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ABSTRACT

Large pre-trained language models help to achieve state of the art on a variety of
natural language processing (NLP) tasks, nevertheless, they still suffer from for-
getting when incrementally learning a sequence of tasks. To alleviate this prob-
lem, recent works enhance existing models by sparse experience replay and local
adaption, which yield satisfactory performance. However, in this paper we find
that pre-trained language models like BERT have a potential ability to learn se-
quentially, even without any sparse memory replay. To verify the ability of BERT
to maintain old knowledge, we adopt and re-finetune single-layer probe networks
with the parameters of BERT fixed. We investigate the models on two types of
NLP tasks, text classification and extractive question answering. Our experiments
reveal that BERT can actually generate high quality representations for previously
learned tasks in a long term, under extremely sparse replay or even no replay. We
further introduce a series of novel methods to interpret the mechanism of forget-
ting and how memory rehearsal plays a significant role in task incremental learn-
ing, which bridges the gap between our new discovery and previous studies about
catastrophic forgetting1.

1 INTRODUCTION

Continual Learning aims to obtain knowledge from a stream of data across time (Ring, 1994; Thrun,
1998; Chen & Liu, 2018). As a booming area in continual learning, task-incremental learning re-
quires a model to learn a sequence of tasks, without forgetting previously learned knowledge. It
is a practical scene to train models on a stream of tasks sequentially, avoiding to re-train on all
existing data exhaustively once a new task arrives. In natural language processing, although many
large-scale pre-trained language models (PLMs) have ceaselessly achieved on new records on vari-
ous benchmarks, they cannot be directly deployed in a task-incremental setting. These models tend
to perform poorly on previously seen tasks when learning new ones. For instance, a BERTBASE

model trained sequentially on text classification tasks may not be able to make any correct predic-
tions for the first task after learning new ones, with almost-zero accuracy scores (d’Autume et al.,
2019). This phenomenon is known as catastrophic forgetting (McCloskey & Cohen, 1989; French,
1999; Rosenstein et al., 2005). Many existing works design novel architectures or components to
alleviate the forgetting when learning incrementally (Kirkpatrick et al., 2017; Zenke et al., 2017;
Rebuffi et al., 2017; Mallya & Lazebnik, 2018; d’Autume et al., 2019; Pfeiffer et al., 2020; Sun
et al., 2020; Geng et al., 2021; Jin et al., 2022; Qin et al., 2022). Among them, d’Autume et al.
(2019) find that an NLP model augmented by sparse memory replay can refrain from forgetting to
a great extent. Their method randomly samples 100 instances from old tasks for replay, after learn-
ing every 10,000 unseen instances. Considering that their method can regain the ability to process
previous tasks via merely 100 instances in 4 steps2, a question comes to our mind: Whether pre-
trained language models like BERT really suffer from forgetting when learning a sequence of tasks?

1Code will be released at https://github.com/kobayashikanna01/plms_are_lifelong_
learners

2With a training batch of size 32, sampling 100 instances means it takes only 4 steps to recover the forgotten
knowledge.
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Mehta et al. (2021) reveal that, under proper hyper-parameters, models with pre-training can suffer
less catastrophic forgetting than models without pre-training. However, in this work, we specifically
focus on the frequency of memory replay. We wonder whether the BERT encoder can still maintain
knowledge learned from previous tasks as it performs in d’Autume et al. (2019), with an extremely
sparse replay frequency or even without replay.

Probing study has become a popular tool to investigate model interpretability (Tenney et al., 2019;
Jawahar et al., 2019). For instance, Wu et al. (2022) probe the continual learning ability of a model
by comparing the performance of different PLMs trained with different continual learning strategies.
In this paper, our main concern is to examine whether PLMs have an intrinsic ability to maintain
previously learned knowledge in a long term. We track the encoding ability of BERT for specific
tasks in a BERT before, during, and after it learns the corresponding tasks. Comparing the probing
results of models trained under different replay frequencies and trained without memory replay,
we find that BERT itself can refrain from forgetting when learning a sequence of tasks. This is
somewhat contrary to existing studies about catastrophic forgetting, which further motivates us to
investigate how the representations of examples from different tasks are organized in the parameter
space. Inspired by prior works (Gao et al., 2019; Wang et al., 2020a), we define the representation
sub-space of a class as a convex cone, and provide an algorithm to acquire the narrowest solution.
With this toolkit in hand, we find that: after learning several tasks without memory replay, the
representation sub-spaces of classes from different tasks will overlap with each other. However, the
sub-spaces of classes from the same task keep never-overlapping all along. The former explains the
catastrophic forgetting in task-incremental learning from a novel viewpoint of representations, while
the the latter explains why BERT has a potential to encode prior tasks even without replay.

Our main contributions in this work are:
(1) we conduct a thorough study to quantitatively characterize how the representation ability of a
PLM like BERT change when it continuously learns a sequence of tasks. We are the first to track
the encoding ability of previously learned tasks in BERT when learning new tasks continuously.
(2) Our findings reveal that BERT can actually maintain its encoding ability for already learned
tasks, and has a strong potential to produce high-quality representations for previous tasks in a long
term, under an extremely sparse replay or even without memory replay, which is contrary to previous
studies.
(3) We further investigate the topological structure of the learned representation sub-space within
a task and among different tasks, and find that the forgetting phenomenon can be interpreted into
two aspects, the intra-task forgetting and inter-task forgetting (Section 4), enabling us to explain the
contrary between our findings and previous studies.

2 BACKGROUND

Following prior work (Biesialska et al., 2020), we consider the task-incremental language learning
setting as that a model should learn from a sequence of tasks, where samples of former tasks cannot
be accessible during the training steps for later tasks, but samples of all classes in the current task
can be acquired simultaneously.

Formally, the input training stream consists of K ordered tasks T1, T2, · · · , TK , where we ob-
serve nk samples, denoted by

{(
xk
i , y

k
i

)}nk

i=1
, drawn from distribution Pk(X , Y) of task Tk. Our

training objective is a general model fθ : X 7→ Y which handles all tasks with a limited number of
parameters θ, by minimizing the negative log-likelihood averaged over all examples:

L(θ) = − 1

N

N∑
i=1

lnP (yi |xi ; θ) ,

where N =
∑K

t=1 nt is the number of all training examples.

