

000 001 002 003 004 005 A STUDY OF POSTERIOR STABILITY IN TIME-SERIES 006 LATENT DIFFUSION 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025

ABSTRACT

026 Latent diffusion has achieved remarkable success in image generation, with high
027 sampling efficiency. However, this framework might suffer from *posterior collapse*
028 when applied to time series. In this work, we first show that latent diffusion
029 with a collapsed posterior degenerates into a much weaker generative model:
030 variational autoencoder (VAE). This finding highlights the significance of address-
031 ing the problem. We then introduce a principled method: *dependency measures*,
032 which quantify the sensitivity of a recurrent decoder to input variables. Through
033 this method, we confirm that posterior collapse seriously affects latent time-series
034 diffusion on real time series. For example, the latent variable has an expon-
035 entially decreasing impact on the decoder over time. Building on our theoretical and
036 empirical studies, we finally introduce a new framework: posterior-stable latent
037 diffusion, which interprets the diffusion process as a type of variational inference.
038 In this way, it eliminates the use of risky KL regularization and penalizes decoder
039 insensitivity. Extensive experiments on multiple real time-series datasets show
040 that our new framework is with a highly stable posterior and notably outperforms
041 previous baselines in time series synthesis.
042
043

1 INTRODUCTION

044 Latent diffusion (Rombach et al., 2022) has shown strong performance in image synthesis (Podell
045 et al., 2024), offering substantially faster sampling than standard diffusion models (Ho et al.,
046 2020). However, when applied to time-series data, this framework might suffer from *posterior*
047 *collapse* (Bowman et al., 2016), a common and important problem that happens to some generative
048 models (e.g., autoencoder (Baldi, 2012; Lucas et al., 2019)), where the latent variable only captures
049 limited information from the data. In that case, the decoder tends to ignore the variable during
050 conditional generation. In this paper, we present a systematic analysis of posterior collapse in time-series
051 latent diffusion and propose an improved framework that builds upon our analysis.
052
053

Impact analysis of posterior collapse. We first show that a strictly collapsed posterior reduces
054 the latent diffusion to a vanilla variational autoencoder (VAE) (Kingma & Welling, 2013) in formu-
055 lation, indicating that this problem renders the framework *inexpressive*, even weaker than a vanilla
056 diffusion model. We then introduce a principled method: *dependency measure*, which quantifies
057 the dependencies of an autoregressive decoder on the latent variable and the observed time series.
058 Through performing empirical estimation of these measures, we confirm the latent variable has a
059 nearly exponentially vanishing impact on the recurrent decoder, indicating that time-series latent
060 diffusion indeed suffers from posterior collapse.
061

From this empirical study, we also observe an interesting symptom of posterior collapse: *dependency*
062 *illusion*: when time series are randomly shuffled and thus lack structural dependencies, the
063 estimated dependency measures show that the autoregressive decoder still heavily relies on previous
064 observations (instead of the latent variable) for predicting the next one.
065

Our posterior-stable latent diffusion. We identify two main causes of posterior collapse in latent
066 diffusion: KL regularization and strong decoder (Bowman et al., 2016). The first cause stems from
067 the design of VAE, ensuring that the latent variable follows a simple prior distribution. Such reg-
068 ularization is in fact unnecessary in latent diffusion, as its diffusion component supports sampling
069

latent variables from a complex distribution. The second cause is the absence of a mechanism that enforces decoder sensitivity to the latent variable.

In light of this analysis, we first propose to reinterpret the diffusion process as a form of variational inference, thereby eliminating the use for risky KL regularization in latent diffusion and allowing unrestricted prior distributions for latent variable sampling. To ensure that the decoder is sensitive to the latent variable, we also apply the diffusion process to simulate a collapsed posterior, imposing a significant penalty on dependency illusion.

Contributions and roadmap. In summary, our contributions are as follows:

- We provide a rigorous analysis of *posterior collapse* in latent diffusion, showing that a collapsed posterior will render it no more expressive than a simple VAE. We also introduce *dependency measures* that confirm the problem on real time-series data;
- We present a new type of time-series generative model: posterior-stable latent diffusion, which is free from risky KL regularization and ensures that the autoregressive decoder is sensitive to the input latent variable;
- We conduct extensive experiments on multiple real time-series datasets. The results demonstrate that our framework remains robust against posterior collapse and significantly outperforms a number of previous baselines.

The remainder of this paper is organized as follows. In Sec. 2, we review latent diffusion. Sec. 3 presents a systematic analysis of *posterior collapse* in time-series latent diffusion. Sec. 4 introduces our proposed framework to address this problem. Finally, Sec. 6 reports experimental results demonstrating the effectiveness of the framework.

2 BACKGROUND: LATENT DIFFUSION

The architecture of latent diffusion consists of two parts: 1) an autoencoder (Baldi, 2012) that maps high-dimensional or structured data into low-dimensional latent variables; 2) a diffusion model (Sohl-Dickstein et al., 2015) that learns the distribution of latent variables.

Autoencoder. The autoencoder is typically implemented as VAE (Kingma & Welling, 2013). Let \mathbf{X} denote a free-form raw sample, following an underlying distribution $q^{\text{raw}}(\mathbf{X})$. The encoder \mathbf{f}^{enc} of VAE aims to convert the sample into a low-dimensional vector $\mathbf{v} = \mathbf{f}^{\text{enc}}(\mathbf{X})$. Through a reparameterization trick, the vector can be used to compute latent variable \mathbf{z} as

$$\mathbf{z} = \boldsymbol{\mu} + \text{diag}(\boldsymbol{\sigma}) \cdot \boldsymbol{\epsilon}, \quad \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \quad \boldsymbol{\mu} = \mathbf{W}_\mu \mathbf{v}, \quad \boldsymbol{\sigma} = \exp(\mathbf{W}_\sigma \mathbf{v}), \quad (1)$$

where $\mathbf{W}_\mu, \mathbf{W}_\sigma$ are learnable matrices, and $\text{diag}(\cdot)$ is an operation that casts a vector into a diagonal matrix. The above procedure, which differentially samples a latent variable \mathbf{z} from the posterior $q^{\text{VI}}(\mathbf{z} \mid \mathbf{X}) = \mathcal{N}(\mathbf{z}; \boldsymbol{\mu}, \text{diag}(\boldsymbol{\sigma}^2))$, is termed *variational inference* (Blei et al., 2017). In VAE, the decoder \mathbf{f}^{dec} is used to parameterize a conditional generation distribution $p^{\text{gen}}(\mathbf{X} \mid \mathbf{z})$, recovering the real sample \mathbf{X} from latent variable \mathbf{z} .

The exact negative log-likelihood loss function of VAE is computationally infeasible, so its optimization relies on an upper bound of the loss:

$$\mathcal{L}^{\text{VAE}} = \mathbb{E}_{\mathbf{z} \sim q^{\text{VI}}(\mathbf{z} \mid \mathbf{X})} [-\ln p^{\text{gen}}(\mathbf{X} \mid \mathbf{z})] + \text{D}_{\text{KL}}(q^{\text{VI}}(\mathbf{z} \mid \mathbf{X}) \parallel p^{\text{prior}}(\mathbf{z})), \quad (2)$$

where the prior distribution $p^{\text{prior}}(\mathbf{z})$ is typically set as a standard Gaussian $\mathcal{N}(\mathbf{0}, \mathbf{I})$. The last KL divergence term is to ensure that the prior $p^{\text{prior}}(\mathbf{z})$ is compatible with decoder \mathbf{f}^{dec} at test time, though it is one cause of *posterior collapse* (Bowman et al., 2016).

Diffusion model. The diffusion model can be implemented as DDPM (Ho et al., 2020). The model consists of two Markov chains of $L \in \mathbb{N}^+$ steps. One of them is the diffusion process, which incrementally applies the forward transition kernel:

$$q^{\text{forw}}(\mathbf{z}^i \mid \mathbf{z}^{i-1}) = \mathcal{N}(\mathbf{z}^i; \sqrt{1 - \beta^i} \mathbf{z}^{i-1}, \beta^i \mathbf{I}), \quad (3)$$

108 to the latent variable $\mathbf{z}^0 := \mathbf{z} \sim q^{\text{latent}}(\mathbf{z})$, where $\beta^i, i \in [1, L]$ is some predefined variance schedule. Here the distribution of latent variable $q^{\text{latent}}(\mathbf{z})$ is defined as $\int q^{\text{VI}}(\mathbf{z} \mid \mathbf{X})q^{\text{raw}}(\mathbf{X})d\mathbf{X}$. The outcomes of this process form a series of new latent variables $\{\mathbf{z}^1, \mathbf{z}^2, \dots, \mathbf{z}^L\}$, with the last one \mathbf{z}^L approximately following a standard Gaussian $\mathcal{N}(\mathbf{0}, \mathbf{I})$ for $L \gg 1$.

112 The other is the reverse process, which iteratively applies the backward transition kernel:

$$115 \quad p^{\text{back}}(\mathbf{z}^{i-1} \mid \mathbf{z}^i) = \mathcal{N}(\mathbf{z}^{i-1}; \boldsymbol{\mu}^{\text{back}}(\mathbf{z}^i, i), \sigma^i \mathbf{I}), \quad \boldsymbol{\mu}^{\text{back}}(\mathbf{z}^i, i) = \frac{1}{\sqrt{\alpha^i}} \left(\mathbf{z}^i - \beta^i \frac{\boldsymbol{\epsilon}^{\text{back}}(\mathbf{z}^i, i)}{\sqrt{1 - \bar{\alpha}^i}} \right), \quad (4)$$

117 where $\alpha^i = 1 - \beta^i$, $\bar{\alpha}^i = \prod_{k=1}^i \alpha^k$, $\boldsymbol{\epsilon}^{\text{back}}(\cdot)$ is a neural network, \mathbf{z}^L is an initial sample drawn from $\sim \mathcal{N}(\mathbf{0}, \mathbf{I})$, and σ^i is some backward variance schedule. The outcome of this process is a reversed 118 sequence of latent variables $\{\mathbf{z}^{L-1}, \mathbf{z}^{L-2}, \dots, \mathbf{z}^0\}$, where the last one \mathbf{z}^0 is expected to follow the 119 distribution of real samples: $q^{\text{latent}}(\mathbf{z}^0)$.

