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Abstract

We propose the Multi-modal Untrimmed Video Retrieval task, along with a new
benchmark (MUVR) to advance video retrieval for long-video platforms. MUVR
aims to retrieve untrimmed videos containing relevant segments using multi-modal
queries. It has the following features: 1) Practical retrieval paradigm: MUVR
supports video-centric multi-modal queries, expressing fine-grained retrieval needs
through long text descriptions, video tag prompts, and mask prompts. It adopts
a one-to-many retrieval paradigm and focuses on untrimmed videos, tailored for
long-video platform applications. 2) Multi-level visual correspondence: To
cover common video categories (e.g., news, travel, dance) and precisely define
retrieval matching criteria, we construct multi-level visual correspondence based
on core video content (e.g., news events, travel locations, dance moves) which
users are interested in and want to retrieve. It covers six levels: copy, event,
scene, instance, action, and others. 3) Comprehensive evaluation criteria: We
develop 3 versions of MUVR (i.e., Base, Filter, QA). MUVR-Base/Filter evaluates
retrieval models, while MUVR-QA assesses MLLMs in a question-answering
format. We also propose a Reranking Score to evaluate the reranking ability of
MLLMs. MUVR consists of 53K untrimmed videos from the video platform
Bilibili, with 1,050 multi-modal queries and 84K matches. Extensive evaluations
of 3 state-of-the-art video retrieval models, 6 image-based VLMs, and 10 MLLMs
are conducted. MUVR reveals the limitations of retrieval methods in processing
untrimmed videos and multi-modal queries, as well as MLLMs in multi-video
understanding and reranking. Our code and benchmark is available at https:
//github.com/debby-0527/MUVR.

1 Introduction

The rapid growth of video platforms like YouTube, TikTok, and Bilibili has led to millions of
videos being uploaded daily. Efficient retrieval of relevant videos from a video library is crucial
for recommendation systems, content search [1–4], and video understanding applications [5–8]. It
naturally raises three critical research questions: 1) What video retrieval paradigm best aligns with
real-world applications? 2) How can benchmarks comprehensively cover diverse video categories
across a video platform? 3) What are the performance limitations of current retrieval models? Current
researches have certain limitations on the retrieval paradigm, video diversity, or evaluation criteria.
To address these questions, we propose the Multi-modal Untrimmed Video Retrieval task and its
corresponding benchmark (MUVR), which features the following three key characteristics:
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Table 1: Comparison of existing video retrieval tasks and our MUVR. O2M: One-to-Many retrieval.
UV: Untrimmed Video. T: Text. V: Video. Multi-partition: MUVR comprises five partitions (i.e.,
news, region, instance, dance, and others), each of which includes several categories of videos.
Video Retrieval Tasks O2M UV Query Category Matching Criterion

Text-to-Video Retrieval[9] ✗ ✗ T mixed global semantic match
Composed Video Retrieval [10] ✗ ✗ T, V mixed video modification
Partially Relevant Video Retrieval [11] ✗ ✓ T mixed partial semantic match
Near-duplicate Video Retrieval[12] ✓ ✓ V mixed almost identical segment
Fine-grained Video Retrieval[13] ✓ ✓ V news same incident segment

MUVR (Ours) ✓ ✓ T, V multi-partition multi-level visual correspondence

Practical Retrieval Paradigm. We present the retrieval paradigms of existing video retrieval tasks
in Table 1. Since users are accustomed to expressing retrieval needs through text, many video
retrieval studies focus on text queries and retrieve videos based on global/partial semantic matching
[9, 14–16, 11, 17]. However, text queries alone struggle to describe detailed visual information,
often resulting in overly broad retrieval ranges or cumbersome text queries. In contrast, relying
solely on video queries introduces irrelevant visual information, leading to retrieval failures. Some
tasks utilize complete visual query information for retrieval, but this limits them to almost identical
segment retrieval or specialized video categories like news. Therefore, a reasonable approach is to
use video queries to express visual details that are difficult to describe in text, while using text queries
to focus on key visual content. Considering that videos on platforms contain substantial content
that is difficult to describe completely and accurately through text (e.g., news events, unfamiliar
special products, and popular elements), we employ video queries as the dominant approach with
text descriptions as the auxiliary. Additionally, to filter retrieved videos, we propose an easy-to-use
tag prompt where users only need to specify desired/undesired video features for more refined
retrieval. This approach resembles [10], but we perform one-to-many retrieval on a more challenging
untrimmed video library with numerous manually annotated difficult tags. To further enhance the
text descriptions’ fine-grained reference representation to video queries, we propose a mask prompt
to guide the retrieval model’s attention to key video regions.

Diverse Video Categories and Multi-Level Visual Correspondence. As shown in Table 1, different
video retrieval tasks are based on different retrieval matching criteria. Semantic-based matching is
suitable for simple videos that can be summarized in text, but is limited in real-world applications.
Ventura, etc. [10] aims to retrieve modified videos based on video queries and text modifications,
but it is restricted to one-to-one retrieval. Video query-based tasks are only applicable to news-
type videos or videos with overlapping segments. To cover more video categories and accurately
establish a more universal retrieval matching criterion, we propose multi-level visual correspondence.
Specifically, the video content that users are interested in and wish to retrieve typically includes
low-level frames, mid-level semantics such as scene, instance, and action, as well as high-level
semantics such as event and others. This corresponds to six levels of visual correspondence (i.e.,
copy, scene, instance, action, event, and others). Although these elements exist in various categories
of videos and users can retrieve relevant videos from any level, different types of videos have distinct
salient content that users prefer to retrieve. Therefore, we design five partitions (i.e., news, region,
instance, dance, others) to categorize our MUVR benchmark and cover diverse video categories. For
example, the instance partition primarily includes videos of pets, goods, etc., specifically designed
for instance-level retrieval. Please refer to Section 3 for more details.

