
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Verbalized Confidence Triggers Self-Verification
: Emergent Behavior Without Explicit Reasoning Supervision

Anonymous Authors1

Abstract
Uncertainty calibration is essential for the safe
deployment of large language models (LLMs),
particularly when users rely on verbalized confi-
dence estimates. While prior work has focused
on classifiers or short-form generation, confi-
dence calibration for chain-of-thought (CoT) rea-
soning remains largely unexplored. Surprisingly,
we find that supervised fine-tuning with scalar
confidence labels alone suffices to elicit self-
verification behavior of language models, with-
out any explicit reasoning supervision or rein-
forcement learning-based rewards. Despite be-
ing trained only to produce a verbalized con-
fidence score without any self-verifying exam-
ples, the model learns to generate longer and self-
checking responses for low-confidence queries
while providing more concise answers for high-
confidence ones. We further propose a sim-
ple rethinking method that boosts performance
via test-time scaling based on calibrated uncer-
tainty. Experiments on GSM8K and held-out
reasoning tasks such as MATH-500 and ARC-
Challenge show that our confidence-aware fine-
tuning improves both calibration and accuracy,
while also enhancing interpretability by aligning
the model’s reasoning path with its confidence.

1. Introduction
Large language models (LLMs) demonstrate strong perfor-
mance not only in natural language generation but also in
complex reasoning and decision-support tasks across di-
verse domains (Achiam et al., 2023; Guo et al., 2025).
Their application to high-stakes settings such as medical
diagnosis and personalized financial analysis has drawn
increasing attention (Goh et al., 2024; Qiu et al., 2024;
Takayanagi et al., 2025), with the potential to reduce ex-
pert workload and accelerate decision-making.

Nonetheless, ensuring the reliability of LLMs remains a
critical challenge. Models frequently produce incorrect
outputs with high confidence, and such overconfident er-

0 10 20 30 40 50 60 70 80 90 100
Confidence after CSFT (binned)

0

200

400

600

800

1000

M
ea

n
Le

ng
th

 (t
ok

en
s)

0.0

0.2

0.4

0.6

0.8

Se
lf-

Ve
rif

ica
tio

n
Ra

te
 %After CSFT

Pre-trained Model
Self-Verification Rate

Figure 1: Generation length and self-verification rate
across confidence bins on GSM8K using the CSFT-trained
LLaMA-3.2-3B-Instruct model. Lower-confidence
bins yield longer outputs and higher self-verification rates,
suggesting a learned fallback behavior. Overall, 20%
of generations showed self-verification (measured using
GPT-4.1), compared to under 1.5% in the zero-shot set-
ting, which is omitted. Representative examples are shown
in Figure 2.

rors can lead to harmful decisions when left undetected by
users (K. Zhou et al., 2024). These hallucinations pose
risks that go beyond factual inaccuracies, with implications
for healthcare, law, and finance (X. Du et al., 2024). To mit-
igate these risks, LLMs must be able to quantify and com-
municate their uncertainty in a human interpretable man-
ner, such as through verbalized confidence.

While a few recent studies train models to explicitly ver-
balize their confidence (Band et al., 2024; Kapoor et al.,
n.d.; Stengel-Eskin et al., 2024; Jang et al., 2024), most
rely on complex procedures such as reinforcement learning
or classifier probing. Moreover, they report little evidence
of generalization in zero-shot settings or under chain-of-
thought (CoT) reasoning. At the same time, state-of-the-art
LLMs increasingly tackle challenging problems by gener-
ating explicit CoT traces (Q. Zhou et al., 2023; B. Chen
et al., 2023; X. Wang et al., 2023). The reliability of ver-
balized confidence within such CoT reasoning, however,
remains largely unexplored.

In contrast, this work shows that even a simple confidence-
supervised fine-tuning (CSFT) approach, under suitable
conditions, can yield well-calibrated verbalized confidence

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Submission and Formatting Instructions for ICML 2025

in CoT reasoning. Furthermore, we demonstrate that the
model can autonomously adjust its response length and ex-
hibit emergent self-verification behavior as a function of
its uncertainty. Specifically, without reasoning supervi-
sion, the model learns to modulate its reasoning process
while being trained to generate an answer, followed by a
verbalized confidence score. As illustrated in Figure 1,
low-confidence predictions result in longer outputs with
self-check phrases such as “recalculate” or “let me double-
check”, whereas high-confidence responses are shorter and
more decisive. This phenomenon emerges even without
CoT reasoning guidance in training, and is consistently ob-
served across GSM8K, MATH-500, and ARC-Challenge.
These findings suggest that verbalized confidence can serve
not only as a calibration target but also as an effective
training signal that encourages more deliberate chain-of-
thought generation, ultimately leading to improved reason-
ing accuracy.

Our contributions are as follows:

• We propose CSFT, a simple confidence-supervised
fine-tuning method using the problems and the corre-
sponding synthetic self-confidence labels that enables
reliable verbalized confidence in CoT reasoning tasks.

• We demonstrate that CSFT elicits emergent self-
verification behavior without requiring reasoning su-
pervision, manifesting as a systematic relationship be-
tween confidence and output length.

• We analyze how prompting style, regularization
strength, and reasoning depth affect this phenomenon,
and demonstrate generalization to held-out reasoning
tasks.

These results provide a scalable path toward building
uncertainty-aware LLMs using standard SFT pipelines,
without architectural modifications or post-hoc correction.
CSFT not only improves calibration but also guides model
behavior toward safer and more interpretable reasoning.