121 To optimize the diffusion model, common practices adopt a loss function as below:

$$123 \quad \mathcal{L}^{\text{DM}} = \mathbb{E}_{i, \mathbf{z}^0, \boldsymbol{\epsilon}} [\|\boldsymbol{\epsilon} - \boldsymbol{\epsilon}^{\text{back}}(\sqrt{\bar{\alpha}^i} \mathbf{z}^0 + \sqrt{1 - \bar{\alpha}^i} \boldsymbol{\epsilon}, i)\|^2], \quad (5)$$

125 where $\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$, $\mathbf{z}^0 \sim q^{\text{latent}}(\mathbf{z}^0)$, $i \sim \mathcal{U}\{1, L\}$.

127 3 PROBLEM ANALYSIS

130 In this section, we first show the significant impact of *posterior collapse* on time-series latent diffusion. Then, we define proper measures that can empirically quantify this impact. Finally, we confirm 131 that time-series diffusion indeed suffers from this problem on real datasets.

134 3.1 SIGNIFICANCE OF POSTERIOR COLLAPSE

136 Let us focus on time series $\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_T]$, where every observation $\mathbf{x}_t, t \in [1, T]$ is a 137 D -dimensional vector and T denotes the number of observations. When applying latent diffusion 138 to time series, a problem that might arise is *posterior collapse*, which occurs to many types of 139 autoencoders, especially VAE. The problem can be formulated as follows.

140 **Problem formulation.** The posterior $q^{\text{VI}}(\mathbf{z} \mid \mathbf{X})$ of VAE is said to collapse if it reduces to the 141 Gaussian prior $p^{\text{prior}}(\mathbf{z}) = \mathcal{N}(\mathbf{z}; \mathbf{0}, \mathbf{I})$, irrespective of the conditional \mathbf{X} :

$$143 \quad q^{\text{VI}}(\mathbf{z} \mid \mathbf{X}) = p^{\text{prior}}(\mathbf{z}), \forall \mathbf{X} \in \mathbb{R}^{TD}.$$

145 In that case, the latent variable \mathbf{z} contains no information about time series \mathbf{X} , otherwise the pos- 146 terior distribution $q^{\text{VI}}(\mathbf{z} \mid \mathbf{X})$ would vary depending on different conditionals. Above is a strict 147 definition. In practice, one is mostly faced with a situation where $q^{\text{VI}}(\mathbf{z} \mid \mathbf{X}) \approx p^{\text{prior}}(\mathbf{z})$ and it is 148 still appropriate to say that the posterior collapses.

150 **Implications of posterior collapse.** A typical symptom of this problem is that, since the latent 151 variable \mathbf{z} carries very limited information of time series \mathbf{X} , the decoder \mathbf{f}^{dec} tends to *ignore* this 152 input variable \mathbf{z} , which is undesired for conditional generation $p^{\text{gen}}(\mathbf{X} \mid \mathbf{z})$. Besides this empirical 153 finding from previous works, we find that posterior collapse also seriously impacts on the expres- 154 siveness of latent diffusion. Let us first see the below conclusion.

155 **Proposition 3.1** (Gaussian Latent Variables). *For standard latent diffusion, suppose its posterior* 156 $q^{\text{VI}}(\mathbf{z} \mid \mathbf{X})$ *collapses, then the distribution* $q^{\text{latent}}(\mathbf{z})$ *of latent variable* \mathbf{z} *will shape as a standard* 157 *Gaussian* $\mathcal{N}(\mathbf{0}, \mathbf{I})$, *which is trivial for the diffusion model to approximate.*

159 Simply put, if posterior collapse happens, latent variable \mathbf{z} will be Gaussian at test time. In that 160 case, the diffusion model that aims to approximate the complex variable distribution $q^{\text{latent}}(\mathbf{z})$ is a 161 redundant module. Therefore, posterior collapse reduces latent diffusion to a weak VAE, making it 162 inexpressive. The proof for this conclusion is provided in Appendix A.

162 3.2 INTRODUCTION OF DEPENDENCY MEASURES
163

164 A typical symptom (Bowman et al., 2016) of posterior collapse is that the input latent variable \mathbf{z}
165 loses control of decoder \mathbf{f}^{dec} during conditional generation $p^{\text{gen}}(\mathbf{X} \mid \mathbf{z})$. To verify whether this is
166 the case for time-series latent diffusion on real datasets, we introduce some proper measures that
167 quantify the dependencies of decoder \mathbf{f}^{dec} on various inputs.

168 **Autoregressive decoder.** Consider that decoder \mathbf{f}^{dec} has an autoregressive structure, which con-
169 ditions on latent variable \mathbf{z} and prefix $\mathbf{X}_{1:t-1} = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_{t-1}]$ to predict the next observation
170 \mathbf{x}_t . With abuse of notation, we set $\mathbf{x}_0 = \mathbf{z}$ and formulate the decoder as
171

$$172 \mathbf{h}_t = \mathbf{f}^{\text{dec}}(\mathbf{X}_{0:t-1}), \quad \mathbf{X}_{0:t-1} = [\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_{t-1}], \quad (6)$$

173 where the representation $\mathbf{h}_t, t \geq 1$ is linearly projected to multiple parameters (e.g., mean vector
174 and covariance matrix) that determine the distribution $p^{\text{gen}}(\mathbf{x}_t \mid \mathbf{z}, \mathbf{X}_{1:t-1})$ of some family (e.g.,
175 Gaussian). Examples of such a decoder include recurrent neural networks (RNN) (Hochreiter &
176 Schmidhuber, 1997) and Transformer (Vaswani et al., 2017). We present the formulation details of
177 these example in Appendix B.
178

179 **Dependency measure.** As mentioned, a clear symptom of posterior collapse is that the decoder
180 \mathbf{f}^{dec} heavily relies on prefix $\mathbf{X}_{1:t-1}$ (especially the last observation \mathbf{x}_{t-1}) to compute the representa-
181 tion \mathbf{h}_t , ignoring the guidance of latent variable $\mathbf{x}_0 = \mathbf{z}$. The variable \mathbf{z} that loses control of decoder
182 \mathbf{f}^{dec} is undesired for conditional generation $p^{\text{gen}}(\mathbf{X} \mid \mathbf{z})$.

183 Inspired by integrated gradients (Sundararajan et al., 2017), we present a technique: *dependency*
184 *measure*, which quantifies the impacts of latent variable $\mathbf{x}_0 = \mathbf{z}$ and prefix $\mathbf{X}_{1:t-1}$ on decoder \mathbf{f}^{dec} .
185 Specifically, we first set a baseline input $\mathbf{O}_{0:t-1}$ as $[\mathbf{x}_0 = \mathbf{0}, \mathbf{x}_1 = \mathbf{0}, \dots, \mathbf{x}_{t-1} = \mathbf{0}]$ and denote the
186 term $\mathbf{f}^{\text{dec}}(\mathbf{O}_{0:t-1})$ as $\tilde{\mathbf{h}}_t$. Then, we parameterize a straight line $\gamma(s) : [0, 1] \rightarrow \mathbb{R}^{tD}$ between the
187 actual input $\mathbf{X}_{1:t-1}$ and the input baseline $\mathbf{O}_{0:t-1}$ as
188

$$189 \gamma(s) = s\mathbf{X}_{0:t-1} + (1-s)\mathbf{O}_{0:t-1} := [s\mathbf{x}_0, s\mathbf{x}_1, \dots, s\mathbf{x}_{t-1}]. \quad (7)$$

190 Applying the chain rule in differential calculus, we have
191

$$192 \frac{d\mathbf{f}^{\text{dec}}(\gamma(s))}{ds} = \sum_{j=0}^{t-1} \sum_{k=1}^{k=D} \frac{d\mathbf{f}^{\text{dec}}(\gamma(s))}{d\gamma_{j,k}(s)} \frac{d\gamma_{j,k}(s)}{ds} = \sum_{j=0}^{t-1} \sum_{k=1}^{k=D} x_{j,k} \frac{d\mathbf{f}^{\text{dec}}(\gamma(s))}{d\gamma_{j,k}(s)}, \quad (8)$$

195 where $\gamma_{j,k}(s)$ denote the k -th dimension $s \cdot x_{j,k}$ of the j -th vector $s\mathbf{x}_j$ in point $\gamma(s)$. With the above
196 elements, we can define the below measures.
197

Definition 3.2 (Dependency Measures). For an autoregressive decoder \mathbf{f}^{dec} that conditions on both
198 latent variable $\mathbf{x}_0 = \mathbf{z}$ and the prefix $\mathbf{X}_{1:t-1}$ to compute representation \mathbf{h}_t , the dependency measure
199 of every input variable $\mathbf{x}_j, j \in [0, t-1]$ to the decoder is defined as
200

$$201 m_{t,j} = \frac{1}{\|\mathbf{h}_t - \tilde{\mathbf{h}}_t\|^2} \langle \mathbf{h}_t - \tilde{\mathbf{h}}_t, \sum_k x_{j,k} \int_0^1 \frac{d\mathbf{f}^{\text{dec}}(\gamma(s))}{d\gamma_{j,k}(s)} ds \rangle, \quad (9)$$