Comprehensive Evaluation Criteria. Following the query and partition designs above, we create
three versions of the MUVR benchmark. The basic version, MUVR-Base, contains 53K user-
uploaded videos from the video platform Bilibili. It includes five partitions, 1,050 video queries with
text descriptions, and 84K labeled positive matches. MUVR-Filter further annotates the positive
samples with 74K multi-labeled tags. Based on these tags, tag prompts are constructed to filter new
positives. We evaluate 3 state-of-the-art video retrieval models [18, 19, 10] and 6 Vision-Language
Models (VLMs) [20–24] on MUVR-Base and MUVR-Filter. The powerful EVA-CLIP [20] only
achieves 58% and 34% mAP, respectively, showing limitations in processing untrimmed videos
and multi-modal queries. We further build MUVR-QA with 200 query-target relevance judgment
questions based on hard samples and design a Reranking Score to evaluate the reranking ability. We
evaluate 10 Multi-modal Large Language Models (MLLMs) [25–30] on MUVR-QA. While MLLMs
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Table 2: Definition of visual correspondence between Sq and St. Sq/St: Any segment of the
query/target video.

Copy St is copied/edited from Sq .
Scene Sq and St share the same scene/background/region.
Instance Sq and St share the same instance/object.
Action Sq and St share the same human action.
Event Sq and St share the same event with spatio-temporal intersection.
Others Sq and St are relevant for any of the above correspondence or subjective feeling.

Figure 1: Visualization of videos from different partitions of MUVR. The two videos are matched
due to multi-level visual correspondence. Please refer to the Appendix for more results.

achieve a discrimination accuracy of above 60%, the Reranking Score indicates that current MLLMs
are not yet reliable for reranking tasks. In summary, our contributions are as follows:

1) We propose Multi-modal Untrimmed Video Retrieval, along with a benchmark MUVR. It features
a practical retrieval paradigm with a video-centric multi-modal query format. Five partitions are con-
structed to cover diverse video categories on the Internet based on multi-level visual correspondence.

2) We evaluate 3 state-of-the-art video retrieval models and 6 VLMs on MUVR-Base/Filter, conduct-
ing a thorough analysis of their capabilities across different partitions and query formats. We further
propose a Reranking Score to assess the reranking capability of 10 MLLMs by MUVR-QA.

3) We reveal specific limitations in video retrieval methods and VLMs for handling untrimmed
videos and multimodal queries, as well as limitations in MLLMs for multi-video understanding and
reranking. Inspire future video retrieval research.

2 Related Work

Video Retrieval. Text-Video Retrieval (TVR) [31–36] aims to retrieve relevant videos based on
text queries, while Composed Video Retrieval (CVR) [10, 37] focuses on retrieving modified videos
using a reference image/video along with a text modification of the desired changes. Since most
existing benchmarks for these tasks [33, 35, 10] are derived from video captioning datasets or LLM
annotations, they primarily focus on trimmed videos and one-to-one retrieval. However, real-world
web video retrieval often involves untrimmed videos and one-to-many retrieval, where relying solely
on text queries proves insufficient. Unlike TVR and CVR, Fine-grained Video Retrieval (FVR)
[38, 13] focuses on searching untrimmed videos using a video query. Related benchmarks include
[38, 39, 13, 40, 41, 12, 42], which typically consist of web video clips uploaded by users on video
platforms like YouTube, Google Video, and Yahoo Video, as well as TV shows and movies. Among
them, [39, 12] specializes in near-duplicate video retrieval, while [40–42] focuses on video copy
detection, both operating at the frame level. Particularly, [38, 13] introduced event-level retrieval,
requiring target videos to contain events that are spatially and temporally close to those in the
query video. Although built upon complex web videos, these benchmarks only support event-level
retrieval for the news and film categories. To address this limitation, we propose multi-level visual
correspondences for multi-level retrieval to significantly enhance applicability. Furthermore, our
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Figure 2: Illustration of video category breakdown for five partitions that make up MUVR.

Table 3: Characteristics of five partitions of MUVR. Each partitions differ in four aspects (i.e., video
category, key component of videos, user retrieval interests, and visual correspondence).

Partition Category Key Component User Retrieval Interests Correspondence

News news frame, event specific news video clips/frames copy, event
Region travel vlog etc. scene location of video shooting scene
Instance goods, pets etc. instance special objects in the video instance
Dance dance action the actions of people in the video action
Others meme, film etc. comprehensive popular elements in videos others

benchmark features more diverse video content and categories with more recent publication years,
better aligning with real-world web video retrieval scenarios.

Multimodal Large Language Models for Reranking. With the advancement of multimodal
retrieval and Multimodal Large Language Models (MLLMs)[43–52], some studies have adopted
a two-stage retrieval workflow [53, 54]. In the first stage, a similarity score is computed based on
pre-extracted embeddings to efficiently obtain initial rankings. The second stage applies more costly
but sophisticated MLLMs to rerank the top retrievals. For instance, INQUIRE [53] prompts MLLMs
with “Does this image show query? Answer with ‘Yes’ or ‘No’ and nothing else.” for text-to-image
retrieval, while M-BEIR [54] prompts MLLMs with “querytarget Does the above two images have the
same scene? True or False” for image-to-image retrieval. However, due to the complexity of videos,
this workflow has not been thoroughly explored in FVR applications. Consequently, WebVR-QA
introduces a query-target relevance discrimination task along with a Reranking Score to evaluate the
reranking capability of MLLMs for FVR tasks.

3 MUVR Benchmark

Here we describe our multi-partition benchmark MUVR for Multi-modal Untrimmed Video Retrieval.
MUVR contains 1,050 video-centric multi-modal queries, each comprising a video query with text
descriptions, tag prompts, and mask prompts. These queries are mapped to relevant matches across
53,462 videos collected from the video platform Bilibili, covering diverse video categories and
organized into five partitions based on our proposed multi-level visual correspondence. This section
explains the benchmark construction process, annotation methodology, and evaluation protocols.

