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ABSTRACT

Latent diffusion has achieved remarkable success in image generation, with high
sampling efficiency. However, this framework might suffer from posterior col-
lapse when applied to time series. In this work, we first show that latent diffu-
sion with a collapsed posterior degenerates into a much weaker generative model:
variational autoencoder (VAE). This finding highlights the significance of address-
ing the problem. We then introduce a principled method: dependency measures,
which quantify the sensitivity of a recurrent decoder to input variables. Through
this method, we confirm that posterior collapse seriously affects latent time-series
diffusion on real time series. For example, the latent variable has an exponen-
tially decreasing impact on the decoder over time. Building on our theoretical and
empirical studies, we finally introduce a new framework: posterior-stable latent
diffusion, which interprets the diffusion process as a type of variational inference.
In this way, it eliminates the use of risky KL regularization and penalizes decoder
insensitivity. Extensive experiments on multiple real time-series datasets show
that our new framework is with a highly stable posterior and notably outperforms
previous baselines in time series synthesis.

1 INTRODUCTION

Latent diffusion (Rombach et al., 2022) has shown strong performance in image synthesis (Podell
et al., 2024), offering substantially faster sampling than standard diffusion models (Ho et al.,
2020). However, when applied to time-series data, this framework might suffer from posterior
collapse (Bowman et al., 2016), a common and important problem that happens to some generative
models (e.g., autoencoder (Baldi, 2012; Lucas et al., 2019)), where the latent variable only captures
limited information from the data. In that case, the decoder tends to ignore the variable during condi-
tional generation. In this paper, we present a systematic analysis of posterior collapse in time-series
latent diffusion and propose an improved framework that builds upon our analysis.

Impact analysis of posterior collapse. We first show that a strictly collapsed posterior reduces
the latent diffusion to a vanilla variational autoencoder (VAE) (Kingma & Welling, 2013) in formu-
lation, indicating that this problem renders the framework inexpressive, even weaker than a vanilla
diffusion model. We then introduce a principled method: dependency measure, which quantifies
the dependencies of an autoregressive decoder on the latent variable and the observed time series.
Through performing empirical estimation of these measures, we confirm the latent variable has a
nearly exponentially vanishing impact on the recurrent decoder, indicating that time-series latent
diffusion indeed suffers from posterior collapse.

From this empirical study, we also observe an interesting symptom of posterior collapse: depen-
dency illusion: when time series are randomly shuffled and thus lack structural dependencies, the
estimated dependency measures show that the autoregressive decoder still heavily relies on previous
observations (instead of the latent variable) for predicting the next one.

Our posterior-stable latent diffusion. We identify two main causes of posterior collapse in latent
diffusion: KL regularization and strong decoder (Bowman et al., 2016). The first cause stems from
the design of VAE, ensuring that the latent variable follows a simple prior distribution. Such reg-
ularization is in fact unnecessary in latent diffusion, as its diffusion component supports sampling
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latent variables from a complex distribution. The second cause is the absence of a mechanism that
enforces decoder sensitivity to the latent variable.

In light of this analysis, we first propose to reinterpret the diffusion process as a form of variational
inference, thereby eliminating the use for risky KL regularization in latent diffusion and allowing
unrestricted prior distributions for latent variable sampling. To ensure that the decoder is sensitive
to the latent variable, we also apply the diffusion process to simulate a collapsed posterior, imposing
a significant penalty on dependency illusion.

Contributions and roadmap. In summary, our contributions are as follows:

• We provide a rigorous analysis of posterior collapse in latent diffusion, showing that a
collapsed posterior will render it no more expressive than a simple VAE. We also introduce
dependency measures that confirm the problem on real time-series data;

• We present a new type of time-series generative model: posterior-stable latent diffusion,
which is free from risky KL regularization and ensures that the autoregressive decoder is
sensitive to the input latent variable;

• We conduct extensive experiments on multiple real time-series datasets. The results demon-
strate that our framework remains robust against posterior collapse and significantly out-
performs a number of previous baselines.

The remainder of this paper is organized as follows. In Sec. 2, we review latent diffusion. Sec. 3
presents a systematic analysis of posterior collapse in time-series latent diffusion. Sec. 4 intro-
duces our proposed framework to address this problem. Finally, Sec. 6 reports experimental results
demonstrating the effectiveness of the framework.

2 BACKGROUND: LATENT DIFFUSION

The architecture of latent diffusion consists of two parts: 1) an autoencoder (Baldi, 2012) that
maps high-dimensional or structured data into low-dimensional latent variables; 2) a diffusion
model (Sohl-Dickstein et al., 2015) that learns the distribution of latent variables.

Autoencoder. The autoencoder is typically implemented as VAE (Kingma & Welling, 2013). Let
X denote a free-form raw sample, following an underlying distribution qraw(X). The encoder f enc
of VAE aims to convert the sample into a low-dimensional vector v = f enc(X). Through a repa-
rameterization trick, the vector can be used to compute latent variable z as

z = µ+ diag(σ) · ϵ, ϵ ∼ N (0, I), µ = Wµv,σ = exp(Wσv), (1)

where Wµ,Wσ are learnable matrices, and diag(·) is an operation that casts a vector into a diagonal
matrix. The above procedure, which differentially samples a latent variable z from the posterior
qVI(z | X) = N (z;µ, diag(σ2)), is termed variational inference (Blei et al., 2017). In VAE, the
decoder fdec is used to parameterize a conditional generation distribution pgen(X | z), recovering
the real sample X from latent variable z.