203 where $k \in [1, D]$ and operation $\langle \cdot, \cdot \rangle$ represents the inner product. We name $m_{t,0}$ as the *global*
204 dependency and $m_{t,t-j}, 1 \leq j < t$ as the *j-th order local dependency*.
205

206 We provide the derivation for dependency measure $m_{t,j}$ and detail its relations to integrated gradi-
207 ents in Appendix C. Plus, the integral term can be approximated as
208

$$209 \int_0^1 \frac{d\mathbf{f}^{\text{dec}}(\gamma(s))}{d\gamma_{j,k}(s)} ds \approx \frac{1}{|\mathcal{S}|} \sum_{s \in \mathcal{S}} \frac{d\mathbf{f}^{\text{dec}}(\gamma(s))}{d\gamma_{j,k}(s)}, \quad (10)$$

211 where \mathcal{S} is the set of independent samples drawn from uniform distribution $\mathcal{U}\{0, 1\}$. According to
212 the law of large numbers (Sedor, 2015), this approximation is unbiased and gets more accurate for a
213 bigger sample set $|\mathcal{S}|$. Lastly, the defined measures have the following properties.
214

215 **Proposition 3.3** (Signed and Normalization Properties). *The dependency measure $m_{t,j}, \forall j \in [0, t-1]$ is a signed measure and always satisfies $\sum_{j=0}^{t-1} m_{t,j} = 1$.*

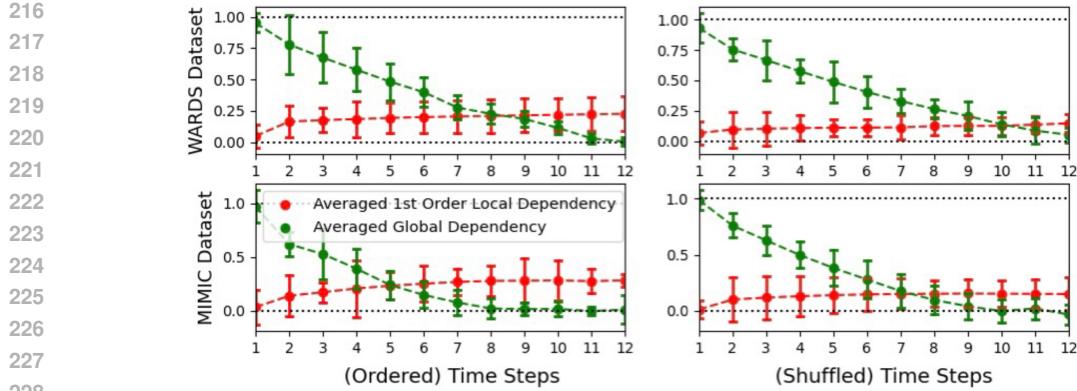


Figure 1: Dependency measures $m_{t,0}, m_{t,t-1}$ averaged over 500 multivariate time series, with 3 standard deviations as the error bars. We can see that the latent variable \mathbf{z} of latent diffusion has a vanishing impact on the decoder \mathbf{f}^{dec} , a typical symptom of *posterior collapse*. We also observe a phenomenon of *dependency illusion* in the case of shuffled time series.

We can see that the measure $m_{t,j}$ can be either positive or negative, with a normalized sum over the subscript j as 1. If $m_{t,j} \geq 0$, then we say that vector \mathbf{x}_j has a positive impact on the decoder \mathbf{f}^{dec} : the bigger is $m_{t,j}$, the larger is such an impact; Similarly, if $m_{t,j} < 0$, then the vector \mathbf{x}_j has a negative impact on the decoder: the smaller is $m_{t,j}$, the greater is the negative influence. It is also not hard to understand that there exists a negative impact. For example, the latent variable $\mathbf{z} \sim q^{\text{latent}}(\mathbf{z})$ might be an outlier for the decoder \mathbf{f}^{dec} , which locates at a low-density region in the prior distribution $q^{\text{prior}}(\mathbf{z})$. We provide the proof for this conclusion in Appendix D.

3.3 EMPIRICAL DEPENDENCY ESTIMATIONS

We are mainly interested in two types of defined measures. One is the *global dependency* $m_{t,0}$, which estimates the impact of latent variable $\mathbf{x}_0 = \mathbf{z}$ on the decoder \mathbf{f}^{dec} ; The other is the *first-order local dependency* $m_{t,t-1}$, which estimates the dependency of decoder \mathbf{f}^{dec} on the last observation \mathbf{x}_{t-1} . In this part, we empirically estimate these measures, with the aims to confirm that *posterior collapse* occurs and show its impacts.

Experiment setup. We adopt two real time-series datasets: WARDs (Alaa et al., 2017b) and MIMIC (Johnson et al., 2016). To study the case where time series have no structural dependencies, we also try randomly shuffling the time steps of ordered time series. We train latent diffusion models on those datasets and sample time series from the models.

Insightful results. Fig. 1 illustrates the estimated dependency measures $m_{t,0}, m_{t,t-1}$ of time-series latent diffusion averaged over 500 samples. We can see that, for both ordered and shuffled time series, the global dependency $m_{t,0}$ exponentially converges to 0 with increasing time step t , indicating posterior collapse: latent variable \mathbf{z} loses control of the decoder \mathbf{f}^{dec} .

More interesting results are shown in the right two subfigures. When adjacent observations $\mathbf{x}_{t-1}, \mathbf{x}_t$ are not much correlated in shuffled time series, we still observe that the first-order measure $m_{t,t-1}$ is notably different from 0 (e.g., around 0.1 to 0.2). This phenomenon might arise as neural networks overfit and we term it as *dependency illusion*: different observations $\mathbf{x}_s, \mathbf{x}_t, s < t$ in time series \mathbf{X} are totally or almost independent, but the decoder \mathbf{f}^{dec} still highly relies on \mathbf{x}_s to predict \mathbf{x}_t (i.e., high dependency measure $m_{t,s}$).

4 METHOD: POSTERIOR-STABLE LATENT DIFFUSION

In this section, we first analyze the potential causes of posterior collapse in time-series latent diffusion. Based on the discussion, we then introduce a new framework, which extends from latent diffusion but is free from the problem.

270 4.1 CAUSES OF POSTERIOR COLLAPSE IN LATENT DIFFUSION
271

272 Previous works (Semeniuta et al., 2017; Alemi et al., 2018) have identified two main causes of
273 posterior collapse: *KL-divergence term* and *strong decoder*. For time-series latent diffusion, we will
274 explain as below that those causes indeed exist, but are in fact avoidable.
275

276 **Unnecessary KL regularization.** The KL-divergence term $D_{KL}(q^{VI}(\mathbf{z} \mid \mathbf{X}) \parallel p^{\text{prior}}(\mathbf{z}))$ in
277 Eq. (2) moves the posterior $q^{VI}(\mathbf{z} \mid \mathbf{X})$ towards prior $p^{\text{prior}}(\mathbf{z})$, which might incur posterior col-
278 lapsed by definition (see Sec. 3.1). In fact, this term is tailored for VAE, such that it is proper to
279 sample latent variable \mathbf{z} from a Gaussian prior $p^{\text{prior}}(\mathbf{z})$ at test time. *However, the variable \mathbf{z} in*
280 *latent diffusion is sampled from the diffusion model, which can approximate a non-Gaussian prior*
281 *distribution.* In this regard, we can see that KL regularization is not very necessary in latent diffu-
282 sion, which also results in a limited prior $p^{\text{prior}}(\mathbf{z})$.
283

284 **Time-series decoders are more vulnerable.** The strong decoder is also a cause of posterior col-
285 lapsed, which happens to sequence autoencoders (Bowman et al., 2016; Eikema & Aziz, 2019). Time
286 series $\mathbf{X} \in \mathbb{R}^{TD}$ has a clear temporal structure, and thus its decoding is autoregressive, resulting in
287 a strong decoder \mathbf{f}^{dec} . In contrast, the decoder in image-based latent diffusion, is mainly configured
288 as a feedforward neural network (Svozil et al., 1997), such as U-Net (Ronneberger et al., 2015). *This*
289 *type of feedforward decoder is naturally sensitive to the input variables*, so the original design of
290 latent diffusion did not consider address the possible insensitivity.
291

292 4.2 NEW FRAMEWORK WITH A STABLE POSTERIOR
293

294 In light of the above discussion, we introduce a type of posterior-stable latent diffusion that elimi-
295 nates the use of risky KL regularization, permit a free-form prior distribution $p^{\text{prior}}(\mathbf{z})$, and increase
296 the sensitivity of decoder \mathbf{f}^{dec} to latent variable \mathbf{z} .
297

Importantly, we notice a conclusion (Ho et al., 2020) for the diffusion process (i.e., Eq. (3)):

$$q^{\text{forw}}(\mathbf{z}^i \mid \mathbf{z}^0) = \mathcal{N}(\mathbf{z}^i; \sqrt{\bar{\alpha}^i} \mathbf{z}^0, (1 - \bar{\alpha}^i) \mathbf{I}), \quad (11)$$

