty is limited, our model DACC is stable and can
converge to a better space utility. With the substantial increase of data uncertainty (D5), the model
fails.
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Table 6: Major differences among three simulators: LiftSim, Elevate 8, and our self-developed
engine which will be open-sourced.

Environment LiftSim Elevate 8 Ours
Meet realistic constraints ×

√ √

Realistic passenger data ×
√ √

Support up-down mode
√ √ √

Support destination mode ×
√ √

Provide interface for RL
√

×
√

Open source
√

×
√

Table 7: Comparison among different agents in two-way traffic pattern in terms of Taw and Tas. We
set the agent’s goal as optimizing the mean waiting time and the average transmitting time.

Agent Taw ↓ Tas ↓
DACC w/o DAM and rules 111.73 173.55
DACC w/o rules 65.44 128.02
DACC w/o DAM 35.13 91.08
DACC (our full version) 32.79 89.36
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Figure 9: Average number of passengers per minute in one hour in two-way pattern: (a) Floor 0.
(b) Floor 4. (c) Floor 8. (d) Floor 12.

J OUR ENHANCED SIMULATOR OF THE EGSP

The existing EGSP simulator Liftsim (Wang et al., 2020) fails to meet realistic constraints mentioned
in § 4.1 and the commercial EGSP software Elevate8 (Peter) is not open-source for training RL
agents. To better reflect the mechanism of a commercial elevator scheduler, we first develop our
simulator based on Liftsim, satisfying all the realistic constraints of the real-world EGSP. And we
implement both the up-down mode and destination mode for further study. The differences among
LiftSim, Elevate 8, and our simulator are concluded in Tab. 6.
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Figure 10: Average number of passengers per minute in one hour in up-peak pattern: (a) Floor 0.
(b) Floor 4. (c) Floor 8. (d) Floor 12.
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Figure 11: Average number of passengers per minute in one hour in down-peak pattern: (a) Floor
0. (b) Floor 4. (c) Floor 8. (d) Floor 12.

22



Under review as a conference paper at ICLR 2023

K DYNAMIC PASSENGER DATA OF THREE PATTERNS IN OUR SIMULATOR

As for dynamic passenger data, instead of randomly generating passenger data with fixed probability
factors, we use real-world passenger data (provided by a world-renowned elevator manufacturer)
that conforms to different patterns from a 16-floor building. And we further augment the data with
randomness for RL’s training. The real-world passenger data of three different flow patterns (two-
way pattern, up-peak pattern, and down-peak pattern) are illustrated in Fig. 9, Fig. 10 and Fig. 11,
respectively. And for each pattern, we take four floors (floor 0, floor 4, floor 8, and floor12) as
examples and show the average number of passengers per minute in one hour for each floor. And
for each floor, we show the average number of passengers that request to go up from this floor, go
down from this floor, go up to this floor, and go down to this floor. From Fig. 9, we can know that
in the two-way pattern, the up call requests are mostly from floor 0, and the down call requests are
mostly to floor 0. From Fig. 10, we can know that in the up-peak pattern, up-call requests from floor
0 to other floors form the majority of all hall call requests. From Fig. 11, we can know that in the
down-peak pattern, most of the hall call requests are down-call requests from other floors to floor
0. From all three figures, we also know that the total passenger flow change over time. The highest
peak time of total passenger flow in an hour is 30 to 35 minutes in the two-way pattern, 35 to 40
minutes in the up-peak pattern, and 12 to 17 minutes in the down-peak pattern.

L ABLATION STUDY ON THE EGSP

We take an ablation study to evaluate the advantages of the dynamics aware module and combining
rules. In this experiment, we evaluate four agents on a 120-min passenger data flow that follows
the two-way traffic mode: the agent without the dynamics aware module (DAM) and rules, the
agent without rules, the agent without the dynamics aware module, and the full version of DACC
agent—assuming that the objective in this scenario is to reduce the average waiting time and the
average transmitting time. From the experimental result shown in Table 7, we can find that both the
dynamics aware module and combining rules play essential roles. By combining the advantages of
rules and dynamics aware, our framework, DACC, can inherit the controllability and reliability of
rules and further optimize the customized objectives for different scenarios.
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