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Verbalized Confidence Triggers Self-Verification
: Emergent Behavior Without Explicit Reasoning Supervision
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Abstract
Uncertainty calibration is essential for the safe
deployment of large language models (LLMs),
particularly when users rely on verbalized confi-
dence estimates. While prior work has focused
on classifiers or short-form generation, confi-
dence calibration for chain-of-thought (CoT) rea-
soning remains largely unexplored. Surprisingly,
we find that supervised fine-tuning with scalar
confidence labels alone suffices to elicit self-
verification behavior of language models, with-
out any explicit reasoning supervision or rein-
forcement learning-based rewards. Despite be-
ing trained only to produce a verbalized con-
fidence score without any self-verifying exam-
ples, the model learns to generate longer and self-
checking responses for low-confidence queries
while providing more concise answers for high-
confidence ones. We further propose a sim-
ple rethinking method that boosts performance
via test-time scaling based on calibrated uncer-
tainty. Experiments on GSM8K and held-out
reasoning tasks such as MATH-500 and ARC-
Challenge show that our confidence-aware fine-
tuning improves both calibration and accuracy,
while also enhancing interpretability by aligning
the model’s reasoning path with its confidence.

1. Introduction
Large language models (LLMs) demonstrate strong perfor-
mance not only in natural language generation but also in
complex reasoning and decision-support tasks across di-
verse domains (Achiam et al., 2023; Guo et al., 2025).
Their application to high-stakes settings such as medical
diagnosis and personalized financial analysis has drawn
increasing attention (Goh et al., 2024; Qiu et al., 2024;
Takayanagi et al., 2025), with the potential to reduce ex-
pert workload and accelerate decision-making.

Nonetheless, ensuring the reliability of LLMs remains a
critical challenge. Models frequently produce incorrect
outputs with high confidence, and such overconfident er-
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Figure 1: Generation length and self-verification rate
across confidence bins on GSM8K using the CSFT-trained
LLaMA-3.2-3B-Instruct model. Lower-confidence
bins yield longer outputs and higher self-verification rates,
suggesting a learned fallback behavior. Overall, 20%
of generations showed self-verification (measured using
GPT-4.1), compared to under 1.5% in the zero-shot set-
ting, which is omitted. Representative examples are shown
in Figure 2.

rors can lead to harmful decisions when left undetected by
users (K. Zhou et al., 2024). These hallucinations pose
risks that go beyond factual inaccuracies, with implications
for healthcare, law, and finance (X. Du et al., 2024). To mit-
igate these risks, LLMs must be able to quantify and com-
municate their uncertainty in a human interpretable man-
ner, such as through verbalized confidence.

While a few recent studies train models to explicitly ver-
balize their confidence (Band et al., 2024; Kapoor et al.,
n.d.; Stengel-Eskin et al., 2024; Jang et al., 2024), most
rely on complex procedures such as reinforcement learning
or classifier probing. Moreover, they report little evidence
of generalization in zero-shot settings or under chain-of-
thought (CoT) reasoning. At the same time, state-of-the-art
LLMs increasingly tackle challenging problems by gener-
ating explicit CoT traces (Q. Zhou et al., 2023; B. Chen
et al., 2023; X. Wang et al., 2023). The reliability of ver-
balized confidence within such CoT reasoning, however,
remains largely unexplored.

In contrast, this work shows that even a simple confidence-
supervised fine-tuning (CSFT) approach, under suitable
conditions, can yield well-calibrated verbalized confidence
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in CoT reasoning. Furthermore, we demonstrate that the
model can autonomously adjust its response length and ex-
hibit emergent self-verification behavior as a function of
its uncertainty. Specifically, without reasoning supervi-
sion, the model learns to modulate its reasoning process
while being trained to generate an answer, followed by a
verbalized confidence score. As illustrated in Figure 1,
low-confidence predictions result in longer outputs with
self-check phrases such as “recalculate” or “let me double-
check”, whereas high-confidence responses are shorter and
more decisive. This phenomenon emerges even without
CoT reasoning guidance in training, and is consistently ob-
served across GSM8K, MATH-500, and ARC-Challenge.
These findings suggest that verbalized confidence can serve
not only as a calibration target but also as an effective
training signal that encourages more deliberate chain-of-
thought generation, ultimately leading to improved reason-
ing accuracy.

Our contributions are as follows:

• We propose CSFT, a simple confidence-supervised
fine-tuning method using the problems and the corre-
sponding synthetic self-confidence labels that enables
reliable verbalized confidence in CoT reasoning tasks.

• We demonstrate that CSFT elicits emergent self-
verification behavior without requiring reasoning su-
pervision, manifesting as a systematic relationship be-
tween confidence and output length.

