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ABSTRACT

Stochastic embedding has several advantages over deterministic embedding, such
as the capability of associating uncertainty with the resulting embedding and ro-
bustness to noisy data. This is especially useful when the input data has ambigu-
ity (e.g., blurriness or corruption) which often happens with in-the-wild settings.
Many existing methods for stochastic embedding are limited by the assumption
that the embedding follows a standard normal distribution under the variational
information bottleneck principle. We present a different variational approach to
stochastic embedding in which maximum entropy acts as the bottleneck, which
we call ”Maximum Entropy Information Bottleneck” or MEIB. We show that
models trained with the MEIB objective outperform existing methods in terms
of regularization, perturbation robustness, probabilistic contrastive learning, and
risk-controlled recognition performance.

1 INTRODUCTION
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Figure 1: Stochastic embedding framework.

Stochastic embedding is a mapping of an input x to a random variable Z ∼ p(z|x) ∈ RD in which
the mapped regions of similar inputs are placed nearby. Unlike deterministic embedding, where
z = f(x) is a point in RD, stochastic embedding can represent the input uncertainty, such as data
corruption or ambiguity, by controlling the spread of probability density over a manifold Oh et al.
(2019).

Figure 1 depicts a typical stochastic embedding framework with the neural networks parameterized
by θ. Input x is mapped to a Gaussian distribution N (z;µ,Σ) by a stochastic encoder that con-
sists of a backbone feature extractor fB

θ followed by two separate branches fµ
θ and fΣ

θ , each of
which predicts the µ and Σ.1While the covariance matrix Σ, in prior work as well as in this paper, is
assumed to be diagonal where fΣ

θ outputs a D-dimensional vector, it would be straightforward to ex-
tend it to a full covariance matrix, for instance, using a Cholesky decomposition Dorta et al. (2018).
Embeddings sampled from this Gaussian are then consumed by a decoder fC

θ for the downstream
task, e.g., classification.

Majority of leading methods for stochastic embedding Oh et al. (2019); Chang et al. (2020);
Sun et al. (2020); Chun et al. (2021); Li et al. (2021b) are built upon the variational informa-
tion bottleneck (VIB) principle Alemi et al. (2017) where the stochastic encoder p(z|x) is regu-
larized by Kullback–Leibler (KL) divergence, KL(p(z|x)||r(z)), where p(z|x) = N(z;µ,Σ) and
r(z) = N(z;0, I) in general. This effectively impels the embeddings to be close to a standard
normal distribution, which is an explicit assumption that may not always hold true.

1We use the terms fµ
θ (x) and fΣ

θ (x) interchangeably with f
µ
θ (fB

θ (x)) and fΣ
θ (fB

θ (x)) respectively.
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(a) Deterministic (b) Stochastic, KLD (c) Stochastic, ME

Figure 2: Embedding space characteristics. Each color represents a class of data. The color-filled
shapes refer to the deterministic or the mean point of stochastic embeddings. The ellipses around
the shapes depict the standard deviation of stochastic embeddings. The circles and the diamonds
represent training and testing data, respectively. The solid lines are the decision boundaries learned.

Furthermore, Bütepage et al. (2021) showed that the standard variational autoencoder (VAE) trained
with KL divergence from the standard normal prior Kingma & Welling (2014) fails to correlate
the latent variance with the input uncertainty; the variance decreases with the distance to the latent
means of training data, which is contrary to expectation. Since VAE is a special case of an unsu-
pervised variant of VIB, this phenomenon also holds for VIB; our experiments show VIB assigns
smaller variance to more uncertain inputs (see the supplemental Section A). Motivated by this find-
ing, we explicitly use the variance (entropy) as a confidence indicator rather than a measure of input
uncertainties and encourage the model to assign larger variance to more certain inputs.

In this paper, we propose Maximum Entropy Information Bottleneck (MEIB) to lift such constraints
of using a fixed prior and instead use the conditional entropy of the embedding H(Z|X) as the only
regularization. Based on the maximum entropy principle Jaynes (1957), we postulate that stochastic
uncertainty is best represented by the probability distribution with the largest entropy. By maxi-
mizing H(Z|X), the embedding distribution is promoted to be more random, pushing for broader
coverage in the embedding space, with a trade-off on the expressiveness of Z about target Y. The
resulting distribution is also the one that makes the fewest assumptions about the true distribution of
data Shore & Johnson (1980).

Figure 2 depicts our intuition; (a) deterministic encoders would learn embeddings “just enough”
to classify the training samples unless any regularization technique, such as a margin loss, is con-
sidered. It would be vulnerable to small changes in test inputs. (b) the embedding distribution by
typical stochastic encoders (e.g., VIB) trained with the KL divergence regularization will tend to
cover a fixed prior. Note that it is generally difficult to pick a true prior distribution. Also, it is
unnecessary to restrict the embedding distribution to be within a specific bound. (c) with MEIB,
on the other hand, by maximizing the conditional entropy of the stochastic embeddings, we would
have a better regularization effect as it makes the area secured by the embedding distribution for the
given input as broad as possible.

The key contributions of MEIB to the previous stochastic embedding methods are summarized as
follows:

• While it provides a comparable regularization in handwritten digit classification, MEIB
outperforms existing approaches in the challenging person re-identification task with three
popular datasets.

• MEIB shows significantly better perturbation robustness compared to VIB in handwritten
digit classification.

• MEIB performs better than VIB when used in a probabilistic contrastive learning frame-
work.