2.1 INVESTIGATED MODEL

In Natural Language Processing, a model can be divided into two parts, a text encoder and a task
decoder, with parameters θenc and θdec, respectively.
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Text Encoder Similar to MbPA++ (d’Autume et al., 2019) and Meta-MbPA (Wang et al., 2020b),
we use BERTBASE (Devlin et al., 2019) as our text encoder, which produces vector representations
according to given tokens.

In text classification, we take the representation of [CLS] token added at the first to aggregate in-
formation of all tokens. For a sequence of input tokens xi, where xi, 0 is [CLS], BERTBASE will
generate corresponding vectors {vi, j}Lj=1 with L = |xi|. Therefore, we formulate the output of
encoder model as: fθenc(xi) = vi, 0.

For extractive question answering, we take the task setting of SQuAD 1.1 (Rajpurkar et al., 2016),
as in previous work (d’Autume et al., 2019). The input tokens xi here are the concatenation of a
context xctx

i and a query xque
i separated by a special token [SEP].

Task Decoder For text classification, we add a linear transformation and a soft-max layer after
BERTBASE encoder. Following d’Autume et al. (2019), we adopt a united decoder for all classes of
different tasks, and here θdec is the combination of {Wy}y∈Y :

P (ŷ = α|xi) =
exp

(
W⊤

α fθenc(xi)
)∑

y∈Y exp
(
W⊤

y fθenc(xi)
) =

exp
(
W⊤

α vi, 0

)∑
y∈Y exp

(
W⊤

y vi, 0

) ,
For question answering, the models extract a span from the original context, i.e., determining the
start and end boundary of the span. Our decoder for QA has two parts of linear layers Wstart and
Wend for the start and the end, respectively. The probability of the t-th token in context as the start
of the answer span can be computed as:

P
(
start = xctx

i, t |xctx
i ; xque

i

)
=

exp
(
W⊤

startv
ctx
i, t

)∑Lctx

j=1 exp
(
W⊤

startv
ctx
i, j

) ,
where Lctx is the length of context, and the probability of the end boundary has a similar form.
When predicting, we consider the probability distributions of two boundaries as independent.

2.2 SPARSE EXPERIENCE REPLAY

In reality, humans rely on reviews to keep long-term knowledge, which is based on episodic mem-
ories storing past experiences. Inspired by this, Gradient Episodic Memory (Lopez-Paz & Ranzato,
2017) and other methods introduce a memory moduleM to the learning process. Training examples
then can be stored in the memory for rehearsal at a predetermined frequency.

Construction of Memory Every seen example is added to the memory by a fixed rate γ during
training. If we sample nk examples of the k-th task, in expectation there will be γnk additional
instances inM after learning from Tk.

Principles of Replay For experience replay, we need to set a fixed sparse replay rate r. Whenever
the model has learned from Ntr examples from current task, it samples ⌊rNtr⌋ ones fromM and
re-learns. We set storage rate γ = 0.01 and replay frequency r = 0.01 in all of our experiments to
ensure comparability, the same as prior work. In this paper, we name a model by REPLAY only if
it is enhanced by sparse memory replay without other modifications. We name a model trained on a
sequence of tasks without any memory replay by SEQ.

2.3 DATASETS

To provide comparable evaluation, we employ the same task incremental language learning bench-
mark introduced by MbPA++. Its text classification part is rearranged from five datasets used by
Zhang et al. (2015), consisting of 4 text classification tasks: news classification (AGNews, 4 classes),
ontology prediction (DBPedia, 14 classes), sentiment analysis (Amazon and Yelp, 5 shared classes),
topic classification (Yahoo, 10 classes). Following d’Autume et al. (2019) and others, we randomly
choose 115,000 training and 7,600 testing examples to create a balanced collection. Since Ama-
zon and Yelp are both sentiment analysis datasets, their labels are merged and there are 33 classes
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in total. In all our experiments, we evaluate model’s performance on all five tasks and report the
macro-averaged accuracy as prior work.

As for question answering, this benchmark contains 3 datasets: SQuAD 1.1 (Rajpurkar et al., 2016),
TriviaQA (Joshi et al., 2017), and QuAC (Choi et al., 2018). Since TriviaQA has two sections, Web
and Wikipedia, considered as two different tasks, this benchmark totally consists of 4 QA tasks.

3 PROBING FOR INTRINSIC ABILITY AGAINST FORGETTING IN BERT

As mentioned in Section 1, a model can rapidly recover its performance of previously learned tasks,
by memory replay on merely 100 instances (d’Autume et al., 2019). If the model completely loses
the ability to encode prior tasks, it is counter-intuitive that the model can regain prior knowledge by
4 updating steps. We conjecture that BERT can actually retain old knowledge when learning new
tasks rather than catastrophically forgetting. To verify this hypothesis, we first conduct a pilot study.

We implement our pilot experiments on the text classification benchmark, employing BERTBASE

with a simple linear decoder as our model and training it under 4 different orders (detailed in Ap-
pendix A). Following previous probing studies (Tenney et al., 2019; Jawahar et al., 2019) to ex-
amine BERT’s encoding ability for specific tasks, we freeze encoder parameters after sequentially
finetuning, re-initialize five new linear probing decoders and re-train them on five tasks separately.
We find that evaluated on the corresponding tasks, every fixed BERT encoder combined with its
new decoder can achieve a superior performance. Surprisingly, the macro-averaged accuracy scores
of all tasks for 4 orders are 75.87%±0.73%, 76.76%±0.64%, 75.19%±0.43%, 76.76%±0.71%, which
are close to the performance of a multi-task learning model (78.89%±0.18%). However, previous
works (Biesialska et al., 2020) show that sequentially trained models suffer from catastrophic for-
getting and sacrifice their performance on previous tasks when adjusting to new task. Our pilot
experiments, in contrary to previous works, actually indicate that BERT may have the ability to
maintain the knowledge learned from previous tasks in a long term.

3.1 PROBING METHOD

To verify whether BERT can refrain from forgetting without the help of memory replay, we need a
tool to systematically measure a model’s encoding ability for previous tasks when it incrementally
learns a sequence of tasks. One way is to compare the encoding ability of models at different learn-
ing stages trained under two different settings, REPLAY and SEQ. For each setting, we consider to
measure the performance before learning corresponding tasks can be regarded as baselines, which
indicate BERT’s inherent knowledge acquired from pre-training tasks. And then we can examine
to what extent BERT forgets old knowledge, by comparing the results during and after learning
corresponding tasks. Therefore, it is essential to track the change of BERT’s task-specific encod-
ing ability across time. We extract parameters of the encoder and save them as checkpoints at an
assigned frequency during training. In both REPLAY and SEQ, we record checkpoints every 5,000
training examples3, without regard to the retrieval memory subset.