• We analyze how prompting style, regularization
strength, and reasoning depth affect this phenomenon,
and demonstrate generalization to held-out reasoning
tasks.

These results provide a scalable path toward building
uncertainty-aware LLMs using standard SFT pipelines,
without architectural modifications or post-hoc correction.
CSFT not only improves calibration but also guides model
behavior toward safer and more interpretable reasoning.

2. Related Works
2.1. Confidence Calibration in LLMs

Calibration in LLMs has been studied from various per-
spectives. Likelihood-based methods estimate uncertainty
using token-level entropy, sequence probabilities, or gen-
eration variance (Desai and Durrett, 2020; Nguyen et al.,
2024; Kadavath et al., 2022). These methods are helpful
for model-side diagnostics, but they do not yield human-
readable confidence statements. Verbalized confidence,
where models explicitly articulate how sure they are, has
emerged as a more user-friendly and interpretable alterna-
tive. (Band et al., 2024; Stengel-Eskin et al., 2024). How-

ever, most existing approaches focus on short-form declar-
ative QA and require manual scalar labels (Lin et al., 2024)
or classifier-based tuning (Kapoor et al., n.d.; Jang et al.,
2024), without an understanding of the dynamics of reason-
ing. In the context of CoT reasoning, recent work has re-
ported that instruction-tuned or reasoning-supervised mod-
els (A. Yang et al., 2025; Guo et al., 2025) exhibit better
calibration under zero-shot inference (Yoon et al., 2025).
However, these findings remain observational and do not
examine how calibration can be systematically induced or
controlled in reasoning tasks. In contrast, our work pro-
vides the first direct evidence that fine-tuning with weak,
self-derived confidence labels, obtained through consis-
tency across sampled answers, can induce improved cali-
bration and emergent self-verification in reasoning, even in
models with no prior exposure to CoT supervision.

2.1.1. SELF-VERIFICATION AND COT OPTIMIZATION

Self-verification has emerged as a desirable property for
LLMs, with prior work demonstrating that models capable
of revisiting and refining their reasoning tend to achieve
higher accuracy and robustness, especially on complex
tasks (X. Wang et al., 2023). Accordingly, a growing body
of research has focused on optimizing the structure of CoT
outputs, either by making them more concise (Nayab et al.,
2024; Team et al., 2025) or by generating longer and more
reflective traces (Guo et al., 2025). However, these ap-
proaches typically target a fixed generation style, without
conditioning on the model’s internal uncertainty. In real-
ity, effective reasoning should adapt to the model’s confi-
dence: when confidence is low, the model should elabo-
rate and verify; when confidence is high, a brief and de-
cisive answer may suffice. Most existing methods do not
capture this dynamic. Reinforcement learning-based ap-
proaches train models to favor verifiable traces (B. Chen
et al., 2023; Zhao et al., 2025; Shafayat et al., 2025), but
require reward shaping and large-scale tuning. We show
that a single round of fine-tuning on scalar confidence la-
bels derived from self-consistency induces CoT behaviors
that adaptively reflect the model’s uncertainty.

3. Confidence-Supervised Fine-Tuning
We introduce Confidence-Supervised Fine-Tuning (CSFT),
a simple yet effective method for calibrating verbalized
confidence in LLMs under reasoning scenarios, without
requiring explicit supervision of the reasoning process.
CSFT fine-tunes the model to calibrate its verbalized con-
fidence, while also producing a CoT reasoning trace and fi-
nal answer, so that the reported confidence more accurately
reflects the model’s belief in the correctness of its answer.

Given a question q, the decoder is trained to gener-
ate a structured response consisting of: (i) a CoT rea-
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soning trace r and final answer a, enclosed within
<think> ... </think> and <answer> ... </answer>

tags, respectively; followed by (ii) a suffix confi-
dence prompt (see Appendix C), which elicits a dis-
crete confidence score c ∈ {0, 10, . . . , 100} expressed in
<confidence> ... </confidence> tags. Only the con-
fidence score c is supervised during training; both the rea-
soning r and the answer a remain unconstrained.

In this section, we used Low Rank Adaptation (LoRA;
Hu et al., 2021) method to fine-tune the LLM model fθ0 .
Here, we denote θ0 as fixed pre-trained parameters and θ
as fixed pre-trained parameters with additional learnable
LoRA weights.

