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Abstract

Deepfakes, particularly in the auditory domain,001
have become a significant threat, necessitat-002
ing the development of robust countermea-003
sures. This paper addresses the escalating004
challenges posed by deepfake attacks on Auto-005
matic Speaker Verification (ASV) systems. We006
present a novel Urdu deepfake audio dataset for007
deepfake detection, focusing on two spoofing008
attacks – Tacotron and VITS TTS. The dataset009
construction involves careful consideration of010
phonemic cover and balance and comparison011
with existing corpora like PRUS and Pronoun-012
cUR. Evaluation with AASIST-L model shows013
EERs of 0.495 and 0.524 for TTS and Tacotron-014
generated audios, respectively, with variabil-015
ity across speakers Further, this research im-016
plements a detailed human evaluation, incor-017
porating a user study to gauge whether peo-018
ple are able to discern deepfake audios from019
real (bonafide) audios. The ROC curve anal-020
ysis shows an area under the curve (AUC) of021
0.63, indicating that individuals demonstrate022
a limited ability to detect deepfakes (approxi-023
mately 1 in 3 fake audio samples are regarded024
as real). Our work contributes a valuable re-025
source for training deepfake detection models026
in low-resource languages like Urdu, address-027
ing the critical gap in existing datasets.028

1 Introduction029

Automatic Speaker Verification, a method for bio-030

metric person recognition, has gained popularity031

in recent years. However, this surge in popularity032

has also given rise to new challenges in the form033

of spoofing or deepfake attacks. Initially coined on034

Reddit in 2017, the term ’deepfake’ (Bitesize, 2019)035

denotes the application of deep learning techniques036

for face swapping in videos. Presently, the term has037

evolved to broadly encompass any audio or video038

manipulation where key attributes are digitally al-039

tered or swapped using artificial intelligence (AI)040

technologies. The ASVspoof community classifies041

these attacks into two main categories: logical ac- 042

cess, involving deepfake-generated audios, speech 043

synthesis, and voice conversion, and physical ac- 044

cess, which includes replay attacks and imperson- 045

ation (Wang et al., 2020b). 046

Deepfakes, a complex way of manipulating me- 047

dia, make fake content easier to generate and harder 048

to detect. Speech synthesis models now allow the 049

creation of deepfakes that are undetectable by the 050

human ear or even verification systems (Mirsky and 051

Lee, 2021). In 2019, impostors leveraged AI-driven 052

software to replicate the voice of a corporate exec- 053

utive, orchestrating a fraudulent transfer of USD 054

243,000 (Stupp, 2019). This incident underscores 055

the imperative of developing robust methods to 056

accurately identify deepfake audio in order to coun- 057

teract such fraudulent activities. In a behavioral 058

study, Kobis et al. (2021) revealed that people can- 059

not easily detect deepfakes, yet they perceive that 060

they can. Thus, these fake audios have the potential 061

to spread misinformation, create mass panic and 062

havoc, malign personalities, and change narratives. 063

Moreover, beyond this social impact, deepfakes 064

have the power to break through systems protected 065

by voice recognition through the spoofing attacks 066

listed above. Considering the adverse effects of 067

deepfake audios, it is crucial to develop systems 068

capable of discerning between real and deepfake 069

audio. The ASVspoof challenge, a community-led 070

initiative, promotes the development of such coun- 071

termeasures against deepfakes and audio spoofing 072

(Wu et al., 2015; Kinnunen et al., 2017; Todisco 073

et al., 2019; Yamagishi et al., 2021). 074

Countermeasures against deepfakes include de- 075

tection algorithms designed to identify features in 076

deepfake audios. The physical attributes of sound, 077

encompassing pitch, texture, loudness, and dura- 078

tion, can now be accurately replicated in artifi- 079

cially generated deepfake audios. To detect the fea- 080

tures that differentiate bonafide (actual utterances 081

of the people) and fake audios, the model needs 082
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to train on a very large amount of data (Azeemi083

