
Mechanistic Interpretability as Statistical Estimation: A Variance Analysis of EAP-IG

Maxime Méloux

François Portet

Maxime Peyrard

Université Grenoble Alpes, CNRS, Grenoble INP, LIG, 38000 Grenoble, France

{melouxm, portetf, peyrardm}@univ-grenoble-alpes.fr

Abstract

Developing trustworthy artificial intelligence requires moving beyond black-box performance metrics toward understanding models’ internal computations. Mechanistic Interpretability (MI) addresses this by identifying the algorithmic mechanisms underlying model behaviors, yet its scientific rigor critically depends on the reliability of its findings. In this work, we argue that interpretability methods such as circuit discovery should be viewed as statistical estimators, subject to questions of variance and robustness. To illustrate this statistical framing, we present a systematic stability analysis of a state-of-the-art circuit discovery method: EAP-IG. We evaluate its variance and robustness through a comprehensive suite of controlled perturbations, including input resampling, prompt paraphrasing, hyperparameter variation, and injected noise within the causal analysis itself. Across various models and tasks, our results demonstrate that EAP-IG can exhibit high structural variance and sensitivity to hyperparameters, questioning the stability of its findings. Based on these results, we offer a set of best-practice recommendations for the field, advocating for the routine reporting of stability metrics to promote a more rigorous and statistically grounded science of interpretability.

1 Introduction

As AI systems are increasingly deployed in real-world applications, the need for robust interpretability methods becomes more urgent. Understanding the internal mechanisms of these models is critical not only for diagnosing failures and improving robustness [3], but also for complying with emerging legal frameworks that mandate explainability [51].

Mechanistic Interpretability (MI) has emerged as a promising research direction aiming to reverse-engineer the specific algorithms learned by deep neural networks [38]. A central approach in MI involves identifying functional sub-networks called “circuits” that are responsible for particular capabilities [39, 13]. These circuits are typically identified through interventions on the computational graph: setting the network in counterfactual states and measuring the effect of components on outputs [49, 35, 19, 47]. The long-term vision of MI is to become a fully-fledged scientific discipline that studies trained models using scientific discovery tools similar to those of the natural sciences [8, 28].

However, MI currently faces foundational challenges that limit its scientific rigor. Interpretability methods may produce valid explanations in random, untrained networks. For instance, feature attribution methods generate similar saliency maps for random and trained models [1], sparse autoencoders can extract plausible “explanations” from random weights [20], and many incompatible circuits can even be discovered in networks with random behavior [31]. This highlights a non-identifiability problem: multiple incompatible explanations may satisfy current MI criteria [31], creating generalizability issues in MI explanations. For instance, circuits discovered in one setting often fail to transfer to others [52].

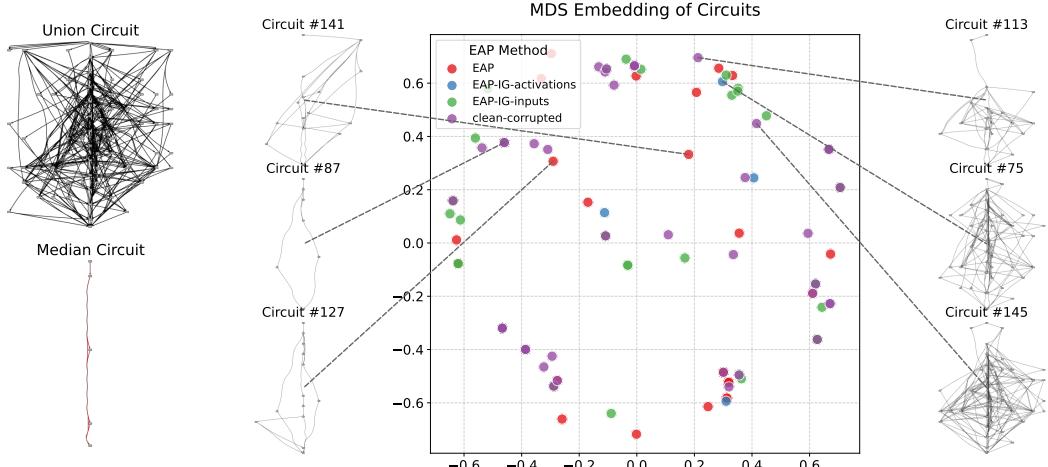


Figure 1: In gpt2-small, varying multiple circuit finding parameters at once (resampling strategy, aggregation method, type of intervention, EAP method, and pruning strategy) yields many different circuits, which we display along with the union and median circuit (left). In the center, the MDS projection of the pairwise Jaccard index matrix shows that none of the tested EAP methods consistently yields circuits with lower variance (tighter clustering).

To evolve from exploratory techniques into a rigorous scientific discipline, MI must adopt the standards of empirical science, most notably statistical inference [15, 30]. Scientific validity requires formulating testable hypotheses [41, 24], quantifying observational variability (fluctuations due to sampling or measurement noise; 6, 7), and representing uncertainty in our conclusions via measures of variability like confidence intervals [27, 9]. However, MI has yet to systematically integrate those practices. Circuits are often reported without quantification of their statistical stability, robustness to perturbations, and uncertainty estimates [43]. For instance, how does altering the dataset slightly, shifting the input distribution, or resampling change the discovered circuit? How sensitive are the findings of circuit discovery methods to hyperparameters? These limitations prevent us from assessing the generalizability, reliability, and ultimately, the validity of MI explanations [43, 29, 23].

In this work, we argue that mechanistic interpretability must be reframed as a problem of statistical inference. As a case study, we focus on a family of state-of-the-art MI techniques: Edge Activation Patching (EAP; 46) and its variants, notably EAP with Integrated Gradients (EAP-IG; 19). We use EAP to systematically investigate how principles of statistical robustness and variability apply to the outputs of MI methods: the discovered circuits themselves.

Our empirical analysis evaluates the stability of EAP-generated circuits under controlled variations: small shifts in input distributions, bootstrap resampling of input data, and changes in method hyperparameters. We conduct experiments across three tasks and three model architectures, providing both qualitative and quantitative evidence of the circuits’ variability. Our results show that the circuits identified by EAP exhibit high variance under data resampling and are sensitive to hyperparameter choices: small perturbations in data or changes in the analysis pipeline often yield substantially different circuit structures. This is visually summarized in Fig. 1, which shows the disparity of circuits found when different perturbations are applied simultaneously. In light of these findings, we propose a set of best practices for the MI community, including the systematic use of bootstrap resampling and the reporting of stability metrics to foster a more rigorous and reliable science of interpretability.