The exact negative log-likelihood loss function of VAE is computationally infeasible, so its opti-
mization relies on an upper bound of the loss:

LVAE = Ez∼qVI(z|X)[− ln pgen(X | z)] + DKL(q
VI(z | X) || pprior(z)), (2)

where the prior distribution pprior(z) is typically set as a standard Gaussian N (0, I). The last KL
divergence term is to ensure that the prior pprior(z) is compatible with decoder fdec at test time,
though it is one cause of posterior collapse (Bowman et al., 2016).

Diffusion model. The diffusion model can be implemented as DDPM (Ho et al., 2020). The
model consists of two Markov chains of L ∈ N+ steps. One of them is the diffusion process, which
incrementally applies the forward transition kernel:

qforw(zi | zi−1) = N (zi;
√
1− βizi, βiI), (3)
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to the latent variable z0 := z ∼ qlatent(z), where βi, i ∈ [1, L] is some predefined variance sched-
ule. Here the distribution of latent variable qlatent(z) is defined as

∫
qVI(z | X)qraw(X)dX. The

outcomes of this process form a series of new latent variables {z1, z2, · · · , zL}, with the last one zL
approximately following a standard Gaussian N (0, I) for L ≫ 1.

The other is the reverse process, which iteratively applies the backward transition kernel:

pback(zi−1 | zi) = N (zi−1;µback(zi, i), σiI), µback(zi, i) =
1√
αi

(
zi − βi ϵ

back(zi, i)√
1− ᾱi

)
, (4)

where αi = 1−βi, ᾱi =
∏i

k=1 α
k, ϵback(·) is a neural network, zL is an initial sample drawn from

∼ N (0, I), and σi is some backward variance schedule. The outcome of this process is a reversed
sequence of latent variables {zL−1, zL−2, · · · , z0}, where the last one z0 is expected to follow the
distribution of real samples: qlatent(z0).

To optimize the diffusion model, common practices adopt a loss function as below:

LDM = Ei,z0,ϵ[∥ϵ− ϵback(
√
ᾱiz0 +

√
1− ᾱiϵ, i)∥2], (5)

where ϵ ∼ N (0, I), z0 ∼ qlatent(z0), i ∼ U{1, L}.

3 PROBLEM ANALYSIS

In this section, we first show the significant impact of posterior collapse on time-series latent diffu-
sion. Then, we define proper measures that can empirically quantify this impact. Finally, we confirm
that time-series diffusion indeed suffers from this problem on real datasets.

3.1 SIGNIFICANCE OF POSTERIOR COLLAPSE

Let us focus on time series X = [x1,x2, · · · ,xT ], where every observation xt, t ∈ [1, T ] is a
D-dimensional vector and T denotes the number of observations. When applying latent diffusion
to time series, a problem that might arise is posterior collapse, which occurs to many types of
autoencoders, especially VAE. The problem can be formulated as follows.

Problem formulation. The posterior qVI(z | X) of VAE is said to collapse if it reduces to the
Gaussian prior pprior(z) = N (z;0, I), irrespective of the conditional X:

qVI(z | X) = pprior(z), ∀X ∈ RTD.

In that case, the latent variable z contains no information about time series X, otherwise the pos-
terior distribution qVI(z | X) would vary depending on different conditionals. Above is a strict
definition. In practice, one is mostly faced with a situation where qVI(z | X) ≈ pprior(z) and it is
still appropriate to say that the posterior collapses.

Implications of posterior collapse. A typical symptom of this problem is that, since the latent
variable z carries very limited information of time series X, the decoder fdec tends to ignore this
input variable z, which is undesired for conditional generation pgen(X | z). Besides this empirical
finding from previous works, we find that posterior collapse also seriously impacts on the expres-
siveness of latent diffusion. Let us first see the below conclusion.

Proposition 3.1 (Gaussian Latent Variables). For standard latent diffusion, suppose its posterior
qVI(z | X) collapses, then the distribution qlatent(z) of latent variable z will shape as a standard
Gaussian N (0, I), which is trivial for the diffusion model to approximate.

Simply put, if posterior collapse happens, latent variable z will be Gaussian at test time. In that
case, the diffusion model that aims to approximate the complex variable distribution qlatent(z) is a
redundant module. Therefore, posterior collapse reduces latent diffusion to a weak VAE, making it
inexpressive. The proof for this conclusion is provided in Appendix A.
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3.2 INTRODUCTION OF DEPENDENCY MEASURES

A typical symptom (Bowman et al., 2016) of posterior collapse is that the input latent variable z
loses control of decoder fdec during conditional generation pgen(X | z). To verify whether this is
the case for time-series latent diffusion on real datasets, we introduce some proper measures that
quantify the dependencies of decoder fdec on various inputs.

Autoregressive decoder. Consider that decoder fdec has an autoregressive structure, which con-
ditions on latent variable z and prefix X1:t−1 = [x1,x2, · · · ,xt−1] to predict the next observation
xt. With abuse of notation, we set x0 = z and formulate the decoder as

ht = fdec(X0:t−1), X0:t−1 = [x0,x1,x2, · · · ,xt−1], (6)

where the representation ht, t ≥ 1 is linearly projected to multiple parameters (e.g., mean vector
and covariance matrix) that determine the distribution pgen(xt | z,X1:t−1) of some family (e.g.,
Gaussian). Examples of such a decoder include recurrent neural networks (RNN) (Hochreiter &
Schmidhuber, 1997) and Transformer (Vaswani et al., 2017). We present the formulation details of
these example in Appendix B.