et al., 2022). These differentiations are based on084

spectral and temporal differences and micro fea-085

tures (Delgado et al., 2021; Dhamyal et al., 2021;086

Tak et al., 2020). Widely used datasets created for087

this purpose include WaveFake (Frank and Schön-088

herr, 2021), FakeAVCeleb (Khalid et al., 2021),089

and the ASVspoof dataset (Wang et al., 2020b) it-090

self. These datasets, from high-resource languages,091

exemplify the large amount of data required to train092

deepfake detection models. Unfortunately, in low-093

resource languages, this large amount of data is094

unavailable. To cater to this lack of data in Urdu,095

we create and evaluate a dataset that can be used to096

train against spoofing attacks.097

1.1 Contributions098

The presented research offers the following contri-099

butions:100

• We present an audio deepfake dataset, contain-101

ing 20,451 utterances of bonafide and 16,830102

utterances of deepfake audio, to train detec-103

tion models in Urdu, a low-resource language.104

• We assess the dataset through human evalua-105

tion and discover that about one out of every106

three audio samples goes undetected by in-107

dividuals as being fake. This finding carries108

implications for the potential spread of misin-109

formation.110

• We evaluate the dataset qualitatively and qual-111

itatively. Qualitative measures include exam-112

ining the variations in the relative distribution113

of deepfake-generated and real audios using114

t-SNE plotting and comparing L2 norms be-115

tween bonafide audios and each set of deep-116

fake audios. For quantitative analysis, we cal-117

culate the Equal Error Rate (EER) across vari-118

ous speakers and spoofing attacks.119

2 Related Works120

2.1 Deepfake Detection Models121

The field of audio deepfake detection has seen re-122

markable growth recently, focusing on using ma-123

chine learning to differentiate real speech from syn-124

thetic audio (Wu et al., 2020; Wang et al., 2020a;125

Chen et al., 2020). This research typically follows126

either a conventional pipeline method, combining127

feature extraction with classification, or newer end-128

to-end methodologies that process raw audio data129

directly for both tasks.130

A key hurdle in this domain is the extensive data 131

required for training advanced deep learning Text- 132

to-Speech (TTS) models (Ping et al., 2017; Shen 133

et al., 2017; Sotelo et al., 2017; Tachibana et al., 134

2017; Wang et al., 2017). Research has shown 135

high efficacy for multi-speaker TTS models, espe- 136

cially when data for a specific speaker is limited 137

(Latorre et al., 2018; Luong et al., 2019). The study 138

by Luong et al. (2019) emphasized the superior- 139

ity of multi-speaker models using oversampling 140

techniques in scenarios with sparse data. While 141

undersampling generally showed negative impacts, 142

ensemble methods were noted for their ability to 143

improve speech naturalness, albeit at the cost of 144

higher computational resources (de Korte et al., 145

2020). 146

Furthermore, the majority of research and com- 147

petitions in audio deepfake detection, such as 148

ASVspoof and ADD, are focused on English and 149

Chinese, reflecting a language bias due to easier 150

data collection (Wang et al., 2020b; Yi et al., 2022). 151

2.2 Deepfake Detection Datasets 152

The creation of robust TTS datasets is vital for the 153

development of effective detection models. These 154

datasets should be of high quality, featuring diverse 155

speakers, accurate transcripts, and ample audio con- 156

tent per speaker (Bakhturina et al., 2021). Best 157

practices for TTS dataset creation underscore the 158

necessity for error-free, clear recordings, unifor- 159

mity in tone and pitch, comprehensive phoneme 160

representation, and overall naturalness. Rigorous 161

quality assessments, such as examining the length 162

of clips and transcripts and inspecting spectrograms 163

for noise, are also advised to maintain dataset in- 164

tegrity (coq, 2023). 165

Recent trends in audio deepfake research in- 166

clude using alternative data sources to address the 167

lack of target data. Efforts to build TTS datasets 168

through community-driven or automated collection 169

and transcription processes have been observed 170

(Gutkin et al., 2016; Xu et al., 2020; Wibawa et al., 171

2018). However, these methods might result in 172

datasets with lower recording quality and natural- 173

ness, which could impact the effectiveness of TTS 174

models when compared to traditional datasets (Guo 175

et al., 2022). 176

Recently, the focus on enhancing TTS systems 177

for under-resourced languages has gained traction. 178

Researchers are exploring how well-structured 179

datasets in various languages can improve TTS 180
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Figure 1: PRUS Corpus