For every checkpoint, we probe its encoding ability for every task Tk by following steps:

1. Add a reinitialized probing decoder to the parameters of BERTBASE in this checkpoint.
2. Train the recombined model with all data in Tk’s training set Dtr

k , with θenc fixed, which
means we adjust the parameters of probing decoder only.

3. Evaluate the scores4 of re-trained models on the test set of Tk.

We re-train a compatible probing decoder on a specific task without touching the encoder before
evaluation. We use a linear decoder as probing network for text classification, and two linear bound-
ary decoders for question answering, the same setting as MbPA++ (d’Autume et al., 2019) and
Meta-MbPA (Wang et al., 2020b). We have to mention that there still exist some controversies on
whether we should use a simpler probing decoder or a more complex one (Belinkov, 2022). Here,
we adopt simple one-layer probing networks for two reasons. Firstly, a simpler probe can bring
about less influence to the performance of re-trained models (Liu et al., 2019a; Hewitt & Liang,

3Since every batch has 32 instances which is not divisible by 5,000, we save parameters at the closest
batches to scheduled points in order to refrain from unnecessary disturbance.

4We use accuracy scores for text classification, and F1 scores for extractive question answering.
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Figure 1: Probing results on five text classification tasks trained by Order 1, illustrated separately
by the datasets6. The abscissas indicate the training order of tasks.

Figure 2: Probing F1 scores on four tasks trained by Order 1, illustrated separately7.

2019), which enables us to focus on the encoding ability of BERT only. Secondly, our purpose in
this paper is not to compare BERT’s encoding ability among different tasks, but to examine whether
it forgets the knowledge of a specific task. Therefore, it is better to use the same single-layer decoder
as d’Autume et al. (2019) and Wang et al. (2020b), which can yield comparable results with them.

3.2 RETHINKING CATASTROPHIC FORGETTING

We are now able to quantitatively measure whether a BERT model can maintain its encoding ability
for previous tasks during task-incremental learning, by tracking the probing scores among check-
points. It is also important to investigate whether replay intervals have influence on BERT’s encod-
ing ability. We first set up a series of experiments on text classification described as below.

To compare with prior works (d’Autume et al., 2019; Wang et al., 2020b), we retain consistent
experimental setups with them,where the maximum length of tokens and batch size are set to 128
and 32, separately. We use the training settings of REPLAY in d’Autume et al. (2019) as the baseline,
which samples 100 examples fromM for replay every 10,000 new examples from data stream. As
mentioned in Section 2.2, we control storage rate γ and replay frequency r both at 1%. To explore
the impact of memory replay, we compare models trained under different replay intervals. We
randomly select a subset S with ⌊0.01Ntr⌋ samples from M after learning every Ntr examples.
Ntr is set to {10k, 30k, 60k, 115k}, and furthermore, we can consider Ntr as +∞ when training
models sequentially. We employ Adam (Kingma & Ba, 2015) as the optimizer.

We use the method in Section 3.1 to evaluate the quality of the representations generated by BERT
in every checkpoint. If the set of BERT parameters have a stronger ability to encode specific task,
we can observe a better probing performance. Here, for text classification, we depict the changes of
accuracy scores on different figures according to task and training order. The results of Order 1 (de-
tailed in Appendix A) is shown in Figure 1 and the rest is illustrated in Appendix B. Comparing
the scores before and after the model learning specific tasks, we further obtain a new understand-

6The leftmost sub-figure depicts how a model’s probing accuracy scores on the training set of AGNews are
changing along with the training procedure. The following four sub-figures are for Amazon, DBPedia, Yahoo,
and Yelp. We color the background into yellow since the model is trained on corresponding task. Specially,
Amazon and Yelp share the same labels, therefore, we color their background into light-yellow once the model
is trained on the other task.

7The leftmost is TriviaQA (Wiki), followed by TriviaQA (Web), QuAC, and SQuAD. The F1 scores after
re-training probing decoders are represented by blue lines. As a comparison, we draw F1 scores of models
with original decoders by red dashed lines since the models begin to learn new tasks. We color the background
into yellow since the model is trained on corresponding task. Specially, TriviaQA (Wiki) and TriviaQA (Web)
are actually subsets of one task, therefore, we color their background into light-yellow when learning the other
task.
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ing about the task-incremental language learning: In spite of data distribution shift among tasks,
BERT remains most of the ability to classify previously seen tasks, instead of catastrophic
forgetting. This conclusion can also apply to SEQ, whose replay frequency is considered as +∞.
Although BERT’s representation ability gets a little worse under a larger replay interval (such as
60k, 115k, +∞), it still maintains previous knowledge and can recover rapidly by sparse replay.

We also provide experimental results on question answering, which is more complex than text clas-
sification. To examine whether BERT can still retain old knowledge on QA tasks, we adopt a more
strict experimental setting than d’Autume et al. (2019). We train the model sequentially with 4
different orders in Appendix A, under the setting of SEQ without any memory replay. On each
task, the model is finetuned for 15K steps, which is two times more than d’Autume et al. (2019).
We then evaluate the encoding ability of every BERT checkpoints by our probing methods. The
results of Order 1 is illustrated in Figure 2, and others in Appendix C. Based on our experiment
settings, the model is finetuned for enough steps to overfit on every task. However, the probing
results (blue lines) are still much higher than the original scores measured before re-training de-
coders (red dashed lines). Comparing the obvious gap between them8, we can find that BERT still
keeps most of knowledge of previous tasks when learning new ones.

Additionally, we also investigate the ability of other pre-trained language models to retain old-task
knowledge, which is detailed in Appendix D. In general, all of these pre-trained language models
have an intrinsic ability to refrain from forgetting when learning a sequence of tasks, although our
investigated models have various attention mechanisms and various scales. Among different training
orders, they still maintain the ability to encode the first learned task, even after learning 5 tasks.