2 Related Work

2.1 Circuit Discovery and Causal Mediation Analysis

Numerous methodologies exist to identify the circuits central to MI’s goals. Causal Mediation Analysis (CMA) [40, 48] provides a formal framework that investigates how an intervention (e.g., an input) affects an outcome (e.g., a model’s prediction) via mediators (e.g., neuron activations). In

DNNs, CMA helps test hypotheses about internal components' causal roles. Interventional techniques like activation patching [50, 16, 19] manipulate mediators to quantify their influence.

Building on CMA, circuit discovery methods have evolved from feature visualization [57, 45] to techniques identifying interconnected structures. Notable examples include causal tracing [32] and its variants [33, 14], as well as methods like Automated Circuit Discovery (ACDC; 10, which employs activation patching to find interpretable circuits. Other lines of inquiry explore program synthesis via MI, though applications have focused on simpler architectures such as RNNs [34]. Our work focuses on Edge Activation Patching with Integrated Gradients (EAP-IG) [19]. EAP combines causal patching with gradient-based attribution (integrated gradients for EAP-IG) to score individual edge importance, and also measures the impact of excluded components when producing a circuit. We selected the EAP family for its reported state-of-the-art performance in identifying sparse, fine-grained edge-level circuits [46, 19], making it an ideal candidate for studying the stability of such granular discoveries.

2.2 Evaluation of Circuit Discovery Methods

A core challenge in MI is the absence of "ground truth" circuits, as the notion of a single correct circuit can be ill-defined or non-identifiable [36, 31]. Thus, evaluation relies on proxy metrics assessing desirable properties: **faithfulness** (how accurately the circuit reflects model behavior, often tested by perturbing or ablating the identified circuit components within the full model; 10, 21, 19, 44), **sufficiency/predictive power** (whether the isolated circuit can reproduce the target behavior; 4, 55), **interpretability** (a qualitative assessment of understandability and alignment with intuition; 39), and **sparsity/minimality** (a preference for simpler, concise circuits; 13, 21, 11). These criteria are often applied post-hoc and qualitatively.

2.3 Stability and Robustness in Circuit Discovery

While the broader field of eXplainable AI (XAI) has increasingly recognized the importance of robustness, particularly for feature attribution methods where explanations like saliency maps can be sensitive to minor input changes [17, 25, 58] or vary with training seeds [1, 56], systematic investigation into the stability and robustness of MI-derived circuits is less developed.

MI also faces internal challenges. For example, interventions based on discovered circuits may not generalize reliably; edits derived from methods like causal training can fail to extend to novel contexts, casting doubts on the robustness of the underlying identified mechanism itself [22]. Furthermore, MI outputs can be prone to "interpretability illusions", where analytical techniques might highlight artifacts to statistical correlations rather than genuine computational mechanisms [26]. The challenge of non-identifiability, where multiple distinct and incompatible circuits can equally satisfy common evaluation metrics [31], further complicates claims about discovering *the* true underlying circuits.

While these issues of generalization failure, susceptibility to illusions, and non-identifiability differ from sensitivity to data or parameter perturbations that we focus on, they collectively underscore a pressing concern: MI findings may not always be stable or reliably reflect true model operations. This broader context motivates our focus on the statistical robustness and variability of discovered circuits when subjected to controlled perturbations. To our knowledge, dedicated studies analyzing the stability of circuit discovery outputs to variations in input data, experimental conditions, or method hyperparameters are scarce. This paper aims to fill this gap by empirically studying the stability of EAP-derived circuits, thereby contributing to developing more rigorous evaluation practices in MI.

3 Formal Setup

This section outlines a general framework for quantifying the stability of circuits discovered by MI methods, which we then apply to the EAP family as a case study. We identify two main sources of instability in discovered circuits:

- **Variance** refers to the statistical variability of the discovered circuit (i.e., the output of the MI method) when resampling the input data used for its discovery. It captures the sensitivity of the method to the specific sample of data drawn from an underlying distribution. This aligns with standard statistical notions of sampling variance.

- **Robustness** refers to the stability of a discovered circuit when subjected to controlled changes in the analytical setup. These changes can include variations in the MI method’s hyperparameters or perturbations to the experimental conditions used during circuit discovery (e.g., adding noise to interventions). This assesses the circuit’s sensitivity to the researcher’s methodological decisions and the specifics of the analysis pipeline.

We aim to move beyond treating discovered circuits as singular, definitive findings. Instead, in line with modern statistical thinking that cautions against over-reliance on single point estimates [54], we wish to provide quantitative measures of their stability and associated performance characteristics under these different sources of perturbation, thereby offering a more nuanced understanding of their reliability.

3.1 General Formalization of Circuit Discovery

Let M_θ be a trained neural network. A general circuit discovery process aims to identify a subgraph (circuit) $C = (V_C, E_C)$ within M_θ . This process typically involves:

- Input data (D): A dataset of input samples x_i used specifically for the circuit discovery analysis (typically distinct from the dataset originally used to train the model M_θ). These inputs are chosen to elicit distinct model behaviors or internal states that the MI method will then analyze.
- Experimental conditions (\mathcal{E}): The strategy for causal analysis. This specifies how interventions are performed on M_θ ’s internal components (e.g., neuron activations, edge weights), including which components are targeted, how their states are modified (e.g., ablated, patched), and which aspects of the model’s behavior (e.g. specific logits, loss changes) are measured to quantify the effects of these interventions.
- Observational data generation: The application of experimental conditions \mathcal{E} to model M_θ with inputs from D produces a set of observations O . This data $O = \text{Observe}(M_\theta, D, \mathcal{E})$ consists of quantitative measurements (e.g., changes in model loss, output probabilities, internal activation patterns) corresponding to each intervention performed.
- Component scoring and circuit identification algorithm (\mathcal{A}) and hyperparameters (Λ): This stage typically involves two steps. First, individual components (e.g., edges) are assigned scores based on the observation data O (e.g., their estimated impact on a task metric). Second, a circuit identification algorithm selects a subset of components that form the final circuit from these scores using specific selection criteria and hyperparameters (e.g., number of edges to keep, a threshold, search strategy).

Thus, the discovered circuit C can be seen as the output of a composite function: $C = \mathcal{A}_\Lambda(\text{Observe}(M_\theta, O, D, \mathcal{E}))$. For simplicity, we represent the entire circuit discovery method as \mathcal{F}_{CD} , such that $C = \mathcal{F}_{CD}(M_\theta, D, \Lambda_{\text{method}})$, where Λ_{method} collectively represents all parameters governing \mathcal{E} and \mathcal{A} . Different MI methods make distinct choices for D , \mathcal{E} , \mathcal{A} , and its hyperparameters.