for languages with scarce resources. Techniques181

like cross-lingual transfer learning and multilingual182

TTS are being investigated for this purpose (Az-183

izah et al., 2020; Tu et al., 2019; He et al., 2021),184

aiming to democratize TTS technology and extend185

its reach to a wider range of languages and dialects.186

2.3 Benchmark Dataset187

The Phonetically Rich Urdu Speech Corpus188

(PRUS) and the PronouncUR lexicon are crucial189

resources for developing and benchmarking Urdu190

Text-to-Speech (TTS) systems, particularly in the191

context of audio deepfakes in Urdu, a low-resource192

language.193

PRUS, consisting of 70 minutes of transcribed194

read speech, with its comprehensive phonetic cov-195

erage, including all 62 phonemes and a wide array196

of tri-phonemes, offers a detailed representation of197

Urdu’s phonetic diversity. This corpus, balancing198

high-frequency word focus with practical dataset199

size, serves as an ideal benchmark for phonetic200

diversity and quality assessment in TTS systems.201

Figure 1 shows a snippet of PRUS corpus and it’s202

phoneme counts (PC).203

PronouncUR’s lexicon, encompassing approxi-204

mately 46,000 words and covering 64 out of 67205

phonemes, provides a broad spectrum of Urdu206

sounds. Its phoneme frequency distribution and207

expert tagging make it invaluable for evaluating208

TTS system comprehensiveness and phonetic accu-209

racy.210

The combination of PRUS and PronouncUR un-211

derscores the need for benchmark datasets for audio212

deepfakes in languages like Urdu. These resources213

are not only vital for TTS system development but214

also offer a framework for detecting and authen- 215

ticating audio deepfakes, addressing a significant 216

challenge in digital communication in low-resource 217

languages. 218

3 Methodology 219

To create the text corpus for the dataset, we ran- 220

domly select sentences from reputable Urdu news 221

sources. We then analyze the phonemic structure 222

of the text corpus, ensuring its alignment with natu- 223

ral language patterns. Statistical measures confirm 224

the dataset’s phonemic cover and balance. For the 225

spoofing attacks, advanced text-to-speech models 226

Tacotron and VITS TTS are utilized to generate 227

deepfake audios. Figure 2 highlights the steps taken 228

in dataset construction. 229

3.1 Phonemic Analysis of the Datasets 230

The text corpus (referred to as the news corpus 231

here onwards) for our dataset has been curated by 232

randomly selecting 495 sentences from reputable 233

Urdu news sources, with permission. Given the 234

rich phonemic inventory inherent in the Urdu lan- 235

guage (Raza et al., 2009), it is imperative to ensure 236

that our dataset possesses a comprehensive phone- 237

mic cover and balance. To achieve this, we conduct 238

a careful analysis to ascertain the presence of all 239

possible phonemes within the text and to verify 240

whether their frequencies aligned with those ob- 241

served in natural language (Zia et al., 2018). 242

To establish the phonemic fidelity of our dataset, 243

we conduct a comparative analysis with established 244

Urdu corpora known for their adherence to Urdu’s 245

phonemic distribution patterns. Notably, we em- 246
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Figure 2: Step-by-step summary of dataset construction.

ploy the Phonetically Rich Urdu Corpus (PRUS)247

(Raza et al., 2009) and PronouncUR (Zia et al.,248

2018) as references.249

In our linguistic research, we conducted a com-250

parative analysis of phoneme ranks across two dif-251

ferent corpora: the PRUS Corpus and the Pronoun-252

cUR Corpus, each compared against the News Cor-253

pus. We formulate the null hypothesis stating no254

significant correlation between the phoneme distri-255

butions of the two datasets. The visual data from256

the line graphs illustrate a striking similarity in257

phoneme distribution in both comparisons. Figure258

4 shows the phoneme rank comparison between259

PRUS Corpus and the News Corpus, while Figure260

5 shows the phoneme rank comparison between261

PronouncUR training lexicon and the News Corpus.262

This visual correlation is statistically substantiated263

by Spearman’s Rank Correlation Coefficient. It264

can be understood as ranging from no association265

(coefficient = 0) to a perfectly monotonic relation-266

ship (coefficient = –1 or +1). We observe values of267

0.977 for the PRUS Corpus comparison and 0.958268

for the PronouncUR comparison, both suggesting269

exceptionally strong positive monotonic correla-270

tions. These high coefficients are coupled with271

near-zero p-values, confirming that these correla-272

tions are statistically significant and not products273

of chance. Spearman’s metric was particularly apt274

for these analyses as it adeptly captures monotonic275

relationships without the need for data normality,276

and it remains robust in the presence of outliers.277

Metric PRUS vs PronounceUR P-Value
Spearman’s Rank Correlation 0.956 < 2.2e-16
Kendall’s Tau Coefficient 0.845 5.67e-40
Average Rank Difference 3.34 -

