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Abstract

Permutation invariance is among the most common symmetry that can be exploited to sim-
plify complex problems in machine learning (ML). There has been a tremendous surge of
research activities in building permutation invariant ML architectures. However, less atten-
tion is given to: (1) how to statistically test for permutation invariance of coordinates in a
random vector where the dimension is allowed to grow with the sample size; (2) how to lever-
age permutation invariance in estimation problems and how does it help reduce dimensions.
In this paper, we take a step back and examine these questions in several fundamental prob-
lems: (i) testing the assumption of permutation invariance of multivariate distributions; (ii)
estimating permutation invariant densities; (iii) analyzing the metric entropy of permuta-
tion invariant function classes and compare them with their counterparts without imposing
permutation invariance; (iv) deriving an embedding of permutation invariant reproducing
kernel Hilbert spaces for efficient computation. In particular, our methods for (i) and (iv)
are based on a sorting trick and (ii) is based on an averaging trick. These tricks substantially
simplify the exploitation of permutation invariance.

1 Introduction

Many applications can benefit from exploiting a known symmetry in the data. One of the most basic
symmetries is permutation invariance, where the function outputs are invariant to the order of the inputs.
Permutation invariance plays a crucial role in machine learning applications such as set anomaly detection,
text concept set retrieval, and point cloud classification Zaheer et al. (2017). Building permutation invariant
machine learning architectures and assessing their computational performance has been a popular topic in
the field. In Qi et al. (2017), a point cloud 3D classification model was proposed, where the permutation
invariance was built–in using max–pooling. In Zaheer et al. (2017), the authors prove that any permutation
invariant function can be written in a certain general form that can be implemented using standard deep
learning frameworks, by sum-aggregating the output of the first network and passing into the second network.
The general results of Zaheer et al. (2017) provide a basis for other more specialized models such as the
attention mechanism for set input Lee et al. (2019). It is noted in Cohen-Karlik et al. (2020) that recurrent
neural network has a structure that is naturally suitable as a permutation invariant model using the hidden
state as the aggregator, and can be implemented more efficiently than the general form in Zaheer et al. (2017)
in some cases. More recently, Tang & Ha (2021) demonstrates that a permutation invariant reinforcement
learning agent can learn more robust policies that generalize better to unseen situations. Viewing neural
network inputs and outputs as random variables, Bloem-Reddy et al. (2020) studies the structure of neural
networks that are useful for modeling data that are invariant, and show a connection between functional
and probabilistic symmetry. The representation given by Bloem-Reddy et al. (2020) nests examples from
the recent literature, e.g.,Zaheer et al. (2017), as special cases.

The discussion of Bloem-Reddy et al. (2020) raises the fundamental concept, exchangeability, which is re-
lated to permutation invariance in probability distributions. In particular, a sequence of random variables
X1, X2, X3, · · · is called exchangeable if for any permutation σ, the permuted sequence Xσ(1), Xσ(2), Xσ(3), · · ·
has the same joint distribution as the original sequence. Using this terminology, a CDF F (t) associated with
a sequence of d real–valued random variables (X1, ..., Xd) ∈ Rd is permutation invariant if such a sequence of
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random variables is exchangeable. Suppose a sample of n i.i.d. random vectors t1, t2, · · · , tn are drawn from
an arbitrary d−variate distribution F (t), where ti = (t1

i , t2
i , · · · , td

i ) ∈ Rd for every i = 1, ..., n. Note that
t1, t2, · · · , tn is exchangeable, but each ti ∼ F is not permutation invariant if F is not permutation invariant.

The example above raises the importance of distinguishing permuting observations (which makes up a large
portion of the literature on “exchangeability") from permuting the coordinates of a random vector. There is
a vast literature on the former but a relatively scarce literature on the latter (as pointed out by (Kalina &
Janáček, 2023, page 3143)). Our paper focuses on the latter. The former has been discussed in the contexts
of conformal prediction, testing independence, and testing the equality of two distributions (for example,
Kuchibhotla (2020)). There is a separate literature related to permutation tests based on U-statistics such
as Chapters 12-13 of Van der Vaart (2000). Permutation test statistics are U-statistics which permute the
observations that satisfy i.i.d. or weak dependence conditions. In contrast, our problems permute on the
dimension and make no assumptions about the dependence among the coordinates of a random vector.

This fact is crucial for numerous applications in health sciences, finance, and climatology where features
instead of observations are permuted. For example, one application tests whether the red and white blood
cell counts and hemoglobin concentration are permutable in athletes, and measurements were taken from a
sample of athletes (Kalina & Janáček (2023)). A researcher may not want to impose any condition on the
dependence between different types of measurements. Applications like this one have motivated statisticians
to develop tests for the assumption of permutation invariance of coordinates in a random vector; see “Related
work” in Section 2.

In this paper, we propose a statistical procedure that tests directly whether the coordinates of a random
vector from an unknown multivariate distribution are permutable. Specifically, our test statistics take the
form T := supt∈[0,1]d

√
n
∣∣∣F̃n(t) − Fn(t)

∣∣∣, where Fn(t) is the empirical CDF at t, F̃n(t) = Fn(sort t), and n is
the size of the random sample. We approximate the quantile of T with the multiplier bootstrap method. In
contrast to the existing procedures for testing permutation invariance in multivariate distributions, our test
allows d to grow with the sample size n.

Suppose that our test cannot reject the null hypothesis of permutation invariance. Then one may be in-
terested in estimating the underlying density function by exploiting the potential symmetry. We propose a
kernel density estimator (KDE) that averages over a carefully constructed subset of permutations. When
the true density is indeed permutation invariant, the averaged KDE yields the same bias as the standard
KDE but reduces the variance of the standard KDE by a factor of order (b−d̄) ∧ d̄, where 0 < b < 1 depends
on the separation of entries of the point the density is at and d̄ is the number of unique entries in that point.

Fundamentally, a class of multivariate functions with permutation invariance has a smaller “size” than
without imposing permutation invariance, and consequently, a smaller Radamacher complexity. A measure
of “size” is the covering number. As a third contribution, we analyze the covering numbers of two permutation
invariant function classes and compare them with their counterparts where permutation invariance is not
imposed. We show that the logarithm of the covering number for the permutation invariant Hölder class
with a boundary condition is reduced by a factor of d!. Similarly, for the permutation invariant ellipsoid
class, the upper and lower bounds on the logarithm of the covering number reduce those of the couterpart
without imposing permutation invariance by a factor of d!.

Lastly, we study the interpolation and fitting of data points generated by some permutation invariant func-
tions in a reproducing kernel Hilbert space (RKHS), H. Given the positive semidefinite kernel K associated
with H, we propose computing a new kernel Ksort := K(sort ., sort .). We bound the error from approximat-
ing a permutation invariant function in H with a function constructed based on Ksort. This result provides
a computationally efficient embedding. Compared with previous proposals such as Bietti et al. (2021); Klus
et al. (2021); Tahmasebi & Jegelka (2023) where computing the permutation invariant kernel costs d!, our
sorted kernel only takes O(d log d) to compute. At the expense of the computational efficiency, a loss of ac-
curacy can occur in some situations but is insignificant in others. We examine such a trade–off in numerical
experiments.
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Notation. For two functions f(n, γ) and g(n, γ), let us write f(n, γ) ≳ g(n, γ) if f(n, γ) ≥ cg(n, γ) for
a universal constant c ∈ (0, ∞); similarly, we write f(n, γ) ≲ g(n, γ) if f(n, γ) ≤ c

′
g(n, γ) for a universal

constant c
′ ∈ (0, ∞); and f(n, γ) ≍ g(n, γ) if f(n, γ) ≳ g(n, γ) and f(n, γ) ≲ g(n, γ).

Definition 1.1 A permutation invariant function is a function f : Rd 7→ R such that f(σ(t)) = f(t) for any
permutation σ and t ∈ Rd. We write Sd to denote the set of all permutations.

2 Testing permutation invariance with sorting

Let us consider a random sample consisting of i.i.d. entries {ti ∈ [0, 1]d}n
i=1 from an unknown distribution F

over [0, 1]d, where potentially the dimension d → ∞ as n → ∞. In this section, we are interested in testing
the hypothesis: {

H0 : F is permutation invariant
H1 : F is not permutation invariant

.

Our test leverages the following proposition.

Proposition 2.1 A function f on [0, 1]d is permutation invariant if and only if f(sort t) = f(t) for all
t ∈ [0, 1]d.

Proof: Suppose f is permutation invariant. Then, for any t ∈ [0, 1]d, there exists σ∗ ∈ Sd such that
sort t = σ∗(t). Consequently, f(sort t) = f(σ∗(t)) = f(t). Suppose that f(sort t) = f(t) for all t ∈ [0, 1]d.
Then, for any σ ∈ Sd, we have f(σ(t)) = f(sort σ(t)) = f(sort t) = f(t). □

The multiplier bootstrap test with a sorting trick. We define the empirical CDF

Fn(t) := 1
n

n∑
i=1

[ti ≤ t]

and the sorted empirical CDF

F̃n(t) := Fn(sort t) = 1
n

n∑
i=1

[ti ≤ sort t].

Given t = (t1, · · · , td) ∈ [0, 1]d, we define sort t := (tπ(1), · · · , tπ(d)) for some permutation π ∈ Sd such that
0 ≤ tπ(1) ≤ tπ(2) ≤ · · · ≤ tπ(d) ≤ 1.1

We propose the following statistics

T := sup
t∈[0,1]d

√
n
∣∣∣F̃n(t) − Fn(t)

∣∣∣
and the multiplier bootstrap version

W := sup
t∈[0,1]d

1√
n

∣∣∣∣∣
n∑

i=1
([ti ≤ sort t] − [ti ≤ t]) ei

∣∣∣∣∣ , ei ∼iid N (0, 1)

along with the corresponding bootstrap critical value
cW (α) := inf {t ∈ R : Pe[W ≤ t] ≥ 1 − α} .