2. Related Works
2.1. Confidence Calibration in LLMs

Calibration in LLMs has been studied from various per-
spectives. Likelihood-based methods estimate uncertainty
using token-level entropy, sequence probabilities, or gen-
eration variance (Desai and Durrett, 2020; Nguyen et al.,
2024; Kadavath et al., 2022). These methods are helpful
for model-side diagnostics, but they do not yield human-
readable confidence statements. Verbalized confidence,
where models explicitly articulate how sure they are, has
emerged as a more user-friendly and interpretable alterna-
tive. (Band et al., 2024; Stengel-Eskin et al., 2024). How-

ever, most existing approaches focus on short-form declar-
ative QA and require manual scalar labels (Lin et al., 2024)
or classifier-based tuning (Kapoor et al., n.d.; Jang et al.,
2024), without an understanding of the dynamics of reason-
ing. In the context of CoT reasoning, recent work has re-
ported that instruction-tuned or reasoning-supervised mod-
els (A. Yang et al., 2025; Guo et al., 2025) exhibit better
calibration under zero-shot inference (Yoon et al., 2025).
However, these findings remain observational and do not
examine how calibration can be systematically induced or
controlled in reasoning tasks. In contrast, our work pro-
vides the first direct evidence that fine-tuning with weak,
self-derived confidence labels, obtained through consis-
tency across sampled answers, can induce improved cali-
bration and emergent self-verification in reasoning, even in
models with no prior exposure to CoT supervision.

2.1.1. SELF-VERIFICATION AND COT OPTIMIZATION

Self-verification has emerged as a desirable property for
LLMs, with prior work demonstrating that models capable
of revisiting and refining their reasoning tend to achieve
higher accuracy and robustness, especially on complex
tasks (X. Wang et al., 2023). Accordingly, a growing body
of research has focused on optimizing the structure of CoT
outputs, either by making them more concise (Nayab et al.,
2024; Team et al., 2025) or by generating longer and more
reflective traces (Guo et al., 2025). However, these ap-
proaches typically target a fixed generation style, without
conditioning on the model’s internal uncertainty. In real-
ity, effective reasoning should adapt to the model’s confi-
dence: when confidence is low, the model should elabo-
rate and verify; when confidence is high, a brief and de-
cisive answer may suffice. Most existing methods do not
capture this dynamic. Reinforcement learning-based ap-
proaches train models to favor verifiable traces (B. Chen
et al., 2023; Zhao et al., 2025; Shafayat et al., 2025), but
require reward shaping and large-scale tuning. We show
that a single round of fine-tuning on scalar confidence la-
bels derived from self-consistency induces CoT behaviors
that adaptively reflect the model’s uncertainty.

3. Confidence-Supervised Fine-Tuning
We introduce Confidence-Supervised Fine-Tuning (CSFT),
a simple yet effective method for calibrating verbalized
confidence in LLMs under reasoning scenarios, without
requiring explicit supervision of the reasoning process.
CSFT fine-tunes the model to calibrate its verbalized con-
fidence, while also producing a CoT reasoning trace and fi-
nal answer, so that the reported confidence more accurately
reflects the model’s belief in the correctness of its answer.

Given a question q, the decoder is trained to gener-
ate a structured response consisting of: (i) a CoT rea-

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Submission and Formatting Instructions for ICML 2025

soning trace r and final answer a, enclosed within
<think> ... </think> and <answer> ... </answer>

tags, respectively; followed by (ii) a suffix confi-
dence prompt (see Appendix C), which elicits a dis-
crete confidence score c ∈ {0, 10, . . . , 100} expressed in
<confidence> ... </confidence> tags. Only the con-
fidence score c is supervised during training; both the rea-
soning r and the answer a remain unconstrained.

In this section, we used Low Rank Adaptation (LoRA;
Hu et al., 2021) method to fine-tune the LLM model fθ0 .
Here, we denote θ0 as fixed pre-trained parameters and θ
as fixed pre-trained parameters with additional learnable
LoRA weights.

Self-Confidence label. To compute the confidence la-
bel, we first sample K full generations {(r(i), a(i))}Ki=1 ∼
fθ(· | q) and estimate the empirical accuracy as

p̂(q) =
1

K

K∑
i=1

1
[
a(i) = a⋆

]
, (1)

where a⋆ denotes the gold answer. To determine whether
each answer a(i) matches the gold answer a⋆, we first
parsed the value between <answer> ... </answer> from
the LLM response to extract a(i), and then checked whether
it exactly matched the gold answer. Then, the self-
confidence label was obtained by discretizing the accuracy:
c = ⌊100 · p̂(q)⌋.

Training objective. Let Tc denote the token positions
corresponding to the entire confidence span, including the
<confidence> ... </confidence> tags. CSFT mini-
mizes the masked cross-entropy loss over these positions:

LCSFT = −
∑
t∈Tc

log pθ(yt | y<t, q), (2)

where pθ(y) indicates the predicted probability of token y
from LLM fθ. And optionally, we add a KL regularization
term over the CoT and answer spans (including their re-
spective tags), where the corresponding token positions are
denoted by TKL, to encourage the model to remain close to
the pretrained distribution:

Ltotal = LCSFT + λ
∑
t∈TKL

KL(pθ ∥ pθ0) , (3)

where λ is a weighting hyperparameter, and pθ and pθ0 rep-
resents pθ(· | y<t, q) and pθ0(· | y<t, q), respectively. Un-
less otherwise noted, we set λ = 0.

Calibration effect. Because the target c reflects the em-
pirical accuracy of the model’s own generations, CSFT en-
courages alignment between predicted confidence and ac-
tual correctness. This leads to improved calibration, as

measured by standard metrics such as expected calibration
error (ECE; Naeini et al., 2015) in CoT reasoning tasks.

4. Experiments
Experimental Setup. We construct our training corpus
by sampling K = 10 CoT traces and their corresponding
answers for each question q from the GSM8K (Cobbe et
al., 2021) training split, and assigning a self-consistency
label based on the proportion of sampled answers that
match the gold answer. Using this signal, we fine-tune
LLaMA3.2-3B-Instruct (Grattafiori et al., 2024) and
Qwen2.5-1.5B-Instruct (A. Yang et al., 2025), and
evaluate accuracy, Area Under the Receiver Operating
Characteristic curve (AUROC), and calibration metrics
(ECE, Brier Score) on the GSM8K test set as well as on
the held-out reasoning benchmarks MATH-500 (Lightman
et al., 2023) and ARC-Challenge (Clark et al., 2018). Fur-
ther experimental details are provided in Appendix A.