• Providing reliable confidence measurements, MEIB shows an outstanding risk-controlled
recognition performance in digit classification and person re-identification tasks.
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2 RELATED WORK

Stochastic Embeddings Research on stochastic embeddings has gained popularity in recent years.
Oh et al. (2019) proposed a similarity-based method based on the pairwise soft contrastive loss
and the VIB principle, which has been later applied to human pose embedding Sun et al. (2020),
cross-modal retrieval Chun et al. (2021), and ordinal embedding Li et al. (2021b). Chang et al.
(2020) proposed stochastic embedding for face recognition using softmax loss and KL divergence
regularization without relying on similarity. All of these methods assume embedding distribution to
be unit Gaussian. Unlike these approaches, Probabilistic Face Embedding (PFE) Shi & Jain (2019)
turns deterministic embeddings into Gaussians with fixed mean by training a post hoc network to
maximize the mutual likelihood of same-class embeddings. Follow-up research on PFE includes
its extension to triplets Warburg et al. (2021) and for spherical space Li et al. (2021a). However,
this line of work is limited to fixed embedding mean. The work most closely related to ours is
DistributionNet Yu et al. (2019) which introduced entropy-based regularization and inspired Yang
et al. (2021) for their uncertainty-aware loss. However, these methods put a margin to bound the
total entropy rather than maximizing it as we do.

Maximum Entropy Maximum entropy is a general principle that has already been widely adopted
in designing machine learning models, including supervised and reinforcement learning Zheng et al.
(2017); Ahmed et al. (2019). Pereyra et al. (2017) used the negative entropy of the class prediction
distribution, −H(pθ(y|x)), as a regularization term in the loss function to prevent over-confident
predictions. In reinforcement learning, the maximum entropy framework encourages diverse explo-
rations in both on-policy and off-policy settings Mei et al. (2019); Haarnoja et al. (2018); Han &
Sung (2021). However, in most previous work, the entropy regularization has been applied at the
decision levels, the distribution of class or action predictions. In this work, on the other hand, we
focus on the entropy of the stochastic embedding of inputs.

3 MAXIMUM ENTROPY INFORMATION BOTTLENECK

MEIB Objective The maximum entropy principle Jaynes (1957) states that the current state of
knowledge about the given system is best represented by the probability distribution with the largest
entropy Shore & Johnson (1980). By combining this with our hypothesis, the goal is to learn an
encoding Z that is maximally expressive about Y while maximizing the expected amount of infor-
mation (entropy) about Z|X:

max
θ

I(Z, Y ; θ) s.t. H(Z|X; θ) ≥ Hc. (1)

Introducing a Lagrangian multiplier β, we have the maximization objective:

JMEIB = I(Z, Y ; θ) + βH(Z|X; θ) (2)

where β ≥ 0 controls the trade-off between the predictiveness and the spread of Z given X . Using
the lower bound suggested by Alemi et al. (2017) for the first term of the objective I(Z, Y ), we have

I(Z, Y ; θ) + βH(Z|X; θ) ≥
∫

dx dy dz p(x)p(y|x)p(z|x) log q(y|z)

− β

∫
dx dz p(x) p(z|x) log p(z|x) = L. (3)

This lower bound L can be computed by approximating the joint distribution p(x, y) = p(x) p(y|x)
using the empirical data distribution p(x, y) = 1

N

∑N
n=1 δxn

(x) δyn
(y) (Alemi et al., 2017)

L ≈ 1

N

N∑
n=1

[∫
dz p(z|xn) log q(yn|z)− β p(z|xn) log p(z|xn)

]
. (4)

Consequently, the loss function to be minimized is:

LMEIB =
1

N

N∑
n=1

[
Ez∼p(z|xn) [− log q(yn|z)]− βH(Z|xn)

]
(5)
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where we use the typical reparameterization trick Kingma & Welling (2014) to backpropagate gra-
dients through the sampling of z ∼ p(z|xn). We use a single sample of z by default unless it is
specified.

Relationship to VIB The minimization loss function of VIB (Alemi et al., 2017) is:

LVIB =
1

N

N∑
n=1

[
Ez∼p(z|xn) [− log q(yn|z)] + βKL[p(Z|xn), r(Z)]

]
(6)

=
1

N

N∑
n=1

[
Ez∼p(z|xn) [− log q(yn|z)]− βH(Z|xn) + βH(p(Z|xn), r(Z))

]
(7)

≥ 1

N

N∑
n=1

[
Ez∼p(z|xn) [− log q(yn|z)]− βH(Z|xn)

]
= LMEIB (8)

where H(p(Z|xn), r(Z)) is the cross-entropy of r(Z) relative to the distribution p(Z|xn) =
N (Z|fµ

θ (xn), fΣ
θ (xn)), which is given by

H(p(Z|xn), r(Z)) =
1

2

(
D ln(2π) +

D∑
d=1

(
µ2

θ,d +σ2
θ,d

))
≥ 0

where µθ = fµ
θ (xn) and Σθ = Diag(σ2

θ) = fΣ
θ (xn), a diagonal covariance, respectively - a detailed

derivation can be found in the supplemental material Section B. Therefore, the VIB loss function is
an upper bound of the MEIB loss function with a positive value of β.