4 A NEW VIEW OF FORGETTING

(a) SEQ (b) REPLAY

Figure 3: Visualization results of representation
space after training on tasks by Order 1. Points of
AGNews, Amazon & Yelp, DBPedia, Yahoo are
colored by blue, orange, green, pink, respectively,
while intersection areas of multiple tasks are grey.

From the experiments in Section 3.2, we ob-
serve that BERT has the potential to keep a
long-term ability to provide high-quality rep-
resentations for a task, once the model has
learned it. Thus, it seems that we only need
to finetune the decoder if we attempt to recover
the model’s ability for previous task. But on the
other hand, the SEQ models suffer from a seri-
ous performance degradation on learned tasks,
which is known as catastrophic forgetting. To
reconcile this contradiction, we employ t-SNE
toolkit (van der Maaten & Hinton, 2008) and vi-
sualize the representations after training on all
tasks by SEQ or REPLAY (Figure 3). When
learning sequentially, it shows the model pro-
duces representations of different tasks in overlapped space. In this circumstance, the task decoder
identifies all vectors as instances from new task, which leads to confusion but can be averted effec-
tively by sparse replay.

All these observations push us to make the assumption that the forgetting in task-incremental learn-
ing can be considered as two parts, intra-task forgetting and inter-task forgetting. The intra-task
forgetting describes whether a model can still generate meaningful representations for prior tasks af-
ter learning new ones, while the inter-task forgetting refers to whether the representations produced
for different tasks are distinguishable from each other. In this section, we first propose a toolkit
to describe the representation (in Section 4.1). Then, we exhibit the changes of a model learning
continuously under REPLAY settings, and provide a novel understanding for catastrophic forgetting
in NLP models. Admittedly, question answering models usually involve interactions among repre-
sentations of different granularities (from token-level to even document-level) (Wang et al., 2018),
thus is more challenging to analyze. Therefore, we will put more emphasis on analysing the results
of text classification.

8In QA, the F1 scores on previous tasks will not decrease to zero when learning new tasks, since all QA tasks
share the same answer boundary decoder. But different text classification tasks utilize different dimensions in
the decoder, which leads to more drastic deterioration on scores of old tasks.
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4.1 DEFINITION OF REPRESENTATION SUBSPACE

Algorithm 1: Calculating the Representation
Cone

Input: vector set V , input size n = |V|, initial
central axis c0, learning rate α, termination
condition ε
Output: central axis of the cone c
while |V| > ⌈0.95n⌉ do

Initialize c = c0
repeat

Compute optimization objective by Eq. 3.
Obtain the gradient ∇fδ(c, V).
c← c+ α∇fδ(c, V)
c← c/∥c∥2
Adjust α by linear search.

until ∀cj in c, ∆cj < ε
Calculate the cosine of vi and c, denoting as
{si}|V|

i=1. Sort {si}|V|
i=1.

m← ⌈(|V| − ⌈0.95n⌉)/2⌉
Select m lowest si and their relevant vectors
Vdel.
V ← V − Vdel

c0 ← c
end while

As claimed in Gao et al. (2019) and Wang
et al. (2020a), when trained by single-layer
linear decoders, pre-trained language mod-
els produce token-level embedding vectors in
a narrow cone. We observe that this con-
clusion applies to not only token-level rep-
resentations but also sentence-level represen-
tations (more details in Appendix E). Repre-
sentation vectors of the same class are aggre-
gated together, which enables us to use a con-
vex cone to cover these vectors, whose ver-
tex is the origin. To describe the vectors pre-
cisely, the cone should cover all vectors and
be as narrow as possible. Formally, we denote
the surrounding cone as:{

x ∈ Rd
∣∣ xTc

∥x∥2 · ∥c∥2
≥ δ

}
(1)

where c ∈ Rd is the central axis of the cone,
and δ controls the filed angle.

To acquire the narrowest cone containing all
vectors output by BERT, supposing the vector
set is V = {vi}ni=1, we solve the optimization
objective described as below:

minimize
c, δ

−δ; s.t. ∀vi ∈ V,
vT
i c

∥vi∥2
≥ δ, ∥c∥2 = 1, (2)

where ∥ · ∥2 means L2-norm. To obtain a definite solution, we add a restriction ∥c∥2 = 1, otherwise
the equation implies the direction of c only without length. The representation vectors are clustered,
so we can obtain a cone with a tiny file angle (δ ≫ 0). Therefore, Eq. (2) is a convex optimization
objective, which can be solved by Sequential Least Square Programming (Kraft, 1988; Boggs &
Tolle, 1995). In iteration, we acquire the optimization gradient by following expression:

fδ(c, {vi}ni=1) = max
i

{
vT
i c

∥vi∥2

}
∇fδ(c, {vi}ni=1) =

v

∥v∥2
, v = argmax

vi

{
vT
i c

∥vi∥2

} (3)

Furthermore, to reduce the interference from outliers caused by noisy annotations, we modify the
constraint conditions as that the cone only needs to cover no less than 95% training examples.
Since it violates the convexity of the original objective, we employ an iterative method and get
an approximate solution, which keeps every calculating step convexity-preserving. Algorithm 1
outlines the detailed solving procedure. It is obvious that cone axis should be at the center of
vectors, thus we initialize c0 =

∑
i vi/∥

∑
i vi∥2.

4.2 INTRA-TASK FORGETTING

From the results in Section 3.2, we find that BERT can maintain previously learned knowledge in
a long term. When working with a re-trained new decoder, BERT can still perform well on prior
tasks, indicating that BERT rarely suffers from intra-task forgetting. To investigate the mechanism
preventing BERT from intra-task forgetting, we train a BERT model on AGNews and Amazon as an
example9 to analyse the changes within the BERT’s representation space. We first train the model
on all instances of AGNews, and then sample 30K instances from Amazon as the second task for
task-incremental learning. Similar to Figure 1, BERT can still generate high-quality representations

9Choose by dictionary order.
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for AGNews after learning Amazon without Episodic Replay. We guess after learning a new task,
the representation sub-space of old tasks is still topologically ordered10.

As shown in Figure 3(a), we can see that, without Episodic Replay, the representation vectors of
old-task instances will rotate to the overlapping sub-space of the new task, which causes the decoder
cannot distinguish which task the input instance should belong to. On the other hand, if we adopt
a task-specific decoder (e.g., the probing decoder), it can effectively determine the class of a given
instance. This may imply that the vectors of the same old-task class are still not far from each other,
but they are far away to the vectors of other classes from the the same old task. Therefore, we guess
if two representation vectors are trained to be at adjacent positions , they will still be neighbors after
learning a new task.