4.1. Main Experiments

Evaluation on GSM8K dataset. Table 1 show re-
sults on the GSM8K test set, where our model
was trained using CSFT with the GSM8K training
dataset. Our method consistently improves all calibra-
tion metrics and accuracy over the pre-trained baseline,
not only on LLaMA3.2-3B-Instruct but also on
Qwen2.5-1.5B-Instruct. Beyond better alignment
between predicted confidence and correctness, we observe
that CSFT induces desirable reasoning behaviors, such as
internal error checking and more deliberate output con-
struction—hallmarks of self-verification, particularly in
low-confidence cases. Refer to Fig. 2 to see an example.
And in such low-confidence cases, responses based on self-
verification can serve as a mechanism for users to view the
predicted model confidence as more reliable.

Unseen CoT Tasks. To evaluate the generalization ca-
pability of the model trained with CSFT, we test it
on two reasoning benchmarks—MATH-500 and ARC-
Challenge—that are structurally, topically, and cognitively
distinct from GSM8K. These benchmarks allow us to
assess how well the learned reasoning patterns trans-
fer to the unseen domain and more challenging prob-
lem distributions. As shown in Table 1, CSFT im-
proves generalization to unseen CoT tasks for both models.
On MATH-500, LLaMA3.2-3B-Instruct achieves a
+37% accuracy gain and 63% ECE reduction, while
Qwen2.5-1.5B-Instruct yields a +2.5% accuracy
gain and 32% lower ECE. On ARC-Challenge, LLaMA
improves accuracy by 6.3% and ECE by 71%, and Qwen
shows 9.1% higher accuracy and 33% better calibration.
These results indicate that our self-consistency-based cali-

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Submission and Formatting Instructions for ICML 2025

Table 1: Calibration results on the in-distribution GSM8K and two held-out reasoning benchmarks. For datasets, ✓: ‘seen’
during CSFT, ✗: ‘unseen’ during CSFT. For the metrics, ↓: lower is better and ↑: higher is better.

Dataset Model Method AUROC (↑) ACC (↑) ECE (↓) BS (↓) Avg. Len.

GSM8K (✓)
LLaMA3.2-3B-Instruct Pre-trained 50.57 68.68 0.2065 0.2549 226.66

CSFT 81.25 71.34 0.0568 0.1450 288.71

Qwen2.5-1.5B-Instruct Pre-trained 49.59 67.85 0.1928 0.2915 250.21
CSFT 67.67 69.63 0.0552 0.2285 291.70

MATH-500 (✗)
LLaMA3.2-3B-Instruct Pre-trained 49.57 41.20 0.4730 0.4800 416.70

CSFT 62.97 56.60 0.1776 0.3059 559.33

Qwen2.5-1.5B-Instruct Pre-trained 59.91 55.00 0.3786 0.2978 444.86
CSFT 60.27 56.40 0.2590 0.2629 477.96

ARC-Challenge (✗)
LLaMA3.2-3B-Instruct Pre-trained 53.89 65.36 0.2251 0.2738 210.50

CSFT 72.58 69.45 0.0647 0.1853 293.13

Qwen2.5-1.5B-Instruct Pre-trained 54.08 52.07 0.1660 0.2680 105.55
CSFT 61.63 56.82 0.1107 0.2584 114.85

bration transfers beyond the training task, improving both
confidence alignment and problem-solving ability on di-
verse reasoning challenges.

4.2. Self-Verification Behaviour

In this section, we analyze how training with CSFT induces
self-verification behavior and how this behavior correlates
with predicted confidence levels. We further support our
analysis with concrete examples. First, Figure 1 presents
two key relationships: (1) the average CoT token length
as a function of predicted confidence, and (2) the propor-
tion of answers that trigger self-verification across different
confidence levels.

The results in Figure 1 show a clear trend: CSFT-trained
models generate significantly longer outputs when their
confidence is low. In particular, for the lowest-confidence
bin (0), the average output length is nearly five times longer
than that of the zero-shot baseline. This indicates that
the model compensates for low confidence by engaging
in extended reasoning, suggesting that self-verification is
an emergent behavior tied to uncertainty. This increase in
length is closely accompanied by a high self-verification
rate, with nearly all corrected answers involving explicit
verification behaviors. Moreover, this self-verification be-
havior under low-confidence scenarios can serve as a valu-
able mechanism for end users relying on LLM responses. It
provides an implicit signal that the model is uncertain and
is actively working to validate its answer, thereby enhanc-
ing the perceived reliability of the predicted confidence
from the user’s perspective. As shown in Appendix B.1,
both the length and self-verification patterns generalize be-
yond the training distribution, emerging similarly on un-
seen CoT tasks as well.

Qualitative Examples. In Figure 2, we provide qualita-
tive examples comparing responses generated by the pre-
trained baseline and the model fine-tuned with CSFT. The
results highlight that CSFT-trained models dynamically ad-
just both the length and structure of their reasoning based
on the predicted confidence. Low-confidence cases elicit
longer, reflective traces with internal correction, whereas
high-confidence responses tend to be brief and decisive.

4.3. Ablation Studies

Prompt Position. The suffix setting, in which the confi-
dence prompt is appended after the model’s answer, is de-
scribed in § 3. In addition, we evaluate a prefix variant
where the confidence prompt is inserted immediately af-
ter the question and before any reasoning begins (see Ap-
pendix C). This placement allows the model to condition
its reasoning on anticipated confidence, which may affect
both generation and calibration. As shown in Figure 3,
the prefix setting consistently yields lower accuracy than
the zero-shot baseline, with performance sharply degrading
when KL regularization is removed (i.e., λ = 0). This sug-
gests that without constraints on the CoT and answer spans,
the model may overfit to expressing uncertainty rather than
reasoning accurately, effectively learning to be confidently
wrong or confidently uncertain. In contrast, the suffix set-
ting shows more favorable behavior. When KL regular-
ization is removed, both calibration and accuracy improve
compared to the zero-shot baseline. These results highlight
a key trade-off: prefix prompting influences the genera-
tion process and requires regularization to remain effective,
while suffix prompting is more stable because it does not
interfere with the model’s reasoning.