300 where the coefficient $\bar{\alpha}^i$ monotonically decreases from 1 to approximately 0 for $i \in [0, L]$. In
301 this sense, suppose the initial variable \mathbf{z}^0 is set as $\mathbf{v} = \mathbf{f}^{\text{enc}}(\mathbf{X})$, then we can infer that the random
302 variable $\mathbf{z}^i \sim q^{\text{forw}}(\mathbf{z}^i \mid \mathbf{z}^0)$ contains $\bar{\alpha}^i \times 100\%$ information about the vector \mathbf{v} , with $(1 - \bar{\alpha}^i) \times 100\%$
303 pure noise. For $i \rightarrow 0$, the diffusion process is similar to the *variational inference* (i.e., Eq. (1)) of
304 VAE, adding slight Gaussian noise to the encoder output \mathbf{v} . For $i \rightarrow T$, the variable \mathbf{z}^i simulates the
305 problem of *posterior collapse* since $q^{\text{forw}}(\mathbf{z}^i \mid \mathbf{z}^0) \approx \mathcal{N}(\mathbf{z}^i; \mathbf{0}, \mathbf{I})$.
306

307 **Diffusion process as variational inference.** Considering the above facts, we first treat the starting
308 few iterations of the diffusion process as the *variational inference*. Specifically, with a fixed small
309 integer $N \ll L$, we sample a number i from uniform distribution $\mathcal{U}\{0, N\}$ and let the diffusion
310 process convert the encoder output $\mathbf{v} = \mathbf{f}^{\text{enc}}(\mathbf{X})$ into the latent variable:
311

$$\mathbf{z} = \mathbf{z}^i \sim q^{\text{forw}}(\mathbf{z}^i \mid \mathbf{z}^0), \mathbf{z}^0 = \mathbf{v}. \quad (12)$$

313 In terms of the formerly defined generation distribution $p^{\text{gen}}(\mathbf{X} \mid \mathbf{z})$ (parameterized by the decoder
314 \mathbf{f}^{dec}), a negative log-likelihood loss \mathcal{L}^{VI} is incurred as
315

$$\mathcal{L}^{\text{VI}} = \mathbb{E}_{i \sim \mathcal{U}\{0, N\}, \mathbf{z}^0}[-\bar{\alpha}^{\gamma i} \ln p^{\text{gen}}(\mathbf{X} \mid \mathbf{z} = \mathbf{z}^i)], \quad (13)$$

317 where $\gamma \in \mathbb{N}^+, \gamma N \leq L$ is a hyper-parameter, with the aim to reduce the impact of a very noisy
318 latent variable \mathbf{z} . As multiplier γ increases, the weight $\bar{\alpha}^{\gamma i}$ decreases.
319

320 Similar to VAE, the variational inference in our framework also leads the latent variable \mathbf{z} to be
321 *smooth* (Bowman et al., 2016) in its effect on decoder \mathbf{f}^{dec} . However, our framework is free from
322 the KL-divergence term $D_{KL}(q^{\text{VI}}(\mathbf{z} \mid \mathbf{X}) \parallel p^{\text{prior}}(\mathbf{z}))$ of VAE (i.e., one cause of the *posterior*
323 *collapse*), since we can facilitate $\mathbf{z} \sim q^{\text{latent}}(\mathbf{z})$ at test time through applying the reverse process of
the diffusion model (i.e., Eq. (4)) to sample variable $\mathbf{z}^i, i \in [0, N]$.
324

324

325

326

Algorithm 1 Training

327

```

1: repeat
2:   Encoding time-series sample:  $\mathbf{v} = \mathbf{f}^{\text{enc}}(\mathbf{X})$ 
3:    $\mathbf{z}^j \sim q^{\text{forw}}(\mathbf{z}^j \mid \mathbf{z}^0 = \mathbf{v}), j \sim \mathcal{U}\{0, N\}$ 
4:    $\hat{\mathcal{L}}^{\text{VI}} = -\bar{\alpha}^{\gamma j} \ln p^{\text{gen}}(\mathbf{X} \mid \mathbf{z} = \mathbf{z}^j)$ 
5:    $i \sim \mathcal{U}\{j, L\}, \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ 
6:    $\hat{\mathcal{L}}^{\text{DM}} = \|\epsilon - \epsilon^{\text{back}}(\sqrt{\bar{\alpha}^i} \mathbf{z}^j + \sqrt{\cdot} \epsilon, i)\|^2$ 
7:    $\mathbf{z}^k \sim q^{\text{forw}}(\mathbf{z}^k \mid \mathbf{z}^0 = \mathbf{v}), k \sim \mathcal{U}\{M, L\}$ 
8:    $\hat{\mathcal{L}}^{\text{CS}} = (1 - \bar{\alpha}^{\lceil \frac{k}{\eta} \rceil}) \ln p^{\text{gen}}(\mathbf{X} \mid \mathbf{z} = \mathbf{z}^k)$ 
9:   Gradient descent with  $\nabla(\hat{\mathcal{L}}^{\text{VI}} + \hat{\mathcal{L}}^{\text{DM}} + \hat{\mathcal{L}}^{\text{CS}})$ 
10: until converged

```

337

338

339

Diffusion process for collapse simulation. Then, we apply the last few iterations of the diffusion process to simulate *posterior collapse*, with the aims of increasing the impact of latent variable \mathbf{z} on conditional generation $p^{\text{gen}}(\mathbf{X} \mid \mathbf{z})$ and reducing *dependency illusion*.

342

Following our previous *variational inference*, we set $\mathbf{z}^0 = \mathbf{f}^{\text{enc}}(\mathbf{X})$ and apply the diffusion process to cast the initial variable \mathbf{z}^0 into a highly noisy variable $\mathbf{z}^i, i \rightarrow L$. Considering that the variable \mathbf{z}^i contains little information about the encoder output $\mathbf{f}^{\text{enc}}(\mathbf{X})$, it is unlikely that the decoder \mathbf{f}^{dec} can recover time series \mathbf{X} from variable \mathbf{z}^i , otherwise there is *posterior collapse* or *dependency illusion*. In this sense, we have the following regularization:

347

$$\mathcal{L}^{\text{CS}} = \mathbb{E}_{i, \mathbf{z}^i}[(1 - \bar{\alpha}^{\lceil \frac{i}{\eta} \rceil}) \ln p^{\text{gen}}(\mathbf{X} \mid \mathbf{z} = \mathbf{z}^i)], \quad (14)$$

348

which penalizes the model for having a high conditional density $p^{\text{gen}}(\mathbf{X} \mid \mathbf{z})$ for non-informative latent variable $\mathbf{z} = \mathbf{z}^i, i \in [M, L]$. Here $M \in \mathbb{N}^+$ is close to L , $i \sim \mathcal{U}\{M, L\}$, $\lceil \cdot \rceil$ is the ceiling function, and $\eta \geq 1$ is set to reduce the impact of informative variable \mathbf{z}^i .

352

For a *strong decoder* \mathbf{f}^{dec} , the regularization \mathcal{L}^{CS} will impose a heavy penalty if the decoder solely relies on previous observations $\{\mathbf{x}_k \mid k < j\}$ to predict an observation \mathbf{x}_j . In that situation, even if the latent variable \mathbf{z} contains very limited information about the raw data \mathbf{X} , a high prediction probability will still be assigned to the observation \mathbf{x}_j .

356

357

Training, inference, and running times. While our new framework extends from latent diffusion, its training and inference procedures are very different. We respectively depict the two procedures in Algorithm 1 and Algorithm 2. For training, the key points are to compute three loss functions: $\hat{\mathcal{L}}^{\text{VI}}$ for likelihood maximization, $\hat{\mathcal{L}}^{\text{DM}}$ for training diffusion models, and $\hat{\mathcal{L}}^{\text{CS}}$ for collapse regularization. For inference, the main difference is that the stopping time of the backward process is not 0, but a random variable. From these pseudo codes, we can see that our framework is almost as efficient as vanilla latent diffusion. We provide an in-depth analysis and empirical experiments about the running times of our framework in Appendix F.2.

365

366

5 RELATED WORK

367

Besides latent diffusion, our paper is related to previous methods that aim to mitigate the problem of *posterior collapse* for VAE (Kingma & Welling, 2013). In the following, we will first briefly introduce those baselines, explaining their limitations, and then discuss some other types of time-series generative models.

372

373

Existing methods for mitigating posterior collapse. KL annealing (Bowman et al., 2016; Fu et al., 2019; Ichikawa & Hukushima, 2024) is to assign an adaptive weight to control the effect of KL-divergence term, so that VAE is unlikely to fall into the local optimum of posterior collapse at the initial optimization stage. With a similar idea, there are other types of regularization (e.g., mutual information constraints (Melis et al., 2022)) in the literature. Such methods can only mitigate the problem to some degree, but cannot fully reduce it.

Algorithm 2 Sampling1: $\mathbf{z}_L \sim p^{\text{back}}(\mathbf{z}_L) = \mathcal{N}(\mathbf{0}, \mathbf{I})$ 2: Set stop time: $i \sim \mathcal{U}\{0, N\}$ 3: **for** $l = L, L-1, \dots, i+1$ **do**4: $\mathbf{z}^{l-1} \sim p^{\text{back}}(\mathbf{z}^{l-1} \mid \mathbf{z}^l)$ 5: **end for**6: Conditional generation: $p^{\text{gen}}(\hat{\mathbf{X}} \mid \mathbf{z} = \mathbf{z}^i)$ 7: **return** Time series $\hat{\mathbf{X}}$

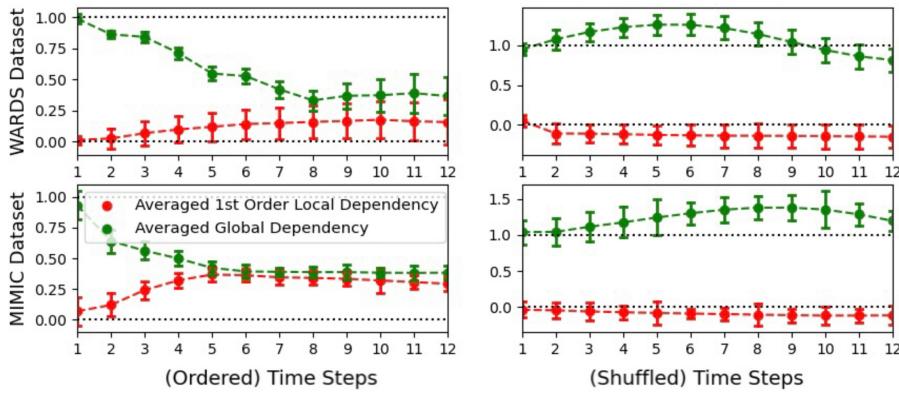


Figure 2: The results of averaged dependency measures and error bars for our framework, which should be compared with those (e.g., Fig. 1) of latent diffusion, showing that our framework has a *stable posterior* and is without *dependency illusion*.