Confidence Measure of MEIB MEIB encourages obvious inputs that can be easily classified to
take broader embedding areas by assigning larger entropy. On the contrary, the inputs closer to other
classes would have smaller entropy to reduce the chance of misclassification according to the loss
function. Therefore, we adopt the conditional entropy H(Z|x) as our confidence measure for the
input x, which is given by Cover & Thomas (2006):

H(Z|x) = 1

2
ln(2πe)D|Σθ | =

1

2
|Σθ |+

D

2
(1 + ln 2π). (9)

Specifically, we use the dimension-wise average conditional entropy H(Z|x)/D to achieve a
dimension-agnostic confidence measure.

4 EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we show experimental results for various tasks to demonstrate the effectiveness of
MEIB in terms of the regularization, perturbation robustness, and confidence measure. All compu-
tational experiments were implemented using PyTorch Paszke et al. (2019) 1.9 with Python 3.7 on
a workstation equipped with an NVIDIA® GeForce® RTX 2080 Ti graphic card. Please refer to the
supplemental material Section H for the implementation and training details for each experimental
task.

4.1 DIGIT CLASSIFICATION

First, we evaluate MEIB on a handwritten digit classification as the simplest form of benchmark task.
We use the QMNIST dataset Yadav & Bottou (2019) to utilize its larger set of 60,000 testing data
compared to 10,000 of those in the original MNIST dataset, while it has almost identical training
data. We adopt the same architecture employed in Alemi et al. (2017); the backbone encoder fB

θ is a
multilayer perceptron (MLP) with two fully-connected (FC) layers of 1024 hidden units with ReLU
activations. Both fµ

θ and fΣ
θ are an FC layer of D hidden units where the exponential (exp) function

was applied after fΣ
θ . We found that applying a batch normalization (BN) layer at the end of fµ

θ
improves the performance of MEIB with a noticeable gap (see the supplementary material Section
F). The decoder fC

θ is an FC layer with the softmax function that outputs p(y|x) over ten classes.
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Table 1: QMNIST test set error rate (%)

Method D = 2 D = 256

Deterministic 4.64± 0.43 1.71± 0.04
Dropout 4.08± 0.29 1.62± 0.02
VIB 3.29± 0.32 1.75± 0.03
MEIB 3.95± 0.41 1.76± 0.05

VIB (12 MC samples) 3.21± 0.32 1.45± 0.02
MEIB (12 MC samples) 3.31± 0.35 1.48± 0.04

Using the same architecture, we compare the following embedding approaches with MEIB: a deter-
ministic baseline, dropout Srivastava et al. (2014), and VIB. The deterministic baseline represents
the typical usage of neural network models without stochasticity. By omitting the variance estima-
tor module fΣ

θ (x), the embedding of input is deterministically given by z = fµ
θ (x). Dropout is

one of the most popular regularization methods for neural networks; thus, it is considered the first
benchmark regularization method to compare Alemi et al. (2017); Ghiasi et al. (2018). We use the
same deterministic model, but dropout is applied with the probability of 0.5 during the training time.
Unlike MEIB and VIB, both deterministic models were trained only with the cross-entropy loss. We
set β = α/D where α is equal to 0.01 for VIB, 0.1 for MEIB with D = 2, and 1 for MEIB with
D = 256. Please refer to the supplementary material Section F for the hyperparameter study. All
models were trained with five different random seeds, and we report the mean and standard deviation
for each performance metric.

Regularization Effect Table 1 shows the classification results by each method on the QMNIST
test set. Specifically, we compared the methods with two different embedding sizes, D = 2 and
256. With D = 2, the stochastic methods performed better than the deterministic ones regardless
of the usage of dropout. Using the larger embedding size of D = 256, on the other hand, the
deterministic model trained with dropout performed the best while the others have very similar
performance considering the standard deviation. However, using 12 Monte Carlo (MC) samples
of z, the stochastic methods outperformed the deterministic ones with a larger gap than the single
sample case. MEIB provides a reasonable amount of regularization comparable to VIB.

Perturbation Robustness The test time noise/perturbation robustness of a deep neural network
model is an important aspect, especially when the model is considered to be deployed for a real-
world application. We evaluate the robustness of models toward adversarial examples as an alterna-
tive form of perturbation robustness evaluation because models that are weak to adversarial examples
might be vulnerable to not only intended attacks but also unexpected noise in test time Gilmer et al.
(2019). Since the primary purpose of MEIB and the other compared methods is not a defense against
strong adversarial attacks, we use the Fast Gradient Sign Method (FGSM) Goodfellow et al. (2015):

x̃ = x+ ϵ ∗ sign(∇xJ(θ, x, y)) (10)

where x̃ is the crafted adversarial example, ϵ is a scale factor of the perturbations, and J is the
target loss function, e.g., cross-entropy loss. The FGSM is often regarded as a weak adversary but is
still widely used as a first benchmark adversary method due to its simplicity. We report evaluation
results with stronger adversaries in the supplemental Section G for interested readers. We crafted
the adversarial examples from the QMNIST test set using the FGSM with ϵ ∈ [0.0, 0.5] with the
step size of 0.5 on all models (D = 256) trained with different random seeds for each method. We
used 12 MC samples of z for the stochastic methods, MEIB and VIB.

Figure 3a shows the misclassification rate of each method toward the different strengths of the FGSM
perturbations. MEIB is more robust than the other methods with significant gaps. Furthermore, the
error rate of MEIB increases very slowly with the increasing strength of perturbations until about
ϵ = 0.3. On the other hand, VIB is more vulnerable than both deterministic and dropout baselines,
typically with more severe perturbations. It might be because we chose the target model with the
best performance with the clean dataset, which is a rational choice, for all methods. Thus, a VIB
model trained with a different β might yield better robustness, but it still would be difficult to close
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(a) Perturbation Robustness (b) Risk-controlled Classification

Figure 3: Performance comparisons on the QMNIST dataset.

the gap with MEIB. Please refer to the supplemental Section C for the perturbation robustness with
different α values.