KL Regularization. Figure 3 We investigate the effect
of varying the KL regularization weight λ on model per-

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Submission and Formatting Instructions for ICML 2025

Low-confidence ⇒ Extended response (Self-verification triggered)

q: The vending machines sell chips for 40 cents and candy bars for 75 cents. George spent $5 and got 3 bags of
chips and had 1% of his money left. How many candy bars did he buy? a⋆ = 5

Zero-Shot
<think> To solve this problem, we need to first find out how much money

George spent on chips.We know that he spent $5 in total and had 1% of his
money left. This means he spent 99% of his money, which is $4.90. Since
each bag of chips costs 40 cents, we can divide $4.90 by 0.40 to find out how
many bags of chips he bought. </think>
<answer> George spent $4.90 on chips, and each bag costs 40 cents. To

find out how many bags he bought, we divide $4.90 by 0.40. $4.90 / 0.40 =
12.25. Since we can’t buy a fraction of a bag, we round down to 12 bags of
chips. </answer>

Total token #: 95
How confident are you in your previous answer?
<confidence> 90 </confidence>

CSFT
<think> To solve this problem, we need to break it down into steps.

... (omitted) ...
To find the number of candy bars George bought, we can divide the amount
of money he spent on candy bars (5 cents) by the cost of each candy bar (75
cents): 5 / 75 = 0.0667.
... (omitted) ...
However, this is not the correct answer. We should instead find the amount
of money George had after buying chips and before buying candy bars.
... (omitted) ...
Now, we can divide this amount by the cost of each candy bar (75 cents) to find
the number of candy bars George bought: 375 / 75 = 5.
</think>
<answer> 5 </answer>

Total token #: 481
How confident are you in your previous answer?
<confidence> 10 </confidence>

High-confidence ⇒ Shortened response

q: Jack had $100. Sophia gave him 1/5 of her $100. How many dollars does Jack have now? a⋆ = 120

Zero-Shot
<think> First, we need to find out how much money Sophia gave to Jack.

Since Sophia also had $100 and gave 1/5 of it to Jack, we can calculate the
amount she gave by multiplying 100 by 1/5. Now, we multiply 100 by 1/5,
which is the same as dividing 100 by 5. 100 / 5 = 20. So, Sophia gave Jack
$20. Next, we need to add the amount Sophia gave to Jack to his initial amount
of $100. We can do this by adding 20 to 100. 20 + 100 = 120. Therefore, Jack
now has $120. </think>
<answer> Jack now has $120. </answer>

Total token #: 145
How confident are you in your previous answer?
<confidence> 100 </confidence>

CSFT
<think> To find out how many dollars Jack has now, we need to calculate

1/5 of Sophia’s $100 and add it to Jack’s initial $100. First, we need to find
1/5 of $100. 1/5 of $100 is $100 / 5 = $20. Now, we add $20 to Jack’s initial
$100. $100 + $20 = $120. </think>
<answer> $120 </answer>

Total token #: 92
How confident are you in your previous answer?
<confidence> 100 </confidence>

Figure 2: Confidence reshapes reasoning behavior. Left: In the low-confidence case (top), the CSFT model generates a
long reasoning trace with explicit self-verification, eventually arriving at the correct answer, while the zero-shot model fails.
Right: In the high-confidence case (bottom), both models give the correct answer, but the CSFT response is significantly
more concise, reflecting confidence-aware brevity.

formance, focusing on its impact near λ = 0 (see Fig-
ure 3, Zoom-in figure). The motivation for this analysis is
to examine whether performance gains at low λ are stable
or merely an artifact of tuning. For the prefix setting, we
observe that performance rapidly deteriorates as KL regu-
larization is removed. This suggests that, without a con-
straint to preserve the pretrained distribution over CoT and
answer spans, the model may exploit the freedom to op-
timize ECE at the expense of actual reasoning quality. In
effect, the model becomes well-calibrated but confidently
incorrect. In contrast, the suffix setting remains stable or
even improves in the absence of KL regularization. Since
confidence is predicted independently after the full genera-
tion, removing the KL constraint does not impair reasoning
quality, and may in fact allow for better post hoc alignment

of confidence with correctness. These results highlight the
importance of controlling model behavior when confidence
supervision is introduced at generation time (prefix), as op-
posed to after-the-fact (suffix).

Table 2: Ablation analysis on the impact of confidence la-
bel quality and the inclusion of confidence prompt. Results
are reported as differences relative to CSFT on GSM8K us-
ing LLaMA3.2-3B-Instruct.

Variant ACC ECE Avg. Len.

w/o Correct label -2.14 +0.05 -49.36
w/o Conf question Training collapsed

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Submission and Formatting Instructions for ICML 2025

0.00 0.25 0.50 0.75 1.00 1.25 1.50
20

40

60
AC

C
Suffix ACC
Prefix ACC
Suffix ECE
Prefix ECE
Pre-trained Model ACC

0.0 1e-04 1e-03 1e-02
20
40
60
70

AC
C

Zoom-in (0.0 ~ 0.01)

0.1

0.2

0.3

0.4

EC
E

0.2

0.4

EC
E

Figure 3: Test accuracy and ECE on GSM8K using
CSFT-trained LLaMA3.2-3B-Instruct, evaluated un-
der varying KL weights. Prefix performance declines with-
out KL, whereas suffix remains stable or improves.