Our study focuses on EAP [46] and its variants [19]. While the underlying principles of EAP can be applied to score nodes (such as neurons or attention heads), our investigation centers on its common use for identifying important edges. EAP methods first involve an edge scoring stage, where individual edges are scored based on their influence on a pre-defined task-specific performance metric (or loss function) when subjected to causal interventions (patching). Following edge scoring, a circuit selection stage is employed. This stage uses the computed edge scores, a chosen selection algorithm, and hyperparameters to determine the final set of edges in the circuit C . The EAP variants primarily define different methodologies for the edge scoring stage. They differ in their choices for \mathcal{E} (specifically, how edge effects, reflected as changes in the task metric, are measured through patching and input/activation interpolation) and the initial part of \mathcal{A} (how raw observational data O is processed into edge scores). These scoring methods are as follows:

- Base EAP: Computes a first-order approximation of each edge’s indirect effect (the estimated change in the task metric upon corrupting the edge) by multiplying the change in downstream activations a_x by the gradient of the task metric with respect to a_x , evaluated on clean inputs.
- EAP-IG (inputs): An adaptation of EAP that improves circuit quality by averaging the gradient of the task metric (with respect to input embeddings) over m interpolation steps between clean and corrupted input embeddings, then using this to estimate edge importance.

- EAP-IG (activations): Similar to EAP-IG (inputs), but estimates edge importance by averaging the gradient of the task metric (w.r.t. intermediate activations) while interpolating these activations directly between their clean and corrupted values (for nodes) or the activations influencing an edge.
- Clean-Corrupted: A simplified variant that scores components based on the change in the task metric or its gradient measured only in the clean and corrupted states.

After scoring, circuit selection can use several algorithms such as greedy search (working backward from output logits or forward from inputs), threshold pruning, or top-N pruning. These selection algorithms often have their own hyperparameters, such as whether to use absolute values, the number of edges N , or the specific threshold. They may also include steps to ensure graph connectivity. In our work, we consistently adhere to the iterative greedy search procedure described in the original EAP-IG paper [19]. This involves selecting an initial set of n edges based on the absolute values of their scores (starting with $n = 30$), then incrementally increasing n up to 2000 until a path from input to output is found within the selected subgraph. If this fails, we say that no faithful circuit is found.

The operational hyperparameters we investigate for the edge scoring stage of these four EAP methodologies are the type of aggregation (how multiple scores contributing to an edge’s final importance are combined, e.g., mean, median) and intervention (the nature of the corruption applied during patching, e.g., zero ablation, patching from a corrupted input, mean ablation, mean-positional ablation).

3.2 Variance, Robustness, and Circuit Properties

We evaluate the properties of each discovered circuit C_k (generated under a specific condition k , such as a particular data sample D_k or hyperparameter setting Λ_k). We generate a set of N circuits $\{C_1, C_2, \dots, C_N\}$ by varying these conditions (e.g., through bootstrapping D or changing Λ), then analyze the statistics of these properties across the set.

Circuit performance metrics. Those assess how well each individual circuit C_i , when operating as a standalone model M_{C_i} , replicates the task-specific behavior of the original full model M_θ . These metrics are evaluated on a relevant evaluation dataset D_{eval} . In many circuit discovery settings, including typical EAP-IG usage, $D_{\text{eval}} = D$. Using a separate test set would assess generalization to unseen data. In this paper, we follow the common practice where $D_{\text{eval}} = D$, and report the mean μ , variance σ^2 , and coefficient of variation $CV = \sigma/\mu$ of each circuit performance metric.

- **Circuit Error:** This measures the frequency with which the circuit M_{C_i} produces a different prediction than the full model M_θ on D_{eval} . For tasks where a discrete prediction $M(x)$ can be derived from the model’s output for an input x , circuit error is defined as $\text{CE}(C_i, M_\theta) = \frac{1}{|D_{\text{eval}}|} \sum_{x \in D_{\text{eval}}} \mathbb{1}[M_{C_i}(x) \neq M_\theta(x)]$.
- **Circuit Divergence:** The Kullback-Leibler divergence $D_{\text{KL}}(P_{M_\theta(y|x)} || P_{M_{C_i}(y|x)})$ between the full output probability distributions of M_θ and M_{C_i} , averaged over D_{eval} . This quantifies the overall difference in predictive distributions.

Circuit structural similarity metric (Jaccard Index). This measures the consistency of the *structure* (edges/nodes) of the discovered circuits themselves, independent of their performance. For any pair of circuits C_i, C_j from the set of N discovered circuits, with respective edge sets E_i, E_j , the Jaccard index is $J(E_i, E_j) = \frac{|E_i \cap E_j|}{|E_i \cup E_j|}$. We report the mean and variance of the pairwise Jaccard indices.

3.3 Assessing Stability

We investigate the stability of discovered circuits across multiple dimensions. For each experimental run (iterated over seed values), we apply one of the following variations:

Input data resampling (bootstrap). To estimate the variance of circuit properties attributable to the specific input data sample D , we employ bootstrap resampling [12]. New datasets are created by resampling with replacement from the original dataset. The circuit discovery method is then applied to each resampled dataset.

Data meta-distribution shifts. To assess circuit stability when the input data originates from related but distinct data-generating processes, we either generate multiple independent datasets from the

same underlying meta-distribution (meta-dataset) or replace input prompts with a paraphrased version (re-prompting). We then apply the circuit discovery method to each newly generated dataset.

Experimental intervention noise. To evaluate circuit stability when the interventions within the experimental conditions are perturbed, we introduce noise during the intervention phase. Specifically, noise of a controlled amplitude and fixed direction is added to the relevant token embeddings. Circuits are discovered under various noise amplitudes, allowing for the analysis of their stability to such perturbations in the causal analysis itself.

Base method comparison. The four base EAP methodologies are applied separately to a consistent input dataset and a default, fixed set of hyperparameters for the aggregation and intervention type.

Hyperparameter sensitivity. For a given designated EAP variant, we vary the aggregation and intervention type while fixing other hyperparameters.

4 Experimental setup

We re-use three tasks and three datasets from the EAP-IG paper, consisting of pairs of clean and corrupted inputs:

- In the **Indirect Object Identification** (IOI) dataset [52], clean inputs are pairs of sentences involving two proper nouns, such as "Then, Lisa and Sara went to the garden. Lisa gave a drink to". In corrupted inputs, the name in the second sentence is replaced with another random one, such as "Sara". The task consists in predicting the missing name, and model performance is evaluated by measuring the logit difference between the missing name and the corrupted one. We use the dataset from Hanna et al. [19] and the generator from Wang et al. [52].
- In the **Subject-Verb Agreement** dataset [37], clean and corrupted inputs are noun phrases differing only in number (e.g., "Some worker" vs. "workers"). The model must predict a verb that agrees with the subject. Performance is evaluated using the logit difference between both forms of the reference verb. We use the generator from Warstadt et al. [53], adapted to create only pairs of the type "The [NOUN_SG]"/"The [NOUN_PL]" for ease of application to EAP. Prompt paraphrasing was not implemented for this task due to the grammar-based nature of the data generation process.
- In the **Greater-Than** dataset [18], clean inputs are sentences such as "The plan lasted from the year 1142 to the year 11". In corrupted inputs, the start year's last two digits are replaced with "01". The model is then asked to predict a year that must fall in the correct range. The evaluation metric is the difference in probability between correct and incorrect outputs. We use the dataset from Hanna et al. [19] and the generator from Hanna et al. [18].