Risk-controlled Classification In many real-world application scenarios, it would be favorable
to refuse any decision instead of making a false prediction when the model is not confident about
the input. For doing this, we need a way to correctly estimate the confidence, or the uncertainty, of
inputs to ML models. Using the estimated confidence, we may reject the inputs with insufficient con-
fidence; it is called risk-controlled recognition Shi & Jain (2019). We evaluated the risk-controlled
classification performance on the QMNIST test set by rejecting the inputs by the confidence esti-
mated by each method. Similarly to the confidence measured by MEIB (Section 3), we empirically
found that the mean of variance vector from fΣ

θ (x) of VIB is proportional to the confidence. For
the deterministic and dropout baselines, we use the L2-norm of the embedding vector for each input
as a proxy measure of confidence Ranjan et al. (2017). We set the rejection rate from 0% to 95%
with a step size of 5%. A single sample of z was used for MEIB and VIB. Figure 3b shows the
risk-controlled classification performance by all methods with D = 256. MEIB outperformed all
other methods across the most range of the input rejection rate. Specifically, the error rate of MEIB
dropped more than half of the initial value after rejecting 10% of uncertain inputs and reached about
0.1% when half of the inputs were rejected.

Embedding Distribution Figure 4 depicts the embedding space learned by VIB and MEIB with
D = 2. It shows that each embedding distribution by MEIB takes as much area as possible depend-

(a) VIB (b) MEIB

Figure 4: 2D embedding space learned for the QMNIST dataset. The ellipses represent the standard
deviation of the stochastic embeddings for a subset of training data.
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Table 2: Performance (AP) comparison of HIB with different main framework methods

N = 2 N = 3

D Test Data VIB MEIB VIB MEIB

2 Clean 0.955± 0.004 0.959± 0.004 0.950± 0.003 0.954± 0.003
Corrupted 0.840± 0.004 0.836± 0.010 0.844± 0.007 0.842± 0.005

3 Clean 0.980± 0.001 0.982± 0.002 0.980± 0.003 0.984± 0.002
Corrupted 0.861± 0.003 0.864± 0.004 0.900± 0.006 0.898± 0.003

4 Clean 0.991± 0.001 0.993± 0.001 0.990± 0.002 0.991± 0.001
Corrupted 0.888± 0.003 0.894± 0.010 0.912± 0.004 0.913± 0.003

100 Clean 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000
Corrupted 0.931± 0.005 0.936± 0.004 0.952± 0.004 0.968± 0.002

ing on its location from the decision boundaries, which is consistent with our hypothesis. On the
other hand, every embedding by VIB has a small standard deviation and thus covers a much smaller
area in both dimensions (axes) than those of MEIB. It would be reasonable to consider increasing
σ of the prior distribution N (0,σ2 I) used in VIB modeling to achieve a similar effect of entropy
maximization by MEIB. However, even VIB with very large variance priors still performs much
worse than MEIB for both aspects of perturbation robustness and risk-controlled classification (see
the supplemental Section D). It implies that MEIB increases σ of inputs in an adaptive way while
VIB tries to match the given prior distribution.

4.2 HEDGED INSTANCE EMBEDDING

Oh et al. (2019) proposed the hedged instance embedding (HIB), a metric learning method that
explicitly models the input uncertainty in the stochastic embedding space. HIB utilizes the VIB
objective with the probabilistic contrastive learning framework. The authors also proposed a new
dataset, called N-digit MNIST, basically images of N adjacent MNIST digits. We examined the
HIB framework with the MEIB objective instead of VIB simply by replacing the KL divergence
term in the original HIB loss function with the negative conditional entropy of embeddings, keeping
all the other aspects of the neural network model same, including the hyperparameters. Please refer
to the supplementary material for the architectural details. Table 2 reports the performance of the
original HIB with the VIB objective and the MEIB-variant by the average precision (AP) on the test
set. MEIB-variant outperformed the original HIB in every case with the clean test set, except the
very high-dimensional embedding of D = 100, where both performed well. For the corrupted test
data, on the other hand, the original HIB performed slightly better in low-dimensional embedding
D = 2 scenarios, and both performed comparably with D = 3. However, MEIB outperformed
with a higher-dimensional embedding D = 4 and D = 100 in both N = 2 and 3 cases. In
most applications, it is very uncommon to use such a small size of embeddings with two or three
dimensions, except for direct visualization of data relationships An et al. (2020). Consequently, it
suggests that the MEIB objective would better fit the contrastive learning framework of HIB than
the VIB objective upon using a reasonable size of embedding dimensions.