Decoder weakening (Lu et al., 2021; Kinoshita et al., 2023) is also a popular class of methods to address posterior collapse. A well-known example is Variable Masking (Semeniuta et al., 2017), which randomly masks input observations to the autoregressive decoder, such that the decoder is forced to rely more on the latent variable for predicting the next observation. However, this method will make the model inexpressive since the decoder is weakened.

To improve the impact of latent variables on the recurrent decoder, a method called skip connections (Dieng et al., 2019; Fu et al., 2024) directly feeds the latent variable into the decoder at every step, not only at the first step. However, the latent variable in that case acts as a constant input signal at every time step, so the decoder will still tend to ignore this redundant information.

Other time-series generative models. In addition to latent diffusion, prior studies have proposed various alternative models for time-series generation. For example, Neural ODE Rubanova et al. (2019); Li et al. (2024) that works well on irregular time series, and TimeGAN (Yoon et al., 2019) that is based on Generative Adversarial Networks (GAN) (Goodfellow et al., 2020). We have included these three generative baselines in Table 2 for comparison.

6 EXPERIMENTS

6.1 STABLE POSTERIOR OF OUR FRAMEWORK

To show that our framework has a stable posterior $q^{VI}(\mathbf{z} \mid \mathbf{X})$, we follow the same experiment setup (e.g., datasets) as Sec. 3.3 and average the dependency measures $m_{t,0}, m_{t,t-1}$ over 500 sampled time series. The results are illustrated in Fig. 2. For ordered time series in the left two subfigures, we can see that, while the global dependency $m_{t,0}$ still decreases with increasing time step t , it converges into a value around 0.5, which is also a bit higher than the converged first-order local dependency $m_{t,t-1}$. These results indicate that latent variable \mathbf{z} in our framework maintains its control of decoder \mathbf{f}^{dec} during the entire conditional generation process $p^{gen}(\mathbf{X} \mid \mathbf{z})$.

For shuffled time series in the right two subfigures, we can see that the global dependency $m_{t,0}$ is always around or above 1, and the local dependency $m_{t,t-1}$ is negative most of the time. These results indicate that the decoder \mathbf{f}^{dec} only relies on latent variable \mathbf{z} and the context \mathbf{x}_{t-1} even has a negative impact on conditional generation $p^{gen}(\mathbf{X} \mid \mathbf{z})$, suggesting our framework is without *dependency illusion*. Based on all our findings, we conclude that: compared with latent diffusion (Fig. 1), our framework is free from posterior collapse.

6.2 PERFORMANCES IN TIME SERIES GENERATION

In this part, we aim to verify that our framework improves latent diffusion in terms of time series generation, which is promising since it is free from *posterior collapse*. We also include some other

Model	Backbone	MIMIC	WARDS	Earthquakes
Latent Diffusion	LSTM	5.19	7.52	5.87
Latent Diffusion w/ KL Annealing	LSTM	4.28	5.74	3.88
Latent Diffusion w/ Variable Masking	LSTM	4.73	6.01	4.26
Latent Diffusion w/ Skip Connections	LSTM	3.91	4.95	3.74
Our Framework	LSTM	2.29	3.16	2.67
Latent Diffusion	Transformer	5.02	7.46	5.91
Latent Diffusion w/ KL Annealing	Transformer	4.31	5.54	3.51
Latent Diffusion w/ Variable Masking	Transformer	4.42	5.97	4.45
Latent Diffusion w/ Skip Connections	Transformer	3.75	4.67	3.69
Our Framework	Transformer	2.13	3.01	2.49

Table 1: Wasserstein distances of different models on real time-series datasets. The lower the distance metric, the better the generation quality. *More results from other datasets, with another evaluation metric, are placed in Table 5 of Appendix F.3.*

Model	MIMIC	Earthquakes
Latent Diffusion (Rombach et al., 2022)	5.02	5.91
Latent Diffusion w/ Mutual Information Constraints (Melis et al., 2022)	3.59	3.85
Latent Diffusion w/ Inverse Lipschitz Constraint (Kinoshita et al., 2023)	3.01	3.42
Neural STPP (Chen et al., 2021)	5.13	5.82
Neural Latent Dynamic (Li et al., 2024)	4.31	5.12
Frequency Diffusion (Crabbé et al., 2024)	4.56	5.07
Our Framework	2.13	2.49

Table 2: Comparison with more baselines, including recent new methods to mitigate *posterior collapse* and other types of time-series generative models. Both latent diffusion baselines and our model are with Transformer as the backbone.

previous methods that can mitigate *posterior collapse*, including KL annealing (Fu et al., 2019), variable masking (Bowman et al., 2016), and skip connections (Dieng et al., 2019). We adopt the Wasserstein distances (Bischoff et al., 2024) as the metric.

The experiment results on three commonly used time-series datasets are shown in Table 1. From the results, we can see that, regardless of the used dataset and the backbone of autoencoder, our framework significantly outperforms latent diffusion and the baselines, which strongly confirms our intuition. For example, with the backbone of Transformer, our framework achieves 2.53 points lower than latent diffusion w/ KL Annealing on the WARDS dataset.

We have also compared our model with more recent baselines, including non-latent diffusion generative models and new methods to mitigate posterior collapse. The results are shown in Table 2, which further confirm the effectiveness of our framework.

6.3 MORE RESULTS IN THE APPENDIX

Due to space limitations in the main text, additional experimental results are provided in the appendix: more time-series datasets and an alternative evaluation metric (Appendix F.3), results on text and image modalities (Appendix F.4), ablation studies (Appendix F.1), and running-time analysis (Appendix F.2). Details of the experimental setup are also included in Appendix E.

7 CONCLUSION

In this paper, we first provide a solid analysis of *posterior collapse* in latent diffusion, showing that the problem will reduce it to a weak generative model (i.e., VAE). Then, we introduce a quantitative method: *dependency measures*, confirming that time-series latent diffusion indeed has an unstable posterior on real data. Lastly, we introduce a new framework that eliminates the use of risky KL regularization, permits an unlimited prior distribution, and ensures that the decoder is sensitive to the input latent variable. Extensive experiments on multiple real time-series datasets show that our framework has a stable posterior and outperforms previous baselines.

486 REFERENCES
487

488 Ahmed M. Alaa, Scott Hu, and Mihaela van der Schaar. Learning from clinical judgments: Semi-
489 Markov-modulated marked Hawkes processes for risk prognosis. In Doina Precup and Yee Whye
490 Teh (eds.), *Proceedings of the 34th International Conference on Machine Learning*, volume 70
491 of *Proceedings of Machine Learning Research*, pp. 60–69. PMLR, 06–11 Aug 2017a. URL
492 <https://proceedings.mlr.press/v70/ala17a.html>.

493 Ahmed M Alaa, Jinsung Yoon, Scott Hu, and Mihaela Van der Schaar. Personalized risk scoring for
494 critical care prognosis using mixtures of gaussian processes. *IEEE Transactions on Biomedical
495 Engineering*, 65(1):207–218, 2017b.

496 Alexander Alemi, Ben Poole, Ian Fischer, Joshua Dillon, Rif A. Saurous, and Kevin Murphy. Fixing
497 a broken ELBO. In Jennifer Dy and Andreas Krause (eds.), *Proceedings of the 35th International
498 Conference on Machine Learning*, volume 80 of *Proceedings of Machine Learning Research*,
499 pp. 159–168. PMLR, 10–15 Jul 2018. URL <https://proceedings.mlr.press/v80/alemi18a.html>.

500 Pierre Baldi. Autoencoders, unsupervised learning, and deep architectures. In *Proceedings of ICML
501 workshop on unsupervised and transfer learning*, pp. 37–49. JMLR Workshop and Conference
502 Proceedings, 2012.

503 Stephen D Bay, Dennis Kibler, Michael J Pazzani, and Padhraic Smyth. The uci kdd archive of large
504 data sets for data mining research and experimentation. *ACM SIGKDD explorations newsletter*,
505 2(2):81–85, 2000.

506 Sebastian Bischoff, Alana Darcher, Michael Deistler, Richard Gao, Franziska Gerken, Manuel
507 Glocckler, Lisa Haxel, Jaivardhan Kapoor, Janne K Lappalainen, Jakob H Macke, et al. A practical
508 guide to statistical distances for evaluating generative models in science. *arXiv preprint
509 arXiv:2403.12636*, 2024.

510 David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for statisti-
511 cians. *Journal of the American statistical Association*, 112(518):859–877, 2017.

512 Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, Andrew Dai, Rafal Jozefowicz, and Samy Ben-
513 gio. Generating sentences from a continuous space. In *Proceedings of the 20th SIGNLL
514 Conference on Computational Natural Language Learning*, pp. 10–21, Berlin, Germany, Au-
515 gust 2016. Association for Computational Linguistics. doi: 10.18653/v1/K16-1002. URL
516 <https://aclanthology.org/K16-1002>.