We conduct experiments across three large language models to assess the consistency of our findings:

- **gpt2-small** [42]: This model was selected due to its scale and widespread use as a foundational benchmark in numerous MI studies, including the original EAP, EAP-IP, and ACDC papers.
- **Llama-3.2-1B** [2]: This larger, recent decoder-only transformer model trained on different data allows us to test the generality of circuit stability observations on a more recent architecture.
- **Llama-3.2-1B-Instruct** [2]: The instruction fine-tuned variant of the previous model, allowing us to investigate whether the fine-tuning process, which significantly alters model behavior and capabilities, also impacts the stability characteristics of discovered circuits.

5 Results

In all our experiments, KL divergence and circuit error are highly correlated and display similar trends; we only report the latter in this section, and the former in the appendix.

5.1 Circuit Variance under Data Resampling

We first investigate the variance of discovered circuits when the input data is resampled. Figure 2 shows the circuit error and pairwise Jaccard index for circuits discovered using different resampling strategies across all models and tasks, revealing significant variability across these axes.

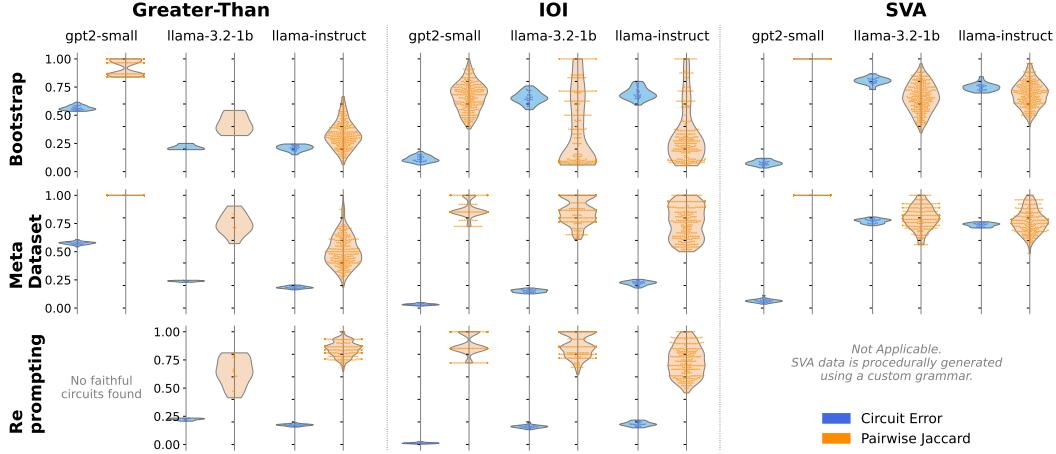


Figure 2: Circuit error and pairwise Jaccard index of circuits found across the three models, tasks, and types of perturbation. One point represents one circuit.

Table 1: Average value (μ) and average Coefficient of Variation (CV) of the circuit error and Jaccard index across different resampling strategies, averaged over tasks and models.

Resampling Strategy	Circuit Error		Jaccard Index	
	μ	CV	μ	CV
Bootstrap	0.440	0.123	0.561	0.335
Meta-Dataset	0.300	0.094	0.790	0.132
Prompt Paraphrasing	0.150	0.134	0.799	0.131

We observe a notable difference in performance between GPT-2 and the larger Llama models. Circuits identified in GPT-2 consistently exhibit lower circuit error and higher structural stability (higher Jaccard index). While smaller models are often used as testbeds for developing MI methods, this suggests that circuit discovery may be more challenging and yield more unstable results in the larger, more capable models that are of ultimate interest. In contrast, we observe no notable, systematic difference between the instruction-tuned and base Llama models, suggesting that instruction tuning may not fundamentally alter the stability or discoverability of the underlying circuits.

Furthermore, the distribution of the Jaccard index for GPT-2 appears to be multimodal, particularly visible under the bootstrap and meta-dataset resampling conditions. This suggests that the discovery process can converge to multiple, distinct, yet stable circuit solutions for the same task, echoing the concept of non-identifiability.

Finally, the choice of perturbation significantly impacts circuit stability across all models. Table 1 provides a quantitative summary. Bootstrap resampling induces the highest structural variance, indicated by the lowest average Jaccard index (0.561) and the highest corresponding CV (0.335). The circuits found via bootstrapping also have the highest average error (0.440), indicating they are not only structurally different but also less faithful to the original model’s behavior. This highlights a critical vulnerability of the EAP-IG method, demonstrating its high sensitivity to the data sample. In contrast, resampling via a meta-dataset or prompt paraphrasing yields more stable and faithful circuits (Jaccard indices of resp. 0.790 and 0.799) and lower variances.

Table 1 provides a quantitative summary of these results. Bootstrap resampling yields the highest structural variance, as indicated by the lowest average Jaccard index (0.561) and the highest CV of the Jaccard index (0.335). This suggests that circuits discovered using EAP-IG are highly sensitive to the data used in their identification. The circuits discovered under bootstrap resampling also exhibit the highest average circuit error (0.440), indicating that the resulting circuits are not only structurally different but also less faithful to the original model’s behavior. In contrast, using a meta-dataset or prompt paraphrasing results in more stable circuits, with higher Jaccard indices (resp. 0.790 and 0.799) and lower CVs. While this suggests that EAP-IG can find more consistent circuits when the

data distribution is stable, even with different specific examples, the high variance under bootstrap resampling highlights a critical vulnerability of the method to sampling effects.

5.2 Hyperparameter Choices and Circuit Discovery

Table 2: Comparison of the circuits found in Llama-3.2-1B-Instruct on the base dataset while varying either the EAP method, aggregation or intervention performed. For each task, we report the median circuit (bold) computed across all 7 rows, as well as the Jaccard index of that median circuit to each configuration’s circuit. Results for other models are reported in the appendix.