3.1 Composition and Collection

Definition of Visual Correspondence and Partitions. Key components of a video mainly include
low-level frames, mid-level semantics such as scene, instance and action, as well as high-level
semantics such as event and others. These are also what users tend to be interested in and want to
retrieve, corresponding to six levels of visual correspondence (i.e., copy, scene, instance, action, event,
and others) as shown in Table 2. Based on the multi-level visual correspondence, MUVR organizes
videos into five partitions (i.e., news, region, instance, dance, and others) as shown in Table 3. Figure
2 illustrates the video category breakdown for five partitions. MUVR covers diverse common video
categories in Bilibili and is compliant with partition characteristics for comprehensive evaluation.
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Table 5: Comparison of MUVR-Base with the most related FVR benchmarks. ‡: construct using
video transformations. †: expand with hundreds of thousands of unrelated videos. YT: YouTube. TV:
TV show. B: Bilibili. C: Copy. E: Event. S: Scene. I: Instance. A: Action. O: Others.

Benchmarks Topics Queries Matches Videos Hours Source
(Year) Category Corres-

pondence

CC_WEB_VID[39] 24 24 3,481 12,790 551 YT(06) mixed C
UQ_VIDEO[12] 24 24 3,481 169,952† N/A YT(09) mixed C
MUSCLE-VCD[40] 15 15 N/A 101 100 TV(07) film C
TRECVID[41] N/A 11,256‡ N/A 11,503 420 TV(11) film C
VCDB[42] 28 528 9,236 100,528† 2,038 YT(14) news, film C
EVVE[38] 13 620 1,252 102,375† 5,536 YT(12) news E
FIVR[13] 100 100 12,300 225,960† 7,100 YT(17) news C, E

MUVR-Base (Ours) 350 1,050 84,035 53,462 1,762 B(24) multi-
partition

C, E, S
I, A, O

Topics and Video Collection. To efficiently collect various videos of different categories and
contents, we design 350 search topics based on trending keywords of Bilibili and split them into five
partitions. The search topics should meet three criteria: 1) sufficient relevant videos to retrieve on
the platform; 2) distinctive visual content in relevant videos, and 3) visual uniqueness compared to
videos of other topics. Subsequently, we collect the top 100 search results per topic, remove videos
exceeding 6 minutes, and then crop long videos to 2-minute videos (untrimmed) following [38, 13].
Final processing includes resizing to 336 pixels (long edge) and downsampling to 6 fps.

Query Collection and Annotation. The collection of queries and the annotation process are
completed by professional annotators. They are first instructed to analyze the key visual content of
videos of each topic. For each topic, three representative and visually distinct videos are chosen as
video queries. For each query, detailed text descriptions are created to specify key visual contents
and retrieval needs. Annotations are restricted to videos within the same topic, as cross-topic videos
are deemed irrelevant based on topic differences and video similarity screening (we calculate the
similarity score with BLIP2-features and guarantee that the query video is unrelated to the 10 most
similar videos from other topics). To ensure consistency, all videos undergo two rounds of annotation,
and those with conflicting labels across rounds are excluded. This process produces MUVR-Base,
where each query has about 80 verified positive matches.

Table 4: Statistics of MUVR-Filter (based on MUVR-Base) with dif-
ferent Tag Prompt formats.

Dataset Tag Prompt Queries Matches Positive Rate

MUVR-Base - 1,050 84,035 55.2%
MUVR-Filter “± [tag]” 9,979 385,818 27.6%

MUVR-Filter
(upper bound)

“± [tag]”
“± [tag] AND ± [tag]”
“± [tag] OR ± [tag]”

93,885 4,284,265 29.4%

Tag Prompt and Mask
Prompt. Based on MUVR-
Base, annotators are in-
structed to design 3~10
tags per topic. These tags
capture shared attributes
among positive retrieval
samples, such as challeng-
ing video styles (e.g., an-
imation vs. live-action),
camera perspectives (e.g.,
first-person view), and do-
main variations (e.g., outdoor vs. indoor). Tags are optionally assigned to both query videos and
their matches (zero or multiple tags per item). These tags enabled hierarchical filtering through
tag prompts as shown in Table 4, forming our MUVR-Filter with 9,979 queries. Additionally, we
enhance the text descriptions’ fine-grained reference representation to video queries by adding mask
prompts with SAM2 [55].

MUVR-QA. We construct 200 challenging discrimination questions to evaluate MLLMs with query-
target cases where EVA-CLIP [20] fails on MUVR-Base and MUVR-Filter. Specifically, for each
query with mAP below 0.05, we select two targets: the highest-scoring true match and the highest-
scoring false match. This generates 102 questions from MUVR-Base and 98 from MUVR-Filter.
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Table 6: Partition statistics of MUVR-Base&Tag. Des.: words of description.

Partition Topics MUVR-Base MUVR-Filter Videos Tags Tag Des. Mask

Queries Matches Queries Matches Labels (Avg.) Prompts

News 74 222 12,273 2,304 70,876 9,993 474 14,964 20 20
Region 60 180 14,544 1,960 79,596 9,005 349 11,158 14 20
Instance 75 225 23,844 2,213 119,496 13,009 390 15,738 15 20
Dance 41 123 11,687 1,222 15,525 7,026 165 10,054 27 20
Others 100 300 21,687 2,280 100,325 14,429 475 22,365 26 20

Overall 350 1,050 84,035 9,979 385,818 53,462 1,853 74,279 20 100

Statistics. As shown in Table 5, MUVR-Base features richer topics, queries, video categories, and
visual correspondences. Note that the video queries in [41] are artificially generated through editing
modifications rather than from original videos. [12, 42, 38, 13] contains hundreds of thousands of
simple, irrelevant videos, increasing evaluation overhead. Furthermore, previous benchmarks consist
of web videos from before 2017 with limited video content and categories. Table 6 displays statistics
across different partitions of MUVR, where our text descriptions average 20 words for fine-grained
representation. As shown in Table 4, tag prompt significantly reduces the positive rate of queries for
videos from the same topic. When applying binary relations to construct the Tag Prompt, 93,885
queries and 4M matches can be obtained, indicating the flexibility of finer retrieval matching based
on tags.