Dependency measure. As mentioned, a clear symptom of posterior collapse is that the decoder
fdec heavily relies on prefix X1:t−1 (especially the last observation xt−1) to compute the representa-
tion ht, ignoring the guidance of latent variable x0 = z. The variable z that loses control of decoder
fdec is undesired for conditional generation pgen(X | z).
Inspired by integrated gradients (Sundararajan et al., 2017), we present a technique: dependency
measure, which quantifies the impacts of latent variable x0 = z and prefix X1:t−1 on decoder fdec.
Specifically, we first set a baseline input O0:t−1 as [x0 = 0,x1 = 0, · · · ,xt−1 = 0] and denote the
term fdec(O0:t−1) as h̃t. Then, we parameterize a straight line γ(s) : [0, 1] → RtD between the
actual input X1:t−1 and the input baseline O0:t−1 as

γ(s) = sX0:t−1 + (1− s)O0:t−1 := [sx0, sx1, · · · , sxt−1]. (7)

Applying the chain rule in differential calculus, we have

dfdec(γ(s))

ds
=

t−1∑
j=0

k=D∑
k=1

dfdec(γ(s))

dγj,k(s)

dγj,k(s)

ds
=

t−1∑
j=0

k=D∑
k=1

xj,k
dfdec(γ(s))

dγj,k(s)
, (8)

where γj,k(s) denote the k-th dimension s ·xj,k of the j-th vector sxj in point γ(s). With the above
elements, we can define the below measures.
Definition 3.2 (Dependency Measures). For an autoregressive decoder fdec that conditions on both
latent variable x0 = z and the prefix X1:t−1 to compute representation ht, the dependency measure
of every input variable xj , j ∈ [0, t− 1] to the decoder is defined as

mt,j =
1

∥ht − h̃t∥2
< ht − h̃t,

∑
k

xj,k

∫ 1

0

dfdec(γ(s))

dγj,k(s)
ds >, (9)

where k ∈ [1, D] and operation < ·, · > represents the inner product. We name mt,0 as the global
dependency and mt,t−j , 1 ≤ j < t as the j-th order local dependency.

We provide the derivation for dependency measure mt,j and detail its relations to integrated gradi-
ents in Appendix C. Plus, the integral term can be approximated as∫ 1

0

dfdec(γ(s))

dγj,k(s)
ds ≈ 1

|S|
∑
s∈S

dfdec(γ(s))

dγj,k(s)
, (10)

where S is the set of independent samples drawn from uniform distribution U{0, 1}. According to
the law of large numbers (Sedor, 2015), this approximation is unbiased and gets more accurate for a
bigger sample set |S|. Lastly, the defined measures have the following properties.
Proposition 3.3 (Signed and Normalization Properties). The dependency measure mt,j , ∀j ∈ [0, t−
1] is a signed measure and always satisfies

∑t−1
j=0 mt,j = 1.

4
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Figure 1: Dependency measures mt,0,mt,t−1 averaged over 500 multivariate time series, with 3
standard deviations as the error bars. We can see that the latent variable z of latent diffusion has a
vanishing impact on the decoder fdec, a typical symptom of posterior collapse. We also observe a
phenomenon of dependency illusion in the case of shuffled time series.

We can see that the measure mt,j can be either positive or negative, with a normalized sum over
the subscript j as 1. If mt,j ≥ 0, then we say that vector xj has a positive impact on the decoder
fdec: the bigger is mt,j , the larger is such an impact; Similarly, if mt,j < 0, then the vector xj

has a negative impact on the decoder: the smaller is mt,j , the greater is the negative influence. It
is also not hard to understand that there exists a negative impact. For example, the latent variable
z ∼ qlatent(z) might be an outlier for the decoder fdec, which locates at a low-density region in the
prior distribution qprior(z). We provide the proof for this conclusion in Appendix D.

3.3 EMPIRICAL DEPENDENCY ESTIMATIONS

We are mainly interested in two types of defined measures. One is the global dependency mt,0,
which estimates the impact of latent variable x0 = z on the decoder fdec; The other is the first-order
local dependency mt,t−1, which estimates the dependency of decoder fdec on the last observation
xt,t−1. In this part, we empirically estimate these measures, with the aims to confirm that posterior
collapse occurs and show its impacts.

Experiment setup. We adopt two real time-series datasets: WARDS (Alaa et al., 2017b) and
MIMIC (Johnson et al., 2016). To study the case where time series have no structural dependencies,
we also try randomly shuffling the time steps of ordered time series. We train latent diffusion models
on those datasets and sample time series from the models.

Insightful results. Fig. 1 illustrates the estimated dependency measures mt,0,mt,t−1 of time-
series latent diffusion averaged over 500 samples. We can see that, for both ordered and shuffled
time series, the global dependency mt,0 exponentially converges to 0 with increasing time step t,
indicating posterior collapse: latent variable z loses control of the decoder fdec.

More interesting results are shown in the right two subfigures. When adjacent observations xt−1,xt

are not much correlated in shuffled time series, we still observe that the first-order measure mt,t−1 is
notably different from 0 (e.g., around 0.1 to 0.2). This phenomenon might arise as neural networks
overfit and we term it as dependency illusion: different observations xs,xt, s < t in time series X
are totally or almost independent, but the decoder fdec still highly relies on xs to predict xt (i.e.,
high dependency measure mt,s).

4 METHOD: POSTERIOR-STABLE LATENT DIFFUSION

In this section, we first analyze the potential causes of posterior collapse in time-series latent dif-
fusion. Based on the discussion, we then introduce a new framework, which extends from latent
diffusion but is free from the problem.

5
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4.1 CAUSES OF POSTERIOR COLLAPSE IN LATENT DIFFUSION

Previous works (Semeniuta et al., 2017; Alemi et al., 2018) have identified two main causes of
posterior collapse: KL-divergence term and strong decoder. For time-series latent diffusion, we will
explain as below that those causes indeed exist, but are in fact avoidable.