Parameters	Greater-Than			IOI			SVA		
	CErr	Size	Jacc. to Median	CErr	Size	Jacc. to Median	CErr	Size	Jacc. to Median
EAP, sum, patching	0.20	23	0.417	0.69	3	0.286	0.76	18	0.536
EAP-IG-activations, sum, patching	0.20	17	0.098	0.69	12	0.125	0.76	24	0.531
EAP-IG-inputs, median, patching	0.20	10	0.086	0.69	6	1.000	0.75	21	0.840
EAP-IG-inputs, sum, mean	0.19	28	1.000	0.72	7	0.182	0.73	24	0.960
EAP-IG-inputs, sum, mean-positional	0.41	33	0.298	0.82	6	1.000	0.73	22	0.808
EAP-IG-inputs, sum, patching	0.20	16	0.571	0.69	7	0.182	0.75	25	1.000
clean-corrupted, sum, patching	0.20	16	0.419	0.69	9	0.071	0.76	16	0.577

We next evaluate the robustness of circuit discovery to the value of hyperparameters within the EAP-IG framework. Figure 1 (in the introduction) provides a visual summary of how varying multiple parameters at once leads to a high diversity in circuits found in gpt2-small for the IOI task.

Table 2 provides a detailed analysis for Llama-3.2-1B-Instruct across all tasks. For each task, we report the circuit error, size, and Jaccard similarity to the median circuit for different EAP variants and hyperparameters. The results show considerable variation in the discovered circuits depending on the configuration. For instance, in the Greater-Than task, the Jaccard similarity to the median circuit ranges from 0.086 to 1. Similarly, for the IOI task, some circuits have a Jaccard similarity of 1 to the median, while others are as low as 0.071. This indicates that the choice of EAP variant and hyperparameters can lead to substantially different circuits, and highlights the importance of reporting these choices and assessing their impact on the final results.

5.3 Sensitivity to Experimental Noise

Table 3: Average and standard deviation of the circuit error (left) and pairwise Jaccard (right) index of the circuits found in gpt2-small when using noise with amplitude [0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5] as intervention.



To assess the robustness of EAP-IG to perturbations in the causal analysis itself, we replace the intervention method with injected noise into the token embeddings as the intervention method. Table 3 shows the effect of increasing noise amplitude on circuit error and pairwise Jaccard index for gpt2-small on the Greater-Than and IOI tasks.

Increasing the noise amplitude generally leads to an increase in circuit error and a decrease in the Jaccard index, indicating less stable and less faithful circuits. When the noise amplitude is above 0.5, the circuits found are more stable but perform poorly. The averaged CVs of the Jaccard index and circuit error across tasks peak at a noise amplitude of around 0.2, while the average circuit error itself remains relatively low at this level. This suggests that a moderate amount of noise can be a useful tool for probing the stability of discovered circuits, revealing structural instabilities without drastically impacting the circuit's functional performance. A plot of the CVs can be found in the appendix.

6 Discussion

Our empirical analysis of EAP-IG reveals significant variability in discovered circuits under perturbation, underscoring the need for a more statistically rigorous approach to MI. We find that circuits are sensitive to the specific data sample used for discovery, the choice of hyperparameters, and noise in the causal analysis. Our key findings are as follows:

- **High Variance:** Circuits discovered with EAP-IG exhibit high variance when the input data is resampled using bootstrapping. This suggests that a circuit identified from a single dataset may not be representative of the underlying mechanism and may be an artifact of the sample.
- **Hyperparameter Sensitivity:** The structure of discovered circuits is highly sensitive to the choice of EAP variant and its hyperparameters. This lack of robustness to methodological choices poses a challenge for the reproducibility and generalizability of MI findings.
- **Impact of Noise:** Introducing noise into the causal interventions degrades circuit performance, but can also help assess circuit stability. We found that moderate levels of noise can effectively reveal structural instabilities.

As a result, we propose recommendations to promote a more statistically grounded science of MI:

1. **Report Stability Metrics Routinely.** We strongly advocate for the routine reporting of stability metrics alongside circuit discovery results. Specifically, we recommend that researchers report the variance of circuit structure and performance (e.g., the average pairwise Jaccard index and the CV of the circuit error) under bootstrap resampling of the input data. This practice, common in mature scientific fields, would provide a crucial measure of the statistical reliability of the found circuits [12, 5]. Our publicly available codebase¹ facilitates the computation of these metrics.
2. **Justify and Report Hyperparameter Choices.** Given the sensitivity of EAP-IG to hyperparameter settings, it is crucial that researchers transparently report and justify their choices. When possible, a sensitivity analysis should be conducted to assess the impact of different hyperparameter settings on the discovered circuits.
3. **Use Noise for Robustness Checks.** We recommend using noise injection during causal analysis as a controlled stress test for discovered circuits. Reporting how circuit stability and performance degrade with increasing noise can provide valuable insights into the robustness of the identified mechanisms. A noise level of 0.2 seems to be a good starting point for gpt2-small, as it reveals structural variance without excessively harming performance.

Future Directions. Our work opens up several avenues for future research. The high variance of discovered circuits suggests that instead of seeking a single "true" circuit, it might be more fruitful to characterize a distribution over possible circuits. This could be achieved by developing methods that explicitly model the uncertainty in circuit discovery. The set of circuits generated via bootstrapping in this study is a first approximation of such a distribution.

Our findings also motivate the development of new circuit discovery methods that are explicitly designed to be more robust to data sampling and hyperparameter choices. One promising direction is to incorporate a stability objective into the circuit discovery process itself, such as searching for circuits that are not only faithful but also stable across bootstrap resamples or noise perturbations.

Finally, while our study focused on EAP-IG, the statistical framework we have proposed is broadly applicable to other circuit discovery methods. We encourage the community to adopt similar stability analyses for other techniques to build a more complete picture of the reliability of MI findings.

¹On GitHub.

By embracing statistical rigor, we can move towards a more mature and trustworthy science of mechanistic interpretability.

Acknowledgements

This work was conducted within French research unit UMR 5217 and was partially supported by CNRS (grant ANR-22-CPJ2-0036-01) and by MIAI@Grenoble-Alpes (grant ANR-19-P3IA-0003). It was granted access to the HPC resources of IDRIS under the allocation 2025-AD011014834 made by GENCI.

