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ABSTRACT

This paper proposes a new and simple way of training sparse neural networks.
Our method is based on a differentiation of the forward and backward paths: the
weights in the forward path are a thresholded version of the weights maintained
in the backward path. This decoupling allows for micro-updates, produced by
gradient descent, to stack up, leading to the possible re-activation of weights that
were set to zero in earlier training steps. At the end of training, links with zero
weights are pruned away.

Additional critical specificities of our approach lie (i) in the progressive increase
of the zeroed weight ratio along the training, and (ii) in the use of soft-thresholding
rather than hard-tresholding to derive the forward-path weights from the ones
maintained in the backward path. At constant accuracy, our approach reduces the
number of training cycles to 1 compared to the state-of-the-art recursive pruning
methods. At high pruning rates, it also improves the model accuracy compared
to other single cycle pruning approaches (66.18% top-1 accuracy when training a
ResNet-50 on ImageNet at 98% sparsity).

1 INTRODUCTION

State-of-the-art neural networks are composed of a few million parameters, leading to a few
billion computations per inference. To limit these amounts, sparse networks have been thoroughly
investigated in the past few years (Frankle & Carbin (2019); Liu et al. (2019); Lee et al. (2019);
Evci et al. (2019); Frankle et al. (2020); Renda et al. (2020)). Those networks reduce the inference
complexity by setting most of their weight parameters to zero. Recent works have shown that this
can be done without penalizing the prediction accuracy compared to non-sparse networks (cite).

Training methods leading to sparse networks generally build on multiple rounds, or cycles, of it-
erative gradient descent updates. As detailed in Section 2, each round applies recursively to the
outcome of the previous round, after having pruned a (small) predefined fraction of the links, typi-
cally selected as the ones with smallest weights.
A training cycle typically consists in a full training procedure, with a complete learning rate schedule
and consequently a large number of weight updates. In contrast, our work proposes to train sparse
networks in a single round of gradient updates, thereby dramatically reducing the training resources.
Therefore, as an original contribution, our work adopts in the forward path a soft-thresholded version
of the weights that were updated based on the back-propagated gradients, and updates the parame-
ter of the soft-threshold operator to progressively increase the ratio of pruned (inactive??) weights
along the training iterations. In that way, the pruning of a weight is never definitive, and weights that
are pruned at some stage of the training process get the opportunity to become non-zero again when
gradient feedback makes them relevant. Moreover, gradients can be back-propagated according to
the (non-zero) weights maintained along the backward path, ensuring a dense propagation of feed-
back, without being hampered by the definitive pruning of some links. Those specificities appear to
largely benefit the performance of the trained model, compared to previous works. In particular, our
proposed method is on par in terms of prediction accuracy with state-of-the-art sparse model train-
ing approaches, while significantly reducing (up to one order of magnitude) the amount of training
iterations.
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2 STATE OF THE ART

In this paper we concentrate our efforts on unstructured pruning. While pruning in a structured
manner leads to an easier acceleration of CNN within existing libraries, the performance obtained
at the same level of sparsity is often inferior (Li et al. (2017); He et al. (2019); Wang et al. (2020)).
The work of Liu et al. (2019) also showed that the chosen structure was more important than the
actual way the pruned filters were chosen, indicating that l1-based weight selection might not be the
best way of choosing which filters to prune. Moreover, recent works (Kalchbrenner et al. (2018);
Park et al. (2017); Gale et al. (2019)) managed to significantly speed up networks with unstructured
sparsity on off-the-shelve hardware.

Naive pruning approaches remove links from the network in one shot at the end of an entire training
cycle, based on their respective weight magnitude (LeCun et al. (1990); Han et al. (2015)). This
however comes at the cost of a loss in prediction accuracy. In order to reduce this loss, the unpruned
weights generally undergo a finetuning step (i.e. a shorter training cycle, with small learning rate),
while the pruned ones stay at zero.
Over the years, many variants have been proposed to improve this baseline approach. They can be
differentiated based on the way they address the three following issues:

• Pruning criterion: How are the pruned weights selected ?

• Pruning and training interaction: When is the pruning implemented along the training
iterations ?

• Pruning persistence: Do pruned weights get the opportunity to come back to non-zero
values or not ?