Unnecessary KL regularization. The KL-divergence term DKL(q
VI(z | X) || pprior(z)) in

Eq. (2) moves the posterior qVI(z | X) towards prior pprior(z), which might incur posterior col-
lapse by definition (see Sec. 3.1). In fact, this term is tailored for VAE, such that it is proper to
sample latent variable z from a Gaussian prior pprior(z) at test time. However, the variable z in
latent diffusion is sampled from the diffusion model, which can approximate a non-Gaussian prior
distribution. In this regard, we can see that KL regularization is not very necessary in latent diffu-
sion, which also results in a limited prior pprior(z).

Time-series decoders are more vulnerable. The strong decoder is also a cause of posterior col-
lapse, which happens to sequence autoencoders (Bowman et al., 2016; Eikema & Aziz, 2019). Time
series X ∈ RTD has a clear temporal structure, and thus its decoding is autoregressive, resulting in
a strong decoder fdec. In contrast, the decoder in image-based latent diffusion, is mainly configured
as a feedforward neural network (Svozil et al., 1997), such as U-Net (Ronneberger et al., 2015). This
type of feedforward decoder is naturally sensitive to the input variables, so the original design of
latent diffusion did not consider address the possible insensitivity.

4.2 NEW FRAMEWORK WITH A STABLE POSTERIOR

In light of the above discussion, we introduce a type of posterior-stable latent diffusion that elimi-
nates the use of risky KL regularization, permit a free-form prior distribution pprior(z), and increase
the sensitivity of decoder fdec to latent variable z.

Importantly, we notice a conclusion (Ho et al., 2020) for the diffusion process (i.e., Eq. (3)):

qforw(zi | z0) = N (zi;
√
ᾱiz0, (1− ᾱi)I), (11)

where the coefficient ᾱi monotonically decreases from 1 to approximately 0 for i ∈ [0, L]. In
this sense, suppose the initial variable z0 is set as v = f enc(X), then we can infer that the random
variable zi ∼ qforw(zi | z0) contains ᾱi×100% information about the vector v, with (1−ᾱi)×100%
pure noise. For i → 0, the diffusion process is similar to the variational inference (i.e., Eq. (1)) of
VAE, adding slight Gaussian noise to the encoder output v. For i → T , the variable zi simulates the
problem of posterior collapse since qforw(zi | z0) ≈ N (zi;0, I).

Diffusion process as variational inference. Considering the above facts, we first treat the starting
few iterations of the diffusion process as the variational inference. Specifically, with a fixed small
integer N ≪ L, we sample a number i from uniform distribution U{0, N} and let the diffusion
process convert the encoder output v = f enc(X) into the latent variable:

z = zi ∼ qforw(zi | z0), z0 = v. (12)

In terms of the formerly defined generation distribution pgen(X | z) (parameterized by the decoder
fdec), a negative log-likelihood loss LVI is incurred as

LVI = Ei∼U{0,N},z0 [−ᾱγi ln pgen(X | z = zi)], (13)

where γ ∈ N+, γN ≤ L is a hyper-parameter, with the aim to reduce the impact of a very noisy
latent variable z. As multiplier γ increases, the weight ᾱγi decreases.

Similar to VAE, the variational inference in our framework also leads the latent variable z to be
smooth (Bowman et al., 2016) in its effect on decoder fdec. However, our framework is free from
the KL-divergence term DKL(q

VI(z | X) || pprior(z)) of VAE (i.e., one cause of the posterior
collapse), since we can facilitate z ∼ qlatent(z) at test time through applying the reverse process of
the diffusion model (i.e., Eq. (4)) to sample variable zi, i ∈ [0, N ].

6
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Algorithm 1 Training
1: repeat
2: Encoding time-series sample: v = f enc(X)
3: zj ∼ qforw(zj | z0 = v), j ∼ U{0, N}
4: L̂VI = −ᾱγj ln pgen(X | z = zj)

5: i ∼ U{j, L}, ϵ ∼ N (0, I)

6: L̂DM = ∥ϵ− ϵback(
√
ᾱizj +

√
·ϵ, i)∥2

7: zk ∼ qforw(zk | z0 = v), k ∼ U{M,L}

8: L̂CS = (1− ᾱ
⌈ k
η
⌉
) ln pgen(X | z = zk)

9: Gradient descent with ∇(L̂VI + L̂DM + L̂CS)
10: until converged

Algorithm 2 Sampling

1: zL ∼ pback(zL) = N (0, I)

2: Set stop time: i ∼ U{0, N}
3: for l = L,L− 1, . . . , i+ 1 do
4: zl−1 ∼ pback(zl−1 | zl)
5: end for
6: Conditional generation: pgen(X̂ | z = zi)

7: return Time series X̂

Diffusion process for collapse simulation. Then, we apply the last few iterations of the diffusion
process to simulate posterior collapse, with the aims of increasing the impact of latent variable z on
conditional generation pgen(X | z) and reducing dependency illusion.

Following our previous variational inference, we set z0 = f enc(X) and apply the diffusion process
to cast the initial variable z0 into a highly noisy variable zi, i → L. Considering that the variable zi

contains little information about the encoder output f enc(X), it is unlikely that the decoder fdec can
recover time series X from variable zi, otherwise there is posterior collapse or dependency illusion.
In this sense, we have the following regularization:

LCS = Ei,zi [(1− ᾱ⌈ i
η ⌉) ln pgen(X | z = zi)], (14)

which penalizes the model for having a high conditional density pgen(X | z) for non-informative
latent variable z = zi, i ∈ [M,L]. Here M ∈ N+ is close to L, i ∼ U{M,L}, ⌈·⌉ is the ceiling
function, and η ≥ 1 is set to reduce the impact of informative variable zi.