4.3 PERSON RE-IDENTIFICATION

Person re-identification (ReID) is an important computer vision task that is utilized in various ap-
plications, including intelligent security and surveillance systems Gong et al. (2011). Unlike typical
image classification tasks, the objective of the person ReID task is to find the ranked matches of
pedestrian images captured across multiple non-overlapping cameras Chen et al. (2021). Person
ReID is challenging due to image-level corruptions and appearance changes, including occlusions
Ye et al. (2021). Therefore, it is critical to have an embedding method robust to noises and ca-
pable of confidence measuring for potential risk-controllability. For evaluating those aspects, we
used three datasets popularly employed in person ReID literature: Market-1501Zheng et al. (2015),
MSMT17Wei et al. (2018), and LPW Song et al. (2018). For LPW, we used a quarter subset of it by
selecting every fourth frame of each identity due to the limited computational resource.
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Table 3: Performance on the person ReID datasets

Dataset Method mAP (%) Rank-1 (%) Rank-5 (%) Rank-10 (%)

Market-1501
Baseline 75.65± 0.21 90.48± 0.45 96.47± 0.06 97.66± 0.15
DistNet 74.61± 0.06 90.10± 0.29 96.25± 0.23 97.61± 0.26
PFE 76.49± 0.23 90.48± 0.51 96.53± 0.11 97.75± 0.20
DUL 77.12± 0.19 90.09± 0.17 95.84± 0.15 97.29± 0.18
MEIB 79.67± 0.15 92.14± 0.16 96.79± 0.16 97.83± 0.09

MSMT17
Baseline 39.69± 0.16 69.31± 0.31 82.66± 0.17 86.73± 0.06
DistNet 38.16± 0.16 68.79± 0.21 82.44± 0.32 86.67± 0.28
PFE 42.72± 0.14 70.62± 0.24 83.68± 0.17 87.50± 0.20
DUL 38.70± 0.18 67.28± 0.22 80.98± 0.50 85.38± 0.25
MEIB 44.77± 0.39 73.85± 0.41 85.34± 0.25 88.80± 0.24

LPW
Baseline 34.82± 0.33 52.76± 0.80 67.06± 0.94 73.32± 0.87
DistNet 32.37± 0.29 50.25± 0.20 65.36± 0.57 72.02± 0.89
PFE 33.35± 0.34 50.36± 0.41 64.99± 0.67 71.69± 0.76
DUL 33.41± 0.65 49.41± 0.90 63.90± 0.83 70.13± 0.83
MEIB 37.64± 0.41 54.85± 0.52 69.05± 0.58 75.20± 0.49

For all methods compared in ReID experiments, we used ResNet50 He et al. (2016) as the backbone
encoder fB

θ . The mean estimator fµ
θ of an FC layer with 512 hidden units followed by a BN

layer was used for all methods. For the variance estimator fΣ
θ , we used an MLP of FC512-BN-

ReLU-FC512-exp for MEIB and followed the original architecture proposed by the authors for each
method, except that we used 512 hidden units for their FC layers. We used α = 1 for MEIB and the
recommended hyperparameter values by the authors for each method.

We compare the performance of MEIB with the following baseline methods not only from person
ReID literature but also from previous work on face recognition, which shares similar task charac-
teristics: DistributionNet (DistNet) Yu et al. (2019), Probabilistic Face Embedding (PFE) Shi & Jain
(2019), and Data Uncertainty Learning (DUL, equivalent to VIB) Chang et al. (2020). In addition,
we compare the deterministic baseline of the same architecture without the variance estimator fΣ

θ .
We also tried HIB for the ReID task, but we could not achieve meaningful results. All models were
trained for the classification task with a softmax classifier of fC

θ to predict the true identity labels.
In testing time, the Euclidean distance between every pair of gallery and query images is calculated
using the deterministic embeddings or the mean of stochastic embeddings fµ

θ (x) of them to rank
the pairs. For PFE, we use the negative mutual likelihood score (MLS) used in the original work of
PFE as the distance metric.

We first evaluated the methods without considering the input confidence and risk control. Table 3
summarizes the results where we report the mean average precision (mAP) Schütze et al. (2008) and
cumulative matching characteristics (CMC) curve Gray et al. (2007) at rank-1, rank-5, and rank-
10. MEIB outperforms all the others by from 2 up to 6.6 percentage points of mAP throughout the
datasets considered. It implies that maximizing the conditional entropy of embeddings in MEIB has
better regularization effects than the other methods.

The importance of risk-controlled recognition is more emphasized in the person ReID task due to
the cost of misidentifying a person; it can have a serious societal impact, such as falsely tagging
someone as a criminal. Considering a real-world application of risk-controlled ReID model de-
ployment, a realistic situation is that we can prepare a well-curated clean set of gallery images in
advance and expect that arbitrary query/probe images with potential corruptions will be given after
model deployment. Thus, we kept the original test gallery images for each dataset and evaluated the
methods with varying amounts of rejected test query images. The query images are sorted using the
confidence estimated by each method: MEIB and the deterministic model use the same approaches
described in Section 4.1. DistNet and DUL use the mean of variance vector from fΣ

θ (x), while PFE
uses the mean reciprocals of the variance vector elements as their confidence measures. Then, the
first R% of low-confidence images are removed from evaluation. For each remaining query image,
the entire gallery images are ranked by the distance, and the evaluation metrics are calculated.
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(a) Market-1501 (b) MSMT17 (c) LPW

Figure 5: Risk-controlled person ReID performance.

Figure 5 shows the risk-controlled identification performance of the methods for each dataset. While
MEIB starts with the best performance among all methods, as shown previously, the amount of
performance improvement at lower rejection rates is more significant than the other methods in most
cases. Furthermore, the gap between MEIB and the other methods is kept over the most range of
the rejection rate. It confirms that MEIB provides an effective confidence measure and risk-control
capability. Figure 6 shows the example query images for each dataset (except MSMT17 prohibited
by the license) with the associated confidence (conditional entropy) value. There are conspicuous
trends: (1) the low-confident images are mostly blurry while the high-confident images are relatively
clearer, (2) the persons in the low-confident images are often occluded by another object or person,
and (3) the most persons in the low-confident images wear clothes with an achromatic color without
patterns while those in the high-confident images wear clothes with vivid colors or patterns such as
stripes. This would be another evidence that MEIB provides reasonable confidence measurements.