0 10 20 30 40 50 60 70 80 90 100
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Em
pi

ric
al

 A
CC

Confidence Before CoT
Confidence After CoT
Pre-trained Model

Figure 4: Reliability curves of CSFT-trained
LLaMA3.2-3B-Instruct on GSM8K, comparing
predicted confidence when elicited before vs. after CoT
generation. The broadly similar calibration profiles suggest
that the model’s confidence reflects internal uncertainty
rather than simply CoT length.

Label Quality and Confidence Question. To evaluate
the role of confidence supervision and the design of the
confidence prompt in enabling stable training and achiev-
ing strong performance, we conduct two ablation studies,
as summarized in Table 2. First, we randomly assign confi-
dence labels within the <confidence> tag, breaking the
link between prediction quality and label supervision. Sec-
ond, we remove the explicit confidence prompt, instead
asking the model to generate a scalar confidence directly
after the final answer using a repeated <answer> tag. In
the first setting, performance significantly degrades across
all metrics, confirming that accurate supervision is critical
for learning calibrated confidence. In the second setting,
the model fails to train altogether, suggesting that without
an explicit instruction to predict confidence, the model can-
not ground the meaning of the scalar and collapses.

Impact of CoT Visibility on the Confidence. To test
whether the model’s confidence relies on observing the
length or content of the generated CoT, we compare cali-
bration when confidence is elicited before versus after CoT
generation. As shown in Figure 4, the two reliability curves
are broadly similar, suggesting that the model does not de-
pend heavily on CoT visibility and instead bases its confi-
dence on internal uncertainty.

4.4. Confidence-Guided Reasoning Path Refinement

Table 3: Manual rethinking improves accuracy
in low-confidence bins on GSM8K test set using
LLaMA3.2-3B-Instruct (∆ACC).

Bin 0 10 20 30

∆ACC +0.5625 +0.5524 +0.3158 +0.2069
Count 16 143 38 29

When a model is well-calibrated, its verbalized confidence
serves as a trustworthy signal for downstream decision-
making and control. As demonstrated previously, the
CSFT-trained model is capable of accurately predicting its
confidence even before generating the full CoT. This ca-
pability opens up the possibility of guiding the reasoning
trajectory from the very beginning.

We exploit this by manually redirecting low-confidence
samples toward alternative reasoning paths. Specifically,
if the model expresses low confidence in its initial out-
put(elicited via the prefix prompt shown in Figure 9), we
initiate a new reasoning attempt with an altered or more
structured prompt (as shown in Figure 14), without waiting
for failure. This preemptive rethinking mechanism enables
selective refinement with minimal additional cost.

As shown in Table 3, this confidence-aware rethinking
strategy substantially improves accuracy in the low confi-
dence bins. For example, in the 0–10 confidence range, ac-
curacy improves by over 55 percentage points. This result
underscores the utility of confidence not just for post hoc
calibration, but also for guiding efficient and cost-aware
reasoning-time improvement.

5. Conclusion and Future Work
To develop well-calibrated LLMs capable of expressing
trustworthy verbalized confidence in CoT reasoning, we
propose a simple yet effective fine-tuning method called
CSFT. For training, we construct a synthetic dataset based
on the GSM8K training set, where each problem is paired
with a self-generated confidence label.

Empirically, we demonstrate that LLMs fine-tuned with

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Submission and Formatting Instructions for ICML 2025

CSFT achieve substantial improvements across multiple
evaluation metrics—including accuracy and ECE—on both
the GSM8K test split and out-of-domain benchmarks. Re-
markably, we also observe that CSFT elicits the emergence
of self-verification behavior, particularly in low-confidence
scenarios, despite not providing any explicit supervision re-
lated to reasoning strategies during training. Moreover, this
self-verification behavior in low-confidence scenarios can
act as a valuable mechanism for end users interacting with
LLMs. It serves as an implicit indicator that the model rec-
ognizes its own uncertainty and is actively attempting to
validate its response.

Looking forward, several directions emerge. First, since
we observe that confidence can be elicited prior to reason-
ing, it may be possible to predict the downstream cost of a
reasoning trajectory (e.g., output length or compute usage)
from the initial confidence. This opens up opportunities for
confidence-conditioned inference policies that balance ac-
curacy and efficiency. Second, while self-verification is de-
sirable under uncertainty, we find that some low-confidence
generations enter excessively long or redundant reasoning
loops, potentially reflecting local minima in the genera-
tion dynamics. Third, one could explore confidence-aware
steering of CoT trajectories, or use latent confidence sig-
nals to trigger rethink-style interventions without incurring
full-generation overhead.

References
Achiam, Josh et al. (2023). “Gpt-4 technical report”. In:

arXiv preprint arXiv:2303.08774 (cit. on p. 1).

Band, Edward et al. (2024). “Linguistic Calibra-
tion of Long-Form Generations”. In: Advances
in Neural Information Processing Systems. URL:
https : / / proceedings . neurips . cc /
paper _ files / paper / 2024 / file /
4b8eaf3bcdc105423a972ed90eb07217 -
Paper-Conference.pdf (cit. on pp. 1, 2).

Brier, Glenn W (1950). “Verification of forecasts expressed
in terms of probability”. In: Monthly weather review
78.1, pp. 1–3 (cit. on p. 9).

Chen, Bailin et al. (2023). “Program-of-Thoughts Prompt-
ing: Disentangling Computation from Reasoning for
Numerical Reasoning Tasks”. In: Findings of the As-
sociation for Computational Linguistics: ACL 2023,
pp. 9757–9778 (cit. on pp. 1, 2).

Clark, Peter et al. (2018). “Think you have solved ques-
tion answering? try arc, the ai2 reasoning challenge”. In:
arXiv preprint arXiv:1803.05457 (cit. on pp. 3, 9).

Cobbe, Karl et al. (2021). “Training verifiers to solve math
word problems”. In: arXiv preprint arXiv:2110.14168
(cit. on pp. 3, 9).

Desai, Shrey and Greg Durrett (2020). “Calibration of Pre-
trained Transformers”. In: Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language Pro-
cessing. URL: https : / / aclanthology . org /
2020.emnlp-main.763/ (cit. on p. 2).