To examine whether the rotating process of old-task representation vectors is topologically ordered,
we first need a metric to define the relative positions among the representations of instances in the
same class. Following our method in Section 4.1, we can describe the representation sub-space of a
class y as a convex cone, whose cone axis is cy . Then, for instance i of class y, we can define the
relative position of its representation vector vy, i as the cosine between vy, i and cy .

Since we need to compare the relative positions of every instance at two checkpoints (before and
after learning the second task), we distinguish the vectors at different checkpoints according to
their superscripts. Formally, we denote the cone axis and the representation vectors before learning
Amazon as c(0)y and v

(0)
y, i, with the ones after learning Amazon as c(1)y and v

(1)
y, i, respectively.

For every v
(0)
y, i in the V(0)

y (the universal representation set of class y before learning Amazon), we

select its n nearest neighbors from V(0)
y −

{
v
(0)
y, i

}
by Euclidean distance, and record their indica-

tor set as Ny, i. It is reasonable to believe that these n neighbors have the most similar semantic

information to v
(0)
y, i. Then, we can check whether v(1)

y, i and the vectors
{
v
(1)
y, k

}
k∈Ny, i

are still neigh-

bors, to verify whether the representation sub-space of class y is topologically ordered. Here, we
compute the the correlation between the relative positions of v(1)

y, i and
{
v
(1)
y, k

}
k∈Ny,i

, which is esti-

mated by Pearson correlation coefficient between cos(c
(1)
y , v

(1)
y, i) and

∑
k∈Ny, i

cos(c
(1)
y , v

(1)
y, k).

We list the results of all classes in AGNews with different scales of n in Table 1 (where y ∈
{Class-1, Class-2, Class-3, Class-4}, n ∈ {5, 10, 25, 50, 100}). By comparing different n, we
can see a median size of neighbors brings a better correlation, which restrains randomness from a
tiny set and uncorrelated bias from a huge set. Altogether, the influence of n is inessential and we
can reach the conclusion that the positions of v(0)

y,i and its neighbors are still close after learning new
task, since the Pearson coefficients are no less than 0.483 (partly higher than 0.723).

In other words, if two examples are mapped to near positions before learning new tasks, they will
remain close with each other after learning new tasks. Once BERT has learned a task, it will tend
to generate representations of the same class at close positions, while generating representations of
different classes at non-adjacent spaces. Therefore, if the rotating process of old-task representations
can keep topologically ordered, the representation vectors of a class will always be separate to the
vectors of other classes. This is why BERT exhibits an aptitude to alleviate intra-task forgetting in
our study.

4.3 INTER-TASK FORGETTING

Neural network models always suffer from catastrophic forgetting when trained on a succession of
different tasks, which is attributed to inter-task forgetting in this work. Similar to prior evaluation,
we continue to use covering cones to investigate the role of memory replay when models resisting
inter-task forgetting.

10Given a non-empty vector set V , we can cluster it into many disjoint sub-sets, V1, · · · ,VK , by the distances
between vectors. After learning a new task, the representation vectors of previous tasks will rotate to new
directions. For any sub-set Vp and any new vector vpx within Vp, if any new vector vpy ∈ Vp is closer to vpx than
any vectors vqz ∈ Vq (q ̸= p) in other sub-sets, we will think the rotating process of representation vectors is
perfectly topologically ordered when learning new task.
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Table 1: Pearson correlation coefficient (×100) of the angles of v1,i and its n neighbors to the cone
axis. The highest scores are made bold, with the second underlined.

n Class 1 Class 2 Class 3 Class 4

5 81.09±3.55 48.35± 9.82 83.11±3.57 72.41±3.53
10 81.68±3.26 50.44±10.29 83.90±3.52 73.80±3.22
25 81.10±3.19 51.46±10.27 83.76±3.58 73.98±3.11
50 80.03±3.30 51.06±10.56 83.25±3.65 73.39±3.12
100 78.51±3.49 50.16±10.58 83.27±3.84 72.35±3.12

Figure 4: Bar chart for rotation angles during re-
play, clusters by task label and colored according
to replay time.

When a model decodes representation vector v
via a linear layer connected by soft-max, the
decoder can be regarded as a set of column-
vectors (i.e. {wy}y∈Y in Section 2.1) and the
predicting process is equal to selecting one hav-
ing the largest inner product with v. There-
fore, it is necessary to check whether the cones
of previous task rotate to their corresponding
column-vectors in decoder. In this section, we
still examine the model trained on AGNews
first and continuously trained on Amazon with
a replay interval of 30K for three times.

We observe that there is no significant change
of column-vectors in decoder before and after
memory replay, since their rotation angles are
less than 1 × 10−3, which are negligible. For
each time t, we denote the cone axis of class k
before and after replay as c−t,k and c+t,k, respec-
tively, and its corresponding column-vector in decoder as wk. Then, the rotation angle of the k-th
cone can be estimated as: ∆ζt,k = cos(c−t,k,wk) − cos(c+t,k,wk). If ∆ζt,k > 0, it means cones
rotate closer to the direction of wk during replay. The results illustrated in Figure 4 reveal that
memory replay obliges the vectors of previous tasks rotating to their corresponding column-vectors
in decoder efficiently, while dragging those of current task to deviate from optimal position. Further-
more, this dual process weakens along with the increase of replay times. Since the representation
space of BERT is high-dimensional while our tasks are finite, alternately learning on memory and
current tasks can separate encoding vectors by mapping them to different sub-spaces.

In Appendix F, we provide more visualization results about how memory replay reduces inter-task
forgetting, in other words, catastrophic forgetting in the traditional sense.

5 CONCLUSION

In this work, we conduct a probing study to quantitatively measure a PLM’s encoding ability for pre-
viously learned tasks in a task-incremental learning scenario, and find that, different from previous
studies, when learning a sequence of tasks, BERT can retain its encoding ability using knowledge
learned from previous tasks in a long term, even without experience replay. We further examine the
topological structures of the representation sub-spaces of different classes in each task produced by
BERT during its task-incremental learning. We find that without memory replay, the representation
sub-spaces of previous tasks tend to overlap with the current one, but the sub-spaces of different
classes within one task are distinguishable to each other, showing topological invariance to some ex-
tent. Our findings help better understand the connections between our new discovery and previous
studies about catastrophic forgetting.