517 Ricky T. Q. Chen, Brandon Amos, and Maximilian Nickel. Neural spatio-temporal point pro-
518 cesses. In *International Conference on Learning Representations*, 2021. URL <https://openreview.net/forum?id=XQQA6-S014>.

519 Alice Coucke, Alaa Saade, Adrien Ball, Théodore Bluche, Alexandre Caulier, David Leroy, Clément
520 Doumouro, Thibault Gisselbrecht, Francesco Caltagirone, Thibaut Lavril, et al. Snips voice plat-
521 form: an embedded spoken language understanding system for private-by-design voice interfaces.
522 *arXiv preprint arXiv:1805.10190*, 2018.

523 Jonathan Crabbé, Nicolas Huynh, Jan Stanczuk, and Mihaela Van Der Schaar. Time series diffu-
524 sion in the frequency domain. In *Proceedings of the 41st International Conference on Machine
525 Learning*, ICML’24. JMLR.org, 2024.

526 Adji B. Dieng, Yoon Kim, Alexander M. Rush, and David M. Blei. Avoiding latent variable collapse
527 with generative skip models. In Kamalika Chaudhuri and Masashi Sugiyama (eds.), *Proceedings
528 of the Twenty-Second International Conference on Artificial Intelligence and Statistics*, volume 89
529 of *Proceedings of Machine Learning Research*, pp. 2397–2405. PMLR, 16–18 Apr 2019. URL
530 <https://proceedings.mlr.press/v89/dieng19a.html>.

531 Gintare Karolina Dziugaite, Daniel M Roy, and Zoubin Ghahramani. Training generative neural
532 networks via maximum mean discrepancy optimization. *arXiv preprint arXiv:1505.03906*, 2015.

540 Bryan Eikema and Wilker Aziz. Auto-encoding variational neural machine translation. In Is-
 541 abelle Augenstein, Spandana Gella, Sebastian Ruder, Katharina Kann, Burcu Can, Johannes
 542 Welbl, Alexis Conneau, Xiang Ren, and Marek Rei (eds.), *Proceedings of the 4th Workshop*
 543 *on Representation Learning for NLP (RepL4NLP-2019)*, pp. 124–141, Florence, Italy, Au-
 544 gust 2019. Association for Computational Linguistics. doi: 10.18653/v1/W19-4315. URL
 545 <https://aclanthology.org/W19-4315>.

546 Hao Fu, Chunyuan Li, Xiaodong Liu, Jianfeng Gao, Asli Celikyilmaz, and Lawrence Carin. Cyclical
 547 annealing schedule: A simple approach to mitigating KL vanishing. In Jill Burstein, Christy Do-
 548 ran, and Thamar Solorio (eds.), *Proceedings of the 2019 Conference of the North American Chap-*
 549 *ter of the Association for Computational Linguistics: Human Language Technologies, Volume 1*
 550 *(Long and Short Papers)*, pp. 240–250, Minneapolis, Minnesota, June 2019. Association for Com-
 551 putational Linguistics. doi: 10.18653/v1/N19-1021. URL <https://aclanthology.org/N19-1021>.

552 Yan Fu, Bao Yang, and Ou Ye. Spatiotemporal masked autoencoder with multi-memory and skip
 553 connections for video anomaly detection. *Electronics*, 13(2):353, 2024.

554 Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
 555 Aaron Courville, and Yoshua Bengio. Generative adversarial networks. *Communications of the*
 556 *ACM*, 63(11):139–144, 2020.

557 Charles T Hemphill, John J Godfrey, and George R Doddington. The atis spoken language systems
 558 pilot corpus. In *Speech and Natural Language: Proceedings of a Workshop Held at Hidden Valley,*
 559 *Pennsylvania, June 24-27, 1990*, 1990.

560 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
 561 *Neural Information Processing Systems*, 33:6840–6851, 2020.

562 Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. *Neural computation*, 9(8):
 563 1735–1780, 1997.

564 Yuma Ichikawa and Koji Hukushima. Learning dynamics in linear vae: Posterior collapse threshold,
 565 superfluous latent space pitfalls, and speedup with kl annealing. In *International Conference on*
 566 *Artificial Intelligence and Statistics*, pp. 1936–1944. PMLR, 2024.

567 Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H Lehman, Mengling Feng, Mohammad
 568 Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G Mark. Mimic-iii,
 569 a freely accessible critical care database. *Scientific data*, 3(1):1–9, 2016.

570 Diederick P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In *International*
 571 *Conference on Learning Representations (ICLR)*, 2015.

572 Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint*
 573 *arXiv:1312.6114*, 2013.

574 Yuri Kinoshita, Kenta Oono, Kenji Fukumizu, Yuichi Yoshida, and Shin-ichi Maeda. Controlling
 575 posterior collapse by an inverse lipschitz constraint on the decoder network. In *International*
 576 *Conference on Machine Learning*, pp. 17041–17060. PMLR, 2023.

577 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
 578 2009.

579 Jianguo Li, Zhanxing Zhu, et al. Neural lad: a neural latent dynamics framework for times series
 580 modeling. *Advances in Neural Information Processing Systems*, 36, 2024.

581 Yangming Li. Ts-diffusion: Generating highly complex time series with diffusion models. *arXiv*
 582 *preprint arXiv:2311.03303*, 2023.

583 Shuqi Lu, Di He, Chenyan Xiong, Guolin Ke, Waleed Malik, Zhicheng Dou, Paul Bennett, Tie-
 584 Yan Liu, and Arnold Overwijk. Less is more: Pretrain a strong Siamese encoder for dense text
 585 retrieval using a weak decoder. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and
 586 Scott Wen-tau Yih (eds.), *Proceedings of the 2021 Conference on Empirical Methods in Natural*

594 *Language Processing*, pp. 2780–2791, Online and Punta Cana, Dominican Republic, November
 595 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.220. URL
 596 <https://aclanthology.org/2021.emnlp-main.220/>.

597 598 James Lucas, George Tucker, Roger Grosse, and Mohammad Norouzi. Understanding posterior col-
 599 lapse in generative latent variable models, 2019. URL <https://openreview.net/forum?id=r1xaVLUYuE>.

600 601 Gábor Melis, András György, and Phil Blunsom. Mutual information constraints for monte-carlo
 602 objectives to prevent posterior collapse especially in language modelling. *Journal of Machine*
 603 *Learning Research*, 23(75):1–36, 2022.

604 605 Prabhaker Mishra, Uttam Singh, Chandra M Pandey, Priyadarshni Mishra, and Gaurav Pandey. Ap-
 606 plication of student’s t-test, analysis of variance, and covariance. *Annals of cardiac anaesthesia*,
 607 22(4):407–411, 2019.

608 609 Muhammad Ferjad Naeem, Seong Joon Oh, Youngjung Uh, Yunjey Choi, and Jaejun Yoo. Reliable
 610 fidelity and diversity metrics for generative models. In *International Conference on Machine*
 611 *Learning*, pp. 7176–7185. PMLR, 2020.

612 613 Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
 614 evaluation of machine translation. In *Proceedings of the 40th annual meeting of the Association*
 615 *for Computational Linguistics*, pp. 311–318, 2002.

616 617 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 618 Penna, and Robin Rombach. SDXL: Improving latent diffusion models for high-resolution image
 619 synthesis. In *The Twelfth International Conference on Learning Representations*, 2024. URL
 620 <https://openreview.net/forum?id=di52zR8xgf>.

621 622 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 623 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF Con-*
 624 *ference on Computer Vision and Pattern Recognition*, pp. 10684–10695, 2022.

625 626 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
 627 image segmentation. In *Medical image computing and computer-assisted intervention-
 628 MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceed-
 629 ings, part III 18*, pp. 234–241. Springer, 2015.

630 631 Yulia Rubanova, Ricky T. Q. Chen, and David K Duvenaud. Latent ordinary differential equations
 632 for irregularly-sampled time series. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-
 633 Buc, E. Fox, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, vol-
 634 ume 32. Curran Associates, Inc., 2019. URL <https://proceedings.neurips.cc/paper/2019/file/42a6845a557bef704ad8ac9cb4461d43-Paper.pdf>.

635 636 Kelly Sedor. The law of large numbers and its applications. *Lakehead University: Thunder Bay,*
 637 *ON, Canada*, 2015.

638 639 Stanislau Semeniuta, Aliaksei Severyn, and Erhardt Barth. A hybrid convolutional variational au-
 640 toencoder for text generation. In Martha Palmer, Rebecca Hwa, and Sebastian Riedel (eds.),
 641 *Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing*, pp.
 642 627–637, Copenhagen, Denmark, September 2017. Association for Computational Linguistics.
 643 doi: 10.18653/v1/D17-1066. URL <https://aclanthology.org/D17-1066>.

644 645 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 646 learning using nonequilibrium thermodynamics. In *International Conference on Machine Learn-
 647 ing*, pp. 2256–2265. PMLR, 2015.

648 649 Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
 650 *International conference on machine learning*, pp. 3319–3328. PMLR, 2017.

651 652 Daniel Svozil, Vladimir Kvasnicka, and Jiri Pospichal. Introduction to multi-layer feed-forward
 653 neural networks. *Chemometrics and intelligent laboratory systems*, 39(1):43–62, 1997.