Du, Xuefeng, Chaowei Xiao, and Sharon Li (2024). “Halo-
scope: Harnessing unlabeled llm generations for hallu-
cination detection”. In: Advances in Neural Informa-
tion Processing Systems 37, pp. 102948–102972 (cit. on
p. 1).

Goh, Ethan et al. (2024). “Large language model influence
on diagnostic reasoning: a randomized clinical trial”. In:
JAMA Network Open 7.10, e2440969–e2440969 (cit. on
p. 1).

Grattafiori, Aaron et al. (2024). “The llama 3 herd of mod-
els”. In: arXiv preprint arXiv:2407.21783 (cit. on p. 3).

Guo, Daya et al. (2025). “Deepseek-r1: Incentivizing rea-
soning capability in llms via reinforcement learning”. In:
arXiv preprint arXiv:2501.12948 (cit. on pp. 1, 2).

Hu, Edward J et al. (2021). “LoRA: Low-Rank Adaptation
of Large Language Models”. In: International Confer-
ence on Learning Representations (cit. on p. 3).

Jang, Chaeyun et al. (2024). “Calibrated Decision-Making
through LLM-Assisted Retrieval”. In: arXiv preprint
arXiv:2411.08891 (cit. on pp. 1, 2).

Kadavath, Saurav et al. (2022). “Language Models
(Mostly) Know What They Know”. In: arXiv preprint
arXiv:2207.05221. URL: https : / / arxiv . org /
abs/2207.05221 (cit. on p. 2).

Kapoor, Sanyam et al. (n.d.). “Large Language Models
Must Be Taught to Know What They Don’t Know”. In:
The Thirty-eighth Annual Conference on Neural Infor-
mation Processing Systems (cit. on pp. 1, 2).

Lightman, Hunter et al. (2023). “Let’s verify step by step”.
In: The Twelfth International Conference on Learning
Representations (cit. on pp. 3, 9).

Lin, Xiang et al. (2024). “Calibrating the Confidence of
Large Language Models by Eliciting Self-Reflective Re-
sponses”. In: Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing.
URL: https : / / aclanthology . org / 2024 .
emnlp-main.173.pdf (cit. on p. 2).

7

https://proceedings.neurips.cc/paper_files/paper/2024/file/4b8eaf3bcdc105423a972ed90eb07217-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/4b8eaf3bcdc105423a972ed90eb07217-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/4b8eaf3bcdc105423a972ed90eb07217-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/4b8eaf3bcdc105423a972ed90eb07217-Paper-Conference.pdf
https://aclanthology.org/2020.emnlp-main.763/
https://aclanthology.org/2020.emnlp-main.763/
https://arxiv.org/abs/2207.05221
https://arxiv.org/abs/2207.05221
https://aclanthology.org/2024.emnlp-main.173.pdf
https://aclanthology.org/2024.emnlp-main.173.pdf

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Submission and Formatting Instructions for ICML 2025

Naeini, Mahdi Pakdaman, Gregory Cooper, and Milos
Hauskrecht (2015). “Obtaining well calibrated probabil-
ities using bayesian binning”. In: Association for the Ad-
vancement of Artificial Intelligence (AAAI) (cit. on pp. 3,
9).

Nayab, Sania et al. (2024). “Concise thoughts: Impact of
output length on llm reasoning and cost”. In: arXiv
preprint arXiv:2407.19825 (cit. on p. 2).

Nguyen, Hy et al. (2024). “Semantic Entropy Probes: Ro-
bust and Cheap Hallucination Detection in Large Lan-
guage Models”. In: arXiv preprint arXiv:2406.15927.
URL: https://arxiv.org/abs/2406.15927
(cit. on p. 2).

Qiu, Jianing et al. (2024). “LLM-based agentic systems in
medicine and healthcare”. In: Nature Machine Intelli-
gence 6.12, pp. 1418–1420 (cit. on p. 1).

Shafayat, Sheikh et al. (2025). “Can Large Reasoning Mod-
els Self-Train?” In: arXiv preprint arXiv:2505.21444
(cit. on p. 2).

Stengel-Eskin, Elias, Peter Hase, and Mohit Bansal (2024).
“LACIE: Listener-aware finetuning for calibration in
large language models”. In: Advances in Neural Infor-
mation Processing Systems 37, pp. 43080–43106 (cit. on
pp. 1, 2).

Takayanagi, Takehiro et al. (2025). “Are Generative AI
Agents Effective Personalized Financial Advisors?” In:
arXiv preprint arXiv:2504.05862 (cit. on p. 1).

Team, Kimi et al. (2025). “Kimi k1. 5: Scaling re-
inforcement learning with llms”. In: arXiv preprint
arXiv:2501.12599 (cit. on p. 2).

Wang, Xuezhi et al. (2023). “Self-Consistency Improves
Chain-of-Thought Reasoning in Language Models”. In:
Proceedings of the 40th International Conference on
Machine Learning (ICML), pp. 24565–24585 (cit. on
pp. 1, 2).

Yang, An et al. (2025). “Qwen3 technical report”. In: arXiv
preprint arXiv:2505.09388 (cit. on pp. 2, 3).

Yoon, Dongkeun et al. (2025). “Reasoning Models Bet-
ter Express Their Confidence”. In: arXiv preprint
arXiv:2505.14489 (cit. on p. 2).

Zhao, Xuandong et al. (2025). “Learning to Reason without
External Rewards”. In: arXiv preprint arXiv:2505.19590
(cit. on p. 2).

Zhou, Kaitlyn et al. (2024). “Relying on the Unreliable:
The Impact of Language Models’ Reluctance to Ex-
press Uncertainty”. In: Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pp. 3623–3643 (cit. on
p. 1).

Zhou, Qinyuan et al. (2023). “Least-to-Most Prompting
Enables Complex Reasoning in Large Language Mod-
els”. In: Advances in Neural Information Processing Sys-
tems 36 (NeurIPS) (cit. on p. 1).