2.1 PRUNING CRITERION

Obviously, weights with smaller magnitude should be pruned first. However, the magnitude criterion
is generally affected by two other considerations.

On the one hand, it has been widely documented (Mocanu et al. (2018); Evci et al. (2019); Lee
et al. (2021)) that the network prediction accuracy is more impacted when pruning occurs close to
the input. More generally, the allocation of computational resources, and thus of non-zero weights,
across layers remains an open question.
Two heuristics have been recently proposed to address this issue in a satisfying manner:

1. Erdos-Rényi-Kernel (ERK) Evci et al. (2019) proposes to scale the global pruning ratio
with a layer-wise pruning ratio, defined according to the number of neurons (n), the width
(w) and the height (h) of the layer convolutional kernel. Formally, letting l denote the
layer index, the scaling factor is defined to be 1− nl−1+nl+wl+hl

nl−1·nl·wl·hl , which results in a more
aggressive pruning of layers with more parameters.

2. Layer-Aware-Pruning (LAMP) Lee et al. (2021) selects the weights to prune globally, but
relies on a score that is assigned to each weight rather than on its magnitude. This score is
computed on the sorted and flattened array of weights (Wl

sorted) of each layer (l). Mathe-

matically, score(i,Wl
sorted) =

(W l
sorted,i)

2∑
j≥i(W

l
sorted,j)
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The ERK criterion has more rigid constraints and performs slightly worse in traditional one-cycle
pruning than LAMP (Lee et al. (2021)). Hence, we use the latter in Section 4.3.3 as a comparison
point to our method.

2.2 PRUNING AND TRAINING INTERACTION

Pruning should only be considered after some training iterations, to make sure only the links that do
not significantly impact the prediction are removed from the network. Recent literature has however
revealed that the best performance are not obtained simply by pruning a fully trained network. The
recent discoveries in that respect can be summarized as follows :
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Subnetworks. It has been discovered by Frankle & Carbin (2019) and Frankle et al. (2020) that
so-called subnetworks, corresponding to weights that are deemed essential for the final prediction,
are formed quite early during training. This phenomenon arises because the weights change more
significantly during the first training iterations than in subsequent ones (Leclerc & Madry (2020);
Frankle et al. (2020)). This is simply brought about by the gradient magnitude generally starkly
decreasing after a few initial iterations, denoted Tcrit in the following, to progressively stabilize.
Interestingly, recent works related to pruning have shown that it is advantageous to derive sparse
networks from the weights available in the early stages of training, once the network has achieved
this relative stability after this small number Tcrit of training iterations (You et al. (2019)). This is
done recursively as described below.

Rewinding. After an initial training cycle, the weights with the lowest magnitudes are pruned as
before, but the remaining ones are rewound to their values at Tcrit (Frankle et al. (2020)). A novel
training cycle is then launched from Tcrit onwards: meaning that the learning rate (and optimizer
parameters) are reset to their values at Tcrit, and that a full cycle of training iterations, with com-
plete learning rate schedule, is run. The difference compared to the initial training cycle lies in the
fact that the pruned weights that will stay at zero for the remainder of the restarted training cycle.
Surprisingly, the sparse model obtained with this two-cycles training strategy appears to perform
better than the reference baseline, obtained by finetuning the pruned weights.
In addition, the work in (Frankle et al. (2020)) has shown that applying the pruning earlier during
the first training cycle leads to worse performance, thereby justifying the cost of the preliminary
training cycle.
Later work by Renda et al. (2020) shows that the critical component of the rewinding step is the
rewinding of the learning rate. In our method, the weights are constantly updated instead of being
pruned or rewound at the end of a training cycle. However, as will be shown in Section 4, a rewind
of the learning rate and weights can further boost the performance of our method, although coming
at the cost of an additional training cycle.

Recursive Pruning with rewinding. As illustrated in our experiments (in Section 4), the predic-
tion accuracy of the model obtained with the two-cycles training strategy sharply decreases when
the pruning ratio increases. Implementing the pruning procedure recursively has been shown to ef-
fectively circumvent this issue: instead of pruning the whole ratio of weights after the initial training
cycle, only a fraction of this ratio is actually pruned. The surviving weights are rewound, the train-
ing cycle resumes from Tcrit and, when it ends, an additional fraction of the weights are pruned.
The remaining weights are then rewound, training restarts and so on. This procedure results in the
state-of-the-art performance, but rapidly gets expensive in terms of training time. If we take a 20%
step-size (in order to compare with Frankle & Carbin (2019)), 11 training cycles are necessary to
reach ∼ 90% sparsity.