References

- [1] J. Adebayo, J. Gilmer, M. Muelly, I. Goodfellow, M. Hardt, and B. Kim. Sanity checks for saliency maps. In *Proceedings of the 32nd International Conference on Neural Information Processing Systems*, NIPS’18, page 9525–9536, Red Hook, NY, USA, 2018. Curran Associates Inc.
- [2] AI@Meta. Llama 3.2 model card. 2024. URL https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/MODEL_CARD.md.
- [3] A. Barredo Arrieta, N. Díaz-Rodríguez, J. Del Ser, A. Bennetot, S. Tabik, A. Barbado, S. Garcia, S. Gil-Lopez, D. Molina, R. Benjamins, R. Chatila, and F. Herrera. Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges toward responsible ai. *Information Fusion*, 58:82–115, 2020. ISSN 1566-2535. doi: <https://doi.org/10.1016/j.inffus.2019.12.012>. URL <https://www.sciencedirect.com/science/article/pii/S1566253519308103>.
- [4] D. Bau, B. Zhou, A. Khosla, A. Oliva, and A. Torralba. Network dissection: Quantifying interpretability of deep visual representations. In *Computer Vision and Pattern Recognition*, 2017.
- [5] D. Berengut. Statistics for experimenters: Design, innovation, and discovery. *The American Statistician*, 60(4):341–342, 2006. doi: 10.1198/000313006X152991. URL <https://doi.org/10.1198/000313006X152991>.
- [6] G. Box, S. Hunter, and W. Hunter. *Statistics for experimenters. Design, innovation, and discovery. 2nd ed*, volume 2. 01 2005.
- [7] N. Breznau, E. M. Rinke, A. Wuttke, H. H. V. Nguyen, M. Adem, J. Adriaans, A. Alvarez-Benjumea, H. K. Andersen, D. Auer, F. Azevedo, O. Bahnsen, D. Balzer, G. Bauer, P. C. Bauer, M. Baumann, S. Baute, V. Benoit, J. Bernauer, C. Berning, A. Berthold, F. S. Bethke, T. Biegert, K. Blinzler, J. N. Blumenberg, L. Bobzien, A. Bohman, T. Bol, A. Bostic, Z. Brzozowska, K. Burgdorf, K. Burger, K. B. Busch, J. Carlos-Castillo, N. Chan, P. Christmann, R. Connelly, C. S. Czymara, E. Damian, A. Ecker, A. Edelmann, M. A. Eger, S. Ellerbrock, A. Forke, A. Forster, C. Gaasendam, K. Gavras, V. Gayle, T. Gessler, T. Gnambs, A. Godefroidt, M. Grömping, M. Groß, S. Gruber, T. Gummer, A. Hadjar, J. P. Heisig, S. Hellmeier, S. Heyne, M. Hirsch, M. Hjerm, O. Hochman, A. Hövermann, S. Hunger, C. Hunkler, N. Huth, Z. S. Ignácz, L. Jacobs, J. Jacobsen, B. Jaeger, S. Jungkunz, N. Jungmann, M. Kauff, M. Kleinert, J. Klinger, J.-P. Kolb, M. Kołczyńska, J. Kuk, K. Kunißen, D. K. Sinatra, A. Langenkamp, P. M. Lersch, L.-M. Löbel, P. Lutscher, M. Mader, J. E. Madia, N. Malancu, L. Maldonado, H. Marahrens, N. Martin, P. Martinez, J. Mayerl, O. J. Mayorga, P. McManus, K. McWagner, C. Meeusen, D. Meierrieks, J. Mellon, F. Merhout, S. Merk, D. Meyer, L. Micheli, J. Mijs, C. Moya, M. Neuhoeffer, D. Nüst, O. Nygård, F. Ochsenfeld, G. Otte, A. O. Pechenkina, C. Prosser, L. Raes, K. Ralston, M. R. Ramos, A. Roets, J. Rogers, G. Ropers, R. Samuel, G. Sand, A. Schachter, M. Schaeffer, D. Schieferdecker, E. Schlueter, R. Schmidt, K. M. Schmidt, A. Schmidt-Catran, C. Schmiedeberg, J. Schneider, M. Schoonvelde, J. Schulte-Cloos, S. Schumann, R. Schunck, J. Schupp, J. Seuring, H. Silber, W. Sleegers, N. Sonntag, A. Staudt, N. Steiber, N. Steiner, S. Sternberg, D. Stiers, D. Stojmenovska, N. Storz, E. Striessnig, A.-K. Stroppe, J. Teltemann, A. Tibajev, B. Tung, G. Vagni, J. V. Assche, M. van der Linden, J. van der Noll, A. V. Hootegem, S. Vogtenhuber, B. Voicu, F. Wagemans, N. Wehl, H. Werner, B. M. Wiernik, F. Winter, C. Wolf,

Y. Yamada, N. Zhang, C. Ziller, S. Zins, and T. Žoltak. Observing many researchers using the same data and hypothesis reveals a hidden universe of uncertainty. *Proceedings of the National Academy of Sciences*, 119(44):e2203150119, 2022. doi: 10.1073/pnas.2203150119. URL <https://www.pnas.org/doi/abs/10.1073/pnas.2203150119>.

[8] N. Cammarata, S. Carter, G. Goh, C. Olah, M. Petrov, L. Schubert, C. Voss, B. Egan, and S. K. Lim. Thread: Circuits. *Distill*, 2020. doi: 10.23915/distill.00024. <https://distill.pub/2020/circuits>.

[9] E. S. Committee, D. Benford, T. Halldorsson, M. J. Jeger, H. K. Knutsen, S. More, H. Naegeli, H. Noteborn, C. Ockleford, A. Ricci, G. Rychen, J. R. Schlatter, V. Silano, R. Solecki, D. Turck, M. Younes, P. Craig, A. Hart, N. Von Goetz, K. Koutsoumanis, A. Mortensen, B. Ossendorp, L. Martino, C. Merten, O. Mosbach-Schulz, and A. Hardy. Guidance on uncertainty analysis in scientific assessments. *EFSA Journal*, 16(1):e05123, 2018. doi: <https://doi.org/10.2903/j.efsa.2018.5123>. URL <https://efsa.onlinelibrary.wiley.com/doi/abs/10.2903/j.efsa.2018.5123>.

[10] A. Conmy, A. N. Mavor-Parker, A. Lynch, S. Heimersheim, and A. Garriga-Alonso. Towards automated circuit discovery for mechanistic interpretability. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=89ia77nZ8u>.

[11] J. Dunefsky, P. Chlenski, and N. Nanda. Transcoders find interpretable LLM feature circuits. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=J6zHcScAo0>.

[12] B. Efron and R. Tibshirani. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. *Statistical Science*, 1(1):54–75, 1986. ISSN 08834237, 21688745. URL <http://www.jstor.org/stable/2245500>.

[13] N. Elhage, N. Nanda, C. Olsson, T. Henighan, N. Joseph, B. Mann, A. Askell, Y. Bai, A. Chen, T. Conery, N. DasSarma, D. Drain, D. Ganguli, Z. Hatfield-Dodds, D. Hernandez, A. Jones, J. Kernion, L. Lovitt, K. Ndousse, D. Amodei, T. Brown, J. Clark, J. Kaplan, S. McCandlish, and C. Olah. A mathematical framework for transformer circuits. *Transformer Circuits Thread*, 2021. <https://transformer-circuits.pub/2021/framework/index.html>.