Self-Confidence label. To compute the confidence la-
bel, we first sample K full generations {(r(i), a(i))}Ki=1 ∼
fθ(· | q) and estimate the empirical accuracy as

p̂(q) =
1

K

K∑
i=1

1
[
a(i) = a⋆

]
, (1)

where a⋆ denotes the gold answer. To determine whether
each answer a(i) matches the gold answer a⋆, we first
parsed the value between <answer> ... </answer> from
the LLM response to extract a(i), and then checked whether
it exactly matched the gold answer. Then, the self-
confidence label was obtained by discretizing the accuracy:
c = ⌊100 · p̂(q)⌋.

Training objective. Let Tc denote the token positions
corresponding to the entire confidence span, including the
<confidence> ... </confidence> tags. CSFT mini-
mizes the masked cross-entropy loss over these positions:

LCSFT = −
∑
t∈Tc

log pθ(yt | y<t, q), (2)

where pθ(y) indicates the predicted probability of token y
from LLM fθ. And optionally, we add a KL regularization
term over the CoT and answer spans (including their re-
spective tags), where the corresponding token positions are
denoted by TKL, to encourage the model to remain close to
the pretrained distribution:

Ltotal = LCSFT + λ
∑
t∈TKL

KL(pθ ∥ pθ0) , (3)

where λ is a weighting hyperparameter, and pθ and pθ0 rep-
resents pθ(· | y<t, q) and pθ0(· | y<t, q), respectively. Un-
less otherwise noted, we set λ = 0.

Calibration effect. Because the target c reflects the em-
pirical accuracy of the model’s own generations, CSFT en-
courages alignment between predicted confidence and ac-
tual correctness. This leads to improved calibration, as

measured by standard metrics such as expected calibration
error (ECE; Naeini et al., 2015) in CoT reasoning tasks.

4. Experiments
Experimental Setup. We construct our training corpus
by sampling K = 10 CoT traces and their corresponding
answers for each question q from the GSM8K (Cobbe et
al., 2021) training split, and assigning a self-consistency
label based on the proportion of sampled answers that
match the gold answer. Using this signal, we fine-tune
LLaMA3.2-3B-Instruct (Grattafiori et al., 2024) and
Qwen2.5-1.5B-Instruct (A. Yang et al., 2025), and
evaluate accuracy, Area Under the Receiver Operating
Characteristic curve (AUROC), and calibration metrics
(ECE, Brier Score) on the GSM8K test set as well as on
the held-out reasoning benchmarks MATH-500 (Lightman
et al., 2023) and ARC-Challenge (Clark et al., 2018). Fur-
ther experimental details are provided in Appendix A.

4.1. Main Experiments

Evaluation on GSM8K dataset. Table 1 show re-
sults on the GSM8K test set, where our model
was trained using CSFT with the GSM8K training
dataset. Our method consistently improves all calibra-
tion metrics and accuracy over the pre-trained baseline,
not only on LLaMA3.2-3B-Instruct but also on
Qwen2.5-1.5B-Instruct. Beyond better alignment
between predicted confidence and correctness, we observe
that CSFT induces desirable reasoning behaviors, such as
internal error checking and more deliberate output con-
struction—hallmarks of self-verification, particularly in
low-confidence cases. Refer to Fig. 2 to see an example.
And in such low-confidence cases, responses based on self-
verification can serve as a mechanism for users to view the
predicted model confidence as more reliable.

Unseen CoT Tasks. To evaluate the generalization ca-
pability of the model trained with CSFT, we test it
on two reasoning benchmarks—MATH-500 and ARC-
Challenge—that are structurally, topically, and cognitively
distinct from GSM8K. These benchmarks allow us to
assess how well the learned reasoning patterns trans-
fer to the unseen domain and more challenging prob-
lem distributions. As shown in Table 1, CSFT im-
proves generalization to unseen CoT tasks for both models.
On MATH-500, LLaMA3.2-3B-Instruct achieves a
+37% accuracy gain and 63% ECE reduction, while
Qwen2.5-1.5B-Instruct yields a +2.5% accuracy
gain and 32% lower ECE. On ARC-Challenge, LLaMA
improves accuracy by 6.3% and ECE by 71%, and Qwen
shows 9.1% higher accuracy and 33% better calibration.
These results indicate that our self-consistency-based cali-
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Table 1: Calibration results on the in-distribution GSM8K and two held-out reasoning benchmarks. For datasets, ✓: ‘seen’
during CSFT, ✗: ‘unseen’ during CSFT. For the metrics, ↓: lower is better and ↑: higher is better.

Dataset Model Method AUROC (↑) ACC (↑) ECE (↓) BS (↓) Avg. Len.