For a strong decoder fdec, the regularization LCS will impose a heavy penalty if the decoder solely
relies on previous observations {xk | k < j} to predict an observation xj . In that situation, even
if the latent variable z contains very limited information about the raw data X, a high prediction
probability will still be assigned to the observation xj .

Training, inference, and running times. While our new framework extends from latent diffusion,
its training and inference procedures are very different. We respectively depict the two procedures
in Algorithm 1 and Algorithm 2. For training, the key points are to compute three loss functions:
L̂VI for likelihood maximization, L̂DM for training diffusion models, and L̂CS for collapse regu-
larization. For inference, the main difference is that the stopping time of the backward process is
not 0, but a random variable. From these pseudo codes, we can see that our framework is almost
as efficient as vanilla latent diffusion. We provide an in-depth analysis and empirical experiments
about the running times of our framework in Appendix F.2.

5 RELATED WORK

Besides latent diffusion, our paper is related to previous methods that aim to mitigate the problem
of posterior collapse for VAE (Kingma & Welling, 2013). In the following, we will first briefly
introduce those baselines, explaining their limitations, and then discuss some other types of time-
series generative models.

Existing methods for mitigating posterior collapse. KL annealing (Bowman et al., 2016; Fu
et al., 2019; Ichikawa & Hukushima, 2024) is to assign an adaptive weight to control the effect of
KL-divergence term, so that VAE is unlikely to fall into the local optimum of posterior collapse at
the initial optimization stage. With a similar idea, there are other types of regularization (e.g., mutual
information constraints (Melis et al., 2022)) in the literature. Such methods can only mitigate the
problem to some degree, but cannot fully reduce it.

7
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Figure 2: The results of averaged dependency measures and error bars for our framework, which
should be compared with those (e.g., Fig. 1) of latent diffusion, showing that our framework has a
stable posterior and is without dependency illusion.

Decoder weakening (Lu et al., 2021; Kinoshita et al., 2023) is also a popular class of methods to
address posterior collapse. A well-known example is Variable Masking (Semeniuta et al., 2017),
which randomly masks input observations to the autoregressive decoder, such that the decoder is
forced to rely more on the latent variable for predicting the next observation. However, this method
will make the model inexpressive since the decoder is weakened.

To improve the impact of latent variables on the recurrent decoder, a method called skip connec-
tions (Dieng et al., 2019; Fu et al., 2024) directly feeds the latent variable into the decoder at every
step, not only at the first step. However, the latent variable in that case acts as a constant input signal
at every time step, so the decoder will still tend to ignore this redundant information.

Other time-series generative models. In addition to latent diffusion, prior studies have proposed
various alternative models for time-series generation. For example, Neural ODE Rubanova et al.
(2019); Li et al. (2024) that works well on irregular time series, and TimeGAN (Yoon et al., 2019)
that is based on Generative Adversarial Networks (GAN) (Goodfellow et al., 2020). We have in-
cluded these three generative baselines in Table 2 for comparison.

6 EXPERIMENTS

6.1 STABLE POSTERIOR OF OUR FRAMEWORK

To show that our framework has a stable posterior qVI(z | X), we follow the same experiment setup
(e.g., datasets) as Sec. 3.3 and average the dependency measures mt,0,mt,t−1 over 500 sampled
time series. The results are illustrated in Fig. 2. For ordered time series in the left two subfigures,
we can see that, while the global dependency mt,0 still decreases with increasing time step t, it
converges into a value around 0.5, which is also a bit higher than the converged first-order local
dependency mt,t−1. These results indicate that latent variable z in our framework maintains its
control of decoder fdec during the entire conditional generation process pgen(X | z).
For shuffled time series in the right two subfigures, we can see that the global dependency mt,0 is
always around or above 1, and the local dependency mt,t−1 is negative most of the time. These
results indicate that the decoder fdec only relies on latent variable z and the context xt−1 even
has a negative impact on conditional generation pgen(X | z), suggesting our framework is without
dependency illusion. Based on all our findings, we conclude that: compared with latent diffusion
(Fig. 1), our framework is free from posterior collapse.

6.2 PERFORMANCES IN TIME SERIES GENERATION

In this part, we aim to verify that our framework improves latent diffusion in terms of time series
generation, which is promising since it is free from posterior collapse. We also include some other
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Model Backbone MIMIC WARDS Earthquakes
Latent Diffusion LSTM 5.19 7.52 5.87

Latent Diffusion w/ KL Annealing LSTM 4.28 5.74 3.88
Latent Diffusion w/ Variable Masking LSTM 4.73 6.01 4.26
Latent Diffusion w/ Skip Connections LSTM 3.91 4.95 3.74

Our Framework LSTM 2.29 3.16 2.67
Latent Diffusion Transformer 5.02 7.46 5.91

Latent Diffusion w/ KL Annealing Transformer 4.31 5.54 3.51
Latent Diffusion w/ Variable Masking Transformer 4.42 5.97 4.45
Latent Diffusion w/ Skip Connections Transformer 3.75 4.67 3.69

Our Framework Transformer 2.13 3.01 2.49

Table 1: Wasserstein distances of different models on real time-series datasets. The lower the dis-
tance metric, the better the generation quality. More results from other datasets, with another eval-
uation metric, are placed in Table 5 of Appendix F.3.