2.3 PRUNING PERSISTENCE

Above, once a weight has been pruned, it stays pruned all along the training cycle. Some works
however have considered the possibility to re-activate a weight that has been set to zero. Works
like Dettmers & Zettlemoyer (2019) and Evci et al. (2019) rely on computations on the gradient
magnitudes to decide to re-activate weights. In contrast, Kusupati et al. (2020) learns a progressive
layer-wise threshold via back-propagation, but only computes the backpropagated gradients on the
unpruned weights. In contrast, our work allows for all gradients to flow through, updating even
weights that didn’t take part in the forward computation.

3 OUR PRUNING METHOD

To train a sparse network in a single training cycle without penalizing its prediction accuracy, our
work proposes to adopt a non-persistent soft-thresholded pruning strategy and to progressively in-
crease the sparsity ratio of the network along the iterations of a training cycle. The remainder of this
section presents and motivates the 3 main components of our method. Our ablation study in Section
4.3 will confirm our arguments experimentally.
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Figure 1: Example showing that hard thresholding might lead to a change in weight in the forward
path that is bigger than the gradient magnitude. In contrast, soft-thresholding preserves a smooth
evolution of the forward weight compared to the one maintained in the backward path.

Non-persistent pruning In contrast to most previous works, our approach proposes to maintain
two versions of the weights. A dense version of the weights is maintained and updated in the back-
ward path, while their thresholded version is considered in the forward path and to backpropagate
the gradients, so as to mimick the impact of pruning. This differentiation of weights in the forward
and backward paths is inspired by the straight-through-estimator used to train quantized neural net-
works (Hubara et al. (2016); Mellempudi et al. (2017)). Formally, we define the sparse weights
Wsparse adopted in the forward path as a thresholded version of the dense weights Wdense updated
in the backward path: Wparse = apply th(Wdense, th). A consequence of this definition of Wsparse

is that a forward weight that has been zeroed at some point during training might become non-zero
again if its corresponding backward weight magnitude sufficiently increases in subsequent training
iterations. Hence, the pruning emulated in the forward path is non-persistent.

Soft Thresholding Most of the persistent pruning literature makes use of hard thresholding (Han
et al. (2015); Frankle & Carbin (2019)). However, in presence of non-persistent pruning, the weights
that are maintained in the backward path, are likely to cross the pruning threshold, and be subject to
the hard thresholding function discontinuity. This might lead to abrupt changes in the forward path,
which might be inconsistent with the update implemented in the backward path. Figure 1 depicts
a case where the pruning threshold is large compared to the gradient magnitude. In this case, hard
thresholding induces severe discontinuities in the forward weight update, while soft thresholding
preserves a smooth and consistent evolution of this forward weight. Our experiments in Section
4.3.2 confirm that soft thresholding results in a more stable training.

Increasing the pruning ratio To mitigate the instabilities induced by pruning, and leave the net-
work the time to adapt to the zeroing of some weights in the forward path, we progressively increase
the sparsity ratio during training. This allows the remaining weights to more easily adapt to the
removal of a majority of its connections and avoids the neural network from getting stuck in a local
minimum early on. A slow increase of the sparsity ratio during training was already applied suc-
cessfully by Kusupati et al. (2020) and Wang et al. (2020). The former used it to approximately
regulate the sparsity of each layer independently, while the latter applied it to the regularization of
small weights, forcing them closer to zero over time. We use this linearly increasing ratio to force
an ever-increasing exact amount of sparsity into our network. This ratio will increase linearly dur-
ing the first half of the training, which also corresponds to the highest learning rate plateau for the
networks trained on Cifar-10. A pseudo-code for our method is provided in Appendix A.1.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP AND TERMINOLOGY