GSM8K (✓)
LLaMA3.2-3B-Instruct Pre-trained 50.57 68.68 0.2065 0.2549 226.66

CSFT 81.25 71.34 0.0568 0.1450 288.71

Qwen2.5-1.5B-Instruct Pre-trained 49.59 67.85 0.1928 0.2915 250.21
CSFT 67.67 69.63 0.0552 0.2285 291.70

MATH-500 (✗)
LLaMA3.2-3B-Instruct Pre-trained 49.57 41.20 0.4730 0.4800 416.70

CSFT 62.97 56.60 0.1776 0.3059 559.33

Qwen2.5-1.5B-Instruct Pre-trained 59.91 55.00 0.3786 0.2978 444.86
CSFT 60.27 56.40 0.2590 0.2629 477.96

ARC-Challenge (✗)
LLaMA3.2-3B-Instruct Pre-trained 53.89 65.36 0.2251 0.2738 210.50

CSFT 72.58 69.45 0.0647 0.1853 293.13

Qwen2.5-1.5B-Instruct Pre-trained 54.08 52.07 0.1660 0.2680 105.55
CSFT 61.63 56.82 0.1107 0.2584 114.85

bration transfers beyond the training task, improving both
confidence alignment and problem-solving ability on di-
verse reasoning challenges.

4.2. Self-Verification Behaviour

In this section, we analyze how training with CSFT induces
self-verification behavior and how this behavior correlates
with predicted confidence levels. We further support our
analysis with concrete examples. First, Figure 1 presents
two key relationships: (1) the average CoT token length
as a function of predicted confidence, and (2) the propor-
tion of answers that trigger self-verification across different
confidence levels.

The results in Figure 1 show a clear trend: CSFT-trained
models generate significantly longer outputs when their
confidence is low. In particular, for the lowest-confidence
bin (0), the average output length is nearly five times longer
than that of the zero-shot baseline. This indicates that
the model compensates for low confidence by engaging
in extended reasoning, suggesting that self-verification is
an emergent behavior tied to uncertainty. This increase in
length is closely accompanied by a high self-verification
rate, with nearly all corrected answers involving explicit
verification behaviors. Moreover, this self-verification be-
havior under low-confidence scenarios can serve as a valu-
able mechanism for end users relying on LLM responses. It
provides an implicit signal that the model is uncertain and
is actively working to validate its answer, thereby enhanc-
ing the perceived reliability of the predicted confidence
from the user’s perspective. As shown in Appendix B.1,
both the length and self-verification patterns generalize be-
yond the training distribution, emerging similarly on un-
seen CoT tasks as well.

Qualitative Examples. In Figure 2, we provide qualita-
tive examples comparing responses generated by the pre-
trained baseline and the model fine-tuned with CSFT. The
results highlight that CSFT-trained models dynamically ad-
just both the length and structure of their reasoning based
on the predicted confidence. Low-confidence cases elicit
longer, reflective traces with internal correction, whereas
high-confidence responses tend to be brief and decisive.

4.3. Ablation Studies

Prompt Position. The suffix setting, in which the confi-
dence prompt is appended after the model’s answer, is de-
scribed in § 3. In addition, we evaluate a prefix variant
where the confidence prompt is inserted immediately af-
ter the question and before any reasoning begins (see Ap-
pendix C). This placement allows the model to condition
its reasoning on anticipated confidence, which may affect
both generation and calibration. As shown in Figure 3,
the prefix setting consistently yields lower accuracy than
the zero-shot baseline, with performance sharply degrading
when KL regularization is removed (i.e., λ = 0). This sug-
gests that without constraints on the CoT and answer spans,
the model may overfit to expressing uncertainty rather than
reasoning accurately, effectively learning to be confidently
wrong or confidently uncertain. In contrast, the suffix set-
ting shows more favorable behavior. When KL regular-
ization is removed, both calibration and accuracy improve
compared to the zero-shot baseline. These results highlight
a key trade-off: prefix prompting influences the genera-
tion process and requires regularization to remain effective,
while suffix prompting is more stable because it does not
interfere with the model’s reasoning.

KL Regularization. Figure 3 We investigate the effect
of varying the KL regularization weight λ on model per-
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Low-confidence ⇒ Extended response (Self-verification triggered)

q: The vending machines sell chips for 40 cents and candy bars for 75 cents. George spent $5 and got 3 bags of
chips and had 1% of his money left. How many candy bars did he buy? a⋆ = 5

Zero-Shot
<think> To solve this problem, we need to first find out how much money

George spent on chips.We know that he spent $5 in total and had 1% of his
money left. This means he spent 99% of his money, which is $4.90. Since
each bag of chips costs 40 cents, we can divide $4.90 by 0.40 to find out how
many bags of chips he bought. </think>
<answer> George spent $4.90 on chips, and each bag costs 40 cents. To

find out how many bags he bought, we divide $4.90 by 0.40. $4.90 / 0.40 =
12.25. Since we can’t buy a fraction of a bag, we round down to 12 bags of
chips. </answer>

Total token #: 95
How confident are you in your previous answer?
<confidence> 90 </confidence>

CSFT
<think> To solve this problem, we need to break it down into steps.