Table 1: Phoneme Rank Evaluation Metrics for PRUS
vs PronounceUR

Metric PRUS vs News Corpus P-Value
Spearman’s Rank Correlation 0.977 < 2.2e-16
Kendall’s Tau Coefficient 0.888 5.67e-40
Average Rank Difference 2.66 -

Table 2: Phoneme Rank Evaluation Metrics for PRUS
vs News Corpus

Metric PronouncUR vs News Corpus P-Value
Spearman’s Rank Correlation 0.958 < 2.2e-16
Kendall’s Tau Coefficient 0.841 1.60e-22
Average Rank Difference 4.04 -

Table 3: Phoneme Rank Evaluation Metrics for Pro-
nouncUR vs News Corpus

Figure 3: Phoneme Rank Comparison between PRUS
Corpus and PronounceUR Corpus.

In addition to comparing the News Corpus with 278

established Urdu corpora, we conducted a detailed 279

phonemic analysis comparing the PRUS Corpus 280

and the PronounceUR Corpus. The results of this 281

comparison are visualized in a Figure 3 showing 282

the rank correlation of phonemes between the two 283

corpora. 284

The Spearman’s Rank Correlation coefficient of 285

0.956 and Kendall’s Tau coefficient of 0.845 both 286

indicate a strong positive correlation between the 287

phoneme ranks in the PRUS and PronounceUR 288

corpora. The Average Rank Difference of 3.34 289

suggests a close similarity in the rank order of 290

phonemes between the two datasets. These results 291

further confirm the consistency and reliability of 292

phoneme usage patterns across different linguistic 293

resources. 294

Our investigation extended to lexical distribution 295

via Zipf’s Law, which posits an inverse relationship 296

between word frequency and its rank in a corpus. 297

Analyzing our dataset against this law, we observed 298

4



Figure 4: Phoneme Rank Comparison between PRUS
Corpus and News Corpus.

Figure 5: Phoneme Rank Comparison between Pronoun-
cUR and News Corpus.

a distribution pattern closely aligning with Zipfian299

expectations. The linear regression analysis of the300

log-log plot, as illustrated in Figure 6, yielded a301

slope of -0.8676, close to the ideal Zipfian slope302

of -1, and an R-squared value of 0.9595. These re-303

sults underscore a strong adherence to Zipf’s Law,304

indicating a natural linguistic patterning within the305

Urdu news corpus. This adherence not only high-306

lights the corpus’s linguistic representativeness but307

also validates its utility for computational linguis-308

tics research. The close alignment with Zipfian ex-309

pectations reinforces the dataset’s suitability for ex-310

ploring language models and comprehension stud-311

ies, affirming its value in linguistic and phonemic312

research endeavors.313

Figure 6: : Log-Log plot of word frequencies in Urdu
news corpus exhibiting a Zipfian distribution