Our experiments train ResNet-20 (He et al. (2015)) and VGG-13 (Simonyan & Zisserman (2014))
(as simplified by Liu et al. (2019)) on the Cifar-10 Krizhevsky (2009) dataset. Every training
cycle uses the same hyperparameters as defined in Appendix A.2 regardless of the method. This
follows the choices made in Frankle et al. (2020) and, in practice, no significant difference has been
observed when tuning the parameters individually for each method. For each pruning method, each
network is trained three times, with distinct initialization seeds. The same triplet of seeds is used
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Figure 2: (Best viewed in colour) Top: Mean accuracy and variance, from 3 different initialization
seeds, for a ResNet-20 (left) and VGG-11 (right) on Cifar10 as a function of the sparsity ratio for our
method with (dark orange) or without rewind (orange) compared to recursive rewinding (green) and
a 1-cycle rewind (blue). Bottom: Number of training cycles necessary for the 4 different methods in
function of the pruning ratio

5



Under review as a conference paper at ICLR 2022

Ours Kusupati et al. (2020)
Accuracy Sparsity Sparsity Accuracy

74.52 90.00 90.23 74.31
72.32 95.00 94.80 70.97
66.18 98.00 97.78 62.84
54.92 99.00 98.98 51.82

Table 1: Comparison of our method with Kusupati et al. (2020) applied on a ResNet-50 on ImageNet
(best performance are in bold)

for all pruning methods, and all figures display the mean and variance of the accuracy achieved by
the models obtained from those seeds as a function of the sparsity ratio.

To denote the methods compared in this section, we introduce the following terms:

1. OneCycle : the network is pruned after one training cycle

2. Rw (rewind): an additional training is applied to the sub-network pruned at the end of the
initial (or previous, in case of recursive pruning) training cycle. The weights, learning rate
and optimizer of this subnetwork are rewound to Tcrit.

3. Rec. Rw (recursive rewind) : the pruning/rewind/training procedure is applied recursively,
by pruning 20% of the remaining weights at each recursive step.

4. SoftThresh (Ours): As explained in Section 3, an increasing fraction of weights is set to
zero in the forward path, by soft-thresholding the weights maintained in the backward path.
The soft-threshold operator parameter is defined to progressively increase the sparsity ratio
of the weights along the full training cycle.

4.2 COMPARISON WITH BASELINES

Pruning baseline Recursive rewind corresponds to the SotA in terms of pruned network accuracy,
while one-cycle with rewind corresponds to a less accurate but also less complex (in terms of
number of training cycles) baseline. Figure 2 plots our method against those 2 baselines. Our
method matches recursive rewind all the while needing exponentially less training cycles.

Prior work To the best of our knowledge, Kusupati et al. (2020) detains the SotA one-cycle prun-
ing results with a ResNet-50 on ImageNet on all thresholds. Table 1 compares our method, which
was trained with the same meta-parameters. Our approach exceeds the performance of Kusupati
et al. (2020) at approximately equivalent pruning budgets.

4.3 ABLATION STUDY

This section considers variants of our method to answer the following 3 questions:

1. Are dense weights necessary for gradient computation?

2. Is soft-thresholding better than hard-thresholding in practice?

3. Does the pruning criterion, i.e. the selection of the soft-thresholding operator parameter for
each layer, affect performance?

4.3.1 DENSE OR SPARSE?

As stated earlier in Section 3, we update the dense weights during back-propagation. To empha-
size the importance of this dense update strategy, our results are compared to the sparse update of
weights during the backward pass. In that case, only the weights whose magnitude is larger than the
thresholding operator parameter are updated. In Figure 3, these 2 scenarios (respectively referred to
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Figure 3: (Best viewed in colour) Mean accuracy and variance, from 3 different initialization seeds,
for a ResNet-20 on Cifar10 as a function of the sparsity ratio for different gradient densities. Results
are shown without (left) and with (right) and additional rewind cycle. Recursive rewind and one-
cycle act as a frame of reference.
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Figure 4: (Best viewed in colour) Mean accuracy and variance, from 3 different initialization seeds,
for a ResNet-20 on Cifar10 as a function of the sparsity ratio for a global l1 pruning criterion (left)
and LAMP (right).

as persistent and Wsparse in BP) were inspected, and a clear trend emerges : updating only the ac-
tive weights during back-propagation leads to a lower accuracy compared to updating all the weights
(dense).