[14] J. Fang, H. Jiang, K. Wang, Y. Ma, J. Shi, X. Wang, X. He, and T.-S. Chua. Alphaedit: Null-space constrained model editing for language models. In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=HvSytvg3Jh>.

[15] R. Fisher. Statistical methods and scientific induction. *Journal of the Royal Statistical Society. Series B (Methodological)*, 17(1):69–78, 1955. ISSN 00359246. URL <http://www.jstor.org/stable/2983785>.

[16] A. Geiger, H. Lu, T. F. Icard, and C. Potts. Causal abstractions of neural networks. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, editors, *Advances in Neural Information Processing Systems*, 2021. URL <https://openreview.net/forum?id=RmuXDtjDhG>.

[17] A. Ghorbani, A. Abid, and J. Zou. Interpretation of neural networks is fragile. *Proceedings of the AAAI Conference on Artificial Intelligence*, 33(01):3681–3688, Jul. 2019. doi: 10.1609/aaai.v33i01.33013681. URL <https://ojs.aaai.org/index.php/AAAI/article/view/4252>.

[18] M. Hanna, O. Liu, and A. Variengien. How does GPT-2 compute greater-than?: Interpreting mathematical abilities in a pre-trained language model. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=p4PckNQR8k>.

[19] M. Hanna, S. Pezzelle, and Y. Belinkov. Have faith in faithfulness: Going beyond circuit overlap when finding model mechanisms. In *ICML 2024 Workshop on Mechanistic Interpretability*, 2024. URL <https://openreview.net/forum?id=grXgesr5dT>.

[20] T. Heap, T. Lawson, L. Farnik, and L. Aitchison. Sparse autoencoders can interpret randomly initialized transformers, 2025. URL <https://arxiv.org/abs/2501.17727>.

[21] A. Hedström, L. Weber, D. Krakowczyk, D. Bareeva, F. Motzkus, W. Samek, S. Lapuschkin, and M. M.-C. Hähne. Quantus: An explainable ai toolkit for responsible evaluation of neural network explanations and beyond. *Journal of Machine Learning Research*, 24(34):1–11, 2023. URL <http://jmlr.org/papers/v24/22-0142.html>.

[22] J. Hoelscher-Obermaier, J. Persson, E. Kran, I. Konstas, and F. Barez. Detecting edit failures in large language models: An improved specificity benchmark, 2023. URL <https://arxiv.org/abs/2305.17553>.

[23] J. P. A. Ioannidis. Why most published research findings are false. *PLOS Medicine*, 2(8):null, 08 2005. doi: 10.1371/journal.pmed.0020124. URL <https://doi.org/10.1371/journal.pmed.0020124>.

[24] S. Kabir. *BASIC GUIDELINES FOR RESEARCH: An Introductory Approach for All Disciplines*. 07 2016. ISBN 978-984-33-9565-8.

[25] P.-J. Kindermans, S. Hooker, J. Adebayo, M. Alber, K. T. Schütt, S. Dähne, D. Erhan, and B. Kim. *The (Un)reliability of Saliency Methods*, pages 267–280. Springer International Publishing, Cham, 2019. ISBN 978-3-030-28954-6. doi: 10.1007/978-3-030-28954-6_14. URL https://doi.org/10.1007/978-3-030-28954-6_14.

[26] G. Lange, A. Makelov, and N. Nanda. An Interpretability Illusion for Activation Patching of Arbitrary Subspaces. Aug. 2023. URL <https://www.lesswrong.com/posts/RFtkRXHebkwygDe2/an-interpretability-illusion-for-activation-patching-of>.

[27] S. R. Lele. How Should We Quantify Uncertainty in Statistical Inference? *Frontiers in Ecology and Evolution*, 8, Mar. 2020. ISSN 2296-701X. doi: 10.3389/fevo.2020.00035. URL <https://www.frontiersin.org/journals/ecology-and-evolution/articles/10.3389/fevo.2020.00035/full>.

[28] J. Lindsey, W. Gurnee, E. Ameisen, B. Chen, A. Pearce, N. L. Turner, C. Citro, D. Abrahams, S. Carter, B. Hosmer, J. Marcus, M. Sklar, A. Templeton, T. Bricken, C. McDougall, H. Cunningham, T. Henighan, A. Jermyn, A. Jones, A. Persic, Z. Qi, T. B. Thompson, S. Zimmerman, K. Rivoire, T. Conerly, C. Olah, and J. Batson. On the biology of a large language model. *Transformer Circuits Thread*, 2025. URL <https://transformer-circuits.pub/2025/attribution-graphs/biology.html>.

[29] Y. Liu, Y. Zhang, and S. Yeung-Levy. Mechanistic interpretability meets vision language models: Insights and limitations. In *ICLR Blogposts 2025*, 2025. URL <https://d2jud02ci9yv69.cloudfront.net/2025-04-28-vlm-understanding-29/blog/vlm-understanding/>. <https://d2jud02ci9yv69.cloudfront.net/2025-04-28-vlm-understanding-29/blog/vlm-understanding/>.

[30] D. Mayo. Error and the growth of experimental knowledge. *Bibliovault OAI Repository, the University of Chicago Press*, 92, 04 1998. doi: 10.1002/(SICI)1520-6696(199823)34:43.0.CO;2-E.

[31] M. Méloux, S. Maniu, F. Portet, and M. Peyrard. Everything, everywhere, all at once: Is mechanistic interpretability identifiable? In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=5IWJBStfU7>.

[32] K. Meng, D. Bau, A. Andonian, and Y. Belinkov. Locating and editing factual associations in gpt. In *Proceedings of the 36th International Conference on Neural Information Processing Systems*, NIPS '22, Red Hook, NY, USA, 2022. Curran Associates Inc. ISBN 9781713871088.

[33] K. Meng, A. S. Sharma, A. J. Andonian, Y. Belinkov, and D. Bau. Mass-editing memory in a transformer. In *The Eleventh International Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=MkbcaHIYgyS>.

[34] E. Michaud, I. Liao, V. Lad, Z. Liu, A. Mudide, C. Loughridge, Z. Guo, T. Kheirkhah, M. Vučelić, and M. Tegmark. Opening the ai black box: Distilling machine-learned algorithms into code. *Entropy*, 26:1046, 12 2024. doi: 10.3390/e26121046.

[35] G. Monea, M. Peyrard, M. Josifoski, V. Chaudhary, J. Eisner, E. Kıcıman, H. Palangi, B. Patra, and R. West. A glitch in the matrix? locating and detecting language model grounding with fakepedia, 2024. URL <https://arxiv.org/abs/2312.02073>.