3.2 Evaluation Metric

Following [13, 10], MUVR-Base is evaluated using mAP, uAP, and Recall at k (R@k). MUVR-Filter
is evaluated using mAP and Recall at k (R@k). Additionally, MUVR-QA is evaluated using Accuracy
and our proposed Reranking Score.

Reranking Score. This metric simulates real-world retrieval reranking scenarios where true positives
should be preserved and false positives removed. Each MUVR-QA query contains two targets: a
true positive (label 1) and a false positive (label 0). When processing these pairs (label 10), a VLLM
may produce four kinds of outcome: 10 (correctly keeps true and removes false), 11 (retains both,
equivalent to no reranking action), 00 (incorrectly removes both), or 01 (wrongly removes true while
keeping false). We assign scores of +1, 0, -1, and -2, respectively, where outcome 11 receives a score
of 0 because it maintains the original retrieval result unchanged. The final Reranking Score averages
these values across all queries, measuring models’ ability to refine initial rankings.

4 Experiments

4.1 Models and Methods for Evaluation

We describe the models and methods evaluated on MUVR. On MUVR-Base and MUVR-Filter, we
evaluate 3 state-of-the-art video retrieval models [18, 19, 10] and 6 image-based VLMs [20–24].
Specifically, we assess the retrieval performance for ‘each partition’ with the corresponding video
library and report the average result. The retrieval queries on MUVR-Base include three formats: pure
text description, pure video query, and the combination of both (multimodal query). On MUVR-QA,
we evaluate the query-target video relevance discrimination capabilities of 10 open-source MLLMs
[25–30, 56–58]. All the experiments are conducted on a workstation with 8 Tesla V100 GPUs.

Video Retrieval. We first introduce 3 video retrieval models. S2VS [19] is trained on 100K videos
[59] and achieves state-of-the-art performance on three video-to-video retrieval datasets [42, 38, 13].
The large-scale pre-trained model InternVideo2 [18] obtains state-of-the-art results on multiple
text-to-video retrieval datasets [31–36]. For composed video retrieval methods, we select CoVR
[10] because it doesn’t rely on additional information of target videos, and its training parameter is
open-sourced. Given the challenging nature of MUVR, we further introduce 6 VLMs pre-trained on
massive image-text datasets for evaluation. Specifically, we uniformly sample N = 15 frames from
the video V to extract feature V LM(V ) ∈ RN∗d with dimension d. For text T , we extract feature
V LM(T ) ∈ Rd. We calculate the similarity matrix and extract the maximum value as the retrieval
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Figure 3: Illustration of MUVR-QA, Reranking Score, and MLLMs prompting.

score as follows:
Score(a, b) = max(V LM(a)V LM(b)⊤),

Sv = Score(Vquery, Vtarget), St = Score(Tdescription, Vtarget),

Stv = (St + Sv)/2, Stag = Stv + p× Score(Ttag, Vtarget),

where p = ±0.3 according to the sign of the Tag Prompt.

MLLMs for MUVR-QA. Some image-based multi-modal retrieval methods [53, 54] have explored
using MLLMs to assess relevance between the image-text query and the target image, showing
potential for reranking improvement. Consequently, we propose two one-stage approaches that
prompt MLLMs to output Yes/No responses to minimize latency. As illustrated in Figure 3, one
method feeds text description, tag prompt, and the target video for comparison. Another method
employs MLLMs with multi-image understanding capabilities by jointly inputting both the query and
target video frames, with explicit prompts indicating which frames originate from which video.

4.2 Results and Analysis

Retrieval with video and text queries. We report the evaluation results of 3 state-of-the-art video
retrieval methods and 6 VLMs on MUVR-Base in Table 7 and have the following findings:

Finding 1: The average performance mainly depends on the number of parameters, training
data, and model structure. The performance of CLIP-based models [21, 22] improves with stronger
backbone (from ResNet50 to ViT-H-14). EVA-CLIP achieves the best results on nearly all metrics,
benefiting from its larger parameter count and training data volume. When using pure video as the
query, the video retrieval models InternVideo2 and S2VS achieve suboptimal mAP and the best uAP,
indicating that video-based model structures excel at capturing inter-frame temporal relationships
of videos. When using pure text description as the query, image-based VLMs [22, 20] perform the
best, mainly because their training data contains more image-text pairs uploaded by users in online
communities, which aligns with video platform content.

Finding 2: A reasonable video retrieval framework combined with a powerful image backbone
can achieve improvement. The fine-grained incident video retrieval model S2VS is trained on CLIP
(RN50x4) features and achieve great improvement (from 34.2% to 47.2% on mAP and from 16.1% to
36.6% on uAP), demonstrating that pre-extracted frame features from VLMs can be further improved
through video retrieval framework training. In contrast, CoVR only supports 1-frame query video
input, making it less suitable for untrimmed video and thus resulting in poorer performance.

Finding 3: Video query is more important, and multimodal query further improves the per-
formance. Using pure video as a query generally yields better performance than pure text, as
video queries can more precisely represent details that are difficult to describe in text. However, for
the Instance partition, the key component is usually small, and pure video queries introduce more
irrelevant content interference, leading to poorer model performance compared to pure text queries.
Using multimodal queries can often achieve significant improvements, indicating the complementary
role of video and text in retrieval. However, in some cases (e.g., the mAP of InternVdeo2 on News
partition), the improvement of multimodal queries is limited, which inspires us to explore more
effective methods for understanding multimodal queries.