We establish the following theoretical guarantee for our test.

Theorem 2.2 Suppose that d = o
(
n1/7) and the CDF F is continuous. Under H0, there exists some

universal constants c, C ∈ (0, ∞), such that

sup
α∈(0,1)

∣∣∣∣∣P
[

sup
t∈[0,1]d

√
n
∣∣∣F̃n(t) − Fn(t)

∣∣∣ > cW (α)
]

− α

∣∣∣∣∣ < Cn−c → 0 as n → ∞.

1In this paper, t = (t1, · · · , td) denotes a point (a d−dimensional vector) a function is evaluated at, whereas {ti ∈ [0, 1]d}n
i=1

denotes a random sample drawn from some d−variate probability distribution.
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Remark. Note that we make no assumptions about the dependence among the coordinates of a random
vector ti = (t1

i , ...td
i ) for any i = 1, ..., n, even though the sample {ti ∈ [0, 1]d}n

i=1 consists of i.i.d. observations.

Sketch of the proof. Suppose that we have a list of points {vj}j=1,··· ,N in [0, 1]d which is sufficiently
large and well chosen. We should be able to approximate supt∈[0,1]d

√
n
∣∣∣F̃n(t) − Fn(t)

∣∣∣ by the maximum of
the coordinates of (√

n
∣∣∣F̃n(v1) − Fn(v1)

∣∣∣ , · · · ,
√

n
∣∣∣F̃n(vN ) − Fn(vN )

∣∣∣) .

The above can be expressed using a sum of independent random vectors. From there, we apply the result of
Chernozhukov et al. (2013). So, the key to the proof is to construct a desired list of points {vj}. We let {vj}
be the points on a nm × · · · × nm grid on [0, 1]d for some m ≥ 4 and argue: when the grid is fine enough, the
probability that the supremum is reached at one of the nmd grid point approaches one sufficiently quickly.

The full proof can be found in Section A.1 of the appendix.

Implementation. In practice, given the data {ti}n
i=1, we estimate the supremum

sup
t∈[0,1]d

√
n
∣∣∣F̃n(t) − Fn(t)

∣∣∣ .
Similarly, computing the supremum W for NW draws of {ei}, one can numerically estimate cW (α).
The test in Theorem 2.2 rejects H0 at α ∈ (0, 1) significance level (e.g., α = 0.05 or 0.01) if
supt∈[0,1]d

√
n
∣∣∣F̃n(t) − Fn(t)

∣∣∣ > cW (α). There are a number of ways the supremum of

Zn(t; {ei}n
i=1) :=

∣∣∣∣∣
n∑

i=1
([ti ≤ sort t] − [ti ≤ t]) ei

∣∣∣∣∣
(i.e., W ) can be estimated. The problem of finding the supremum of

∣∣∣F̃n(t) − Fn(t)
∣∣∣ is the special case where

ei = 1 for all i = 1, · · · , n, and we write Zn(t) := Zn(t; {ei = 1}n
i=1) for convenience.

The supremum of Zn(t; {ei}n
i=1) can be reached at some unsorted point t∗ of the form

t∗ =
(
ta1
i1

, · · · , tad
id

)
for some a1, · · · , ad ∈ {1, · · · , d} and i1, · · · , id ∈ {1, · · · , n}. This can be seen from that given t, t′ ∈ [0, 1]d,
Zn(t; {ei}n

i=1) and Zn(t′; {ei}n
i=1) can differ from each other by no more than 1√

n
multiple of the sum of the

number of times each coordinate of t′ needs to cross any of the nd numbers {ta
i } to get to t:

|Zn(t; {ei}n
i=1) − Zn(t′; {ei}n

i=1)| ≤ 1√
n

d∑
b=1

∣∣{ta
i }a=1,··· ,d;i=1,··· ,n ∩ [tb, t′b]

∣∣ . (1)

Therefore, the upper bound estimate for the number of points needed to be searched to find the supremum
is (nd)d. When n and d are large, this upper bound is unfavorable.

We propose a more practical solution by first defining a smoothened version of the CDF, given ε > 0:

Fn,h(t) := 1
n

n∑
i=1

1
2d

d∏
a=1

(
tanh

(
ta − ta

i

h

)
+ 1
)

and F̃n,h(t) := Fn,h(sort t). The parameter h controls smoothness, with Fn,h and F̃n,h converges in L1 to their
empirical counter–part. The added smoothness provides the needed gradient for a standard maximization
algorithm to approach the supremum given a randomly chosen starting point. For our implementation, we
use COBYLA, h = 0.001, and n/2 random starting points, which work well from our observation.
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Remark. Via experimentation, we observed that W (and T ) can be approached by searching for the
maximum of Zn(t; {ei}n

i=1) over a set {vj}j=1,··· ,(nd2)q of (nd2)q test points randomly drawn from F . Here q ∈
(1, ∞) is an arbitrary constant and (nd2)q should be interpreted as ⌈(nd2)q⌉, or any other similar convention,
if q is not an integer. In other words, we expect maxj=1,··· ,(nd2)q Zn(vj) and maxj=1,··· ,(nd2)q Zn(vj ; {ei}n

i=1)
to converge to T and W sufficiently quickly (in the sense that is needed by Chernozhukov et al. (2013), see
(9) for the technical detail) as nd2 → ∞. The rate of convergence depends on the choice of q, and it is
left to the practitioner to decide q that balances the computational resource and performance. Figure 1 in
Appendix A.9 exhibits the convergence to T in the case of d = 2 with q = 1.5, and suggests that the number
of the points needed in the proof of Theorem 2.2 may grow much slower than nmd, in particular, possibly
be only polynomial in d. This evidence prompts the following open question.

Question. Will the statement of Theorem 2.2 holds for d = o
(

en1/7
)

?

Related work. The first bivariate symmetry test was proposed by Hollander (1971), motivated by the
question of whether a medical treatment improves patient conditions. Also see Lyu & Belalia (2023); Yanag-
imoto & Sibuya (1976) for other proposals. More recently, tests of permutation invariance for distributions
with more than two dimensions have been proposed in Bahraoui & Quessy (2022); Harder & Stadtmüller
(2017); Kalina & Janáček (2023). The procedure proposed in Kalina & Janáček (2023) tests the null hypoth-
esis of pairwise symmetry instead of permutation invariance per se. As acknowledged in Kalina & Janáček
(2023), pairwise symmetry is a weaker condition than permutation invariance. Related is a test of a weaker
condition of permutation invariance for multivariate copulas, which has been studied in Bahraoui & Quessy
(2022); Harder & Stadtmüller (2017). In contrast to this literature, our procedure tests directly whether the
coordinates of a random vector from an unknown multivariate probability distribution are permutable.

3 Estimating permutation invariant densities with averaging

In Section 2, we have proposed a statistical procedure for testing permutation invariance of multivariate
distributions. In this section, we focus on permutation invariant density functions and show a way to exploit
permutation variance in the (local) kernel density estimation method (see, e.g., Tsybakov (2009)).

The averaging trick. Given t = (t1, · · · , td) ∈ Rd, the standard kernel density estimator is given by

f̂(t) = 1
nhd

n∑
i=1

K

(
t − ti

h

)
.

To exploit the permutation invariance structure, we propose the averaged kernel density estimator

f̃(t) = 1
d̄

∑
σ∈S∗

d

f̂(σ(t)),

where d̄ and S∗
d are defined as follows.

• Let t ∈ Rd be a vector with d̄ distinct entries. The set S∗
d can be any set consisting of d̄ permutations

such that any σ, π ∈ S∗
d take different values on exactly d̄ positions. When d̄ < d, a set satisfying

the aforementioned property is not unique.

For example, take t = {1, 2, 3}. Then d̄ = 3 and S∗
d = {{1, 2, 3}, {3, 1, 2}, {2, 3, 1}}. As another example,

take t = {1, 1, 2}. Then d̄ = 2 and the choice of S∗
d can be any of the three sets: {{1, 1, 2}, {2, 1, 1}},

{{1, 1, 2}, {1, 2, 1}}, {{2, 1, 1}, {1, 2, 1}}. Clearly, when all entries of t take the same value, d̄ = 0 and
f̂(t) = f̃(t).

Our theoretical guarantees are based on the following assumption.
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Assumption 3.1 The random sample consisting of i.i.d. entries {ti ∈ [0, 1]d}n
i=1 is from a pdf f , which is

permutation invariant and twice differentiable with bounded derivatives. The non-negative kernel K satisfies:
(a)

∫∞
−∞ K(v)dv = 1; (b) K(v) = K(−v) for all v; (c)

∫∞
−∞ vvT K(v)dv < ∞; (d)

∫∞
−∞ K(v)2dv < ∞.

In what follows, we compare the bias and variance of f̃ with those of f̂ . When writing higher order terms,
we mean that these terms have a smaller order than the leading term(s).

Lemma 3.2 Let Assumption 3.1(a-c) hold. Suppose h → 0. Then,

E[f̂(t)] − f(t) = E[f̃(t)] − f(t) = h2

2 tr

(
∂2f(t)
∂t∂tT

∫
vvT K(v)dv

)
+ higher order terms.

This result shows that the biases of f̃ and f̂ have the same leading term.