5 CONCLUSION

In this work, we presented MEIB, a novel framework that produces stochastic embeddings dis-
tributed with the maximum entropy. MEIB provides a regularization effect and robustness toward
adversarial noise by securing the maximum area in the embedding space, leading to better classi-
fication performance. Moreover, the experimental results in digit classification and person ReID
tasks showed that MEIB enables an effective risk-controlled recognition by providing reliable con-
fidence measurements. While the experiments in this work utilized somewhat elementary neural
network backbone encoders, it would be straightforward to combine MEIB with more sophisticated
architectures to yield further classification performance improvement.

3.271 3.493 3.571 3.574 3.586 3.593 6.757 6.918 6.932 6.993 7.044 7.398

(a) Market-1501

3.025 3.317 3.319 3.413 3.416 3.445 6.294 6.317 6.440 6.613 6.704 6.896

(b) LPW

Figure 6: Example query images that MEIB is least confident (left six) and most confident (right
six) from each ReID dataset. The number above each image is the confidence measured by MEIB
as the dimension-wise average entropy.
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A UNCERTAINTY ESTIMATION OF VIB

Figure 7 shows the QMNIST test set samples with the lowest and highest variance averaged over fea-
ture dimension, i.e., 1

D

∑D
d=1 σ

2
θ,d, estimated by VIB. It shows that VIB assigns relatively smaller

variances for uncertain inputs and higher variances for clear inputs. Moreover, Figure 8 shows the
risk-controlled classification (see Section 4.1 in the main paper) performance of VIB with the as-
cending and descending order of the average variance. In the ascending order, the samples with small
variances are rejected first. Similarly, the high variance samples are rejected first in the descending
order case. If we assume that the variance proportionally represents the ‘uncertainty’ associated with
the inputs, we will reject the samples with the higher variance first. In this case of the descending
order rejection, the risk-controlled classification did not work as expected; the more samples were
rejected, the worse performance was achieved. On the contrary, the risk-controlled classification
worked correctly using the ascending order, regardless of its performance. Therefore, we can infer
from these results that it is more rational to utilize the variance σ2

θ in VIB to represent a ‘confident’
area/interval rather than the ‘uncertainty’.

0.584 0.613 0.625 0.629 0.632 0.634 0.636 0.639 0.640 0.642 0.643 0.648

(a) Low average variance

1.046 1.024 1.009 1.006 1.005 1.003 0.994 0.993 0.991 0.989 0.988 0.987

(b) High average variance

Figure 7: Sample QMNIST images with the uncertainty estimated by VIB.

Figure 8: Risk-controlled classification performance of VIB with the ascending and descending
order of the average variance.
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B CROSS-ENTROPY H(pθ(z|xn), r(z))

Let two D-dimensional multivariate Gaussian distributions pθ(z|xn) = N (z|µθ,Σθ) and r(z) =
N(z;µ0,ΣI) where µθ = fµ

θ (xn), Σθ = σ2
θI = fΣ

θ (xn), a diagonal covariance, µ0 = 0, a zero
mean vector, and ΣI = I, an identity covariance matrix, respectively. Then, H(p(z|xn), r(z)), the
cross-entropy of r(z) relative to p(z|xn), is given by

H(p(z|xn), r(z)) = −
∫

p(z|xn) ln r(z) dz (11)

=
1

2

∫
N (z|µθ,Σθ)

(
D ln(2π) + ln |ΣI |+ (z − µ0)

⊤
Σ

−1
I (z − µ0)

)
dz

(12)

=
1

2

∫
N (z|µθ,Σθ)

(
D ln(2π) + ln |I|+ (z − 0)⊤I−1(z − 0)

)
dz (13)

=
1

2

∫
N (z|µθ,Σθ)

(
D ln(2π) + z⊤z

)
dz (14)

=
1

2

(
D ln(2π)

∫
N (z|µθ,Σθ) dz +

∫
N (z|µθ,Σθ)(z

⊤z) dz

)
(15)

=
1

2

(
D ln(2π) + Ez∼pθ(z|xn)

[
z⊤z

])
(16)

=
1

2

(
D ln(2π) + Ez∼pθ(z|xn)

[
D∑

d=1

z2d

])
(17)

=
1

2

(
D ln(2π) +

D∑
d=1

Ez∼pθ(z|xn)

[
z2d
])

(18)

=
1

2

(
D ln(2π) +

D∑
d=1

(
Ez∼pθ(z|xn) [zd]

2
+ Varz∼pθ(z|xn) [zd]

))
(19)

=
1

2

(
D ln(2π) +

D∑
d=1

(
µ2

θ,d +σ2
θ,d

))
≥ 0 (20)

where each of zd, µθ,d, and σ2
θ,d is the d-th dimension of the corresponding vector. Note again that

Σθ = σ2
θI = fΣ

θ (xn), a diagonal covariance, i.e., each dimension of z is independent to each other.

C PERTURBATION ROBUSTNESS BY DIFFERENT α

Figure 9a shows the misclassification rates against the FGSM perturbations for MEIB trained with
different α values. It shows a more consistent trend that a larger α provides more robustness for the
given perturbation strength, unlike the VIB case that shows saddle-shaped curves in Figure 9b. It is
reasonable because a larger α (thus, a larger β) value encourages the model to assign larger entropy
and thus secure a larger area for the distribution of z given input x, which leads to larger margins
from the decision boundary.