Finding 4: Videos from different partitions have different key content and visual correspon-
dence, posing challenges to the generality of current methods. EVA-CLIP performs best in the
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Table 7: Retrieval performance on MUVR-Base with video and text queries. N: News. O: Others. I:
Instance. R: Region. D: Dance.

Method average performance mAP of different partitions

mAP uAP R@200 R@500 R@2000 N O I R D
Pure Text as Query

CLIP (RN50x4)[21] 27.7 14.7 45.8 60.6 81.0 28.7 26.4 41.0 33.2 9.3
CLIP (ViT-L/14@336px)[21] 35.0 21.4 54.0 67.2 83.7 38.5 33.9 47.8 41.5 13.6
OpenCLIP (ViT-H-14)[22] 39.7 20.3 58.3 70.6 85.6 41.1 40.3 55.8 44.9 16.1
EVA-CLIP[20] 43.0 23.3 61.9 73.3 86.9 45.1 44.1 59.7 49.9 16.3
BLIP[23] 28.0 12.9 46.7 60.7 80.2 27.5 26.6 41.4 33.7 10.9
BLIP2[24] 31.3 18.0 50.4 64.4 82.6 32.0 31.8 45.9 35.9 10.8
InternVideo2[18] 36.9 23.2 55.0 68.5 85.2 38.0 44.8 44.8 40.8 16.4

Pure Video as Query
CLIP (RN50x4)[21] 34.2 16.1 48.6 61.7 82.1 40.7 46.4 31.8 32.4 19.5
CLIP (ViT-L/14@336px)[21] 38.4 18.9 52.8 64.7 82.8 48.6 48.9 36.4 35.6 22.4
OpenCLIP (ViT-H-14)[22] 46.0 29.9 61.7 73.2 87.7 52.6 55.8 47.0 49.6 24.9
EVA-CLIP[20] 50.7 33.1 66.6 77.8 90.5 57.8 59.2 54.7 55.1 26.9
BLIP[23] 35.5 17.4 49.3 61.4 80.2 45.1 46.7 33.1 34.2 18.3
BLIP2[24] 46.0 30.0 61.1 73.5 88.5 54.1 55.8 47.7 46.6 25.6
InternVideo2[18] 48.0 36.9 62.9 75.2 89.4 56.1 62.0 47.5 45.7 28.5
S2VS[19] 47.2 36.6 60.4 70.2 84.6 51.3 63.7 49.5 49.1 22.5

Multimodal Query
CLIP (RN50x4)[21] 42.9 29.8 58.8 71.1 87.0 49.4 53.6 46.5 43.8 21.2
CLIP (ViT-L/14@336px)[21] 49.2 35.7 64.4 75.6 88.6 58.2 57.7 54.3 50.7 25.2
OpenCLIP (ViT-H-14)[22] 54.0 40.1 69.2 79.3 90.8 59.4 62.7 62.3 59.1 26.7
EVA-CLIP[20] 58.0 44.6 73.0 82.5 92.3 63.1 66.1 68.2 63.8 28.7
BLIP[23] 44.1 29.5 59.4 71.2 86.2 50.3 54.2 59.4 47.0 19.4
BLIP2[24] 51.0 38.7 66.5 77.3 89.7 56.3 61.7 58.1 53.7 25.4
InternVideo2[18] 52.1 37.4 66.9 78.4 90.7 57.3 66.3 55.3 52.5 28.9
CoVR[10] 43.3 30.9 62.1 74.9 89.2 50.5 54.3 46.9 44.0 20.8

Table 8: Retrieval performance on MUVR-Filter with multimodal query and tag prompt. N: News.
O: Others. I: Instance. R: Region. D: Dance.

Method average performance mAP of different partitions

mAP R@200 R@500 R@1000 R@2000 N O I R D
Multimodal Query without Tag Prompt

OpenCLIP (ViT-H-14)[22] 30.8 66.5 76.9 83.6 89.5 34.6 34.3 34.9 34.1 16.2
EVA-CLIP[20] 32.9 70.5 80.4 86.3 91.3 36.6 36.5 37.8 36.3 17.4
BLIP[23] 25.5 56.6 68.8 76.9 84.5 29.4 30.0 27.7 27.8 12.3
BLIP2[24] 29.3 63.5 74.8 81.7 88.2 33.0 34.3 32.3 31.5 15.5

Multimodal Query with Tag Prompt
OpenCLIP (ViT-H-14)[22] 31.7 66.9 77.2 83.7 89.6 36.0 35.5 34.9 35.8 16.4
EVA-CLIP[20] 34.0 70.9 80.5 86.4 91.4 38.3 37.7 38.1 38.3 17.6
BLIP[23] 25.6 56.4 68.3 76.5 84.4 30.4 30.0 26.6 28.7 12.1
BLIP2[24] 30.4 63.8 75.1 82.1 88.3 34.9 35.8 32.5 33.2 15.7

News, Instance, and Region partitions. This is because retrieval in the Instance and Region partitions
emphasizes static spatial understanding, which VLMs excel at, and retrieval in the News partition
primarily relies on instances and scenes within videos. The video models InternVideo2 and S2VS
perform best in the Others and Dance partitions, indicating that retrieval in these two partitions relies
more on dynamic temporal understanding, such as coherent movements or continuous narratives.

Retrieval with additional tag prompts. We report the evaluation results of selected models for
MUVR-Filter in Table 8. Ignoring the Tag Prompt slightly hurts Recall but significantly reduces mAP,
demonstrating the fine-grained retrieval challenge of MUVR-Filter. Although model performance
improves with Tag Prompt assistance, there remains significant room for improvement. BLIP shows
marginal gains with the combination of Tag Prompts, indicating that small models struggle to
comprehend Tag Prompts. Besides, all the models achieve limited improvements in the Instance
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Table 9: Performance on MUVR-QA. Frame denotes the number of target video frames. Only
the first frame of the query video is sampled as input due to model capability constraints. No Tag
represents the subset of MUVR-QA without a tag prompt. Delay is measured per sample on a single
V100 GPU or closed source model API. *: using 8-GPU parallel processing. †: using mask prompt.