Lemma 3.3 Let Assumption 3.1 hold. Suppose n → ∞ and h → 0 while nhd → ∞.

(i) Then, the variances are computed as

V(f̂(t)) = f(t)
nhd

∫ ∞

−∞
K(v)2dv + higher order terms (2)

and

V(f̃(t)) = f(t)
(d̄)2nhd

∑
π,σ∈S∗

d
s.t. π ̸=σ

K ∗ K
(σ(t) − π(t)

h

)
+ 1

d̄

f(t)
nhd

∫ ∞

−∞
K(v)2dv + higher order terms (3)

where ∗ denotes the convolution.

(ii) Further, if we consider the product kernel K(v) = k(v1)k(v2)...k(vd) where k(·) is a non-negative uni-
variate kernel satisfying conditions (a)-(d) in Assumption 3.1 and k(v) decreases in |v|,2 then

K ∗ K
(σ(t) − π(t)

h

)
≤ bd̄

∫ ∞

−∞
K(v)2dv (4)

where 0 < b < 1 depends on σ(t)−π(t)
h .

The proofs of Lemma 3.2 and Lemma 3.3 can be found in Section A.2 and Section A.3 of the appendix,
respectively.

The reduction in variance and mean squared errors. The result in (2) is the standard one in
the literature. From (4) and the first two terms in (3), compared to the standard product kernel density
estimator f̂(t), we see a reduction in the variance of the averaged kernel density estimator f̃(t) when d̄ ≥ 1.
The larger d̄ and σ(t)−π(t)

h are, the greater the reduction is. Given that the point-wise mean square error
MSE(t) = V(t) + (Bias(t))2 and Lemma 3.2, the reduction in the variance implies that f̃(t) has a smaller
MSE(t) than f̂(t) when d̄ ≥ 1. Consequently, f̃ also has a smaller mean integrated squared error (MISE)
than f̂ .

4 A fundamental perspective

Fundamentally, a class of multivariate functions with permutation invariance has a smaller “size” than
without imposing permutation invariance, and consequently, a smaller Radamacher complexity. A measure
of “size" is the metric entropy such as covering numbers; see, for example, Chapters 5 and 13 of Wainwright

2Examples of kernels satisfying these assumptions include the triangular kernel, the Gaussian kernel, the cosine kernel, the
Epanechnikov kernel, the quartic kernel, the triweight kernel, the tricube kernel, the logistic kernel, the sigmoid function and
etc.

6



Under review as submission to TMLR

(2019) for the relationship between Radamacher/Gaussian complexity and metric entropy. In the following,
we compare the metric entropy of two permutation invariant function classes with the metric entropy of their
counterparts where permutation invariance is not imposed.

Let p = (pj)d
j=1 and P =

∑d
j=1 pj where pjs are non-negative integers; x = (xj)d

j=1 and xp =
∏d

j=1 x
pj

j .
Write Dpf (x) = ∂P f/∂xp1

1 · · · ∂xpd

d .3

Definition 4.1 [Hölder classes with a boundary condition] For a non-negative integer γ, let the permutation
invariant Hölder class Uperm be the class of functions such that any function f ∈ Uperm satisfies: (1)
f is continuous and permutation invariant on [0, 1]d, and all partial derivatives of f exist for all p with
P :=

∑d
k=1 pk ≤ γ; (2) |Dpf (x)| ≤ C for all p with P = k (k = 0, ..., γ) and x ∈ [0, 1]d such that

Dpf (0) = 0 (the boundary condition), where D0f (x) = f (x); (3)
∣∣∣Dpf(x) − Dpf(x′)

∣∣∣ ≤ C
∣∣∣x − x

′
∣∣∣
∞

for all

p with P = γ and x, x
′ ∈ [0, 1]d. When permutation invariance is not imposed, we denote the Hölder class

by U .

Theorem 4.2 We have

log N2 (δ, Uperm) ≍ log N∞ (δ, Uperm) ≍ 1
d! log N∞ (δ, U) ≍ 1

d!b
d
d,γδ

−d
γ+1

where bd,γ is a function of (d, γ) only and independent of δ, N2 (δ, Uperm) denotes the δ−covering number
of Uperm with respect to the L2−norm and N∞ (δ, Uperm) (N∞ (δ, U)) denotes the δ−covering number of
Uperm (respectively, U) with respect to the sup norm.

The proof of Theorem 4.2 can be found in Section A.4 of the appendix.

Definition 4.3 [Ellipsoid classes] Given a sequence of non–negative real numbers {µk}k∈Zd
≥0

such that∑
k∈Zd

≥0
µk < ∞, we define the ellipsoid

E :=

(βk)k∈Zd
≥0

|
∑

k∈Zd
≥0

β2
k

µk
≤ 1

 ,

and its permutation invariant subset:

Eperm :=
{

(βk)k∈Zd
≥0

∈ E | βsort k = βk

}
.

Consider an RKHS H of functions over [0, 1]d with Mercer’s kernel K, whose associated eigenfunctions
{ϕk}k∈Zd

≥0
satisfy ϕk(σt) = ϕσ−1k(t) for all σ ∈ Sd, and we denote the associated eigenvalues by {µk}k∈Zd

≥0
.

By definition, {ϕk}k∈Zd
≥0

gives an orthonormal basis for L2([0, 1]d,P). Since the kernel is continuous on the
compact domain [0, 1]d, we have the convergence

∑
k∈Zd

≥0
µk =

∫
[0,1]d K(t, t)dP(t) < ∞. It is well known (see,

e.g., Corollary 12.26 Wainwright (2019)) that H can be identified with the ellipsoid E where any f ∈ H can
be written in the form f =

∑
k∈Zd

≥0
βkϕk. Now, consider the subspace of permutation invariant functions

Hperm := {f ∈ H | f(sort t) = f(t), ∀t} ⊂ H.

It follows that if f =
∑

k∈Zd
≥0

βkϕk ∈ Hperm, then∑
k∈Zd

≥0

βkϕk(t) =
∑

k∈Zd
≥0

βkϕk(σt) =
∑

k∈Zd
≥0

βσkϕσk(σt) =
∑

k∈Zd
≥0

βσkϕk(t)

3We use t in most of the results in this paper but use x here to avoid confusion in the notation.

7



Under review as submission to TMLR

for all t and σ. Hence, βsort k = βk and Hperm can be identified with Eperm.

Define the norms ∥.∥l2 and ∥.∥perm
l2 on E and Eperm,

∥β − β′∥l2 :=
√√√√ ∑

k∈Zd
≥0

(βk − β′
k)2, ∥β − β′∥perm

l2 :=
√√√√ ∑

k∈sort Zd
≥0

(βk − β′
k)2,

for any β, β′ ∈ l2(Zd
≥0). The following result shows the reduction in metric entropy from imposing permuta-

tion invariance.

Theorem 4.4 There exists g, ḡ : R>0 → R>0 such that

g(δ) ≲ log N(δ, E , ∥.∥l2) ≲ ḡ(δ)

and
1
d!g(δ) ≲ log N(δ, Eperm, ∥.∥perm

l2 ) ≲ 1
d! ḡ(δ)

where N(δ, E , ∥.∥l2) denotes the δ−covering number of E with respect to the ∥.∥l2−norm and
N(δ, Eperm, ∥.∥perm

l2 ) denotes the δ−covering number of Eperm with respect to the ∥.∥perm
l2 −norm.

The proof of Theorem 4.4 can be found in Section A.5 of the appendix.

Like Uperm, both the lower and upper bounds on the logarithm of the covering number for Eperm are reduced
by a factor of d! when permutation invariance is imposed.

An example. If H = W s,2
per([0, 1]d), the periodic Sobolev space (which is an RKHS when s > d/2),

it is possible to show that ḡ(δ) = g(δ) :=
( 1

δ

)d/s in Theorem 4.4. Therefore, we have the sharp re-
sult: log N(δ, Eperm, ∥, ∥perm

l2 ) ≍ 1
d! log N(δ, E , ∥, ∥l2). In Appendix A.6, we derive the reproducing kernel

of W s,2
per([0, 1]d), i.e. the subspace of the Sobolev space W s,2([0, 1]d) for functions f such that f(t + k) = f(t)

for any k ∈ Zd.

Related work. To our best knowledge, the most relevant results on metric entropy calculation in the
literature of invariant learning are Chen et al. (2023); Sokolic et al. (2017). However, these results concern a
different type of symmetry that requires the assumption ∥σ(t)−σ′(t)∥2 > 2δ for all the underlying symmetry
transformations σ ̸= σ′ in Chen et al. (2023); Sokolic et al. (2017). This assumption is neither desirable
nor needed for our results; for example, for all t ∈ [0, 1]d such that all entries are the same, this assumption
would be too restrictive (to our setup) as it does not allow σ(t) = t for some non-identity permutation σ.

5 Function interpolation with sorting

In this section, we are interested in the interpolation and fitting of data points generated by some permutation
invariant functions in an RKHS H. We assume that H is equipped with the symmetric positive semidefinite
kernel K that satisfies K(t, t′) = K(σt, σt′) for all σ ∈ Sd, and is 2ν–continuously differentiable, namely,
K ∈ C2ν([0, 1]d × [0, 1]d).