... (omitted) ...
To find the number of candy bars George bought, we can divide the amount
of money he spent on candy bars (5 cents) by the cost of each candy bar (75
cents): 5 / 75 = 0.0667.
... (omitted) ...
However, this is not the correct answer. We should instead find the amount
of money George had after buying chips and before buying candy bars.
... (omitted) ...
Now, we can divide this amount by the cost of each candy bar (75 cents) to find
the number of candy bars George bought: 375 / 75 = 5.
</think>
<answer> 5 </answer>

Total token #: 481
How confident are you in your previous answer?
<confidence> 10 </confidence>

High-confidence ⇒ Shortened response

q: Jack had $100. Sophia gave him 1/5 of her $100. How many dollars does Jack have now? a⋆ = 120

Zero-Shot
<think> First, we need to find out how much money Sophia gave to Jack.

Since Sophia also had $100 and gave 1/5 of it to Jack, we can calculate the
amount she gave by multiplying 100 by 1/5. Now, we multiply 100 by 1/5,
which is the same as dividing 100 by 5. 100 / 5 = 20. So, Sophia gave Jack
$20. Next, we need to add the amount Sophia gave to Jack to his initial amount
of $100. We can do this by adding 20 to 100. 20 + 100 = 120. Therefore, Jack
now has $120. </think>
<answer> Jack now has $120. </answer>

Total token #: 145
How confident are you in your previous answer?
<confidence> 100 </confidence>

CSFT
<think> To find out how many dollars Jack has now, we need to calculate

1/5 of Sophia’s $100 and add it to Jack’s initial $100. First, we need to find
1/5 of $100. 1/5 of $100 is $100 / 5 = $20. Now, we add $20 to Jack’s initial
$100. $100 + $20 = $120. </think>
<answer> $120 </answer>

Total token #: 92
How confident are you in your previous answer?
<confidence> 100 </confidence>

Figure 2: Confidence reshapes reasoning behavior. Left: In the low-confidence case (top), the CSFT model generates a
long reasoning trace with explicit self-verification, eventually arriving at the correct answer, while the zero-shot model fails.
Right: In the high-confidence case (bottom), both models give the correct answer, but the CSFT response is significantly
more concise, reflecting confidence-aware brevity.

formance, focusing on its impact near λ = 0 (see Fig-
ure 3, Zoom-in figure). The motivation for this analysis is
to examine whether performance gains at low λ are stable
or merely an artifact of tuning. For the prefix setting, we
observe that performance rapidly deteriorates as KL regu-
larization is removed. This suggests that, without a con-
straint to preserve the pretrained distribution over CoT and
answer spans, the model may exploit the freedom to op-
timize ECE at the expense of actual reasoning quality. In
effect, the model becomes well-calibrated but confidently
incorrect. In contrast, the suffix setting remains stable or
even improves in the absence of KL regularization. Since
confidence is predicted independently after the full genera-
tion, removing the KL constraint does not impair reasoning
quality, and may in fact allow for better post hoc alignment

of confidence with correctness. These results highlight the
importance of controlling model behavior when confidence
supervision is introduced at generation time (prefix), as op-
posed to after-the-fact (suffix).

Table 2: Ablation analysis on the impact of confidence la-
bel quality and the inclusion of confidence prompt. Results
are reported as differences relative to CSFT on GSM8K us-
ing LLaMA3.2-3B-Instruct.

Variant ACC ECE Avg. Len.

w/o Correct label -2.14 +0.05 -49.36
w/o Conf question Training collapsed
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Figure 3: Test accuracy and ECE on GSM8K using
CSFT-trained LLaMA3.2-3B-Instruct, evaluated un-
der varying KL weights. Prefix performance declines with-
out KL, whereas suffix remains stable or improves.
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Figure 4: Reliability curves of CSFT-trained
LLaMA3.2-3B-Instruct on GSM8K, comparing
predicted confidence when elicited before vs. after CoT
generation. The broadly similar calibration profiles suggest
that the model’s confidence reflects internal uncertainty
rather than simply CoT length.