Furthermore, the strength of these relationships 314

is reinforced by Kendall’s Tau Coefficient. It can 315

again be understood as ranging from no association 316

(coefficient = 0) to a perfectly monotonic relation- 317

ship (coefficient = –1 or +1). We observe values 318

of 0.888 for the PRUS comparison and 0.841 for 319

the PronouncUR comparison. These coefficients 320

mirror the strong positive correlations indicated by 321

Spearman’s, and their very low p-values support 322

the notion of a significant, non-random association 323

between the phoneme ranks in the respective cor- 324

pora. The conservative nature of Kendall’s Tau 325

makes it a suitable choice for the datasets, espe- 326

cially considering that it is less influenced by small 327

sample sizes and the non-parametric nature of the 328

data. 329

Additionally, the Average Rank Difference met- 330

ric complements these findings, showing minimal 331

discrepancies in phoneme rankings between the 332

PRUS Corpus and the News Corpus at approxi- 333

mately 2.66, and a slightly larger yet modest vari- 334

ation of approximately 4.04 when comparing the 335

PronouncUR Corpus to the News Corpus. Despite 336

the slight differences indicated by this metric, the 337

strong Spearman’s and Kendall’s correlations con- 338

firm a general consistency in phoneme rank order 339

across the examined linguistic resources. The co- 340

efficients and p-values from both hypothesis tests 341

indicate a significant correlation, thereby rejecting 342

the null hypothesis. 343

The integration of Spearman’s Rank Correla- 344

tion, Kendall’s Tau, and Average Rank Difference 345

in these analyses provides a robust, multifaceted 346

validation of the initial graphical observations. It 347

collectively supports the conclusion that there is 348

a substantial overlap in phoneme usage patterns 349

within the compared linguistic resources. While 350

the PronouncUR Corpus exhibits a slightly greater 351

variability in phoneme rank compared to the PRUS 352

Corpus, both corpora maintain a significant par- 353

allelism with the News Corpus, underscoring the 354

reliability of phoneme usage patterns across differ- 355

ent linguistic datasets. Table 1 and 2 summarize 356

the results of the phonemic analysis. 357

3.2 Spoofing Attacks 358

We create a dataset consisting of a combination of 359

bonafide and deepfake audios. In order to achieve 360

this, we choose two advanced text-to-speech (TTS) 361

models, Tacotron (Wang et al., 2017) and VITS 362

TTS (Kim et al., 2021), to generate the deepfake 363
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Figure 7: Distribution and Split of the Dataset