8

https://arxiv.org/abs/2406.15927

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Submission and Formatting Instructions for ICML 2025

A. Experimental details
In this section, we provide detailed information on the models and datasets used in our experiments, along with formal
definitions of the calibration metrics employed for evaluation. Specifically, we describe the two instruction-tuned language
models used: LLaMA3.2-3B-Instruct and Qwen2.5-1.5B-Instruct. For datasets, we include:

• GSM8K (Cobbe et al., 2021); a dataset of 7.47k grade-school math word problems designed to test step-by-step
reasoning. We use 10% and 20% of the original training set (0.75k and 1.49k examples, respectively) for training and
validation, and the full test set of 1.32k examples for evaluation. Available at huggingface.co/openai/gsm8k.

• MATH-500 (Lightman et al., 2023); a subset of the MATH dataset consisting of 500 diverse high school
level problems covering algebra, geometry, calculus, and more. Used solely for evaluation. Available at
huggingface.co/HuggingFaceH4/MATH-500.

• ARC-Challenge (Clark et al., 2018); a multiple-choice science and commonsense QA benchmark containing 1.17k
test questions that require reasoning beyond surface-level cues. We use the test set for evaluation. Available at
huggingface.co/allenai/ai2_arc.

A.1. Model and datasets

Table 4: Training hyperparameters used for CSFT fine-tuning across both models.

Hyperparameter Value

Batch size 1
Gradient accumulation 16
Learning rate [1e-5, 1e-04]
Optimizer AdamW
Weight decay 0.0
Warmup ratio 0.0
Max sequence length 1024
KL regularization (λ) 0.0
Training steps 2500
Checkpoint selection Best dev loss

LoRA configuration
LoRA rank (r) 128
LoRA alpha 32
LoRA dropout 0.1
LoRA target modules qproj, vproj

A.1.1. CALIBRATION METRICS

• Expected Calibration Error (ECE; Naeini et al., 2015):

ECE =

M∑
m=1

|Bm|
n

|acc(Bm)− conf(Bm)|

where Bm is the set of predictions in bin m, acc(Bm) is the accuracy, and conf(Bm) is the average confidence of the
predictions in that bin. ECE measures how well the model’s predicted probabilities are calibrated.

• Brier Score (BS; Brier, 1950):

BS =
1

N

N∑
i=1

(fi − yi)
2

where fi is the predicted probability and yi is the true label. BS combines both the accuracy and confidence of the
predictions, penalizing overconfident and underconfident predictions.

9

https://huggingface.co/datasets/openai/gsm8k
https://huggingface.co/datasets/HuggingFaceH4/MATH-500
https://huggingface.co/datasets/allenai/ai2_arc

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Submission and Formatting Instructions for ICML 2025

0 10 20 30 40 50 60 70 80 90 100
Confidence after CSFT (binned)

0

200

400

600

800

1000

M
ea

n
Le

ng
th

 (t
ok

en
s)

After CSFT
Pre-trained Model

Figure 5: Output length across confidence bins on Math-500, using LLaMA3.2-3B-Instruct fine-tuned with CSFT.
The model generates significantly longer responses when confidence is low, while high-confidence predictions tend to be
more concise.

B. Additional Results
B.1. Length Analysis on Held-out CoT Tasks

Figure 5 and Figure 6 present an analysis of model outputs on Math-500 and ARC-Challenge—two held-out CoT tasks
not seen during CSFT training. As shown in both figures, output length increases in low-confidence bins. In the case of
Math-500, there is also a clear trend toward more concise responses in high-confidence bins. These results demonstrate
that the length modulation effect reported in the main paper is not restricted to the training distribution but generalizes
to unseen tasks. In other words, CSFT enables the model to internalize the ability to adjust response length based on its
uncertainty, suggesting a deeper transformation in its reasoning behavior.

C. Prompt Examples
This section presents the prompt templates used in our experiments for eliciting model reasoning, answers, and confidence
scores. We include both the prefix prompt, where the confidence is generated before reasoning begins, and the suffix
prompt, where confidence is predicted after the final answer. All prompts follow a standardized format to ensure consistent
supervision during CSFT and reliable evaluation during inference.

10

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Submission and Formatting Instructions for ICML 2025

0 10 20 30 40 50 60 70 80 90 100
Confidence after CSFT (binned)

0

200

400

600

800

1000

1200

1400

M
ea

n
Le

ng
th

 (t
ok

en
s)

After CSFT
Pre-trained Model

Figure 6: Output length across confidence bins on ARC-Challenge, using LLaMA3.2-3B-Instruct fine-tuned with
CSFT. The same trend of confidence-conditioned length modulation emerges, despite the task being unseen during training.

»> Base Reasoning Prompt

This is a conversation between User and Assistant.
The User asks a question, and the Assistant provides a solution.
Before answering, the Assistant reasons through the problem step-by-step.
The reasoning is enclosed within <think> ... </think>, and the final answer within
<answer> ... </answer>.

Example:
{question}
<think>{step-by-step reasoning}</think>
<answer>{final answer}</answer>

Now, respond to the following using the exact same format:
<question>

Figure 7: Base prompt format used to elicit step-by-step reasoning and final answer generation.

»> Suffix Confidence Prompt

Please respond with a score from 0 to 100 in <confidence> </confidence> tags.
How confident are you in your previous answer?

Figure 8: Suffix confidence prompt used to elicit model confidence after the full reasoning and answer generation. Since
confidence is predicted post hoc, this setup allows for calibration without interfering with the model’s original reasoning
or final answer.

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Submission and Formatting Instructions for ICML 2025

»> Prefix Confidence Prompt

This is a conversation between User and Assistant.
The User asks a question, and the Assistant provides a thoughtful, reasoned answer.
Before answering, the Assistant first reasons through the problem step-by-step.
The reasoning is enclosed in <think> ... </think> tags.
The final answer is enclosed in <answer> ... </answer> tags.
A confidence score is then provided in <confidence> ... </confidence> tags, representing the Assis-
tant’s certainty as a continuous value between 0 and 100.