648 U.S. Geological Survey. Earthquake Catalogue (accessed August 21, 2020), 2020. URL <https://earthquake.usgs.gov/earthquakes/search/>.
649
650

651 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
652 Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon,
653 U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
654 nett (eds.), *Advances in Neural Information Processing Systems*, volume 30. Curran Asso-
655 ciates, Inc., 2017. URL <https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf>.
656

657 Jinsung Yoon, Daniel Jarrett, and Mihaela van der Schaar. Time-series generative adversarial net-
658 works. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
659 nett (eds.), *Advances in Neural Information Processing Systems*, volume 32. Curran Asso-
660 ciates, Inc., 2019. URL <https://proceedings.neurips.cc/paper/2019/file/c9efe5f26cd17ba6216bbe2a7d26d490-Paper.pdf>.
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702 A THE IMPACT OF POSTERIOR COLLAPSE

704 Under the assumption of *posterior collapse*, the below equality:

$$706 q^{\text{VI}}(\mathbf{z} \mid \mathbf{X}) = p^{\text{prior}}(\mathbf{z}) = \mathcal{N}(\mathbf{z}; \mathbf{0}, \mathbf{I}), \quad (15)$$

707 holds for any latent variable $\mathbf{z} \in \mathbb{R}^D$ and any conditional $\mathbf{X} \in \mathbb{R}^{TD}$. Then, note that

$$709 q^{\text{latent}}(\mathbf{z}) = \int q^{\text{VI}}(\mathbf{z} \mid \mathbf{X}) q^{\text{raw}}(\mathbf{X}) d\mathbf{X} = \int \mathcal{N}(\mathbf{z}; \mathbf{0}, \mathbf{I}) q^{\text{raw}}(\mathbf{X}) d\mathbf{X} \\ 710 = \mathcal{N}(\mathbf{z}; \mathbf{0}, \mathbf{I}) \int q^{\text{raw}}(\mathbf{X}) d\mathbf{X} = \mathcal{N}(\mathbf{z}; \mathbf{0}, \mathbf{I}), \\ 711 712 713 714$$

which is exactly our claim.

716 B RECURRENT ENCODERS

718 We mainly implement the backbone of decoder \mathbf{f}^{dec} as LSTM (Hochreiter & Schmidhuber, 1997)
719 or Transformer (Vaswani et al., 2017). In the former case, we apply the latent variable \mathbf{z} to initialize
720 LSTM and condition it on prefix $\mathbf{X}_{1:t-1}$ to compute the representation \mathbf{h}_t . Formally, the LSTM-
721 based decoder \mathbf{f}^{dec} is as

$$722 \begin{cases} \mathbf{s}_t = \text{LSTM}(\mathbf{s}_{t-1}, \mathbf{x}_{t-1}), \forall t \geq 1 \\ 723 \mathbf{h}_t = \mathbf{W}_f^2 \tanh(\mathbf{W}_f^1 \mathbf{s}_t) \end{cases}, \quad (17)$$

724 where \mathbf{s}_t is the state vector of LSTM and $\mathbf{W}_f^2, \mathbf{W}_f^1$ are learnable matrices. In particular, for the
725 corner case $t = 1$, we fix $\mathbf{s}_0, \mathbf{x}_0$ as zero vectors.

726 In the later case, we just treat latent variable \mathbf{z} as \mathbf{x}_0 . Therefore, we have

$$727 \begin{cases} [\mathbf{s}_{t-1}, \mathbf{s}_{s-2}, \dots, \mathbf{s}_0] = \text{Transformer}(\mathbf{x}_{t-1}, \mathbf{x}_{t-2}, \dots, \mathbf{x}_0) \\ 728 \mathbf{h}_t = \mathbf{W}_f^2 \tanh(\mathbf{W}_f^1 \mathbf{s}_{t-1}) \end{cases}, \quad (18)$$

731 where the subscript alignment results from self-attention mechanism.

734 C DERIVATION OF DEPENDENCY MEASURES

736 Integrated gradient (Sundararajan et al., 2017) is a very effective method of feature attributions. Our
737 dependency measures can be regarded as its extension to the case of sequence data and vector-valued
738 neural networks. In the following, we provide the derivation of dependency measures.

739 For the computation $\mathbf{h}_t = \mathbf{f}^{\text{dec}}(\mathbf{X}_{0:t-1})$, suppose the output of decoder \mathbf{f}^{dec} at origin $\mathbf{O}_{0:t-1}$ is $\tilde{\mathbf{h}}_t$,
740 then we apply the fundamental theorem of calculus as

$$742 \mathbf{h}_t - \tilde{\mathbf{h}}_t = \int_0^1 \frac{d\mathbf{f}^{\text{dec}}(\gamma(s))}{ds} ds, \quad (19)$$

744 where $\gamma(s)$ is a straight line connecting the origin $\mathbf{O}_{0:t-1}$ and the input $\mathbf{X}_{0:t-1}$ as $\gamma(s) = s\mathbf{X}_{0:t-1} +$
745 $(1-s)\mathbf{O}_{0:t-1}$. Based on the chain rule, the above equality can be expanded as

$$747 \mathbf{h}_t - \tilde{\mathbf{h}}_t = \int_0^1 \sum_{j=0}^{t-1} \sum_{k=1}^{k=D} \frac{d\mathbf{f}^{\text{dec}}(\gamma(s))}{d\gamma_{j,k}(s)} \frac{d\gamma_{j,k}(s)}{ds} ds \\ 748 = \sum_{j=0}^{t-1} \left(\int_0^1 \sum_{k=1}^{k=D} x_{j,k} \frac{d\mathbf{f}^{\text{dec}}(\gamma(s))}{d\gamma_{j,k}(s)} ds \right), \\ 749 750 751 752 753$$

753 where $\gamma_{j,k}(s)$ denote the k -th dimension $s \cdot x_{j,k}$ of the j -th vector $s\mathbf{x}_j$ in point $\gamma(s)$. Intuitively
754 speaking, every term inside the outer sum operation $\sum_{j=0}^{t-1}$ represents the additive contribution of
755 variable \mathbf{x}_j (to the output difference $\mathbf{h}_t - \tilde{\mathbf{h}}_t$) along the integral line $\gamma(s)$.

756	Model	Backbone	N for \mathcal{L}^{VI}	M for \mathcal{L}^{CS}	Diffusion Iterations L	MIMIC	WARDS
757	Latent Diffusion	Transformer	—	—	1000	5.02	7.46
758	LD w/ Skip Connections	Transformer	—	—	1000	3.75	4.67
759	Our Framework	Transformer	50	100	1000	2.13	3.01
760	Our Framework	Transformer	50	50	1000	2.59	3.32
761	Our Framework	Transformer	50	150	1000	2.71	3.46
762	Our Framework	Transformer	50	200	1000	2.83	3.75
763	Our Framework	Transformer	10	100	1000	2.31	3.16
764	Our Framework	Transformer	100	100	1000	2.38	3.24
765	Our Framework	Transformer	150	100	1000	2.75	3.41

Table 3: Ablation studies of the hyper-parameters N, M , which are respectively used in the estimations of likelihood loss \mathcal{L}^{VI} and collapse penalty \mathcal{L}^{CS} . Here LD is short for latent diffusion and the symbol — means “Not Applicable”.

To simplify the notation, we denote the mentioned term as

$$\mathbf{m}_{t,j} = \int_0^1 \sum_{k=1}^{k=D} x_{j,k} \frac{d\mathbf{f}^{\text{dec}}(\gamma(s))}{d\gamma_{j,k}(s)} ds. \quad (21)$$

Since $\mathbf{m}_{t,j}$ is a vector, we map the new term to a scalar and re-scale it as

$$m_{t,j} = \frac{\langle \mathbf{m}_{t,j}, \mathbf{h}_t - \tilde{\mathbf{h}}_t \rangle}{\langle \mathbf{h}_t - \tilde{\mathbf{h}}_t, \mathbf{h}_t - \tilde{\mathbf{h}}_t \rangle}, \quad (22)$$

which is exactly our definition of the dependency measure.

D PROPERTIES OF OF DEPENDENCY MEASURES

Firstly, in terms of Eq. (22), it is obvious that the dependency measure $m_{t,j}$ is signed: the measure can be either positive or negative. Then, based on Eq. (20), we have

$$\mathbf{h}_t - \tilde{\mathbf{h}}_t = \sum_{j=0}^{t-1} \mathbf{m}_{t,j}. \quad (23)$$

By taking an inner product with the vector $\mathbf{h}_t - \tilde{\mathbf{h}}_t$ at both sides, we get

$$\langle \mathbf{h}_t - \tilde{\mathbf{h}}_t, \mathbf{h}_t - \tilde{\mathbf{h}}_t \rangle = \langle \sum_{j=0}^{t-1} \mathbf{m}_{t,j}, \mathbf{h}_t - \tilde{\mathbf{h}}_t \rangle = \sum_{j=0}^{t-1} \langle \mathbf{m}_{t,j}, \mathbf{h}_t - \tilde{\mathbf{h}}_t \rangle. \quad (24)$$

By rearranging the term, we finally arrive at

$$1 = \sum_{j=0}^{t-1} \frac{\langle \mathbf{m}_{t,j}, \mathbf{h}_t - \tilde{\mathbf{h}}_t \rangle}{\langle \mathbf{h}_t - \tilde{\mathbf{h}}_t, \mathbf{h}_t - \tilde{\mathbf{h}}_t \rangle} = \sum_{j=0}^{t-1} m_{t,j}, \quad (25)$$

which is exactly our claim.

E EXPERIMENT DETAILS

We have adopted three widely used real-world time-series datasets for both analysis and model evaluation, including MIMIC (Johnson et al., 2016), WARDS (Alaa et al., 2017a), and Earthquakes (U.S. Geological Survey, 2020). For the first two datasets, we extract the observations of the first 12 hours, with the top 5 features that have the highest variances forming multivariate time series. For MIMIC, we specially simplify it into a version of univariate time series for the illustration purpose, which is only used in the experiments shown in Fig. 3. All other experiments are about multivariate time series. For the Earthquakes dataset, it is about the location and time of all earthquakes in Japan from 1990 to 2020 with magnitude of at least 2.5 from U.S. Geological Survey (2020). We follow the same preprocessing procedure for this dataset as Li (2023).