Limited by the number of tasks, we have not discussed the capacity of BERT when continuously
learning more tasks. As far as we know, there is no existing method yet to measure whether a model
has achieved its learning capacity and cannot memorize any more knowledge. In the future, we will
extend our probing method to a longer sequence or different types of tasks and explore what amount
of knowledge a large pre-trained language model can maintain.
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A DATASETS AND ORDERS

For task-incremental text classification, we use the following orders to train our models, which are
the same as d’Autume et al. (2019) and Wang et al. (2020b):

1. Yelp→AGNews→DBPedia→Amazon→Yahoo.
2. DBPedia→Yahoo→AGNews→Amazon→Yelp.
3. Yelp→Yahoo→Amazon→DBpedia→AGNews.
4. AGNews→Yelp→Amazon→Yahoo→DBpedia.

For task-incremental question answering, we use the following orders to train our models, which are
also the same as d’Autume et al. (2019) and Wang et al. (2020b):

1. QuAC→TriviaQA (Web)→TriviaQA (Wiki)→SQuAD.
2. SQuAD→TriviaQA (Wiki)→QuAC→TriviaQA (Web).
3. TriviaQA (Web)→TriviaQA (Wiki)→SQuAD→QuAC.
4. TriviaQA (Wiki)→QuAC→TriviaQA (Web)→SQuAD.

Here, the Web part and the Wikipedia part of TriviaQA (Joshi et al., 2017) are treated as two separate
datasets in the orders.

B PROBING ACCURACY SCORES OF ALL ORDERS FOR TEXT
CLASSIFICATION

In this section, we illustrate the probing results of all four orders in Figure 5. Following the main
body, background is colored by yellow when and after training on corresponding tasks. And spe-
cially, since Amazon and Yelp share the same labels, we color their background by light-yellow
once the model is trained on the other.

C ANALYSIS FOR QUESTION ANSWERING TASKS

Similar to the analysis of text classification, we also train models on 4 question answering (QA)
tasks in designated orders. To verify whether BERT has a potential to keep knowledge in a long
term in QA tasks, we random sample 240K examples from each task (by repeated sampling), where
their sizes are two or three times more than the original datasets. We set batch size as 16 and learning
rate as 3 × 10−5 without decay. Additionally, we do NOT use any memory module, which means
the models are trained sequentially without memory replay.

We save checkpoints every 1,250 steps, and then re-finetune the decoders on 4 tasks respectively,
with the parameters of BERT encoders fixed. Since, here, QA is formulated as a sequence-to-
sequence task, there may be more than one golden answer span for a question. Therefore, we use
F1 score to evaluate the performance of models. All results are illustrated in Figure 6.

The results imply BERTBASE still has a durability to keep previously learned knowledge in a long
term in more complex tasks like question answering. In QA, the model employs unified span position
decoders for all 4 tasks. therefore, the original F1 scores (before refintuning, red dashed lines) for
previous tasks will not decrease to zero, which is different from text classification. Although the
catastrophic forgetting problem is not too severe in QA, the models still achieve much better F1
scores after re-finetuning their decoders, considering the gaps between blue lines and red dashed
lines. In the meantime, we find there is only a limited drop of blue lines after the models finish
learning from corresponding tasks. It means that BERT has a satisfactory potential to keep previous
knowledge, even without any memory replay. Our conclusions in Section 5 can also apply to
question answering tasks.
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(a) Results of Order 1.

(b) Results of Order 2.

(c) Results of Order 3.

(d) Results of Order 4.

Figure 5: Probing results of five text classification tasks training by each order. In each row, we
illustrate the results for 5 tasks separately, where the leftmost is AGNews, followed by Amazon,
DBPedia, Yahoo, and Yelp.
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(a) Results of Order 1.

(a) Results of Order 2.

(b) Results of Order 3.

(c) Results of Order 4.

Figure 6: F1 scores on four tasks trained by 4 different orders. In each row, we plot the results for
four tasks separately, where the leftmost is TriviaQA (Wiki), followed by TriviaQA (Web), QuAC,
and SQuAD. The F1 scores after re-finetuning decoders is represented by blue lines, and as a com-
parison, we draw F1 scores before re-finetuning decoders by red dashed lines. We color the back-
ground into yellow since the model is trained on corresponding task. Specially, TriviaQA (Wiki)
and TriviaQA (Web) are actually subsets of one task, therefore, we color their background into
light-yellow once the model is trained on the other task.
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Table 2: Probing results of various PLMs

X PLM AGNews Amazon DBPedia Yahoo Yelp

Upper

BERT-tiny 92.46 55.91 98.70 71.67 57.45
BERT-mini 93.71 58.50 99.01 72.62 60.24
BERT-small 92.01 54.05 99.09 73.41 61.17
BERT-med 94.13 60.45 99.21 73.76 61.42
BERT-base 94.50 62.41 99.32 75.08 62.76
BERT-large 93.93 62.89 99.17 71.58 63.96
RoBERTa 94.49 63.21 99.24 74.76 64.75
ELECTRA 94.74 63.50 99.24 75.34 64.57
BART 94.50 62.50 99.24 75.05 64.04
GPT-2 94.34 61.17 99.14 74.28 63.04
XLNet-base 94.30 62.84 99.16 74.58 64.34

Lower

BERT-tiny 81.28/-11.18 32.00/-23.91 85.66/-13.04 49.42/-22.25 36.08/-21.37
BERT-mini 82.20/-11.51 37.33/-21.17 94.43/ -4.58 54.70/-17.92 41.82/-18.42
BERT-small 86.05/ -5.96 43.11/-10.95 97.39/ -1.70 61.00/-12.41 46.87/-14.30
BERT-med 85.78/ -8.36 43.61/-16.84 97.47/ -1.74 59.74/-14.03 46.92/-14.50
BERT-base 80.03/-14.47 42.29/-20.12 86.61/-12.71 51.17/-23.91 43.42/-19.34
BERT-large 65.43/-28.50 35.28/-27.62 77.84/-21.33 29.20/-42.38 35.24/-28.72
RoBERTa 84.54/ -9.95 42.25/-20.96 88.34/-10.89 56.38/-18.38 44.80/-19.95
ELECTRA 72.66/-22.08 48.01/-15.49 80.63/-18.61 42.17/-33.17 49.26/-15.30
BART 78.13/-16.37 43.07/-19.43 83.64/-15.59 47.68/-27.37 45.25/-18.79
GPT-2 89.55/ -4.79 47.70/-13.47 95.11/ -4.04 66.28/ -8.00 47.74/-15.30
XLNet-base 88.50/ -5.80 50.75/-12.09 94.91/ -4.25 66.57/ -8.01 51.64/-12.70