Method Size Frame Accuracy Reranking Score Delay

All No Tag All No Tag (s)
One-Stage Text Query-Only Comparison

InternVL2[18] 8B 6 55.0 59.8 -0.52 -0.31 3.56
InternVL2.5[25] 8B 1 49.0 52.9 -0.84 -0.65 1.12

6 58.0 65.7 -0.45 -0.18 3.61
12 58.5 61.8 -0.37 -0.16 7.26

MiniCPM-o 2.6[26] 8B 12 51.0 66.7 -0.46 0.06 3.26
MiniCPM-V 2.6[27] 8B 12 50.0 71.6 -0.59 0.18 4.53
LLaVA-NeXT-Video[28] 7B 12 50.5 58.8 -0.72 -0.49 1.31*
LLaVA-OV[29] 7B 12 50.0 60.8 -0.52 0.04 1.05
LLaVA-Video[30] 7B 12 47.0 60.8 -0.38 0.08 5.38*

One-Stage Multi Image Comparison
InternVL2[18] 8B 6 58.5 73.5 -0.23 0.34 4.21
InternVL2.5[25] 8B 1 52.0 58.8 -0.66 -0.37 1.49

6 57.0 71.6 -0.35 0.18 4.23
12 56.5 69.6 -0.33 0.15 7.73

MiniCPM-o 2.6[26] 8B 12 53.0 55.9 -0.15 0.02 3.60
MiniCPM-V 2.6[27] 8B 12 54.0 60.8 -0.10 0.14 4.63
VideoRefer[56] 7B 12 53.0 55.9 0.05 0.10 4.47
VideoRefer†[56] 7B 12 55.0 56.9 0.07 0.12 4.58
Gemini-2.0-Flash[58] N/A 6 60.5 62.7 -0.11 -0.21 3.42

12 63.5 68.6 0.07 0.16 3.77
GPT-4o[57] N/A 6 65.0 75.5 0.19 0.37 6.93

12 62.0 69.6 0.15 0.25 8.64

and Dance partitions, suggesting difficulties in understanding instance-specific terms and dance
movements from tags.

Reranking Performance of MLLMs. We evaluate 10 MLLMs on MUVR-QA as shown in Table 9
and have the following findings:

Finding 1: Tag prompts pose significant challenges for MLLMs. While some MLLMs achieve
above 70% accuracy on questions without tag prompts (No Tag), performance drops substantially
when handling questions incorporating tag prompts (All).

Finding 2: Multi-frame processing improves performance but increases latency. Processing
multiple frames (6-12 frames) significantly enhances both Accuracy and Reranking Score compared
to single-frame input (e.g., InternVL2.5 improves from 52.0% to 57.0% Accuracy), though at the
cost of higher inference time (from 1.49s to 4.23s). However, beyond a certain point (12 frames),
performance gains diminish while computational overhead continues to rise.

Finding 3: Multi-image and mask prompt understanding capabilities boost reranking effective-
ness. Models with joint query-target video frame processing (e.g., InternVL, MiniCPM) consistently
outperform text query-only comparison methods in the Reranking Score metric, demonstrating the
value of direct visual comparison. Besides, the recent VideoRefer can understand the mask prompt
and achieves better performance with the mask prompt.

More analysis is available in the Appendix.

4.3 Robustness Analysis

To evaluate the robustness of MUVR against annotation noise, we conducted experiments simulating
false negatives and annotation errors. Specifically, we randomly increased or decreased the number
of positive samples by 5% relative to the total number of positive samples, which was repeated five
times. As shown in Table 10, increasing the number of positive samples leads to a slight improvement
in performance compared to Table 7(refer to "mAP of different partitions", "multimodal query"),
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Table 10: Performance comparison with +5% and -5% positive samples.

Method News (N) Others (O) Instance (I) Region (R) Dance (D)

+5% Positive Samples
CLIP (RN50x4)[21] 49.6±0.1 53.8±0.1 46.8±0.1 44.1±0.1 21.5±0.1
CLIP (ViT-L/14@336px)[21] 58.4±0.1 57.9±0.1 54.4±0.1 51.0±0.1 25.5±0.1
OpenCLIP (ViT-H-14)[22] 59.6±0.1 62.8±0.1 62.6±0.2 59.3±0.1 26.8±0.2
EVA-CLIP[20] 63.4±0.1 66.2±0.1 68.4±0.1 64.1±0.1 29.1±0.1
BLIP[23] 50.5±0.1 54.4±0.1 49.6±0.1 47.2±0.1 19.8±0.1
BLIP2[24] 56.5±0.1 61.8±0.1 58.3±0.1 54.2±0.2 25.7±0.1

-5% Positive Samples
CLIP (RN50x4)[21] 43.1±0.3 47.7±0.2 41.8±0.4 39.3±0.4 19.1±0.1
CLIP (ViT-L/14@336px)[21] 51.6±0.6 51.7±0.1 48.6±0.2 45.1±0.1 22.7±0.2
OpenCLIP (ViT-H-14)[22] 52.6±0.1 56.1±0.3 55.6±0.1 52.6±0.1 24.0±0.2
EVA-CLIP[20] 56.0±0.4 59.4±0.5 60.8±0.5 57.0±0.1 25.7±0.3
BLIP[23] 44.6±0.4 48.4±0.1 44.1±0.1 42.0±0.1 17.5±0.2
BLIP2[24] 49.7±0.1 54.9±0.1 51.8±0.5 47.8±0.2 22.6±0.1

while decreasing the number of positive samples results in a more noticeable drop in performance.
This highlights the importance of accurate annotations. Importantly, the relative ranking of methods
remains highly stable across these experiments, demonstrating the robustness of our benchmark.