Label Quality and Confidence Question. To evaluate
the role of confidence supervision and the design of the
confidence prompt in enabling stable training and achiev-
ing strong performance, we conduct two ablation studies,
as summarized in Table 2. First, we randomly assign confi-
dence labels within the <confidence> tag, breaking the
link between prediction quality and label supervision. Sec-
ond, we remove the explicit confidence prompt, instead
asking the model to generate a scalar confidence directly
after the final answer using a repeated <answer> tag. In
the first setting, performance significantly degrades across
all metrics, confirming that accurate supervision is critical
for learning calibrated confidence. In the second setting,
the model fails to train altogether, suggesting that without
an explicit instruction to predict confidence, the model can-
not ground the meaning of the scalar and collapses.

Impact of CoT Visibility on the Confidence. To test
whether the model’s confidence relies on observing the
length or content of the generated CoT, we compare cali-
bration when confidence is elicited before versus after CoT
generation. As shown in Figure 4, the two reliability curves
are broadly similar, suggesting that the model does not de-
pend heavily on CoT visibility and instead bases its confi-
dence on internal uncertainty.

4.4. Confidence-Guided Reasoning Path Refinement

Table 3: Manual rethinking improves accuracy
in low-confidence bins on GSM8K test set using
LLaMA3.2-3B-Instruct (∆ACC).

Bin 0 10 20 30

∆ACC +0.5625 +0.5524 +0.3158 +0.2069
Count 16 143 38 29

When a model is well-calibrated, its verbalized confidence
serves as a trustworthy signal for downstream decision-
making and control. As demonstrated previously, the
CSFT-trained model is capable of accurately predicting its
confidence even before generating the full CoT. This ca-
pability opens up the possibility of guiding the reasoning
trajectory from the very beginning.

We exploit this by manually redirecting low-confidence
samples toward alternative reasoning paths. Specifically,
if the model expresses low confidence in its initial out-
put(elicited via the prefix prompt shown in Figure 9), we
initiate a new reasoning attempt with an altered or more
structured prompt (as shown in Figure 14), without waiting
for failure. This preemptive rethinking mechanism enables
selective refinement with minimal additional cost.

As shown in Table 3, this confidence-aware rethinking
strategy substantially improves accuracy in the low confi-
dence bins. For example, in the 0–10 confidence range, ac-
curacy improves by over 55 percentage points. This result
underscores the utility of confidence not just for post hoc
calibration, but also for guiding efficient and cost-aware
reasoning-time improvement.

5. Conclusion and Future Work
To develop well-calibrated LLMs capable of expressing
trustworthy verbalized confidence in CoT reasoning, we
propose a simple yet effective fine-tuning method called
CSFT. For training, we construct a synthetic dataset based
on the GSM8K training set, where each problem is paired
with a self-generated confidence label.

Empirically, we demonstrate that LLMs fine-tuned with

6
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CSFT achieve substantial improvements across multiple
evaluation metrics—including accuracy and ECE—on both
the GSM8K test split and out-of-domain benchmarks. Re-
markably, we also observe that CSFT elicits the emergence
of self-verification behavior, particularly in low-confidence
scenarios, despite not providing any explicit supervision re-
lated to reasoning strategies during training. Moreover, this
self-verification behavior in low-confidence scenarios can
act as a valuable mechanism for end users interacting with
LLMs. It serves as an implicit indicator that the model rec-
ognizes its own uncertainty and is actively attempting to
validate its response.

Looking forward, several directions emerge. First, since
we observe that confidence can be elicited prior to reason-
ing, it may be possible to predict the downstream cost of a
reasoning trajectory (e.g., output length or compute usage)
from the initial confidence. This opens up opportunities for
confidence-conditioned inference policies that balance ac-
curacy and efficiency. Second, while self-verification is de-
sirable under uncertainty, we find that some low-confidence
generations enter excessively long or redundant reasoning
loops, potentially reflecting local minima in the genera-
tion dynamics. Third, one could explore confidence-aware
steering of CoT trajectories, or use latent confidence sig-
nals to trigger rethink-style interventions without incurring
full-generation overhead.
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A. Experimental details
In this section, we provide detailed information on the models and datasets used in our experiments, along with formal
definitions of the calibration metrics employed for evaluation. Specifically, we describe the two instruction-tuned language
models used: LLaMA3.2-3B-Instruct and Qwen2.5-1.5B-Instruct. For datasets, we include:

• GSM8K (Cobbe et al., 2021); a dataset of 7.47k grade-school math word problems designed to test step-by-step
reasoning. We use 10% and 20% of the original training set (0.75k and 1.49k examples, respectively) for training and
validation, and the full test set of 1.32k examples for evaluation. Available at huggingface.co/openai/gsm8k.

• MATH-500 (Lightman et al., 2023); a subset of the MATH dataset consisting of 500 diverse high school
level problems covering algebra, geometry, calculus, and more. Used solely for evaluation. Available at
huggingface.co/HuggingFaceH4/MATH-500.