First, let us review the problem of minimal norm interpolation of the values yi = f(ti), i = 1, · · · , n, sampled
from an unknown d–variate function f : [0, 1]d → R over the design sequence {ti}n

i=1. Formally, this problem
can be formulated as: f̂ ∈ arg minf̌∈H ∥f̌∥H subject to f̌(ti) = yi, i = 1, · · · , n. If f ∈ H, then the solution
is always possible by applying the orthogonal projection onto the closed subspace spanned by {K(., ti)}n

i=1,
and hence we can write f̂ = 1√

n

∑n
i=1 π̂iK(., ti) for some π̂ ∈ Rn. To learn a permutation invariant function

f ∈ H, a natural approach is to consider the permutation invariant RKHS Hperm, generated by the kernel
Kperm := 1

(d!)2

∑
σ,σ′∈Sd

K(σ., σ′.) = 1
d!
∑

σ∈Sd
K(σ., .). We refer the readers to Bietti et al. (2021); Klus et al.

(2021); Tahmasebi & Jegelka (2023) for previous works related to Hperm. For completeness, we summarize
the relevant result as follows (see Section A.7 in the appendix for the proof).

8
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Lemma 5.1 The permutation invariant RKHS Hperm is the subspace of permutation invariant functions of
H with the inner product given by ⟨., .⟩Hperm = ⟨., .⟩H.

The computation of Kperm is expensive because enumerating all permutations requires |Sd| = d!. Instead,
we propose the following alternative.

The sorting trick. Given the positive semidefinite kernel K, we propose computing a new kernel Ksort :=
K(sort ., sort .), which is also positive semidefinite. We then consider the sorted RKHS, Hsort, generated
by Ksort. The spaces Hperm and Hsort are related but not always the same except for special cases where
(Hperm)sort = Hperm. Note that both Hsort and Hperm are subspaces of L2([0, 1]d,P). Let us denote the
closure of Hsort by Hsort. We define the L2([0, 1]d,P)−norm and the Euclidean norm in the standard way:
∥f − g∥2

L2([0,1]d,P) :=
∫

[0,1]d |f(t) − g(t)|2dP(t) and ∥t1 − t2∥2
2 :=

∑d
a=1(ta

1 − ta
2)2. Suppose that we observe

n observations of an arbitrary unknown function f ∈ Hperm, in the form yi = f(ti) for i = 1, ..., n. Let us
consider

f̂ ∈ arg min
f̌∈Hsort

∥f̌∥Hsort , subject to f̌(ti) = yi, i = 1, · · · , n, (5)

where ∥.∥Hsort is simply the RKHS norm of Hsort. Because f is permutation invariant, yi = f(ti) = f(sort ti).
By the orthogonal projection in H, there exists π̂ ∈ Rn such that f̂ = 1√

n

∑n
i=1 π̂iK(., sort ti). So naturally

we can estimate f = f ◦sort by f̂ ◦sort = 1√
n

∑n
i=1 π̂iK(sort ., sort ti) ∈ Hsort to ensure that f̂ is permutation

invariant. We bound the error from approximating f with f̂ ◦ sort in the following. This result provides an
embedding of Hperm in Hsort, inside L2([0, 1]d,P).

Theorem 5.2 (Approximation Error) Given a positive semidefinite kernel K ∈ C2ν([0, 1]d × [0, 1]d) sat-
isfying the invariant property, K(., .) = K(σ., σ.) for all σ ∈ Sd, then there exists a constant B depending
only on the dimension d, such that given any f ∈ Hperm, we have∥∥∥∥∥f − 1√

n

n∑
i=1

π̂iK(sort ., sort ti)
∥∥∥∥∥

2

L2([0,1]d,P)

≤ B∥f∥H · sup
t∈[0,1]d

min
i=1,··· ,n

∥ sort t − sort ti∥ν
2 .

In particular, the right hand side tends to zero as n → ∞ for an appropriately chosen sequence of sets of
sample points, hence we have an embedding Hperm ⊂ Hsort as subspaces of L2([0, 1]d,P).

The proof of Theorem 5.2 can be found in Section A.8 of the appendix.

This result shows that Ksort is capable of reproducing anything in Hperm. Therefore, when performing a
kernel ridge regression (KRR) with the ground truth function known to be in Hperm, we may replace Kperm

with Ksort. With sorting, one simply takes the kernel function associated with the original RKHS and sorts
the inputs.

Extension: kernel ridge regressions with sorting

We now turn to the noisy observation model

yi = f(ti) + εi, i = 1, ..., n, (6)

where the noise εis are independently drawn from a distribution. Recalling ti = (t1
i , t2

i , ..., td
i ) for i = 1, ...., n,

we first sort ti in the ascending fashion, and in the case of a tie, simply keep the original ordering. Let the
sorted vector be denoted by sort(ti). We then consider the following estimator:

f̂ ∈ arg min
f̌∈Hsort

1
2n

n∑
i=1

(
yi − f̌ (sort(ti))

)2
+ λ

∥∥∥f̌
∥∥∥2

Hsort
. (7)

9
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Then given t0, we estimate f(t0) by f̂ (sort t0) = 1√
n

∑n
i=1 π̂λ,iK (sort t0, sort ti) , where

π̂λ = arg min
π∈Rn

1
2n

n∑
i=1

yi − 1√
n

n∑
i′ =1

πi′ K (sort(ti), sort(ti′ ))

2

+ λπTKsortπ. (8)

In (8), Ksort ∈ Rn×n consist of entries 1
n K (sort ti, sort ti′ ).

Kperm vs Ksort and the trade off. In Section 6, we demonstrate numerically that both Ksort and Kperm

generally perform better than K in KRR for estimating a permutation invariant function, especially for
higher d. Compared with Kperm (whose computing time is d!), Ksort can be computed with fast sorting
of the features (which takes O(d log d)). At the expense of the computational efficiency, a loss of accuracy
in using Ksort over Kperm may arise in some situations but is insignificant in others, as illustrated by our
numerical experiments.

6 Simulation studies

All figures and tables that are referred to in this section can be found in Appendix A.9.

6.1 Testing permutation invariance

Throughout we use NW = 1000 to numerically estimate cW (α), and N = 1000 Monte–Carlo replications.
To estimate the supremum for T and W , we use the COBYLA maximization algorithm on the smoothened
empirical CDF described in Section 2. For key performance indicators, we denote by “Pow" the power of the
test (the probability of rejecting H0 when H0 is false) and “Cov" the coverage of the test (the probability of
not rejecting H0 when H0 is true). For the dimension d = 2, we demonstrate the performance of our test
given a various number of n sample points over [0, 1]d from the normal distribution

N
(

(µ1, 0.5),
(

σ2
1 0

0 0.01

))
modulo Zd.4 We adjust (µ1, σ2

1) to create various setups for the experiment, with the (µ1, σ2
1) = (0.5, 0.01)

being the control case where the distribution is perfectly permutation invariant. The results are presented
in Table 1.

Next, we study the performance of our test given a fixed n = 100 sample points over [0, 1]d and various
higher dimensions d = 3, 4, 5, using sample points from the normal distribution:

N

(µ1, 0.5, · · · , 0.5)︸ ︷︷ ︸
d

, 0.01 · Id


modulo Zd. The results are presented in Table 2.

Generally, for a fixed d, we can see the improvement in performance with higher n. However, with a fixed n,
it becomes increasingly challenging with higher d for the optimization algorithm to estimate the supremum
T and W , where a higher n would also be needed.

6.2 Estimating permutation invariant densities

We draw n sample points from N(0, Id) and compare f̂(t) with f̃(t) at different values of t when dimensions
range from 3 to 5. We use the product of univariate triangular kernels for illustration, although other choices

4For example, if a vector (1.4, 0.7) is drawn from N
(

(µ1, 0.5),
(

σ2
1 0

0 0.01

))
, then after Zd modulo, we produce the sample

point (0.4, 0.7) on [0, 1]d.

10
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that satisfy the assumptions in Lemma 3.3(ii) would also work. The simulations in Table 3 have n = 10000,
h = 3

( 1
n

) 1
d+4 , and are repeated 1000 times. Figure 2 focuses on t = (0, 0.25, 0.5, 0.75) and exhibits the biases

and variances of the standard kernel density estimator f̂(t) and the averaged kernel density estimator f̃(t)
with n increasing from 1000 to 10000. Compared to f̂(t), f̃(t) exhibits much lower variances and similar
biases.

6.3 Kernel ridge regressions of permutation invariant functions

First, we compare the average sample mean squared errors (SMSE) of the sorted KRR (based on the sorted
kernels), the permutation invariant KRR (based on the permutation invariant kernels), and the standard
KRR (based on the standard kernels) on a W s,2

per,perm([0, 1]d) function, s := ⌊d/2 + 1⌋. For any t ∈ [0, 1]d
and σ ∈ Sd, [σ(t)]a means the a–th coordinate of the vector σ(t) ∈ [0, 1]d. We choose the truth to be a
permutation invariant periodic Sobolev function:

f(t) := 1
d!
∑

σ∈Sd

(
sin 2π[σ(t)]1 + cos 6π[σ(t)]2

)
.

To compute the kernel Kd,s(t, t′) according to Lemma A.2 in Appendix A.6, we truncate the infinite series
to |k|1 = k1 + · · · + kd ≤ kmax := 10. Here, the choice kmax = 10 is chosen as it is sufficient to address
the highest frequency term in our example function f . We generate n = 500 observations {(ti, yi)}n

i=1
with ti ∼i.i.d. Unif [0, 1]d and εi ∼i.i.d. N (0, 0.1) in (6). From the set of observations, we draw a random
subsample of size n = 250, then perform a 5–fold cross–validation on such subsample to find the average-
SMSE-minimizing regularization parameter λ∗ for each version of the KRR. We compute the SMSE of
each KRR with the corresponding λ∗ over the entire subsample, and repeat this process for 100 random
subsamples. The average SMSE for various dimensions d = 2, 3, 4, 5 are given in Table 4(a).