Order 1

BERT-tiny 87.80/ -4.66 40.32/-15.59 94.24/ -4.46 69.14/ -2.53 45.29/-12.16
BERT-mini 88.87/ -4.84 42.88/-15.62 97.12/ -1.89 71.99/ -0.63 44.86/-15.38
BERT-small 90.95/ -1.07 50.91/ -3.14 98.53/ -0.57 73.45/ +0.04 51.92/ -9.25
BERT-med 91.21/ -2.92 52.01/ -8.43 98.78/ -0.43 74.24/ +0.47 53.13/ -8.29
BERT-base 92.00/ -2.50 56.79/ -5.62 99.12/ -0.20 75.16/ +0.08 56.43/ -6.33
BERT-large 92.43/ -1.50 59.51/ -3.38 98.84/ -0.33 75.83/ +4.25 59.01/ -4.95
RoBERTa 92.82/ -1.67 60.07/ -3.14 98.70/ -0.54 75.45/ +0.68 60.18/ -4.57
ELECTRA 91.50/ -3.24 54.79/ -8.71 97.57/ -1.67 76.01/ +0.67 55.18/ -9.38
BART 93.66/ -0.84 60.82/ -1.68 98.78/ -0.46 75.64/ +0.59 61.03/ -3.01
GPT-2 92.54/ -1.80 57.11/ -4.07 98.82/ -0.33 74.37/ +0.09 57.36/ -5.68
XLNet-base 92.97/ -1.33 61.03/ -1.82 98.38/ -0.78 75.33/ +0.75 61.86/ -2.49

Order 2

BERT-tiny 88.14/ -4.32 52.29/ -3.62 85.59/-13.11 53.72/-17.95 55.62/ -1.83
BERT-mini 88.08/ -5.63 56.21/ -2.29 93.66/ -5.36 54.17/-18.45 59.18/ -1.05
BERT-small 90.61/ -1.41 58.36/ +4.30 98.33/ -0.76 64.22/ -9.18 61.00/ -0.17
BERT-med 91.28/ -2.86 59.89/ -0.55 98.50/ -0.71 64.49/ -9.28 61.89/ +0.47
BERT-base 91.54/ -2.96 61.75/ -0.66 99.01/ -0.30 64.38/-10.70 63.00/ +0.24
BERT-large 92.39/ -1.54 62.09/ -0.80 97.80/ -1.37 68.61/ -2.97 64.68/ +0.72
RoBERTa 93.34/ -1.14 63.12/ -0.09 98.08/ -1.16 69.71/ -5.05 64.88/ +0.13
ELECTRA 92.36/ -2.38 62.95/ -0.55 97.11/ -2.13 60.43/-14.91 65.09/ +0.53
BART 93.26/ -1.24 62.72/ +0.22 98.05/ -1.18 69.55/ -5.50 64.53/ +0.49
GPT-2 92.71/ -1.63 60.88/ -0.29 98.42/ -0.72 70.51/ -3.76 63.61/ +0.57
XLNet-base 92.91/ -1.39 62.61/ -0.24 98.51/ -0.64 71.34/ -3.24 65.34/ +1.00

Order 3

BERT-tiny 91.39/ -1.07 39.46/-16.45 94.46/ -4.24 60.59/-11.08 45.57/-11.88
BERT-mini 92.80/ -0.91 46.80/-11.70 96.61/ -2.41 64.28/ -8.34 48.61/-11.63
BERT-small 93.68/ +1.67 54.83/ +0.78 98.59/ -0.50 68.11/ -5.30 55.66/ -5.51
BERT-med 93.67/ -0.46 55.97/ -4.47 98.16/ -1.05 68.71/ -5.05 55.50/ -5.92
BERT-base 94.28/ -0.22 59.09/ -3.32 98.66/ -0.66 67.46/ -7.62 56.97/ -5.79
BERT-large 94.49/ +0.55 58.03/ -4.87 97.17/ -2.00 68.78/ -2.80 55.41/ -8.55
RoBERTa 94.87/ +0.38 60.78/ -2.43 98.91/ -0.33 70.92/ -3.84 60.92/ -3.83
ELECTRA 94.47/ -0.26 59.70/ -3.80 97.82/ -1.42 65.66/ -9.68 59.80/ -4.76
BART 94.53/ +0.03 61.45/ -1.05 98.79/ -0.45 73.08/ -1.97 62.03/ -2.01
GPT-2 94.25/ -0.09 57.92/ -3.25 98.87/ -0.28 72.41/ -1.87 58.67/ -4.37
XLNet-base 94.83/ +0.53 62.09/ -0.75 98.58/ -0.58 73.18/ -1.39 61.30/ -3.04

Order 4

BERT-tiny 84.42/ -8.04 35.75/-20.16 98.07/ -0.63 66.26/ -5.41 42.14/-15.30
BERT-mini 85.43/ -8.28 39.89/-18.61 98.82/ -0.20 68.83/ -3.79 44.82/-15.42
BERT-small 88.84/ -3.17 50.37/ -3.68 99.13/ +0.04 70.96/ -2.45 53.67/ -7.50
BERT-med 90.25/ -3.88 55.32/ -5.13 99.20/ -0.01 72.38/ -1.38 55.55/ -5.87
BERT-base 90.91/ -3.59 59.62/ -2.79 99.33/ +0.01 73.78/ -1.30 60.17/ -2.59
BERT-large 90.50/ -3.43 59.25/ -3.64 99.33/ +0.16 74.07/ +2.49 61.50/ -2.46
RoBERTa 91.42/ -3.07 59.74/ -3.47 99.41/ +0.17 73.41/ -1.36 59.63/ -5.12
ELECTRA 89.99/ -4.75 53.47/-10.03 99.24/ -0.00 73.12/ -2.22 58.91/ -5.66
BART 92.39/ -2.11 60.53/ -1.97 99.29/ +0.05 75.16/ +0.11 60.82/ -3.22
GPT-2 91.84/ -2.50 56.11/ -5.07 99.16/ +0.01 73.39/ -0.88 58.54/ -4.50
XLNet-base 92.58/ -1.72 61.68/ -1.16 99.18/ +0.03 74.28/ -0.30 62.53/ -1.82
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D MORE PROBING STUDY ON OTHER PRE-TRAINED LANGUAGE MODELS