D VIB WITH LARGE-VARIANCE PRIORS

We trained and evaluated VIB models with different values of σ in their prior distribution. Figure 10
shows the embeddings of VIBs trained with 2-dimensional bottleneck and different values of σ. By
visual inspection, it may seem getting similar to those of MEIB shown in Figure 4b as σ increases.
On the other hand, Figure 11 presents the perturbation robustness (toward FGSM attacks) and risk-
controlled classification performance by VIB trained with the different values of σ while keeping
the other configurations same as in Section 4, including the 256-dimensional bottleneck. It shows
that the adversarial robustness is improved with increasing σ, until σ = 10, but becomes worse
again with much larger σ = 100, while all of them were still worse than MEIB with a significant
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(a) MEIB (b) VIB

Figure 9: Adversarial robustness with different α values.

gap. Moreover, the risk-controlled classification performance has little difference with different σ
values.

On the other hand, the magnitude of σs estimated by MEIB for QMNIST dataset are in a range
below than those by VIB with σ = 5, as shown in Table 4. It provides an insight that MEIB increase
σ of inputs in a more effective way.

Table 4: ∥σ ∥2 estimated by each method

Method Mean SD Min Max

VIB (σ = 1) 0.38 0.08 0.18 0.53
VIB (σ = 5) 1.80 0.39 0.56 4.03
VIB (σ = 10) 3.22 0.84 0.70 9.33
VIB (σ = 100) 18.77 8.01 2.04 81.42

MEIB 1.10 0.28 0.45 1.95

E RANK-1 ACCURACY FOR RISK-CONTROLLED PERSON REID

Figure 12 shows the risk-controlled CMC rank-1 accuracy for each method on each ReID dataset.
The results were obtained from the same experiments described in Section 4.3, in addition to the
risk-controlled mAP in Figure 5 of the main paper. It confirms again that MEIB provides the most
effective confidence measure and risk-control capability compared to the other methods over the
most range of the rejection rate.

F HYPERPARAMETER STUDY

Figure 13 shows the performance of VIB and MEIB for different values of α and the usage of the
BN layer at the end of the fµ

θ branch in the QMNIST digit classification task with D = 256. For
VIB, the BN layer is beneficial only for the small values of α (0 ∼ 10−4), and the best result was
achieved without using the BN layer at α = 0.01. For MEIB, on the other hand, it is a common
phenomenon that using the BN layer at the end of fµ

θ noticeably improves the performance across
all α values, while the best performance was obtained with α = 1 using the BN layer. Furthermore,
Figure 14 shows that using the BN layer at the end of the fµ

θ branch also significantly improves the
performance of MEIB on all datasets considered in the person ReID task, commonly with the best
performance at α = 1. While we need a more concrete study about the effect of BN in MEIB, which
we leave as our future work, it can be assumed that α = 1 with a BN layer at the end of fµ

θ is a
reasonable default configuration for these tasks.
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(a) σ = 1 (b) σ = 5

(c) σ = 10 (d) σ = 100

Figure 10: 2D embedding space learned for the QMNIST dataset by VIB with different σ of the
prior distributions. The ellipses represent the standard deviation of the stochastic embeddings for a
subset of training data.

(a) Perturbation Robustness (b) Risk-controlled Classification

Figure 11: Performance comparisons on the QMNIST dataset.

G STRONGER ADVERSARIAL ATTACKS EXPERIMENTS

While the FGSM evaluated in Section 4 is a popular first-choice baseline method, it is often inef-
fective compared to multi-step attack methods. Although the main contribution of this paper is not
an adversarial defensive method, we evaluated MEIB and other baseline methods on the following
stronger adversaries for a more concrete adversarial robustness analysis: the multi-step Projected
Gradient Descent (PGD) Madry et al. (2018), two variants of Auto-PGD (APGD), one based on the
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(a) Market-1501 (b) MSMT17 (c) LPW

Figure 12: CMC rank-1 accuracy for risk-controlled person ReID.

(a) VIB (b) MEIB

Figure 13: Hyperparameter comparison for QMNIST (lower is better).

cross-entropy loss (APGDCE) and one with the difference of logits ratio (DLR) loss (APGDDLR),
and AutoAttack (AA), which is an ensemble of those two APGDs Croce & Hein (2020). We used
the projection on the L∞-ball of radius ϵ for all attacks where we set ϵ = 0.3. For PGD, we used
1000 steps (PGD-1000) with the step size ϵstep = 0.01 and 100 random restarts. For APGDs and
AA, Expectation over Transformation (EOT) Athalye et al. (2018) was used with an average over
20 times of the gradient computations for more effective attacks on the stochastic models, MEIB
and VIB. We used Adversarial Robustness Toolbox (ART) Nicolae et al. (2018) to leverage its PGD
implementation and the AA implementation provided by the authors2, including APGDs.

Table 5 shows the evaluation results on class-balanced 10, 000 samples of the QMNIST test set.
MEIB outperformed all the other baseline methods across all different types of adversarial attacks.
Although MEIB was also effectively fooled by these multi-step and adaptive PGD attacks, it per-
forms better than other non-adversarially trained models such as Mixup evaluated with the PGD
attacks on the original MNIST datasetAddepalli et al. (2020). It would be possible to achieve better
robustness once MEIB is trained with adversarial training methods.