audio. This selection is based on their demon-364

strated effectiveness in processing the Urdu lan-365

guage, essential due to its complex phonetic struc-366

ture, and the popularity of these models in deep-367

fake generation. Additionally, these models repre-368

sent the cutting edge in TTS technology, providing369

high-quality, realistic audio outputs. The choice370

of two distinct models, one based on a sequence-371

to-sequence model with attention (Tacotron) and372

the other on a Conditional Variational Autoencoder373

with Adversarial Learning (VITS TTS), allowed374

for a comprehensive exploration of audio deepfake375

generation methodologies. The models have been376

fine tuned to work on Urdu datasets.377

3.2.1 Spoofing Attack 1: Tacotron378

Tacotron serves as an end-to-end text-to-speech379

(TTS) model based on the sequence-to-sequence380

(seq2seq) paradigm with an attention mechanism.381

In our study, we train and utilize a Tacotron model382

to generate deepfake audios. This model incor-383

porates PronouncUR (Zia et al., 2018) as a pro-384

nunciation lexicon, functioning as a grapheme-to-385

phoneme (G2P) converter. During the training pro-386

cess, sentences from the PRUS corpus (Raza et al.,387

2009) are initially passed to PronouncUR to con-388

vert them into a string of phonemes, which are then389

fed into the pre-trained Tacotron model.390

3.2.2 Spoofing Attack 2: VITS TTS391

VITS (Conditional Variational Autoencoder with392

Adversarial Learning for End-to-End Text-to-393

Speech) stands as an end-to-end text-to-speech394

model that combines an encoder and vocoder. In395

our study, VITS TTS serves as the second attack396

method. This attack analyzes input text using nat-397

ural language processing (NLP) techniques to ex-398

tract linguistic features, including phonemes, stress399

patterns, and intonation. To train the VITS TTS400

model, we use the list of sentences from the PRUS401

Corpus (Raza et al., 2009), along with their corre- 402

sponding audios. 403

We train the Tacotron and VITS TTS models 404

on the voice of 17 individuals separately. We then 405

generate the deepfake audios through the trained 406

models. These audios were then compared with the 407

bonafide audios. 408

3.3 Training Data Collection 409

We train Tacotron and VITS TTS on the PRUS cor- 410

pus audios. To achieve this, we select a sample of 411

20 student volunteers who record the 708 sentences 412

from the PRUS corpus. Each speaker receives a 413

set of pre-recorded audios, articulating every sen- 414

tence of the PRUS corpus. Participants attentively 415

listen to each audio before reproducing the sen- 416

tence in their own voice. We also document the 417

laptop make, model, and headphones used by each 418

speaker during recording, and they are instructed to 419

record in a quiet, closed environment. Upon com- 420

pleting the recording stage, we carefully choose 421

a sample of 17 speakers (7 female, 10 male) with 422

high-quality complete audio recordings to advance 423

to the next phase of the experiment, and get written 424

consent for the public sharing of their recordings 425

(and derivatives) for research. 426

3.4 Generation of Deepfake Audios 427

We assign a unique speaker ID to each speaker 428

based on their training order. This ensures dis- 429

tinct identification while preserving anonymity for 430

the public dataset release. We generate deepfake 431

audios using the final checkpoint of each model, 432

using the 495 sentences of the News Corpus for 433

both attacks. The speakers also record the bonafide 434

audios of the News Corpus. This process yields 435

PRUS and News Corpus recordings as bonafide au- 436

dios and two sets of deepfake audios (one for each 437

attack) for each speaker. In Figure 7, the distribu- 438

tion of bonafide and deepfake utterances in the final 439

6



dataset is depicted. The dataset is segmented across440

8, 4, and 5 speakers for training, development, and441

evaluation, respectively.442

3.5 Evaluation of the Dataset443

Figure 8: Visualization of Audio Sample Distribu-
tion using t-SNE. The graph illustrates the separa-
tion of bonafide and deepfake audio samples in a two-
dimensional space. Real audio samples are represented
by green dots. Yellow dots indicate audio samples gener-
ated by VITS TTS model and blue dots represent audio
samples synthesized by the Tacotron model.

To understand the differences in the bonafide and444

deepfake audios in the dataset, it is important to445

analyze the spectral composition of these subsets.446

We visualize these subsets by obtaining the Mel447

Frequency Cepstral Coefficients (MFCCs) of each448

audio. MFCCs are a representation of the short-449

term power spectrum of a sound signal. They are450

commonly used in audio processing and speech451

recognition. We reduce the dimensions of MFFC452

features through the treebased t-SNE algorithm —453

with a perplexity value of 40 as suggested in (Wang454

et al., 2020b) and plotting the reduced dimensions.455

Figure 8 shows the scatter plot of the processed fea-456

tures for each subset. The colors represent different457

subsets of the dataset, i.e. bonafide audio (green),458

VITS TTS deepfake audios (yellow) and Tacotron459

deepfake audios (blue). The smaller clusters within460

each subset represent individual speakers. We no-461

tice differences in the position and distribution of462

each attack as compared to the bonafide audios.463

Both deepfake subsets exhibit considerable overlap464

with the bonafide audios, especially those gener-465

ated using the Tacotron model, highlighting the466

spectral similarity between these subsets.467

In addition to computing t-SNE of Mel-468

frequency cepstral coefficients (MFCCs) from the469

audio samples, we calculate the L2 norm for com-470

parisons between bonafide recordings and those471

generated by Tacotron and VITS TTS models. Fig- 472

ure 9 illustrates a notable trend: Tacotron-generated 473

audios exhibit a smaller disparity from bonafide au- 474

dios compared to VITS TTS-generated audios. 475

We further evaluate the quality of the generated 476

audios by running it on AASIST-L. AASIST-L 477

(Jung et al., 2022) is a lightweight end-to-end au- 478

dio anti-spoofing model that can efficiently model 479

spoofing artefacts present in temporal and spectral 480

domains. We obtain an overall equal error rate of 481

0.495 and 0.524 for audios generated through TTS 482

and Tacotron respectively. The EER breakdown 483

for each speaker is presented in Table 4. The EER 484

score varies from 0.44 to 0.58 depending upon the 485

quality of the generated audios for each speaker. 486

Figure 9: L2 norm comparison between Tacotron and
bonafide audios, and VITS TTS and bonafide audios

Speaker TTS Tacotron
Speaker 01 0.48 0.47
Speaker 02 0.5 0.47
Speaker 03 0.5 0.44
Speaker 04 0.52 0.46
Speaker 05 0.44 0.57
Speaker 06 0.44 0.48
Speaker 07 0.52 0.5
Speaker 08 0.51 0.51
Speaker 09 0.47 0.58
Speaker 10 0.54 0.47
Speaker 11 0.56 0.52
Speaker 12 0.53 0.48
Speaker 13 0.47 0.47
Speaker 14 0.48 0.5
Speaker 15 0.49 0.53
Speaker 16 0.49 0.53
Speaker 17 0.5 0.48

Table 4: EER breakdown by speaker ID for TTS and
Tacotron audios evaluated through AASIST-L