Our discussions in the main body are conducted almost exclusively on the ability of BERTBASE to
keep knowledge. BERT (Devlin et al., 2019) is a representative of the PLM family, and widely
used in various NLP tasks. We choose BERT in our study, since its transformer-based architecture
influences many other PLMs. However, it does not mean BERT is the particular PLM with the
intrinsic ability to generate high-quality representations for previous tasks in a long term. In this
section, we further investigate various other PLMs with different model scales, different pre-training
procedures, or different attention mechanisms. For the pre-trained language models with different
attention mechanisms or different pre-training strategies, we investigate RoBERTa-base (Liu et al.,
2019b), BART-base (Lewis et al., 2020), ELECTRA-base Clark et al. (2020), XLNet-base Yang et al.
(2019), and GPT-2 (Radford et al., 2019). For the pre-trained language models with different scales,
we investigate BERT-tiny, BERT-mini, BERT-small, BERT-medium, which are distilled versions
from Turc et al. (2019), and BERT-large from Devlin et al. (2019). Our probing experiments are
detailed as below.

To reduce redundant calculations and to provide a concise quantitative analysis, we no longer track
the encoding ability of a PLM at every checkpoint. Here, we only measure the encoding ability of a
PLM which has learned all tasks sequentially without any memory replay. All the models employ
a single-layer network as decoder, which is the same as Section 3.2. And we also train models
with various PLMs with identical settings to former experiments. After sequentially training on
the five text classification tasks, we save the parameter weights of PLM encoder and evaluate it by
probe-based method proposed in Section 3.1.

We place emphasis on that different PLMs should have different performances on a task, even if they
are trained under single-task supervised paradigm. Therefore, we provide some results of control
tasks (Hewitt & Liang, 2019) as a comparison. Specifically, we train every PLM on every dataset
separately, where all parameters of encoder and decoder can be updated. These full-supervised re-
sults on single task can be consider as the upper bounds. To check whether a PLM itself can handle
these text classification tasks well without downstream fine-tuning, we also present some zero-shot
probing results as the lower bounds. We download the weights of various PLMs without any fine-
tuning from open-source platform. Then, we train decoders for every task separately, while keeping
the original PLM weights fixed (actually probing study under zero-shot scenarios). Comparing with
the results of control tasks, we can examine whether other PLMs can retain knowledge of previous
tasks like BERT, after learning a sequence of tasks.

We list all results (including the upper bounds and the lower bounds) in Table 2. From them, we
can find that although these PLMs have various attention mechanisms and various scales, they have
a similar intrinsic ability to keep previously learned knowledge. Although trained without Episodic
Replay, these PLMs can all gain much better probing results than the lower bounds, without regard
to training orders.

Comparing the results of BERT with different scales, we can find that, without Episodic Replay,
the encoders with more parameters (e.g., BERT-base and BERT-large) have a little better abili-
ties to maintain old-task knowledge than those with fewer parameters (e.g., BERT-tiny and BERT-
mini). However, among the encoders with similar scales but different architectures, including BERT-
base (Devlin et al., 2019), GPT-2 (base) (Radford et al., 2019), BART (Lewis et al., 2020), XLNet-
base (Yang et al., 2019), they also have a similar ability to maintain old-task knowledge. Therefore,
we guess this intrinsic ability to refrain from forgetting partly comes from the scale of model, while
differences of model architectures (e.g., Transformer-Encoder v.s. Transformer-Decoder) make no
obvious contributions.

E STRUCTURE OF REPRESENTATION SPACE

As Gao et al. (2019) and Wang et al. (2020a) mention in their work, a large pre-trained language
model will embedding all words in a narrow cone when trained with a decoder like that in Sec-
tion 2.1. Following their opinions, we conjecture the pre-trained language model can also generate
sentence-level representation vectors of the same label in a narrow cone. To verify this consideration,
we can check the cosine of any arbitrary two vectors produced by BERT. We select AGNews (Zhang
et al., 2015), which has four classes, for investigation. We train a model with BERT and a linear
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Figure 7: Cosine distribution of vectors pairs from classes of AGNews, with axes aligned.

decoder on AGNews for one pass, and then store the representation vectors of training set by class
respectively. For the i-th and the j-th class (1 ≤ i ≤ j ≤ 4), we randomly sample one vector from
each of them for 1M times. And then, we can approximate the cosine distribution of two vectors
from two classes, which illustrated in Figure 7.

From the results, it is obvious that two vectors sampled from the same class have near directions (co-
sine between them almost to 1), while two sample from different classes have visible discrete direc-
tions. It implies the representation sub-spaces are anisotropic, therefore, we can describe them by
using convex cones.

F ADDITIONAL VISUALIZATION RESULTS

Figure 8: Additional visualization results of the representation space during lifelong learning, with
points of AGNews and Amazon colored by yellow and blue respectively. Specially, we color the
mixed area green, whose size should be smaller when the model has better ability to distinguish
different tasks. From left to right, these columns are corresponding to the time of just finishing
learned from AGNews, and the first, the second, the third replay. The top row is results before
replay, while the bottom is after replay.

In this section, we visualize the change of representation space before and after memory replay
during lifelong learning. Following the experiment setting in Section 4, we first train the model on
AGNews, and then on Amazon with replaying three times. We save all representation vectors after
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learning AGNews, and every time before or after replay. Then we adopt t-SNE (van der Maaten &
Hinton, 2008) to draw all vectors in the plane. Concerning the mixed areas of both classes, we can
conclude that memory replay plays a significant role to mitigate inter-task forgetting. Every time
after replay, the model have a stronger ability to distinguish instances from different tasks, which is
characterized by decrease of green area in Figure 8. Also, comparing the results among columns, we
can confirm although it brings a little confusion among tasks when learning one task continuously
without break, sparse memory replay can eliminate the confusion effectively. Therefore, a BERT
model enhanced by memory replay can resist not only intra-task but also inter-task forgetting.
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