Model MIMIC Earthquakes
Latent Diffusion (Rombach et al., 2022) 5.02 5.91

Latent Diffusion w/ Mutual Information Constraints (Melis et al., 2022) 3.59 3.85
Latent Diffusion w/ Inverse Lipschitz Constraint (Kinoshita et al., 2023) 3.01 3.42

Neural STPP (Chen et al., 2021) 5.13 5.82
Neural Latent Dynamic (Li et al., 2024) 4.31 5.12

Frequency Diffusion (Crabbé et al., 2024) 4.56 5.07
Our Framework 2.13 2.49

Table 2: Comparison with more baselines, including recent new methods to mitigate posterior col-
lapse and other types of time-series generative models. Both latent diffusion baselines and our model
are with Transformer as the backbone.

previous methods that can mitigate posterior collapse, including KL annealing (Fu et al., 2019),
variable masking (Bowman et al., 2016), and skip connections (Dieng et al., 2019). We adopt the
Wasserstein distances (Bischoff et al., 2024) as the metric.

The experiment results on three commonly used time-series datasets are shown in Table 1. From
the results, we can see that, regardless of the used dataset and the backbone of autoencoder, our
framework significantly outperforms latent diffusion and the baselines, which strongly confirms our
intuition. For example, with the backbone of Transformer, our framework achieves 2.53 points lower
than latent diffusion w/ KL Annealing on the WARDS dataset.

We have also compared our model with more recent baselines, including non-latent diffusion gen-
erative models and new methods to mitigate posterior collapse. The results are shown in Table 2,
which further confirm the effectiveness of our framework.

6.3 MORE RESULTS IN THE APPENDIX

Due to space limitations in the main text, additional experimental results are provided in the ap-
pendix: more time-series datasets and an alternative evaluation metric (Appendix F.3), results on
text and image modalities (Appendix F.4), ablation studies (Appendix F.1), and running-time analy-
sis (Appendix F.2). Details of the experimental setup are also included in Appendix E.

7 CONCLUSION

In this paper, we first provide a solid analysis of posterior collapse in latent diffusion, showing that
the problem will reduce it to a weak generative model (i.e., VAE). Then, we introduce a quantitative
method: dependency measures, confirming that time-series latent diffusion indeed has an unstable
posterior on real data. Lastly, we introduce a new framework that eliminates the use of risky KL
regularization, permits an unlimited prior distribution, and ensures that the decoder is sensitive to
the input latent variable. Extensive experiments on multiple real time-series datasets show that our
framework has a stable posterior and outperforms previous baselines.

9
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A THE IMPACT OF POSTERIOR COLLAPSE

Under the assumption of posterior collapse, the below equality:

qVI(z | X) = pprior(z) = N (z;0, I), (15)

holds for any latent variable z ∈ RD and any conditional X ∈ RTD. Then, note that

qlatent(z) =

∫
qVI(z | X)qraw(X)dX =

∫
N (z;0, I)qraw(X)dX

= N (z;0, I)

∫
qraw(X)dX = N (z;0, I),

(16)

which is exactly our claim.

B RECURRENT ENCODERS

We mainly implement the backbone of decoder fdec as LSTM (Hochreiter & Schmidhuber, 1997)
or Transformer (Vaswani et al., 2017). In the former case, we apply the latent variable z to initialize
LSTM and condition it on prefix X1:t−1 to compute the representation ht. Formally, the LSTM-
based decoder fdec is as {

st = LSTM(st−1,xt−1), ∀t ≥ 1

ht = W2
f tanh(W

1
fst)

, (17)

where st is the state vector of LSTM and W2
f ,W

1
f are learnable matrices. In particular, for the

corner case t = 1, we fix s0,x0 as zero vectors.

In the later case, we just treat latent variable z as x0. Therefore, we have{
[st−1, ss−2, · · · , s0] = Transformer(xt−1,xt−2, · · · ,x0)

ht = W2
f tanh(W

1
fst−1)

, (18)

where the subscript alignment results from self-attention mechanism.

C DERIVATION OF DEPENDENCY MEASURES

Integrated gradient (Sundararajan et al., 2017) is a very effective method of feature attributions. Our
dependency measures can be regarded as its extension to the case of sequence data and vector-valued
neural networks. In the following, we provide the derivation of dependency measures.

For the computation ht = fdec(X0:t−1), suppose the output of decoder fdec at origin O0:t−1 is h̃t,
then we apply the fundamental theorem of calculus as

ht − h̃t =

∫ 1

0

dfdec(γ(s))

ds
ds, (19)

where γ(s) is a straight line connecting the origin O0:t−1 and the input X0:t−1 as γ(s) = sX0:t−1+
(1− s)O0:t−1. Based on the chain rule, the above equality can be expanded as

ht − h̃t =

∫ 1

0

t−1∑
j=0

k=D∑
k=1

dfdec(γ(s))

dγj,k(s)

dγj,k(s)

ds
ds

=

t−1∑
j=0

(∫ 1

0

k=D∑
k=1

xj,k
dfdec(γ(s))

dγj,k(s)
ds
)
,

(20)

where γj,k(s) denote the k-th dimension s · xj,k of the j-th vector sxj in point γ(s). Intuitively
speaking, every term inside the outer sum operation

∑t−1
j=0 represents the additive contribution of

variable xj (to the output difference ht − h̃t) along the integral line γ(s).
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Model Backbone N for LVI M for LCS Diffusion Iterations L MIMIC WARDS
Latent Diffusion Transformer − − 1000 5.02 7.46

LD w/ Skip Connections Transformer − − 1000 3.75 4.67
Our Framework Transformer 50 100 1000 2.13 3.01
Our Framework Transformer 50 50 1000 2.59 3.32
Our Framework Transformer 50 150 1000 2.71 3.46
Our Framework Transformer 50 200 1000 2.83 3.75
Our Framework Transformer 10 100 1000 2.31 3.16
Our Framework Transformer 100 100 1000 2.38 3.24
Our Framework Transformer 150 100 1000 2.75 3.41

Table 3: Ablation studies of the hyper-parameters N,M , which are respectively used in the estima-
tions of likelihood loss LVI and collapse penalty LCS. Here LD is short for latent diffusion and the
symbol − means “Not Applicable”.