It is clear that the permutation invariant KRR performs better than the rest because f is a permutation
invariant Sobolev function. Nevertheless, the sorted KRR offers an improvement over the standard KRR at
higher d, and is much faster to compute than the permutation invariant KRR (in fact, a few minutes vs a
few hours on our machine for d = 5).

For a (second) fairer comparison, we repeat the simulation above using a different class of kernel, a 1-layer
neural network Williams & Barber (1998) for its universal approximation property,

KNN (t, t′) := 2
π

sin−1 2 + 2t⊺t′√
(3 + 2t⊺t)(3 + 2t′⊺t′)

where its permutation invariant and sorted counterparts are also computed. In this case, there is no clear
advantage to using the permutation invariant KRR. The results are given in Table 4(b). The sorted KRR
performs better than the standard KRR and comparably to the permutation invariant KRR while being
much faster to compute.
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A Appendix

A.1 Proof of Theorem 2.2

Proof: Consider a sample {ti}i=1,··· ,n drawn from a distribution with a continuous CDF F . Let us choose
{zk ∈ [0, 1]}k=1··· ,nm for some m ≥ 4 such that each slab

Ba
k := {t ∈ [0, 1]d | zk−1 ≤ ta ≤ zk}

contains equal probability for any coordinate a = 1, · · · , d and k = 1, · · · , nm: i.e.∫
Ba

k

1 · dF (t) = 1
nm

,

where we take z0 = 0 by convention, and let us define: {vk1,··· ,kp
:= (zk1 , · · · , zkp

) ∈ [0, 1]p}k1,··· ,kd=1,··· ,nm .
Fix a set A ⊂ [0, 1]d bounded away from the boundaries and the diagonal of [0, 1]d such that

inf
v∈A

∫
[0,1]d

([t ≤ sort v] − [t ≤ v])2
dF (t) > 0

and let {ṽj ⊂ A}j=1,··· ,nmd be any subset of nmd points in A. For convenience, let us relabel the elements
of {vk1,··· ,kd

} ∪ {ṽj} in some ways as {vj}j=1,··· ,2nmd where vj ∈ {vi1,··· ,id
} for j = 1, · · · , nmd, and vj ∈

{ṽj}j=1,··· ,nmd for j = nmd + 1, · · · , 2nmd. For j = 1, · · · , nmd, define the box

Bj := {t ∈ [0, 1]d | t ≤ vj and t ≰ vj′ for any vj′ < vj},

and let us assume that
∫

Bj
1 · dF (t) ≤ 1

n(m−1)d
5 Alternatively, we can write Bj = Bk1,··· ,kd

:=
⋂d

a=1 Ba
ka

if
vj = vk1,··· ,kd

. We apply the results of Chernozhukov et al. (2013) with

xij :=


[ti ≤ sort vj ] − [ti ≤ vj ], i = 1, · · · , ⌈n/2⌉ − 1; j = 1, · · · , 2nmd

[ti ≤ sort vj+nmd ] − [ti ≤ vj+nmd ], i = ⌈n/2⌉, · · · , n; j = 1, · · · , nmd

[ti ≤ sort vj−nmd ] − [ti ≤ vj−nmd ], i = ⌈n/2⌉, · · · , n; j = nmd + 1, · · · , 2nmd

−xi,j−2nmd , ∀i; j = 2nmd + 1, · · · , 4nmd

.

Then xi = (xi1, · · · , xi,2nmd) ∈ [0, 1]2nmd for i = 1, · · · , n are independent random vectors. Moreover,
it follows from the permutation invariance of the CDF F that each xi is centered, i.e. E[xij ] = 0. For
convenience, we introduce the following notation

Zn(t; {ci}) := 1√
n

∣∣∣∣∣
n∑

i=1
([ti ≤ sort vj ] − [ti ≤ vj ]) ci

∣∣∣∣∣
and

T0 := max
1≤j≤4nmd

1√
n

n∑
i=1

xij = max
1≤j≤2nmd

Zn(vj ; {ci = 1})

W0 := max
1≤j≤4nmd

1√
n

n∑
i=1

xijej = max
1≤j≤2nmd

1√
n

Zn(vj ; {ei}), ei ∼ N (0, 1).

5If necessary, we may start the construction from finding {z̃a
k}k=1,··· ,2nm−1;a=1,··· ,d, z̃i1,··· ,id

:= (z̃1
i1

, · · · , z̃d
id

) ∈ [0, 1]d,
such that each B̃i1,··· ,id

:= {t ∈ [0, 1]d | z̃i1−1,··· ,id−1 ≤ t ≤ z̃i1,··· ,id
} contains equal probability of 1

2dn(m−1)d . Hence each slab
B̃a

k := {t ∈ [0, 1]d | z̃a
k−1 ≤ ta ≤ z̃a

k} contains equal probability of 1
2nm−1 . The needed symmetric grid {zk}k=1,··· ,nm must be

‘smaller’ than each {z̃a
k} in a sense that for any a = 1, · · · , p we have [zk−1, zk] ⊂ [z̃a

k′−1, z̃a
k′+1] for some k′ ∈ {1, · · · , 2nm−1−1},

which implies P[Bj ] ≤ 2d · 1
2dn(m−1)d = 1

n(m−1)d .
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When there is no ambiguity, we will adopt the notation Zn(t) := Zn(t; {ci = 1}). We would like to compare
T0 and W0 to

T := sup
t∈[0,1]d

Zn(t), W := sup
t∈[0,1]d

Zn(t; {ei}).

More precisely, as required in Chernozhukov et al. (2013), we will show that there exists ζ1, ζ2 ≥ 0 both
depending on n such that ζ1

√
log 4nmd + ζ2 ≤ C2n−c2 → 0 as n → ∞ for some constants C2, c2 > 0, and

that
P [|T − T0| > ζ1] < ζ2, P [Pe [|W − W0| > ζ1] > ζ2] < ζ2. (9)

For any fixed drawn {ei}i=1,··· ,n, the supremum of Zn(t; {ei}) can be reached at some unsorted point t∗ of
the form

t∗ =
(
ta1
i1

, · · · , tad
id

)
for some a1, · · · , ad ∈ {1, · · · , d} and i1, · · · , id ∈ {1, · · · , n}. Suppose that t∗ ∈ Bj∗ =

⋂p
a=1 Ba

i∗
a

for some
j∗ ∈ {1, · · · , nmd}. If sort vj∗ =: π∗(vj∗) ̸= vj∗ i.e. t∗ is not too close to the diagonal, and

⋃d
a=1 Ba

i∗
a

∪⋃d
a=1 B

π∗(a)
i∗

a
contains no other sampled points apart from ti1 , · · · , tid

, then

Zn(xj∗ ; {ei}) = Zn(t∗; {ei}) = sup
t∈[0,1]d

Zn(t; {ei}).

A sufficient condition for the above requirements to be satisfied is that each interval [zk−1, zk], k = 1, · · · , nm

contains at most p − 1 coordinates of at most one sampled vectors {ti′}i′=1,··· ,n, i.e. ∀i = 1, · · · , nm:

p − 1 ≥
∣∣[zi−1, zi] ∩ {t1

i′ , · · · , td
i′}
∣∣ ≥ 0, ∀i′ = 1, · · · , n∣∣[zi−1, zi] ∩ {t1

i′ , · · · , td
i′}
∣∣ > 0, for at most one i′ = 1, · · · , n.

If this is satisfied, we say that there is no coordinate collision. We compute the upper bound for the collision
probability as follows. Let I ⊂ {1, · · · , nm} be any fixed subset of size (n − 1)d. Then,

P [Coordinate collision] ≤ P

 n⋃
i=1

ti ∈
⋃

i∈{1,··· ,nm}

Bi,··· ,i ∪
⋃

i∈I,a∈{1,··· ,d}

Ba
i




≤ n · nm · 1
n(m−1)d

+ n · d · n(d − 1) · 1
nm

∼ 1
nmd−d−m−1 + d2

nm−2 → 0,

as n → ∞, since md − d − m − 1 > 0 for all m ≥ 4, d ≥ 2 and d2/nm−2 ≲ 1/nm−2−2/7 → 0 given that
d = o(n1/7). In the second inequality, the first term came from counting the number of diagonal boxes,
each of them has probability bounded above by 1

n(m−1)d by our construction. The second term counts the
upper bound for the probability that at least one of the coordinates of any ti shares the interval with one of
the coordinates of one of the other n − 1 drawn vectors. Since each of the n(d − 1) slabs contains an equal
probability of 1

nm , the exact choice of I does not matter, as long as |I| = (n − 1)d. It follows that

P [|T − T0| > 0] <
1

nmd−d−m−1 + d2

nm−2

and

P
[
Pe [|W − W0| > 0] >

1
nmp−p−m−1 + d2

nm−2

]
≤ P [Pe [|W − W0| > 0] > 0] <

1
nmd−d−m−1 + d2

nm−2 .

Therefore, (9) holds with ζ1 := 0, ζ2 := 1
nmd−d−m−1 + d2

nm−2

In the language of Chernozhukov et al. (2013), we also have for j = 1, · · · , 4nmp:

Ē[x2
ij ] := 1

n

n∑
i=1

E[x2
ij ] ≥ 1

n

⌊n

2

⌋ ∫
[0,1]d

([t ≤ sort ṽj′ ] − [t ≤ ṽj′ ])2
dF (t)
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+ 1
n

⌊n

2

⌋ ∫
[0,1]p

(
[t ≤ sort vi1,··· ,ip

] − [t ≤ vi1,··· ,ip
]
)2

dF (t)

≥ 1
3 inf

v∈A

∫
[0,1]p

([t ≤ sort v] − [t ≤ v])2
dF (t) =: c1 > 0

where the first inequality holds for some j′ ∈ {1, · · · , nmp} and (i1, · · · , ip) ∈ {1, · · · , nm}p depending on j.
On the other hand, it is clear that Ē[x2

ij ] ≤ C1 := 1. We can also choose Bn = 1 to satisfy the condition:

max
k=1,2

Ē
[
|xij |2+k/Bk

n

]
+ E[exp (|xij |/Bn)] ≤ 1 + e ≤ 4.