Method	Training Time	Inference Time
Latent Diffusion	2hr 10min	5min 12s
Our Framework	2hr 50min	5min 17s

Table 4: Comparison of Training and Inference Times on the MIMIC dataset.

Method	Backbone	Retail	Energy
Latent Diffusion	Transformer	0.037	0.052
Latent Diffusion w/ Skip Connections	Transformer	0.033	0.043
Our Framework	Transformer	0.025	0.031
Latent Diffusion	LSTM	0.041	0.057
Latent Diffusion w/ Skip Connections	LSTM	0.035	0.047
Our Framework	LSTM	0.027	0.033

Table 5: Comparison on two new time-series datasets, with another metric: MMD.

We use almost the same model configurations for all experiments. The diffusion models are parameterized by a standard U-net (Ronneberger et al., 2015), with $L = 1000$ diffusion iterations and hidden dimensions $\{128, 64, 32\}$. The hidden dimensions of autoencoders and latent variables are fixed as 128. The conditional distribution $p^{\text{gen}}(\mathbf{X} \mid \mathbf{z})$ is parameterized as a Gaussian, with learnable mean vector and diagonal covariance matrix functions. For our framework, N, M are respectively selected as 50, 100, with $\gamma = 2$ and $\eta = 1$. We also apply dropout with a ratio of 0.1 to most layers of neural networks. We adopt Adam algorithm (Kingma & Ba, 2015) with the default hyper-parameter setting to optimize our model. For Table 1 and Table 3, every number is averaged over 10 different random seeds, with a standard deviation less than 0.05. For the computing resources, all our models can be trained on 1 GPU (40G memory) within 10 hours. Finally, the performance gains achieved by our models are all verified by the Student’s t-test (Mishra et al., 2019).

F ADDITIONAL EXPERIMENTS

Due to the limited space of our main text, we put the results of some minor experiments here in the appendix. Notably, we will adopt more datasets and another evaluation metric.

F.1 ABLATION STUDIES

We have conducted ablation studies to verify that our hyper-parameter selections $N = 50, M = 100$ are optimal. The experiment results are shown in Table 3. For both N and M , either increasing or decreasing their values results in worse performance on the two datasets.

F.2 STUDY ON RUNNING TIMES

Our framework only incurs a minor increase in training time and enjoys the same inference speed as the latent diffusion. For training, while our framework will run the decoder a second time for collapse simulation \mathcal{L}^{CS} , it can be made in parallel with the first run of decoder f^{dec} for likelihood computation \mathcal{L}^{VI} . Therefore, the training is still efficient on GPU devices. Our framework also has a different way of variational inference to infer latent variable \mathbf{z} from data \mathbf{X} . However, it admits a closed-form solution and is thus as efficient as the reparameterization trick of latent diffusion. For inference, our framework has no difference from the latent diffusion: sampling the latent variable \mathbf{z} with the reverse diffusion process and running the decoder f^{dec} in one shot.

To show the running times in practice, we perform an experiment on the MIMIC dataset as shown in Table 4. We can see that our framework indeed only has a minor increase for training. Given that our framework is free from posterior collapse and delivers better generation performances, this slight time investment is well worth it.

Method	Backbone	ATIS	SNIPS
Latent Diffusion	Transformer	37.12	59.36
Latent Diffusion w/ Skip Connections	Transformer	40.56	65.41
Our Framework	Transformer	51.73	78.12
Latent Diffusion	LSTM	35.38	55.72
Latent Diffusion w/ Skip Connections	LSTM	39.27	60.31
Our Framework	LSTM	48.46	71.45

Table 6: Performance comparison on two text datasets, with BLEU as the metric.

Method	Backbone	CIFAR-10
Latent Diffusion	U-Net	3.91
Latent Diffusion w/ KL Annealing	U-Net	3.87
Our Framework	U-Net	3.85

Table 7: Performance comparison on an image dataset, with FID as the metric.

F.3 MORE DATASETS AND ANOTHER EVALUATION METRIC

We conduct additional experiments on 2 more public UCI time-series datasets (Bay et al., 2000): Retail and Energy, with another widely used evaluation metric: maximum mean discrepancy (MMD) (Dziugaite et al., 2015). Lower MMD scores indicate better generative models. From the results shown in Table 5. We can see that our framework still significantly outperforms the baselines in terms of all the new benchmarks. For example, with LSTM as the backbone, our framework achieves a score that is 29.79% lower than Skip Connections on the Energy dataset.

F.4 MORE DATA MODALITIES

While our paper primarily focused on time series data, our framework is generally applicable to other types of data, including your mentioned text and images.

Experiment on text data. For text data, considering that natural language sentences exhibits a sequential structure similar to time series, it is intuitive that the posterior of text latent diffusion might also collapse. This intuition is supported by many evidences from previous works (Bowman et al., 2016; Fu et al., 2019). To verify that our framework is capable of improving text latent diffusion, we have conducted an experiment using two publicly available text datasets: ATIS (Hemphill et al., 1990) and SNIPS (Coucke et al., 2018).

The numbers in this table represent BLEU scores (Papineni et al., 2002), a widely used metric for evaluating text generation models. Higher scores indicate better performance. As the results shown in Table 6, we can see that our framework has significantly improved the text latent diffusion and notably outperformed a strong baseline—Skip Connections—across all datasets and backbones. Therefore, our framework also applies to text data.

Experiment on image data. For image data, we provide a detailed discussion in Sec. 4.1 of our paper: Image latent diffusion is rarely affected by posterior collapse because of its non-autoregressive decoder. To confirm this claim in practice, we have conducted an experiment comparing latent diffusion with our framework on the widely used CIFAR-10 dataset (Krizhevsky et al., 2009).

The results are shown in Table 7. The numbers in this table represent FID scores (Naeem et al., 2020), a common metric for evaluating image generation models. Lower scores indicate better performance. Our results show that both the baseline model (i.e., KL Annealing) and our framework improve the image latent diffusion to some extent. However, the improvements are minor, suggesting that image models are almost free from posterior collapse.

F.5 CASE STUDIES OF DEPENDENCY MEASURES

Fig. 3 shows several examples of applying the dependency measures, where each subfigure contains a sample of time series (i.e., blue curve) generated by some model and two types of dependency

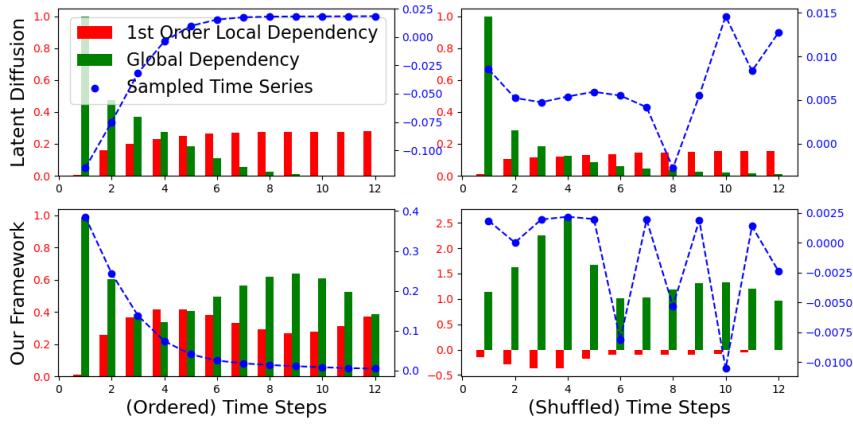


Figure 3: The global and local dependency measures $m_{t,0}, m_{t,t-1}$ (as defined in Sec. 3.2) respectively quantify the impacts of latent variable \mathbf{z} and observation \mathbf{x}_{t-1} on predicting the next one \mathbf{x}_t . We can see that the latent variable \mathbf{z} of latent diffusion loses control over the condition generation $p^{\text{gen}}(\mathbf{X} \mid \mathbf{z})$, with *dependency illusion* (as introduced in Sec. 3.3) in the case of shuffled time series. In contrast, our framework has no such symptoms of *posterior collapse*.

measures (i.e., red and green bar charts) estimated by Eq. (9). Specifically, every point \mathbf{x}_t in the time series corresponds to a green bar that indicates the global dependency $m_{t,0}$ and a red bar that represents the first-order local dependency $m_{t,t-1}$. In the upper left subfigure, we can see that the positive impact of latent variable \mathbf{z} on the decoder (e.g., $m_{t,0}$) decreases over time and vanishes eventually. From the lower right subfigure, we can even see that some bars (i.e., local dependency $m_{t,t-1}$) are negative, indicating that the variable \mathbf{x}_{t-1} provides the decoder with rather false information in predicting the next observation \mathbf{x}_t .

An example (i.e., the green bar chart) is shown in the upper left subfigure of Fig. 3. More interestingly, the upper right subfigure illustrates a phenomenon we call *dependency illusion*: Even when the time series is randomly shuffled and thus lacks structural dependencies, the decoder of latent diffusion still heavily relies on input observations (instead of the latent variable) for prediction (i.e., the global dependency measures $m_{t,0} = 1 - \sum_{s < t} m_{t,s}$ converges to 0 as time step t increases). As demonstrated in the lower two subfigures of Fig. 3, our framework exhibits no signs of posterior collapse, such as the vanishing impact of latent variables over time. Note that the dataset that is used to train the baseline and our model is constructed by extracting the observations of the first 12 hours, with the top 1 feature that has the highest variance to form univariate time series.