5 Conclusion and Future Work

This paper introduces the Multi-modal Untrimmed Video Retrieval task and benchmark (MUVR) to
address the limitations of existing video retrieval tasks in handling untrimmed videos and diverse
query modalities. MUVR features a practical retrieval paradigm supporting video-centric multi-modal
queries, organizes videos into five partitions based on multi-level visual correspondence, and provides
comprehensive evaluation protocols including a novel Reranking Score for assessing MLLMs.
Experimental results reveal significant challenges in the current models’ ability to process untrimmed
videos and multi-modal queries, as well as MLLMs’ limitations in multi-video understanding.

Future work should focus on developing more effective fusion methods for multimodal queries,
improving temporal modeling for long videos, and enhancing MLLMs’ efficiency and multiple
video understanding capabilities for better reranking performance. The benchmark’s diverse video
categories and flexible query formats offer rich opportunities for advancing video retrieval research.
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Appendix

In this Appendix, more analysis of results is provided in Section A. Limitations and social impact are
introduced in Section B. we further elaborate on the MLLMs prompting details in Section C. We
further illustrate the annotation instructions in Section D. Finally, some visualization examples are
provided in Section E.

A More Analysis of Results

A.1 Retrieval with Video and Text Queries

Difficulty in Aligning Fine-Grained Instance-Level Visual Information: We observed a significant
performance gap between video-only queries and text-only queries in instance-level partitions (e.g.,
CLIP RN50x4: video 31.8% vs. text 41.0%). This discrepancy arises because video queries often
introduce excessive background noise, whereas instance-level partitions focus on small objects such as
products or pets. Although embedding models can align instance-level features in the vision-language
space, their visual embeddings struggle to disentangle foreground and background information,
making fine-grained visual alignment challenging.

Weak Temporal Modeling for Dynamic Actions: All models performed the worst in the dance
partition (e.g., even video-based VLMs like InternVideo2 achieved only 28.9%). This highlights the
limitations of current temporal modeling strategies in capturing the complex, fast, and prolonged mo-
tion patterns of dance sequences, which are even more intricate than sports activities like diving. This
finding provides valuable insights for future research on improving temporal modeling capabilities.

A.2 Retrieval with Additional Tag Prompts

Limited Ability to Integrate Tag Prompts with Queries: Embedding models showed only marginal
performance improvements when tag prompts were added. This is primarily due to the lack of
effective methods for injecting tag semantics into the query. Additionally, the tags themselves often
contain challenging semantic information, such as video styles or perspectives. Future work could
explore leveraging large language models (LLMs) to understand better and integrate these tags.

Inability to Handle Complex Tag Combinations: Current evaluations are limited to single positive
or negative tag prompts. Ideally, embedding models should be capable of filtering retrieval results by
incorporating multiple positive and negative tags, similar to how text-to-image generation models pro-
cess prompts with complex tag combinations. We plan to systematically explore retrieval frameworks
that integrate semantic tags more effectively in future work.

A.3 Reranking Performance of MLLMs

Low Efficiency in Retrieval/Reranking with Large Models: While MLLMs have the potential to
outperform embedding models in retrieval tasks (e.g., multimodal query understanding and relevance
assessment), their current approach to comparing two videos introduces significant inference delays.
A feasible solution is to reduce the number of visual tokens during the final decision-making stage
using token compression techniques.

Lack of Multi-Video Understanding Capabilities: To the best of our knowledge, most existing
MLLMs are not optimized for multi-video understanding, making it difficult to assess the relevance
between two input videos. One potential solution is to insert separator tokens between the input videos
to help the model distinguish their sources, followed by LoRA fine-tuning to enhance performance.

Need for Improved Fine-Grained Spatiotemporal Understanding: We observed that models
like VideoRefer, which support masked inputs, can better understand the specific instances users
aim to retrieve, thereby improving reranking performance. This suggests that enhancing MLLMs’
fine-grained spatiotemporal understanding could enable them to capture the key features of the query
more accurately. Future work will focus on this direction to further improve reranking capabilities.
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B Limitations and Social Impact

Limitations. MUVR relies on human annotators to annotate videos with rich semantics. Despite
strict guidance for annotators and multiple rounds of validation during the annotation process, there
may still be minor annotation errors. Besides, MUVR focuses on visual and textual modalities,
leaving out other potential modalities such as audio, which could further enrich the retrieval task.
Despite these limitations, we believe MUVR offers a robust foundation for advancing research in
video retrieval, and its design allows for future extensions to address these gaps.

Social Impact. The development of MUVR has potential positive implications for improving
video search and recommendation systems, enhancing user experience on video-sharing platforms.
By enabling more accurate and fine-grained retrieval, our work could facilitate better access to
educational, informational, and entertainment content.

Ethical Considerations. All videos used in MUVR were downloaded in strict adherence to the
copyright and terms of service of the respective platforms, solely for scientific research purposes. To
ensure transparency and reproducibility, we release the video IDs, annotation files, and pre-extracted
features. Researchers can access the videos directly from the platforms, provided they comply
with licensing terms. Additionally, a takedown mechanism is available on our project website,
allowing copyright holders to request removal of their content. We believe this approach aligns with
ethical standards and copyright laws, ensuring responsible use of publicly available data for research
purposes.

Table 11: Format of the text prompts used by MLLMs for one-stage text query-only comparison.
<Target Video>: format as ‘Frame1: <image>\nFrame2: <image>\n...Frame6: <image>\n’.

Model Text Prompt

InternVL2[18] I will give you a text query and a video: [Query] and [Target]. Please determine
whether any part of [Target] is slightly relevant to any part of [Query]. I will
also provide [Tag] that [Target] (if relevant) must feature it.\n[Query]:\n{Text
Description}\n[Target]:\n<Target Video>\n[Tag]:\n{Tag Prompt}\n[Output]:\n
If slightly relevant, return Yes. If not, return No.