It follows from Corollary 3.1 of Chernozhukov et al. (2013) and condition E.1. with

B2
n(log(2nmp · n))7

n
≤ [(mp + 1) log n + log 2]7

n
≤ C2n−c2 (10)

for some C2, c2 > 0, since we have assumed p = o(n1/7), that there exists c > 0, C > 0 depending only on
C1, c1, C2, c2 such that

sup
α∈(0,1)

|P [T > cW (α)] − α| ≤ Cn−c.

Unpacking the definition of T , we find that this is the statement of the theorem. □

A.2 Proof of Lemma 3.2

Proof: The expected value of a standard kernel estimator is computed as

E[f̂(t)] = f(t) + h2

2 tr

(
∂2f(t)
∂t∂tT

∫
vvT K(v)dv

)
+ higher order terms.

For a permutation σ, we have that

E[f̂(σ(t))] = f(σ(t)) + h2

2 tr

(
∂2f(σ(t)

∂t∂tT

∫
vvT K(v)dv

)
higher order terms.

Because f is permutation invariant, f(σ(t)) = f(t) and ∂2f(σ(t)
∂t∂tT = ∂2f(t)

∂t∂tT . □

A.3 Proof of Lemma 3.3

Proof: The first variance is a known result for multivariate kernel density estimators. To obtain the second
variance, we have

E(f̃(t)2) = 1
(d̄)2

E
( ∑

σ∈S∗
d

f̂(σ(t))
)2

= 1
(d̄)2

E

( ∑
σ∈S∗

d

f̂(σ(t))2 +
∑
σ ̸=π

f̂(σ(t))f̂(π(t))
)

= 1
(d̄)2

∑
σ∈S∗

d

E
(

f̂(σ(t))2
)

+ 1
(d̄)2

∑
σ ̸=π

E
(

f̂(σ(t))f̂(π(t))
)

.

In terms of the first term, we have

E

(
f̂(σ(t))2

)
= 1

nhd
f(σ(t))

∫
K(v)2dv + higher order terms.
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Since there are d̄ permutations in S∗
d , we have

E[f̃(t)2] = 1
d̄

1
nhd

f(t)
∫

K(v)2dv + 1
(d̄)2

∑
σ ̸=π

E
(

f̂(σ(t))f̂(π(t))
)

+ higher order terms.

We now turn to the cross-product terms.

E
(

f̂(σ(t))f̂(π(t))
)

= E
( 1

nhd

( n∑
i=1

K
(σ(t) − ti

h

)) 1
nhd

( n∑
i=1

K
(π(t) − ti

h

)))
= 1

n2h2d
E

(
n∑

i=1
K
(σ(t) − ti

h

)
K
(π(t) − ti

h

)
+
∑
i̸=j

K
(σ(t) − ti

h

)
K
(π(t) − tj

h

))

= 1
n2h2d

n∑
i=1

E

(
K
(σ(t) − ti

h

)
K
(π(t) − ti

h

))
+ 1

n2h2d

∑
i ̸=j

E

(
K
(σ(t) − ti

h

)
K
(π(t) − tj

h

))

= 1
nh2d

E

(
K
(σ(t) − ti

h

)
K
(π(t) − ti

h

))
︸ ︷︷ ︸

A

+n − 1
nh2d

E

(
K
(σ(t) − ti

h

)
K
(π(t) − tj

h

))
︸ ︷︷ ︸

B

.

We start with the second term, B:

E

(
K
(σ(t) − ti

h

)
K
(π(t) − tj

h

))
=
∫

K
(σ(t) − ti

h

)
K
(π(t) − tj

h

)
f(ti)f(tj)dtidtj

=
(∫

K
(σ(t) − ti

h

)
f(ti)dti

)(∫
K
(π(t) − ti

h

)
f(ti)dti

)
.

These are the same integrals except for the difference of σ and π. Without loss of generality, we work with
the first one: ∫

K
(σ(t) − ti

h

)
f(ti)dti = hd

∫
K(u)f(hu + σ(t))du

≈ hd

∫ [
K(u)f(σ(t)) + h K(u)uT︸ ︷︷ ︸

Integrates to 0
∇f(σ(t))

]
du

= hdf(σ(t)).

There are n2 − n terms where i ̸= j which means that

1
n2h2d

E

(∑
i ̸=j

K
(σ(t) − ti

h

)
K
(π(t) − tj

h

))
≈ n − 1

n
f(σ(t))f(π(t)) = f(t)2 − 1

n
f(t)2.

We now turn to the first term, A:

E

(
K
(σ(t) − ti

h

)
K
(π(t) − ti

h

))
=
∫

K
(σ(t) − π(t)

h
+ π(t) − ti

h

)
K
(π(t) − ti

h

)
f(ti)dti.

Letting u = ti−π(t)
h , we have

E

(
K
(σ(t) − ti

h

)
K
(π(t) − ti

h

))
= hd

∫
K
(σ(t) − π(t)

h
− u
)

K
(

u
)

f(hu + π(t))du

17
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≈ hd

∫
K
(σ(t) − π(t)

h
− u
)

K
(

u
)

f(π(t))du

= hdf(π(t))
∫

K
(σ(t) − π(t)

h
− u
)

K
(

u
)

du

= hdf(t)(K ∗ K)
(σ(t) − π(t)

h

)
.

Putting everything together yields the second variance.

For the results in part (ii), note that we have

K ∗ K
(σ(t) − π(t)

h

)
=

d∏
j=1

(k ∗ k)
(σj(t) − πj(t)

h

)
.

The following observations can be made about the term above:

1. given the conditions on k(v) in part (ii) of Lemma 3.3, then (k ∗ k)
(

σj(t)−πj(t)
h

)
is strictly smaller

than
∫

k(v)2dv when σj(t) ̸= πj(t);

2. given the observation above and that σ, π ∈ S∗
d , by the construction of S∗

d , we have

d∏
j=1

k ∗ k
(σj(t) − πj(t)

h

)
≤ bd̄

∫
K(v)2dv

where 0 < b < 1 depends on σ(t)−π(t)
h .

□

A.4 Proof of Theorem 4.2

Proof: We use the argument in Kolmogorov & Tikhomirov (1959) and Lemma A.1. When permutation
invariance is absent, to derive an upper bound on log N∞ (δ, U), we consider a b−1

d,γδ
1

γ+1 −grid of points (where
bd,γ is a function of (d, γ) only and independent of δ) in each dimension of [0, 1]d:

x0,j = 0 < x1,j < · · · < xs−1,j < xs,j , j ∈ {1, ..., d}

with s ≲ bd,γδ
−1

γ+1 , and show that bounding N∞ (δ, U) can be reduced to bounding the cardinality of

Λ =
{(⌊

Dpf (xi1,1, ..., xid,d)
δk

⌋
, 0 ≤ i1, ..., id ≤ s, 0 ≤ k ≤ γ

)
: f ∈ U

}
with ⌊x⌋ denoting the largest integer smaller than or equal to x. Then, using the fact that Dpf (0) = 0 for all
p with P = k (k = 0, ..., γ), the argument in Kolmogorov & Tikhomirov (1959) implies that |Λ| ≤ csd , where
c ∈ (0, ∞) is a constant independent of δ and (d, γ). Now with permutation invariance, by Lemma A.1, the
number of points we need to consider scales as 1

d! s
d. This fact is also applied along with the construction of

the class of functions in Kolmogorov & Tikhomirov (1959) and the relationship between covering numbers and
packing numbers to yield the lower bound. In addition, log N2 (δ, U) ≲ log N∞ (δ, U). Standard argument
in the literature using the Vasharmov-Gilbert Lemma and the relationship between covering numbers and
packing numbers further give log N2 (δ, U) ≳ log N∞ (δ, U). In sum, log N2 (δ, U) ≍ log N∞ (δ, U) ≍ bd

d,γδ
−d

γ+1

and log N2 (δ, Uperm) ≍ log N∞ (δ, Uperm) ≍ 1
d! b

d
d,γδ

−d
γ+1 .

Lemma A.1 Let Pb
d =

{
x ∈ [0, b]d : 0 ≤ x1 ≤ x2 ≤ ... ≤ xd ≤ b

}
. Then the volume of Pb

d, Vol(Pb
d) = bd

d! .
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Proof: We show Lemma A.1 by induction.

Base case: If d = 1, Pb
d = [0, b]. Then, Vol(Pb

1) = b
1! .

Inductive step: Suppose that Vol(Pb
d) = bd

d! . Then,

Vol(Pb
d+1) =

∫
x∈Pb

d+1

dx =
∫ b

0
dxd+1

∫ xd+1

0
dxd · · ·

∫ x2

0
dx1︸ ︷︷ ︸

Vol(P
xd+1
d

)

=
∫ b

0

xd
d+1
d! dxd+1 = bd+1

(d + 1)! .