4.3.2 HARD OR SOFT?

In Section 3, an explanation was given as to why a soft-thresholded approach may lead to bet-
ter results than a hard-thresholded one due to the removal of a discrepancy between forward and
backward propagation. Figure 4 clearly confirms our intuition. We note that until ≈ 98% sparsity
both strategies are relevant to threshold the weights: The hard- and soft-threshold performance after
weight rewinding and re-training is nearly identical. However, the hard-threshold training barely
manages to keep up with our baseline of one-cycle+rewind. This is caused by a highly fluctuating
loss function during training, implying a great deal of instability. Moreover, this instability reaches
a critical point when only ≈ 2% of the weights remain, after which the network becomes unable to
learn anything due to a whole layer being pruned.
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Figure 5: (Best viewed in colour) Weight histograms for ResNet-20 on Cifar-10 at 98.8% spar-
sity, trained with different methods. (Top) Pruning methods were used: OneCycle+rewind (left)
and recursive (right). (Bottom) Our soft-thresholding method (left) and the follow-up result after
rewinding and retraining (right). For clarity’s sake, weights equal to zero have been removed of the
histogram.

4.3.3 L1 OR LAMP?

Criteria like LAMP (Lee et al. (2021)) try to mitigate instabilities by normalizing individual weights
with respect to the other ones inside their layer. To the right in Figure 4 LAMP is shown to sig-
nificantly improve the results of hard thresholding at high pruning ratio, getting rid of the noted
instability.

5 WEIGHT INSIGHTS

The previous sections have numerically shown the importance of keeping the dense version of the
gradient when updating the weights through gradient descent. By taking a look at the underlying
weight distributions and zeroed weights, two additional observations stand out:

1. The weight distributions that result from our soft-thresholding method, are different from
those generated by recursive pruning

2. During training our method encourages a high number of weights to flip between a zero
(inactive) and non-zero (active) state. This high number of crossings leads to networks that
generalize better.

5.1 WEIGHT DISTRIBUTIONS

The weight distributions for all the layers are depicted in Figure 5 at a sparsity ratio of 98.8% to more
clearly see the emerging phenomena. The weight distributions generated by pruning methods (be it
OneCycle+rewind or Recursive-rewind) differ heavily from those obtained with our soft-thresholded
approach. Our initial training cycle generates a very peaky normal distribution. Rewinding the
weights and only retraining the unpruned ones, puts us closer to distributions resembling the sum of
2 overlapping gaussians mirrored around zero. This is in opposition to pruning which generates a
mostly normal distribution with some weights that are pushed to higher absolute values. This indi-
cates that our method selects weights to set to zero in a fundamentally different way than traditional
pruning.
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Figure 6: (Best viewed in colour) Number of threshold crossings for a ResNet-20 trained on Cifar-10
at 86.6% sparsity grouped into sets of 40 epochs. (left) the sparsity ratio grows linearly from Tcrit

to epoch 80 (right) full sparsity ratio is used from Tcrit onwards. Weights that undergo one or no
threshold crossings are removed for readability purposes.

5.2 THRESHOLD CROSSINGS

In Section 3, a plausible explanation was given for the use of growing sparsity. However, we can
observe why this training regime is so beneficial: growing the sparsity ratio leads to more weights
jumping from an inactive to an active state and vice-versa. This phenomenon will be referred to
as threshold crossings. Figure 6 shows the number of times the weights will cross during different
training phases that are each 40 epochs long. The weights that will end up staying inactive once the
training completed, are separated to more clearly show the trend: a lot of crossings occur during the
progressive growing of the sparsity ratio before stabilizing after 80 epochs.

This same experience was repeated using the whole sparsity ratio from Tcrit onwards in order to
eliminate the high learning rate factor. Not allowing this ratio to progressively grow over time, leads
first to a noticeably lower final accuracy and second we observe fewer threshold crossings during
the early phases of the training process. This implies that the mask is chosen at Tcrit and doesn’t
change much from there on out, moving our method closer to real pruning than is desirable.
This observation points to the weights needing some time to adapt to the disappearance of their
neighbours. This also consolidates our method’s starting point that applying fewer constraints
on the weight updates, thanks to dense gradients, leads to the spontaneous emergence of weight-
adjustments.