• ARC-Challenge (Clark et al., 2018); a multiple-choice science and commonsense QA benchmark containing 1.17k
test questions that require reasoning beyond surface-level cues. We use the test set for evaluation. Available at
huggingface.co/allenai/ai2_arc.

A.1. Model and datasets

Table 4: Training hyperparameters used for CSFT fine-tuning across both models.

Hyperparameter Value

Batch size 1
Gradient accumulation 16
Learning rate [1e-5, 1e-04]
Optimizer AdamW
Weight decay 0.0
Warmup ratio 0.0
Max sequence length 1024
KL regularization (λ) 0.0
Training steps 2500
Checkpoint selection Best dev loss

LoRA configuration
LoRA rank (r) 128
LoRA alpha 32
LoRA dropout 0.1
LoRA target modules qproj, vproj

A.1.1. CALIBRATION METRICS

• Expected Calibration Error (ECE; Naeini et al., 2015):

ECE =

M∑
m=1

|Bm|
n

|acc(Bm)− conf(Bm)|

where Bm is the set of predictions in bin m, acc(Bm) is the accuracy, and conf(Bm) is the average confidence of the
predictions in that bin. ECE measures how well the model’s predicted probabilities are calibrated.

• Brier Score (BS; Brier, 1950):

BS =
1

N

N∑
i=1

(fi − yi)
2

where fi is the predicted probability and yi is the true label. BS combines both the accuracy and confidence of the
predictions, penalizing overconfident and underconfident predictions.
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Figure 5: Output length across confidence bins on Math-500, using LLaMA3.2-3B-Instruct fine-tuned with CSFT.
The model generates significantly longer responses when confidence is low, while high-confidence predictions tend to be
more concise.

B. Additional Results
B.1. Length Analysis on Held-out CoT Tasks

Figure 5 and Figure 6 present an analysis of model outputs on Math-500 and ARC-Challenge—two held-out CoT tasks
not seen during CSFT training. As shown in both figures, output length increases in low-confidence bins. In the case of
Math-500, there is also a clear trend toward more concise responses in high-confidence bins. These results demonstrate
that the length modulation effect reported in the main paper is not restricted to the training distribution but generalizes
to unseen tasks. In other words, CSFT enables the model to internalize the ability to adjust response length based on its
uncertainty, suggesting a deeper transformation in its reasoning behavior.

C. Prompt Examples
This section presents the prompt templates used in our experiments for eliciting model reasoning, answers, and confidence
scores. We include both the prefix prompt, where the confidence is generated before reasoning begins, and the suffix
prompt, where confidence is predicted after the final answer. All prompts follow a standardized format to ensure consistent
supervision during CSFT and reliable evaluation during inference.
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Figure 6: Output length across confidence bins on ARC-Challenge, using LLaMA3.2-3B-Instruct fine-tuned with
CSFT. The same trend of confidence-conditioned length modulation emerges, despite the task being unseen during training.

»> Base Reasoning Prompt

This is a conversation between User and Assistant.
The User asks a question, and the Assistant provides a solution.
Before answering, the Assistant reasons through the problem step-by-step.
The reasoning is enclosed within <think> ... </think>, and the final answer within
<answer> ... </answer>.

Example:
{question}
<think>{step-by-step reasoning}</think>
<answer>{final answer}</answer>

Now, respond to the following using the exact same format:
<question>

Figure 7: Base prompt format used to elicit step-by-step reasoning and final answer generation.

»> Suffix Confidence Prompt

Please respond with a score from 0 to 100 in <confidence> </confidence> tags.
How confident are you in your previous answer?

Figure 8: Suffix confidence prompt used to elicit model confidence after the full reasoning and answer generation. Since
confidence is predicted post hoc, this setup allows for calibration without interfering with the model’s original reasoning
or final answer.
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»> Prefix Confidence Prompt

This is a conversation between User and Assistant.
The User asks a question, and the Assistant provides a thoughtful, reasoned answer.
Before answering, the Assistant first reasons through the problem step-by-step.
The reasoning is enclosed in <think> ... </think> tags.
The final answer is enclosed in <answer> ... </answer> tags.
A confidence score is then provided in <confidence> ... </confidence> tags, representing the Assis-
tant’s certainty as a continuous value between 0 and 100.

Example:
{question}
<think>{step-by-step reasoning}</think>
<answer>{final answer}</answer>
<confidence>{confidence}</confidence>

Now, answer the following in exactly the same format:
<question>

Figure 9: Prefix confidence prompt used to elicit model confidence before reasoning begins. By conditioning the generation
on anticipated confidence, this prompt not only guides the model’s uncertainty expression but also influences the reasoning
path and final answer.
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»> GSM8K Parsing Prompt

Instruction:
We have a user’s question and a model’s generated response:
Your task:
1. Carefully read the question and the generated response in Example 6 only.
2. Extract the final answer based on the following rules:

• If the response contains a number (with or without units), extract only the numeric value.