Example:
{question}
<think>{step-by-step reasoning}</think>
<answer>{final answer}</answer>
<confidence>{confidence}</confidence>

Now, answer the following in exactly the same format:
<question>

Figure 9: Prefix confidence prompt used to elicit model confidence before reasoning begins. By conditioning the generation
on anticipated confidence, this prompt not only guides the model’s uncertainty expression but also influences the reasoning
path and final answer.

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Submission and Formatting Instructions for ICML 2025

»> GSM8K Parsing Prompt

Instruction:
We have a user’s question and a model’s generated response:
Your task:
1. Carefully read the question and the generated response in Example 6 only.
2. Extract the final answer based on the following rules:

• If the response contains a number (with or without units), extract only the numeric value.

• If the response is purely textual (no numbers), extract the exact string as it appears.

3. Use the following output format: Model’s Final Answer is: [Your extracted answer]

Rules:

• Only process Example 6 for extraction. Ignore all other examples.

• Do not include units, symbols, or extra text when extracting numbers.

• Provide the answer strictly in the requested format without additional explanations.

Examples
Example 1: Model’s Generated Response: It takes about 160 minutes.
Model’s Final Answer is: 160
Example 2: Model’s Generated Response: The nearest star is approximately 4.24 light years away.
Model’s Final Answer is: 4.24
Example 3: Model’s Generated Response: The tallest mountain is Mount Everest.
Model’s Final Answer is: Mount Everest
Example 4: Model’s Generated Response: It weighs 5 kg.
Model’s Final Answer is: 5
Example 5: Model’s Generated Response: 81 + 221 - 24 = 278.
Model’s Final Answer is: 278

Example 6: Model’s Generated Response: <answer_text>

Figure 10: Prompt used to extract final answers from model-generated responses on GSM8K.

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Submission and Formatting Instructions for ICML 2025

»> Math500 Matching Prompt

Instruction:
You are given the true answer and the final answer generated by a model for a math problem.
Your task:

1. Only examine Example 6.

2. Compare the model’s final answer and the true answer.

3. Respond with "yes" if they exactly match, otherwise respond with "no".

4. Do not include any explanation or extra words—just respond with "yes" or "no".

Examples
Example 1:
True Answer: 0.5
Model Answer: 1/2
Is it correct?: yes
Example 2:
True Answer: 24
Model Answer: 22
Is it correct?: no
Example 3:
True Answer: 8
Model Answer: 32 / 4 = 8
Is it correct?: yes
Example 4:
True Answer: \frac{10}{4}
Model Answer: \frac{9}{4}
Is it correct?: no
Example 5:
True Answer: 3
Model Answer: \frac{15}{5}
Is it correct?: yes

Example 6:
True Answer: <true_answer>
Model Answer: <model_answer>
Is it correct?:

Figure 11: Matching prompt for evaluating exact answer agreement on Math500. Designed to assess correctness by
comparing model output with the ground truth in a strict yet interpretable format.

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Submission and Formatting Instructions for ICML 2025

»> ARC-Challenge Parsing Prompt

Instruction:
A user’s question provides four choices formatted exactly as:

A. <option A>
B. <option B>
C. <option C>
D. <option D>

We also have the model’s generated response.
Your task:

1. Read Example 6 only.

2. Decide which single choice (A, B, C, or D) the model ultimately selected, following these rules:

• Letter match – If the response explicitly includes the letter ‘A’, ‘B’, ‘C’, or ‘D’ (optionally followed by
punctuation), extract only that letter.

• Text match – If no letter is given, compare the response text (case-insensitive, ignoring punctuation and
surrounding spaces) with each option; if it matches exactly one, return the corresponding letter.

• If both a letter and option text appear, treat the letter as authoritative.

3. Output format (strict):
Model’s Final Answer is: <A | B | C | D>

Do not add explanations or any extra text.

Examples
Example 1:
Choices: A. Paris B. Berlin C. Madrid D. Rome
Model’s Generated Response: A. Paris is the capital of France.
Model’s Final Answer is: A
Example 2:
Choices: A. 3 B. 4 C. 5 D. 6
Model’s Generated Response: The correct option is B.
Model’s Final Answer is: B
Example 3:
Choices: A. Spring B. Summer C. Autumn D. Winter
Model’s Generated Response: It’s usually coldest in winter.
Model’s Final Answer is: D

Example 6:
Choices: {choices}
Model’s Generated Response: {answer_text}

Figure 12: Parsing prompt for multiple-choice answer extraction on ARC-Challenge. The rules prioritize explicit letter
selection, with fallback to semantic string matching.

»> Pre-CoT Confidence Prompt

Before generating your answer, can you first assess your internal confidence (0–100) in its correctness and state it
using ‘<confidence> </confidence>‘ tags, then proceed to provide your full answer?

Figure 13: Prompt format for eliciting a model’s self-assessed confidence prior to generating CoT response.

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Submission and Formatting Instructions for ICML 2025

»> Low Confidence Rethinking Prompt

Your confidence score is low. Rather than following your current reasoning path, pause and explore an alternative
approach that is likely to raise your confidence. Think step-by-step and provide a revised answer.

Figure 14: Prompt used when the model reports low confidence, encouraging it to pause and reconsider its reasoning path
to generate a more confident response.

16

	Introduction
	Related Works
	Confidence Calibration in LLMs
	Self-Verification and CoT Optimization

	Confidence-Supervised Fine-Tuning
	Experiments
	Main Experiments
	Self-Verification Behaviour
	Ablation Studies
	Confidence-Guided Reasoning Path Refinement

	Conclusion and Future Work
	Experimental details
	Model and datasets
	Calibration metrics

	Additional Results
	Length Analysis on Held-out CoT Tasks

	Prompt Examples