To simplify the notation, we denote the mentioned term as

mt,j =

∫ 1

0

k=D∑
k=1

xj,k
dfdec(γ(s))

dγj,k(s)
ds. (21)

Since mt,j is a vector, we map the new term to a scalar and re-scale it as

mt,j =
< mt,j ,ht − h̃t >

< ht − h̃t,ht − h̃t >
, (22)

which is exactly our definition of the dependency measure.

D PROPERTIES OF OF DEPENDENCY MEASURES

Firstly, in terms of Eq. (22), it is obvious that the dependency measure mt,j is signed: the measure
can be either positive or negative. Then, based on Eq. (20), we have

ht − h̃t =

t−1∑
j=0

mt,j . (23)

By taking an inner product with the vector ht − h̃t at both sides, we get

< ht − h̃t,ht − h̃t >=<

t−1∑
j=0

mt,j ,ht − h̃t >=

t−1∑
j=0

< mt,j ,ht − h̃t > . (24)

By rearranging the term, we finally arrive at

1 =

t−1∑
j=0

< mt,j ,ht − h̃t >

< ht − h̃t,ht − h̃t >
=

t−1∑
j=0

mt,j , (25)

which is exactly our claim.

E EXPERIMENT DETAILS

We have adopted three widely used real-world time-series datasets for both analysis and model eval-
uation, including MIMIC (Johnson et al., 2016), WARDS (Alaa et al., 2017a), and Earthquakes (U.S.
Geological Survey, 2020). For the first two datasets, we extract the observations of the first 12 hours,
with the top 5 features that have the highest variances forming multivariate time series. For MIMIC,
we specially simplify it into a version of univariate time series for the illustration purpose, which
is only used in the experiments shown in Fig. 3. All other experiments are about multivariate time
series. For the Earthquakes dataset, it is about the location and time of all earthquakes in Japan from
1990 to 2020 with magnitude of at least 2.5 from U.S. Geological Survey (2020). We follow the
same preprocessing procedure for this dataset as Li (2023).
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Method Training Time Inference Time
Latent Diffusion 2hr 10min 5min 12s
Our Framework 2hr 50min 5min 17s

Table 4: Comparison of Training and Inference Times on the MIMIC dataset.

Method Backbone Retail Energy
Latent Diffusion Transformer 0.037 0.052

Latent Diffusion w/ Skip Connections Transformer 0.033 0.043
Our Framework Transformer 0.025 0.031
Latent Diffusion LSTM 0.041 0.057

Latent Diffusion w/ Skip Connections LSTM 0.035 0.047
Our Framework LSTM 0.027 0.033

Table 5: Comparison on two new time-series datasets, with another metric: MMD.

We use almost the same model configurations for all experiments. The diffusion models are pa-
rameterized by a standard U-net (Ronneberger et al., 2015), with L = 1000 diffusion iterations and
hidden dimensions {128, 64, 32}. The hidden dimensions of autoencoders and latent variables are
fixed as 128. The conditional distribution pgen(X | z) is parameterized as a Gaussian, with learnable
mean vector and diagonal covariance matrix functions. For our framework, N,M are respectively
selected as 50, 100, with γ = 2 and η = 1. We also apply dropout with a ratio of 0.1 to most
layers of neural networks. We adopt Adam algorithm (Kingma & Ba, 2015) with the default hyper-
parameter setting to optimize our model. For Table 1 and Table 3, every number is averaged over 10
different random seeds, with a standard deviation less than 0.05. For the computing resources, all
our models can be trained on 1 GPU (40G memory) within 10 hours. Finally, the performance gains
achieved by our models are all verified by the Student’s t-test (Mishra et al., 2019).

F ADDITIONAL EXPERIMENTS

Due to the limited space of our main text, we put the results of some minor experiments here in the
appendix. Notably, we will adopt more datasets and another evaluation metric.

F.1 ABLATION STUDIES

We have conducted ablation studies to verify that our hyper-parameter selections N = 50,M = 100
are optimal. The experiment results are shown in Table 3. For both N and M , either increasing or
decreasing their values results in worse performance on the two datasets.

F.2 STUDY ON RUNNING TIMES

Our framework only incurs a minor increase in training time and enjoys the same inference speed
as the latent diffusion. For training, while our framework will run the decoder a second time for
collapse simulation LCS, it can be made in parallel with the first run of decoder fdec for likelihood
computation LVI. Therefore, the training is still efficient on GPU devices. Our framework also has
a different way of variational inference to infer latent variable z from data X. However, it admits a
closed-form solution and is thus as efficient as the reparameterization trick of latent diffusion. For
inference, our framework has no difference from the latent diffusion: sampling the latent variable z
with the reverse diffusion process and running the decoder fdec in one shot.