• If the response is purely textual (no numbers), extract the exact string as it appears.

3. Use the following output format: Model’s Final Answer is: [Your extracted answer]

Rules:

• Only process Example 6 for extraction. Ignore all other examples.

• Do not include units, symbols, or extra text when extracting numbers.

• Provide the answer strictly in the requested format without additional explanations.

Examples
Example 1: Model’s Generated Response: It takes about 160 minutes.
Model’s Final Answer is: 160
Example 2: Model’s Generated Response: The nearest star is approximately 4.24 light years away.
Model’s Final Answer is: 4.24
Example 3: Model’s Generated Response: The tallest mountain is Mount Everest.
Model’s Final Answer is: Mount Everest
Example 4: Model’s Generated Response: It weighs 5 kg.
Model’s Final Answer is: 5
Example 5: Model’s Generated Response: 81 + 221 - 24 = 278.
Model’s Final Answer is: 278

Example 6: Model’s Generated Response: <answer_text>

Figure 10: Prompt used to extract final answers from model-generated responses on GSM8K.
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»> Math500 Matching Prompt

Instruction:
You are given the true answer and the final answer generated by a model for a math problem.
Your task:

1. Only examine Example 6.

2. Compare the model’s final answer and the true answer.

3. Respond with "yes" if they exactly match, otherwise respond with "no".

4. Do not include any explanation or extra words—just respond with "yes" or "no".

Examples
Example 1:
True Answer: 0.5
Model Answer: 1/2
Is it correct?: yes
Example 2:
True Answer: 24
Model Answer: 22
Is it correct?: no
Example 3:
True Answer: 8
Model Answer: 32 / 4 = 8
Is it correct?: yes
Example 4:
True Answer: \frac{10}{4}
Model Answer: \frac{9}{4}
Is it correct?: no
Example 5:
True Answer: 3
Model Answer: \frac{15}{5}
Is it correct?: yes

Example 6:
True Answer: <true_answer>
Model Answer: <model_answer>
Is it correct?:

Figure 11: Matching prompt for evaluating exact answer agreement on Math500. Designed to assess correctness by
comparing model output with the ground truth in a strict yet interpretable format.
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»> ARC-Challenge Parsing Prompt

Instruction:
A user’s question provides four choices formatted exactly as:

A. <option A>
B. <option B>
C. <option C>
D. <option D>

We also have the model’s generated response.
Your task:

1. Read Example 6 only.

2. Decide which single choice (A, B, C, or D) the model ultimately selected, following these rules:

• Letter match – If the response explicitly includes the letter ‘A’, ‘B’, ‘C’, or ‘D’ (optionally followed by
punctuation), extract only that letter.

• Text match – If no letter is given, compare the response text (case-insensitive, ignoring punctuation and
surrounding spaces) with each option; if it matches exactly one, return the corresponding letter.

• If both a letter and option text appear, treat the letter as authoritative.

3. Output format (strict):
Model’s Final Answer is: <A | B | C | D>

Do not add explanations or any extra text.

Examples
Example 1:
Choices: A. Paris B. Berlin C. Madrid D. Rome
Model’s Generated Response: A. Paris is the capital of France.
Model’s Final Answer is: A
Example 2:
Choices: A. 3 B. 4 C. 5 D. 6
Model’s Generated Response: The correct option is B.
Model’s Final Answer is: B
Example 3:
Choices: A. Spring B. Summer C. Autumn D. Winter
Model’s Generated Response: It’s usually coldest in winter.
Model’s Final Answer is: D

Example 6:
Choices: {choices}
Model’s Generated Response: {answer_text}

Figure 12: Parsing prompt for multiple-choice answer extraction on ARC-Challenge. The rules prioritize explicit letter
selection, with fallback to semantic string matching.

»> Pre-CoT Confidence Prompt

Before generating your answer, can you first assess your internal confidence (0–100) in its correctness and state it
using ‘<confidence> </confidence>‘ tags, then proceed to provide your full answer?

Figure 13: Prompt format for eliciting a model’s self-assessed confidence prior to generating CoT response.
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»> Low Confidence Rethinking Prompt

Your confidence score is low. Rather than following your current reasoning path, pause and explore an alternative
approach that is likely to raise your confidence. Think step-by-step and provide a revised answer.

Figure 14: Prompt used when the model reports low confidence, encouraging it to pause and reconsider its reasoning path
to generate a more confident response.
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