□

A.5 Proof of Theorem 4.4

Proof: From definition, we have µk → 0 as maxa=1,··· ,d ka → ∞, therefore we can find Kδ :={
k ∈ Zd

≥0 | maxa=1,··· ,d ka ≤ k̄
}

for some k̄ > 0 such that
∑

k∈Zd
≥0\Kδ

β2
k ≤ δ2 for all β ∈ E . Then any

δ–cover {β1, · · · , βN } of the Dδ := |Kδ|–dimensional truncated ellipsoid Ẽ := {β ∈ E | βk = 0, ∀k /∈ Kδ} is a√
2δ–cover of E , since

min
j=1,··· ,N

∥β − βj∥2
l2 = min

j=1,··· ,N

∑
k∈Kδ

(βk − βj
k)2 +

∑
k∈Zd

≥0\Kδ

(βk)2 ≤ 2δ2.

for any β ∈ E . It follows from Lemma 5.7 Wainwright (2019) that

(√
2

δ

)Dδ vol
(

Ẽ
)

vol
(
BDδ

2 (1)
) ≤ N(δ, E , ∥.∥l2) ≤

(
2
√

2
δ

)Dδ vol
(

Ẽ + BDδ
2 (δ/2)

)
vol
(
BDδ

2 (1)
) .

Let µ
δ

:= mink∈Kδ
µk and µ̄δ := maxk∈Kδ

µk, then it follows from BDδ
2 (√µ

δ
) ⊂ Ẽ ⊂ BDδ

2 (
√

µ̄δ) that:

(√2µ
δ

δ

)Dδ

≤ N(δ, E , ∥.∥l2) ≤
(

2
√

2µ̄δ

δ
+ 1
)Dδ

.

On the other hand, let Kδ be as chosen previously, and let Kperm
δ := sortKδ then Dperm

δ := |Kperm
δ | ≍ Dδ

d!
by the construction that Kδ contains the entire Sd–orbit of all its elements. Then

∑
k∈sort Zd

≥0\Kperm
δ

β2
k ≤∑

k∈Zd
≥0\Kδ

β2
k ≤ δ2, and therefore any δ–cover {β′1, · · · , β′N ′} of the Dperm

δ –dimensional truncated permu-
tation invariant ellipsoid Ẽperm := {β ∈ Eperm | βk = 0, ∀k /∈ Kperm

δ } is a
√

2δ–cover of Eperm, since

min
j=1,··· ,N ′

∥β − β′j∥perm2
l2 = min

j=1,··· ,N ′

∑
k∈Kperm

δ

(βk − β′j
k )2 +

∑
k∈sort Zd

≥0\Kperm
δ

(βk)2 ≤ 2δ2

for any β ∈ Eperm. Following the same analysis as before, we obtain(√2µ
δ

δ

)Dperm
δ

≤ N(δ, Eperm, ∥.∥perm
l2

) ≤
(

2
√

2µ̄δ

δ
+ 1
)Dperm

δ

.

The result follows by identifying g(δ) := Dδ log
(√

2µ
δ

δ

)
and ḡ(δ) := Dδ log

(
2

√
2µ̄δ

δ + 1
)

. □
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A.6 Lemma A.2 and its proof

Here, we derive the reproducing kernel of the space of periodic Sobolev functions W s,2
per([0, 1]d), i.e. the

subspace of the Sobolev space W s,2([0, 1]d) for functions f such that f(t+k) = f(t) for any k ∈ Zd. We only
consider the case when s > d/2 so that we have an embedding W s,2([0, 1]d) ⊂ C0,s−d/2([0, 1]d) to guarantee
that W s,2

per([0, 1]d) is an RKHS. For reasons that are not obvious to us, results on reproducing kernels for
multivariate Sobolev space appear sparse in the literature despite its importance. One result we found is for
the reproducing kernel of W s,2(Rd) and derived in Novak et al. (2018). Our derivation supplements their
result for the compact domain case. The periodicity is a natural condition that is needed to make sense of
the specified smoothness at the boundary of [0, 1]d. Equivalently, we may consider Sobolev functions on a
d–dimensional torus Td.

Lemma A.2 The reproducing kernel K : [0, 1]d × [0, 1]d → R for the periodic Sobolev space W s,2
per([0, 1]d)

with s > d/2 is

Kd,s(t, t′) =
∑

k∈Zd
≥0

2 cos 2πk · (t − t′)
vd,s[k]2 − 1,

where vd,s[k] :=
[∑

|α|≤s

∏d
j=1 (2πkj)2αj

]1/2
and the corresponding eigenvalues {µk = 1/vd,s[k]2}k∈Zd .

By restricting to real–valued functions, the eigenvectors of the corresponding Hilbert-Schmidt operator are
{e+

k := t 7→ cos 2πk · t, e−
k := t 7→ sin 2πk · t}k∈Zd

≥0
with eigenvalues {µk = 1/vd,s[k]2}k∈Zd

≥0
, and the RKHS

can be written as an ellipsoid taking the same form as in Definition 4.3:

W s,2
per([0, 1]d) ∼=

(βk)k∈Zd
≥0

|
∑

k∈Zd
≥0

vd,s[k]2β2
k < ∞

 ,

where ⟨f, g⟩W s,2
per

=
∑

k∈Zd
≥0

vd,s[k]2βf,kβg,k. For the space of permutation invariant periodic Sobolev func-
tions W s,2

per,perm([0, 1]d) ⊂ W s,2
per([0, 1]d), we simply restrict the above ellipsoid to βsort k = βk.

Proof: For any f ∈ W s,2
per([0, 1]d) ⊂ L2([0, 1]d), the corresponding Fourier series is given by

f(t) =
+∞∑

k1,··· ,kd=−∞

Ff [k]ei2πk·t

where
Ff [k] :=

∫
[0,1]p

f(t)e−i2πk·tdt.

The inner products are given by:

⟨f, g⟩L2 :=
∫

[0,1]p

f(t)∗g(t)dt, ⟨f, g⟩W s,2 :=
∑

|α|≤s

⟨Dαf, Dαg⟩L2 .

The periodic properties help us easily compute the Fourier coefficients of any derivatives:

F(Dαf)[k] =
d∏

j=1
(i2πkj)αj Ff [k].

For convenience, we define vd,s[k] :=
[∑

|α|≤s

∏d
j=1 (2πkj)2αj

]1/2
. From Parseval’s Theorem we also know

that
⟨f, g⟩L2 =

∞∑
k1,··· ,kd=0

(Ff [k])∗(Fg[k]) =: ⟨Ff, Fg⟩l2 .
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Therefore,

⟨f, g⟩W s,2
per

=
∑

|α|≤s

⟨Dαf, Dαg⟩L2 =
∑

|α|≤s

⟨FDαf, FDαg⟩l2

=
∑

|α|≤s

+∞∑
k1,··· ,kd=−∞

p∏
j=1

(2πkj)2αj Ff [k]∗Fg[k] = ⟨vd,sFf, vd,sFg⟩l2 .

Let Kp,s be the reproducing kernel. We have Kp,s(., t) ∈ W s,2
per([0, 1]d) and for any f ∈ W s,2

per([0, 1]d):

f(t) = ⟨f, Kd,s(., t)⟩W s,2
per

= ⟨vd,sFf, vd,sFKd,s(., t)⟩l2 .

On the other hand,

f(t) = F−1Ff(t) =
+∞∑

k1,··· ,kp=−∞

Ff [k]e−i2πk·t

=
+∞∑

k1,··· ,kd=−∞

vd,s[k]Ff [k]∗ · vd,s[k]e
−i2πk·t

vd,s[k]2 = ⟨vd,sFf, vd,s
e−i2πk·t

v2
d,s

⟩
l2

.

Comparing the two above, since f is arbitrary, we must have FKd,s(., t)[k] = e−i2πk·t

vd,s[k]2 , which means:

Kd,s(t, t′) =
+∞∑

k1,··· ,kd=−∞

ei2πk·(t−t′)

vd,s[k]2 =
∑

k∈Zd
≥0

2 cos 2πk · (t − t′)
vd,s[k]2 − 1.

The corresponding Hilbert-Schmidt operator is TK : L2([0, 1]d) → L2([0, 1]d):

TK [f ](t) :=
∫

[0,1]d

K(t, t′)f(t′)dt′

with eigenvectors {ek := t 7→ ei2πk·t}k∈Zd with the corresponding eigenvalues {µk := 1/vd,s[k]2}k∈Zd . □

A.7 Proof of Lemma 5.1

Proof: Let us denote the Hilbert subspace of permutation invariant functions by H̃perm ⊂ H. We note
that Kperm(., t) ∈ H̃perm, since Kperm(σ., t) = 1

d!
∑

σ′∈Sd
K(σσ′., t) = 1

d!
∑

σ′′∈Sd
K(σ′′., t) = Kperm(., t),

where we changed the summation variable to σ′′ := σσ′. Given f ∈ H̃perm, it also follows that f(t) =
1
d!
∑

σ∈Sd
f(σt) =

〈
f, 1

d!
∑

σ∈Sd
K(., σt)

〉
H = ⟨f, Kperm(., t)⟩H. This shows Kperm is the reproducing kernel

for H̃perm, therefore Hperm = H̃perm by uniqueness. □

A.8 Proof of Theorem 5.2

Proof: For convenience, in the following we let X := [0, 1]d and X0 be the sorted part of X . Take f ∈ Hperm,
then we have f ∈ H by Lemam 5.1. We consider the construction of interpolent f̂n ∈ H given the data
{(si, yi)}n

i=1 where si ∈ [0, 1]d are assumed to be sorted, and yi := f(si). Since si are sorted, we can also
write si := sort ti for some ti ∈ [0, 1]d. Let L ⊂ H be the subspace spanned by {K(., si)}n

i=1; L is closed, so
we have the orthogonal decomposition H = L ⊕ L⊥. The orthogonal projection P : H → L is linear, and
Pf is uniquely determined by the values {yi}n

i=1, so we can write f̂n = Pf =
∑n

i,j=1 αj
i yjK(., si) for some

αj
i ∈ R. Therefore,

∣∣∣f(t) − f̂n(t)
∣∣∣ =

∣∣∣∣∣∣
〈

f, K(., t) −
n∑

i,j=1
αj

i K(., sj)K(t, si)
〉

H

∣∣∣∣∣∣ ≤ ∥f∥H ·

∥∥∥∥∥∥K(., t) −
n∑

i,j=1
αj

i K(., sj)K(t, si)

∥∥∥∥∥∥
H

.
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Let u∗
j :=

∑n
i=1 αj

i K(t, si) and define Qt : Rn → R:

Qt(u) :=

∥∥∥∥∥∥K(., t) −
n∑

j=1
ujK(., sj)

∥∥∥∥∥∥
2

H

= K(t, t) − 2
n∑

j=1
ujK(t, sj) +

n∑
i,j=1

uiujK(si, sj).