4 Human Evaluation 487

4.1 User Study 488

To assess the quality of our dataset, we employ a 489

human evaluation-based approach. Participants in 490

7



our study listen to a set of 30 random audios in a491

controlled environment and classify each as either492

Fake (deepfake) or Real (bonafide). We employ a493

convenience sample of 100 participants between494

the ages of 10 to 48, with a male-to-female ratio of495

70-30, with varying tech literacy. The participants496

are paid PKR 500 per evaluation (approximately497

10 minutes) Each random sample of 30 audios in-498

cludes 10 random bonafide audios, 10 Tacotron-499

generated, and 10 VITS TTS-generated audios.500

We conduct the evaluation in a controlled envi-501

ronment to eliminate biases stemming from vari-502

ations in speaker quality. During the assessment,503

we ask each participant to listen to each audio and504

give the following instructions: "The audio sample505

that you will listen to is audio produced by humans506

or produced artificially by artificial intelligence.507

Please listen to the audio sample and determine508

whether the voice is artificially generated or is ut-509

tered by a person, judging only on the basis of the510

voice you hear. You can listen to it as many times511

as you like. And then share your reasons for the512

classification." Each participant categorizes each513

audio in the assigned group of recordings into two514

distinct groups, real or fake. We document their515

reasons for classifying the audios as fake or real.516

We observe that most participants base their judg-517

ment on factors such as audio distortion and length.518

Audios containing longer sentences with minimal519

pauses for breath are often categorized as deepfake520

generated.521

4.2 Analyzing User Study Results522

Figure 10: ROC Curve for human evaluation results

The evaluation results, illustrated by the ROC523

curve in Figure 10, shed light on how well human524

participants performed in distinguishing between525

genuine and deepfake audio samples at various 526

classification thresholds. The ROC curve, plot- 527

ting True Positive Rate against False Positive Rate, 528

indicated a moderate level of discriminative perfor- 529

mance with an Area Under the Curve (AUC) value 530

of 0.63. 531

This AUC suggests that individuals demon- 532

strated a limited ability to detect deepfakes, with 533

approximately 1 in 3 fake audio samples being 534

misidentified as real. When considering the con- 535

sequences of such limitations in distinguishing be- 536

tween genuine and manipulated content, especially 537

in contexts like political situations or audio leaks 538

in Pakistan, there is a heightened risk of misin- 539

formation spreading. This misinformation could 540

contribute to a climate of mistrust, political polar- 541

ization, and potentially erode public confidence in 542

state institutions. 543

The societal impact of these findings on democ- 544

racy underscores the need for more robust detection 545

mechanisms to mitigate the potential threats posed 546

by deepfakes. Developing reliable methods to dif- 547

ferentiate between genuine and manipulated con- 548

tent becomes crucial for safeguarding public trust, 549

political discourse, and the integrity of democratic 550

processes. 551

5 Limitations and Conclusion 552

In presenting our Urdu deepfake detection dataset, 553

we recognize limitations and suggest areas for fu- 554

ture improvement. The dataset currently empha- 555

sizes two text-to-speech (TTS) synthesis meth- 556

ods—Tacotron and VITS TTS. Expanding to a 557

broader range of TTS techniques in future iterations 558

will enhance deepfake detection. The dataset’s re- 559

liance on a convenience sample leads to a gender 560

imbalance in the speakers, highlighting the need 561

for a more diverse dataset in future work. Addi- 562

tionally, our dataset primarily covers logical access 563

scenarios; future research could include physical 564

access scenarios for added detection challenges. In 565

conclusion, our dataset lays a solid foundation for 566

deepfake detection research in the Urdu language. 567

Addressing the outlined limitations and pursuing 568

future research directions will further enhance the 569

dataset’s value and contribute to the advancement 570

of deepfake detection technologies in low-resource 571

languages. 572
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6 Ethical Impact573

Deepfakes pose risks of spreading misinformation,574

causing panic, damaging reputations, and manipu-575

lating narratives. While improving detection mod-576

els is a key solution, it inadvertently fosters the577

development of more sophisticated deepfake gen-578

eration models that can evade detection. The cre-579

ation of extensive deepfake audio datasets raises580

ethical concerns as it may inadvertently contribute581

to refining audio deepfake generation techniques.582

Responsible management of such datasets is cru-583

cial to address potential ethical challenges in their584

deployment.585
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A Reproducibility and Hyperparameters776

Table 5: Training and Evaluation Parameters for
Tacotron.

Parameter Value
Training

batch_size 32
adam_beta1 0.9
adam_beta2 0.999
initial_learning_rate 0.002
decay_learning_rate True
use_cmudict False

Eval
max_iters 450
griffin_lim_iters 60
power 1.5

B Datasets and Evaluation Model777

We use the PRUS Corpus available under the Cre-778

ative Commons license, which allows distribution,779

remixing, tweaking, and building upon the work,780

as long as we credit the creators for the original781

creation.782

We use PronouncUR and AASIST-L, available783

under the MIT License.784
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