6 CONCLUSION

We have proposed to apply soft-thresholding to the weights maintained in the network backward
path, so as to define sparse weights in the forward path. The soft-thresholding operator parameter
is changed along training to progressively increase the ratio of weights that are set to zero by the
thresholding, thereby reaching high sparsity ratio in a single training cycle. This is in contrast
to traditional persistent pruning methods that need many training cycles to obtain models whose
prediction accuracy reaches what our method obtains in one shot. Our analysis has shown the
importance of using soft-thresholding, and not hard-thresholding, to avoid sharp discrepancies in the
evolution of the weights maintained in the forward and backward paths. The lesser constraints of
these dense gradients on the weights allow for threshold crossings which validate the importance of
our method. Overall, our method results in a new SotA for one-training-cycle accuracy on ImageNet
with a ResNet-50 of 66.18% at 98% sparsity.

REPRODUCIBILITY STATEMENT

The source code for this paper has been added to the supplementary material of this submission and
the code will be open-sourced after publication. Every training configuration has been safeguarded
in order to minimize any possible misinterpretation of the manuscript.
The network architectures used are standardized (ResNet, VGG) and so are the datasets (Cifar-10,
ImageNet). The training mete-parameters were taken from previous in order to enable a better
comparison accross the literature.
Whenever it was computationally sound, experiments were run with 3 different seeds (shared across
all experiments) in order to guarantee more consistent results.
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A APPENDIX

A.1 PSEUDO-CODE

Listing 1: Pytorch-like pseudo-code for Recursive pruning with rewind
a c t p r u n i n g = 0

W = Win i t
Wmask = o n e s l i k e (W)
t r a i n c y c l e s = 0
whi le True :

# Comple te T r a i n i n g c y c l e
f o r epoch in range ( n e p o c h s ) :

f o r i n p u t s , t r u e o u t p u t s in d a t a s e t :
o u t p u t s = NN(W * Wmask ) ( i n p u t s )
l o s s = l o s s f x ( t r u e o u t p u t s , o u t p u t s )
c o m p u t e g r a d i e n t s ( l o s s , W[Wmask==1] )

W = o p t i m i z e r . u p d a t e (W[Wmask==1] , l e a r n i n g r a t e )
l e a r n i n g r a t e . u p d a t e ( epoch )

a c t p r u n i n g = 1 − (1 − p r u n i n g s t e p ) ˆ t r a i n c y c l e s
i f a c t p r u n i n g > f i n a l p r u n i n g :

break

# Prune more w e i g h t s
Wmask = Wmask − prune (W[Wmask==1] , p r u n i n g s t e p )

Listing 2: Pytorch-like pseudo-code for our soft-thresholded sparse training with increasing sparsity
W = Wini t
s t a r t e p o c h = T c r i t
end epoch = n e p o c h s / / 2
p r u n i n g d e l t a = f i n a l p r u n i n g / ( l e n ( d a t a s e t ) * ( end epoch − s t a r t e p o c h ) )
a c t p r u n i n g = 0
# Comple te T r a i n i n g c y c l e
f o r epoch in range ( n e p o c h s ) :

f o r i n p u t s , t r u e o u t p u t s in d a t a s e t :
t h = c o m p u t e p r u n e t h (W, a c t p r u n i n g )

# Do n o t compute g r a d i e n t s on p r u n i n g o f f s e t
wi th n o g r a d i e n t s ( ) :

Wdel ta = s o f t t h r e s h o l d (W, t h ) − W

Wpruned = W + Wdelta
o u t p u t s = NN( Wpruned ) ( i n p u t s )
l o s s = l o s s f x ( t r u e o u t p u t s , o u t p u t s )
c o m p u t e g r a d i e n t s ( l o s s , W)

W = o p t i m i z e r . u p d a t e (W, l e a r n i n g r a t e )

i f epoch >= s t a r t e p o c h and epoch < end epoch :
a c t p r u n i n g += p r u n i n g d e l t a

l e a r n i n g r a t e . u p d a t e ( epoch )
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Network ResNet-20 VGG-13
Optimizer SGD
Lr 0.1 0.2
Momentum 0.9
Weight-decay 1e-4
Batch-size 128
#epochs 160
Lr-stepdown [80,120]; lr*0.1

Table 2: Hyperparameters used for training

A.2 HYPER-PARAMETER TUNING

The hyper parameters used for ResNet-20 and VGG-13 trained on Cifar-10 are displayed in Table
2. All run configurations are also available in the code submitted with the supplementary material.
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