InternVL2.5[25] I will give you a text query and a video: [Query] and [Target]. Please determine
whether any part of [Target] is slightly relevant to any part of [Query]. I will
also provide [Tag] that [Target] (if relevant) must feature it.\n[Query]:\n{Text
Description}\n[Target]:\n<Target Video>\n[Tag]:\n{Tag Prompt}\n[Output]:\n
If slightly relevant, return Yes. If not, return No.

MiniCPM-o 2.6[26] Please determine whether any part of the video is slightly relevant to any part
of [Query]. I will also provide [Tag] that the video (if relevant) must feature
it. [Query]: {Text Description}\n[Tag]: {Tag Prompt}\n If slightly relevant,
return Yes. If not, return No.

MiniCPM-V 2.6[27] Please determine whether any part of the video is slightly relevant to any part
of [Query]. I will also provide [Tag] that the video (if relevant) must feature
it. [Query]: {Text Description}\n[Tag]: {Tag Prompt}\n If slightly relevant,
return Yes. If not, return No.

LLaVA-NeXT-Video[28] Please determine whether any part of the video is slightly relevant to any part
of [Query]. I will also provide [Tag] that the video (if relevant) must feature
it. [Query]: {Text Description}\n[Tag]: {Tag Prompt}\n If slightly relevant,
return Yes. If not, return No.

LLaVA-OV[29] Please determine whether any part of the video is slightly relevant to any part
of [Query]. I will also provide [Tag] that the video (if relevant) must feature
it. [Query]: {Text Description}\n[Tag]: {Tag Prompt}\n If slightly relevant,
return Yes. If not, return No.

LLaVA-Video[30] Please determine whether any part of the video is slightly relevant to any part
of [Query]. I will also provide [Tag] that the video (if relevant) must feature
it. [Query]: {Text Description}\n[Tag]: {Tag Prompt}\n If slightly relevant,
return Yes. If not, return No.
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C MLLMs Prompting Details

The evaluation prompts for MLLMs are listed in Table 11 and 12. Although we attempted to maintain
consistency across models, slight variations were necessary due to differing prompting requirements.
The proprietary models (GPT-4o and Gemini-2.0-Flash) were accessed on April 25, 2025.

Table 12: Format of the text prompts used by MLLMs for one-stage multi-image comparison. <Query
Video>/<Target Video>: format as ‘Frame1: <image>\nFrame2: <image>\n...Frame6: <image>\n’.
†: using additional mask prompt.

Model Text Prompt

InternVL2[18] I will give you a video query and a video target: [Query] and [Target]. Please
determine whether any part of [Target] is slightly relevant to any part of [Query]
or [Focus]. I will also provide [Tag] that [Target] (if relevant) must feature
it.\n[Query]:\n<Query Video>\n[Target]:\n<Target Video>\n[Focus]\n{Text
Description}\n[Tag]:\n{Tag Prompt}\n[Output]:\n If slightly relevant, return
Yes. If not, return No.

InternVL2.5[25] I will give you a video query and a video target: [Query] and [Target]. Please
determine whether any part of [Target] is slightly relevant to any part of [Query]
or [Focus]. I will also provide [Tag] that [Target] (if relevant) must feature
it.\n[Query]:\n<Query Video>\n[Target]:\n<Target Video>\n[Focus]\n{Text
Description}\n[Tag]:\n{Tag Prompt}\n[Output]:\n If slightly relevant, return
Yes. If not, return No.

MiniCPM-o 2.6[26] Please determine whether any part of <Target Video> is slightly relevant to
any part of <Query Video> and [Focus]. I will also provide [Tag] that <Target
Video> (if relevant) must feature it. [Focus]: {Text Description}\n[Tag]: {Tag
Prompt}\n If slightly relevant, return Yes. If not, return No.

MiniCPM-V 2.6[27] Please determine whether any part of <Target Video> is slightly relevant to
any part of <Query Video> and [Focus]. I will also provide [Tag] that <Target
Video> (if relevant) must feature it. [Focus]: {Text Description}\n[Tag]: {Tag
Prompt}\n If slightly relevant, return Yes. If not, return No.

VideoRefer[56] Here are two videos with same length. Is any part of the first video query
slightly relevant to any part of the second video? {Text Description}\n If true
and {Tag Prompt}, return Yes. Else, return No.

VideoRefer†[56] Here are two videos with same length. Is any part of the first video query
slightly relevant to any part of the second video? {Text Description}\n If true
and {Tag Prompt}, return Yes. Else, return No.

Gemini-2.0-Flash[58] Is any part of the first video query slightly relevant to any part of the second
video? {Text Description}\n If true and {Tag Prompt}, return Yes. Else, return
No.

GPT-4o[57] Here are two videos with same length. Is any part of the first video query
slightly relevant to any part of the second video? {Text Description}\n If true
and {Tag Prompt}, return Yes. Else, return No.

D Annotation Instructions

The instructions provided to annotators are included below. We take the relationship annotation of
the News partition as an example, while other partitions have different visual correspondences.

E Visualization

Figure 4, 5, 6, 7 and 8 provide several relevant examples of different partitions from MUVR, with a
text description of the query video and the tag of each video.
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Figure 4: Visualization of three relevant videos on the News partition.

Figure 5: Visualization of three relevant videos on the Region partition. The third video comes from
a computer game and brings more challenges.
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Figure 6: Visualization of three relevant videos on the Instance partition. The different forms of
mobile phones and their small proportion on the screen pose challenges.

Figure 7: Visualization of three relevant videos on the Dance partition. The interference of back-
ground, characters, and the number of people poses a huge challenge to action-level retrieval.
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Figure 8: Visualization of three relevant videos on the Others partition. This type of video is created
based on common popular elements and video styles, with rich semantic information.
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