To show the running times in practice, we perform an experiment on the MIMIC dataset as shown
in Table 4. We can see that our framework indeed only has a minor increase for training. Given
that our framework is free from posterior collapse and delivers better generation performances, this
slight time investment is well worth it.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Method Backbone ATIS SNIPS
Latent Diffusion Transformer 37.12 59.36

Latent Diffusion w/ Skip Connections Transformer 40.56 65.41
Our Framework Transformer 51.73 78.12
Latent Diffusion LSTM 35.38 55.72

Latent Diffusion w/ Skip Connections LSTM 39.27 60.31
Our Framework LSTM 48.46 71.45

Table 6: Performance comparison on two text datasets, with BLEU as the metric.

Method Backbone CIFAR-10
Latent Diffusion U-Net 3.91

Latent Diffusion w/ KL Annealing U-Net 3.87
Our Framework U-Net 3.85

Table 7: Performance comparison on an image dataset, with FID as the metric.

F.3 MORE DATASETS AND ANOTHER EVALUATION METRIC

We conduct additional experiments on 2 more public UCI time-series datasets (Bay et al., 2000):
Retail and Energy, with another widely used evaluation metric: maximum mean discrepancy
(MMD) (Dziugaite et al., 2015). Lower MMD scores indicate better generative models. From
the results shown in Table 5. We can see that our framework still significantly outperforms the base-
lines in terms of all the new benchmarks. For example, with LSTM as the backbone, our framework
achieves a score that is 29.79% lower than Skip Connections on the Energy dataset.

F.4 MORE DATA MODALITIES

While our paper primarily focused on time series data, our framework is generally applicable to
other types of data, including your mentioned text and images.

Experiment on text data. For text data, considering that natural language sentences exhibits a
sequential structure similar to time series, it is intuitive that the posterior of text latent diffusion might
also collapse. This intuition is supported by many evidences from previous works (Bowman et al.,
2016; Fu et al., 2019). To verify that our framework is capable of improving text latent diffusion,
we have conducted an experiment using two publicly available text datasets: ATIS (Hemphill et al.,
1990) and SNIPS (Coucke et al., 2018).

The numbers in this table represent BLEU scores (Papineni et al., 2002), a widely used metric
for evaluating text generation models. Higher scores indicate better performance. As the results
shown in Table 6, we can see that our framework has significantly improved the text latent diffusion
and notably outperformed a strong baseline—Skip Connections—across all datasets and backbones.
Therefore, our framework also applies to text data.

Experiment on image data. For image data, we provide a detailed discussion in Sec. 4.1 of our pa-
per: Image latent diffusion is rarely affected by posterior collapse because of its non-autoregressive
decoder. To confirm this claim in practice, we have conducted an experiment comparing latent
diffusion with our framework on the widely used CIFAR-10 dataset (Krizhevsky et al., 2009).

The results are shown in Table 7. The numbers in this table represent FID scores (Naeem et al.,
2020), a common metric for evaluating image generation models. Lower scores indicate better per-
formance. Our results show that both the baseline model (i.e., KL Annealing) and our framework
improve the image latent diffusion to some extent. However, the improvements are minor, suggest-
ing that image models are almost free from posterior collapse.

F.5 CASE STUDIES OF DEPENDENCY MEASURES

Fig. 3 shows several examples of applying the dependency measures, where each subfigure contains
a sample of time series (i.e., blue curve) generated by some model and two types of dependency
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Figure 3: The global and local dependency measures mt,0,mt,t−1 (as defined in Sec. 3.2) respec-
tively quantify the impacts of latent variable z and observation xt−1 on predicting the next one xt.
We can see that the latent variable z of latent diffusion loses control over the condition generation
pgen(X | z), with dependency illusion (as introduced in Sec. 3.3) in the case of shuffled time series.
In contrast, our framework has no such symptoms of posterior collapse.

measures (i.e., red and green bar charts) estimated by Eq. (9). Specifically, every point xt in the
time series corresponds to a green bar that indicates the global dependency mt,0 and a red bar
that represents the first-order local dependency mt,t−1. In the upper left subfigure, we can see
that the positive impact of latent variable z on the decoder (e.g., mt,0) decreases over time and
vanishes eventually. From the lower right subfigure, we can even see that some bars (i.e., local
dependency mt,t−1) are negative, indicating that the variable xt−1 provides the decoder with rather
false information in predicting the next observation xt.

An example (i.e., the green bar chart) is shown in the upper left subfigure of Fig. 3. More interest-
ingly, the upper right subfigure illustrates a phenomenon we call dependency illusion: Even when
the time series is randomly shuffled and thus lacks structural dependencies, the decoder of latent
diffusion still heavily relies on input observations (instead of the latent variable) for prediction (i.e.,
the global dependency measures mt,0 = 1 −

∑
s<t mt,s converges to 0 as time step t increases).

As demonstrated in the lower two subfigures of Fig. 3, our framework exhibits no signs of posterior
collapse, such as the vanishing impact of latent variables over time. Note that the dataset that is used
to train the baseline and our model is constructed by extracting the observations of the first 12 hours,
with the top 1 feature that has the highest variance to form univariate time series.

18


	Introduction
	Background: Latent Diffusion
	Problem Analysis
	Significance of Posterior Collapse
	Introduction of Dependency Measures
	Empirical Dependency Estimations

	Method: Posterior-stable Latent Diffusion
	Causes of Posterior Collapse in Latent Diffusion
	New Framework with a Stable Posterior

	Related Work
	Experiments
	Stable Posterior of Our Framework
	Performances in Time Series Generation
	More Results in the Appendix

	Conclusion
	The Impact of Posterior Collapse
	Recurrent Encoders
	Derivation of Dependency Measures
	Properties of of Dependency Measures
	Experiment Details
	Additional Experiments
	Ablation Studies
	Study on Running Times
	More Datasets and Another Evaluation Metric
	More Data Modalities
	Case Studies of Dependency Measures