H IMPLEMENTATION AND TRAINING DETAILS

QMNIST Digit Classification All models were trained for 200 epochs with a batch size of 100.
Adam optimizer Kingma & Ba (2015) was used with β1 = 0.5, β2 = 0.999, and the learning rate of
0.0001, which is decayed by the factor of 0.97 every other epoch. The exponential moving average
of the model parameters with a decay factor of 0.999 was tracked during the training, and the final

2https://github.com/fra31/auto-attack
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(a) Market-1501 (b) MSMT17 (c) LPW

Figure 14: MEIB hyperparameter comparison for person ReID (higher is better).

Table 5: Classification Accuracy (%) with different adversarial attacks on the QMNIST test samples

Method Clean PGD-1000 APGDCE APGDDLR AA

Deterministic 98.39± 0.11 1.13± 0.04 0.00± 0.00 0.00± 0.00 0.00± 0.00
Dropout 98.45± 0.08 1.09± 0.04 0.01± 0.01 0.00± 0.00 0.00± 0.00
VIB 98.34± 0.14 1.18± 0.07 0.89± 0.05 1.20± 0.10 0.06± 0.02
MEIB 98.38± 0.15 2.42± 0.44 6.79± 1.40 1.60± 0.28 0.12± 0.06

averaged parameters were used at test time. We trained and evaluated all methods with five different
random seed values. All pixel values of input digit images were rescaled to [−1, 1]. The embedding
size of D = 256 was used by default for all experiments unless it was specified. For the stochastic
methods, MEIB and VIB, we used 12 MC samples of z for the adversarial robustness experiment
and a single sample for the risk-controlled classification experiment.

Hedged Instance Embedding We used the same architecture in the original HIB work Oh et al.
(2019), except for some parts not mentioned by the authors. The backbone encoder fB

θ consists of
two convolutional layers, 32 and 64 filters of 5 × 5 kernels, each followed by ReLU activation and
a max-pooling with 2 × 2 kernels. Each fµ

θ and fΣ
θ is an FC layer of D hidden units, and a BN

layer is attached at the end of fµ
θ . Both MEIB and VIB variants of the HIB models were trained

over 500,000 iterations with a batch size of 128. We followed the same batching strategy used in Oh
et al. (2019) to ensure we had enough number of both positive and negative pairs of images. Adam
optimizer Kingma & Ba (2015) was used with β1 = 0.5, β2 = 0.999 and the learning rate of 0.0001.

Person Re-identification We utilized the Torchreid framework Zhou & Xiang (2019) to imple-
ment the methods and conduct the experiments. Except for PFE and DistNet, all other models were
initialized with the ResNet50 parameters pre-trained on the ImageNet dataset Deng et al. (2009) and
trained for 60 epochs with a batch size of 32. Specifically, we adopted the two-stepped transfer learn-
ing strategy Geng et al. (2016), where the backbone encoders fB

θ were frozen for the first 5 epochs.
AMSGrad optimizer Reddi et al. (2018) was used with the learning rate of 0.0003, which was re-
duced by the factor of 10 every 20 epochs. PFE and DistNet were initialized from the fully-trained
deterministic baseline model and fine-tuned over another 60 epochs only for the parts specified in
their original work. While the same optimizer was used, the initial learning rate was set as 0.0001,
which was also reduced by the factor of 10 every 20 epochs. For all methods, each batch consists
of 4 random identities and 8 random images for each identity. All input images were rescaled to
128× 256, and random horizontal flipping with the probability of 0.5 was applied. We reported the
mean and standard deviation of the performance for all models trained with five different random
seeds.
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I MISCLASSIFIED QMNIST SAMPLES

Figure 15 shows a subset of QMNIST test images misclassified by MEIB after filter out 80% of
the test set in the risk-controlled classification experiment in Section 4.1. Although MEIB was
overconfident, i.e., assigned inappropriately high entropy values, for these uncertain images, each
image has a plausible shape for the predicted class also.

0 → 6 5 → 1 8 → 1 9 → 5 2 → 0 1 → 7 6 → 4

8.764 8.810 8.817 8.827 8.861 8.917 8.980

Figure 15: Sample QMNIST images misclassified by MEIB. Two digits above each image represent
Label →Prediction and the number below each image is the conditional entropy estimated.

J L2 NORMALIZATION FOR MEIB AND VIB

L2 normalization of feature embedding Ranjan et al. (2017) is widely used with the softmax loss
Wang et al. (2017), angular margin-based loss Deng et al. (2019), and contrastive loss Chen et al.
(2020). We also trained and tested MEIB and VIB with L2-normalized z samples to see its benefits
on stochastic embeddings. Figure 16 shows the perturbation robustness and risk-controlled classi-
fication performance, similar to Figure 3, of the MEIB and VIB models with and without L2 nor-
malization of embeddings. MEIB performs much worse with the L2 normalization in terms of both
perturbation robustness and risk-controlled classification. While VIB shows a slightly improved ro-
bustness with L2 normalization, its risk-controlled classification performance become worse than
without the normalization shortly after about 30% of rejection rate. It could be difficult for stochas-
tic embeddings, especially MEIB, to utilize their advantage in angular space since their magnitudes
are not considered anymore. For example, the main intuition of MEIB is spreading out each input
embedding as wide as possible to take more space within a decision region. However, after applying
L2 normalization, only the angle of each feature vector contributes to the decision regardless of their
magnitude in the embedding space.

(a) Perturbation Robustness (b) Risk-controlled Classification

Figure 16: Comparison of L2-normalized MEIB and VIB on the QMNIST dataset.
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