Then we can write the above inequality more compactly as∣∣∣f(t) − f̂n(t)
∣∣∣ ≤ ∥f∥H ·

√
Qt(u∗).

So far, t ∈ X is arbitrary, but we will focus on the case where t ∈ X0 in the following. It is also useful to
define:

hn := sup
t∈X0

min
i=1,··· ,n

∥t − si∥2.

Since K is positive semidefinite, Qt is a convex function (although, not necessarily strictly convex), and any
stationary points of Qt is a global minimum. It follows that u∗ is a global minimum, where

∂Qt

∂uk
(u∗) = −2K(t, sk) + 2

n∑
j=1

u∗
j K(sj , sk) = −2K(t, sk) + 2

n∑
i,j=1

αj
i K(t, si)K(sj , sk) = 0.

The last line follows from the fact that PK(., sk) = K(., sk). From Theorem 3.14 of Wendland (2004), since
X0 ⊂ Rd satisfies an (rd, θd)–interior cone condition for some parameters θd ∈ (0, π/2), rd > 0 depending on
the dimension d, at any t ∈ X0, we can find {ũj(t)}n

j=1 such that

•
∑n

j=1 ũj(t)p(sj) = p(t), for all p ∈ π2ν(Rd),

•
∑n

j=1 |ũj(t)| ≤ B1,

• ũj(t) = 0 provided that ∥t − sj∥2 > B2hn,

for some constants B1, B2 depending only on the dimension d (through the parameters rd, θd). Here, π2ν(Rd)
denotes the space of polynomials on Rd of degree at most 2ν. Because u∗ is a global minimum, Qt(u∗) ≤
Qt(ũ(t)), and we have

Qt(u∗) ≤ Qt(ũ) = K(t, t) − 2
n∑

j=1
ũj(t)K(t, sj) +

n∑
i,j=1

ũi(t)ũj(t)K(si, sj)

= K(t, t) − 2
n∑

j=1
ũj(t)

 ∑
|α|<2ν

(t − sj)α

α! ∂α
2 K(t, t) +

∑
|α|=2ν

R0,α(t, t; t, sj)(t − sj)α


+

n∑
i,j=1

ũi(t)ũj(t)
( ∑

|α|+|β|<2ν

(t − si)α(t − sj)β

α!β! ∂α
1 ∂β

2 K(t, t) +
∑

|α|=2ν

Rα,β(t, t; si, sj)(t − si)α(t − sj)β

)

= −2
n∑

j=1

∑
|α|=2ν

ũj(t)R0,α(t, t; t, sj)(t − sj)α

+
n∑

i,j=1

∑
|α|+|β|=2ν

ũi(t)ũj(t)Rα,β(t, t; si, sj)(t − si)α(t − sj)β

where we use the fact that K ∈ C2ν(X × X ) and apply multivariate Taylor’s Theorem from any point
(t, t) ∈ X0 × X0 to (t, si) and (si, sj), and the last line follows from the reproducing properties of ũ for
π2ν(Rd) polynomials. Here, we denote the remainder by

Rα,β(t1, t2; t′
1, t′

2) := 1
α!β!∂

α
1 ∂β

2 K(ξ1, ξ2)
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for some (ξ1, ξ2) ∈ X0 × X0 on the line connecting any (t1, t2) ∈ X0 × X0 and (t′
1, t′

2) ∈ X0 × X0. Note that

|Rα,β(t1, t2; t′
1, t′

2)| ≤ max
ξ1,ξ2∈X0

max
|α|+|β|=2ν

1
α!β!

∣∣∣∂α
1 ∂β

2 K(ξ1, ξ2)
∣∣∣ =: CK

which is finite because X0 is compact. From the vanishing property, ũj(t) = 0 if ∥t − sj∥2 > B2hn, so we
can bound |t − si|α ≤ ∥t − si∥|α|

2 ≤ (B2hn)|α|. Continuing the above calculation with the triangle inequality
yields

Qt(u∗) ≤ 2 ·
(

2ν + d

d

)
· CK (B2hn)2ν

n∑
j=1

|ũj(t)| +
(

2ν + 2d

2d

)
· CK (B2hn)2ν

 n∑
j=1

|ũj(t)|

2

≤
((

2ν + d

d

)
+
(

2ν + 2d

2d

)
B1

)
B1B2ν

2 CKh2ν
n

where we have used the property that
∑n

j=1 |ũj(t)| ≤ B1 to conclude the final line. Overall, we have∣∣∣f(t) − f̂n(t)
∣∣∣ ≤ B∥f∥H · hν

n, ∀t ∈ X0

for some constant B depending only on the dimension d (through B1, B2) and the kernel (through CK). In
fact, this bound is uniform. Since f ∈ Hperm, f ◦ sort = f ; also, f̂n ◦ sort ∈ Hsort by definition. So we have∥∥∥f − f̂n ◦ sort

∥∥∥2

L2(X ,P)
=
∫

X

∣∣∣f(sort t) − f̂n(sort t)
∣∣∣2 dt ≤ B∥f∥H · hν

n → 0

as n → ∞, for an appropriately chosen sequence of datasets. Therefore, there exists a sequence{
f̂n ◦ sort

}∞

n=1
⊂ L2(X ,P) ∩ Hsort converging to f ∈ Hperm, which means Hperm ⊂ Hsort. □

A.9 Figures and Tables

Figure 1: Convergence of maxj=1,··· ,(nd2)1.5 Zn(vj) to T for d = 2 using {vj}j=1,··· ,(nd2)1.5 test points ran-
domized i.i.d. from F .
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(µ1, σ2
1) (0.5, 0.01) (0.4, 0.01) (0.5, 0.05)

n α 95% 99% 95% 99% 95% 99%

100 Cov 0.96 0.99 < 0.01 < 0.01 0.09 0.29
Pow 0.04 0.01 > 0.99 > 0.99 0.91 0.71

200 Cov 0.95 0.99 < 0.01 < 0.01 < 0.01 0.01
Pow 0.05 0.01 > 0.99 > 0.99 > 0.99 0.99

300 Cov 0.95 0.99 < 0.01 < 0.01 < 0.01 < 0.01
Pow 0.05 0.01 > 0.99 > 0.99 > 0.99 > 0.99

Table 1: Simulation results with d = 2.

µ1 0.5 0.4
d α 95% 99% 95% 99%

3 Cov 0.96 0.99 < 0.01 0.01
Pow 0.04 0.01 > 0.99 0.99

4 Cov 0.95 > 0.99 < 0.01 0.01
Pow 0.05 < 0.01 > 0.99 0.99

5 Cov 0.96 0.99 0.03 0.11
Pow 0.04 0.01 0.97 0.89

Table 2: Simulation result with n = 100.

t
f̂(t) bias f̃(t) bias f̂(t) variance f̃(t) variance

(all numbers below ×10−3)

(0,0.5,1) -0.1202 -0.3107 0.0523 0.0170
(0, 0.25, 0.5) -1.0118 -0.9651 0.0802 0.0282

(0, 0.25, 0.5, 0.75) -0.3838 -0.2504 0.0328 0.0082
(0, 0.25, 0.5, 0.75, 0.75) -0.0913 -0.1394 0.0114 0.0026

(0, 0.25, 0.5, 0.75, 1) -0.0332 -0.1423 0.0087 0.0017

Table 3: Bias and variance comparisons with n = 10000, h = 3
( 1

n

) 1
d+4 and 1000 replications.

d
Sorted Invariant Standard

(all numbers below ×10−3)

2 1.985 1.095 2.079
3 3.580 1.018 3.012
4 3.954 0.796 4.142
5 4.857 0.895 6.415

(a) KRR with Sobolev kernel Kd,s

d Sorted Invariant Standard
2 0.115 0.118 0.129
3 0.176 0.104 0.194
4 0.125 0.080 0.154
5 0.095 0.077 0.134

(b) KRR with 1–layer neural network kernel KNN

Table 4: Average SMSE comparison of sorted vs. permutation invaraint vs. standard KRR for an example
of f ∈ W s,2

per,perm([0, 1]d) using the Sobolev kernel and 1–layer neural network kernel.
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Figure 2: Variance and bias at t = (0, 0.25, 0.5, 0.75) as n increases from 1000 to 10000 using the bandwidth
of h = 3

( 1
n

) 1
d+4 and 1000 replications. The variance of the averaged kernel density estimator is consistently

smaller than that of the standard kernel density estimator throughout.
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