[36] A. Mueller, J. Brinkmann, M. Li, S. Marks, K. Pal, N. Prakash, C. Rager, A. Sankaranarayanan, A. S. Sharma, J. Sun, E. Todd, D. Bau, and Y. Belinkov. The quest for the right mediator: A history, survey, and theoretical grounding of causal interpretability, 2024. URL <https://arxiv.org/abs/2408.01416>.

[37] B. Newman, K.-S. Ang, J. Gong, and J. Hewitt. Refining targeted syntactic evaluation of language models. In K. Toutanova, A. Rumshisky, L. Zettlemoyer, D. Hakkani-Tur, I. Beltagy, S. Bethard, R. Cotterell, T. Chakraborty, and Y. Zhou, editors, *Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*, pages 3710–3723, Online, June 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.290. URL <https://aclanthology.org/2021.naacl-main.290/>.

[38] C. Olah, A. Satyanarayan, I. Johnson, S. Carter, L. Schubert, K. Ye, and A. Mordvintsev. The building blocks of interpretability. *Distill*, 2018. doi: 10.23915/distill.00010. <https://distill.pub/2018/building-blocks>.

[39] C. Olah, N. Cammarata, L. Schubert, G. Goh, M. Petrov, and S. Carter. Zoom in: An introduction to circuits. *Distill*, 2020. doi: 10.23915/distill.00024.001. <https://distill.pub/2020/circuits/zoom-in>.

[40] J. Pearl. Direct and indirect effects. In *Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence*, UAI’01, page 411–420, San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc. ISBN 1558608001.

[41] K. R. Popper. *The Logic of Scientific Discovery*. Hutchinson, London, 1934.

[42] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. Language models are unsupervised multitask learners. 2019.

[43] T. Rauker, A. Ho, S. Casper, and D. Hadfield-Menell. Toward Transparent AI: A Survey on Interpreting the Inner Structures of Deep Neural Networks . In *2023 IEEE Conference on Secure and Trustworthy Machine Learning (SaTML)*, pages 464–483, Los Alamitos, CA, USA, Feb. 2023. IEEE Computer Society. doi: 10.1109/SaTML54575.2023.00039. URL <https://doi.ieee.org/10.1109/SaTML54575.2023.00039>.

[44] C. Shi, N. Beltran-Velez, A. Nazaret, C. Zheng, A. Garriga-Alonso, A. Jesson, M. Makar, and D. M. Blei. Hypothesis testing the circuit hypothesis in llms, 2024. URL <https://arxiv.org/abs/2410.13032>.

[45] M. Sundararajan, A. Taly, and Q. Yan. Axiomatic attribution for deep networks. In *Proceedings of the 34th International Conference on Machine Learning - Volume 70*, ICML’17, page 3319–3328. JMLR.org, 2017.

[46] A. Syed, C. Rager, and A. Conmy. Attribution patching outperforms automated circuit discovery. In *NeurIPS Workshop on Attributing Model Behavior at Scale*, 2023. URL <https://openreview.net/forum?id=tiLbFR4bJW>.

[47] A. Syed, C. Rager, and A. Conmy. Attribution patching outperforms automated circuit discovery, 2023. URL <https://arxiv.org/abs/2310.10348>.

[48] T. J. VanderWeele. Explanation in causal inference: developments in mediation and interaction. *International Journal of Epidemiology*, 45(6):1904–1908, 11 2016. ISSN 0300-5771. doi: 10.1093/ije/dyw277. URL <https://doi.org/10.1093/ije/dyw277>.

[49] J. Vig, S. Gehrmann, Y. Belinkov, S. Qian, D. Nevo, Y. Singer, and S. Shieber. Investigating gender bias in language models using causal mediation analysis. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, editors, *Advances in Neural Information Processing Systems*, volume 33, pages 12388–12401. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf.

[50] J. Vig, S. Gehrman, Y. Belinkov, S. Qian, D. Nevo, Y. Singer, and S. M. Shieber. Causal mediation analysis for interpreting neural nlp: The case of gender bias. *ArXiv*, abs/2004.12265, 2020. URL <https://api.semanticscholar.org/CorpusID:216553696>.

[51] F. Walke, L. Bennek, and T. J. Winkler. Artificial intelligence explainability requirements of the ai act and metrics for measuring compliance. In D. Beverungen, C. Lehrer, and M. Trier, editors, *Solutions and Technologies for Responsible Digitalization*, pages 113–129, Cham, 2025. Springer Nature Switzerland. ISBN 978-3-031-80122-8.

[52] K. R. Wang, A. Variengien, A. Conmy, B. Shlegeris, and J. Steinhardt. Interpretability in the wild: a circuit for indirect object identification in GPT-2 small. In *The Eleventh International Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=NpsVSN6o4u1>.

[53] A. Warstadt, A. Parrish, H. Liu, A. Mohananey, W. Peng, S.-F. Wang, and S. R. Bowman. BLiMP: The benchmark of linguistic minimal pairs for English. *Transactions of the Association for Computational Linguistics*, 8:377–392, 2020. doi: 10.1162/tacl_a_00321. URL <https://aclanthology.org/2020.tacl-1.25/>.

[54] R. L. Wasserstein and N. A. Lazar. The asa statement on p-values: Context, process, and purpose. *The American Statistician*, 70(2):129–133, 2016. doi: 10.1080/00031305.2016.1154108. URL <https://doi.org/10.1080/00031305.2016.1154108>.

[55] L. Yu, J. Niu, Z. Zhu, and G. Penn. Functional faithfulness in the wild: Circuit discovery with differentiable computation graph pruning. *CorRR*, abs/2407.03779, 2024. URL <https://doi.org/10.48550/arXiv.2407.03779>.

[56] M. B. Zafar, M. Donini, D. Slack, C. Archambeau, S. Das, and K. Kenthapadi. On the lack of robust interpretability of neural text classifiers. In C. Zong, F. Xia, W. Li, and R. Navigli, editors, *Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021*, pages 3730–3740, Online, Aug. 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.findings-acl.327. URL <https://aclanthology.org/2021.findings-acl.327/>.

[57] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, editors, *Computer Vision – ECCV 2014*, pages 818–833, Cham, 2014. Springer International Publishing. ISBN 978-3-319-10590-1.

[58] H. Zhang, F. T. Figueira, and H. Hermanns. Saliency Maps Give a False Sense of Explanability to Image Classifiers: An empirical evaluation across methods and metrics. In V. Nguyen and H.-T. Lin, editors, *Proceedings of the 16th Asian Conference on Machine Learning*, volume 260 of *Proceedings of Machine Learning Research*, pages 479–494. PMLR, 05–08 Dec 2025. URL <https://proceedings.mlr.press/v260/zhang25a.html>.

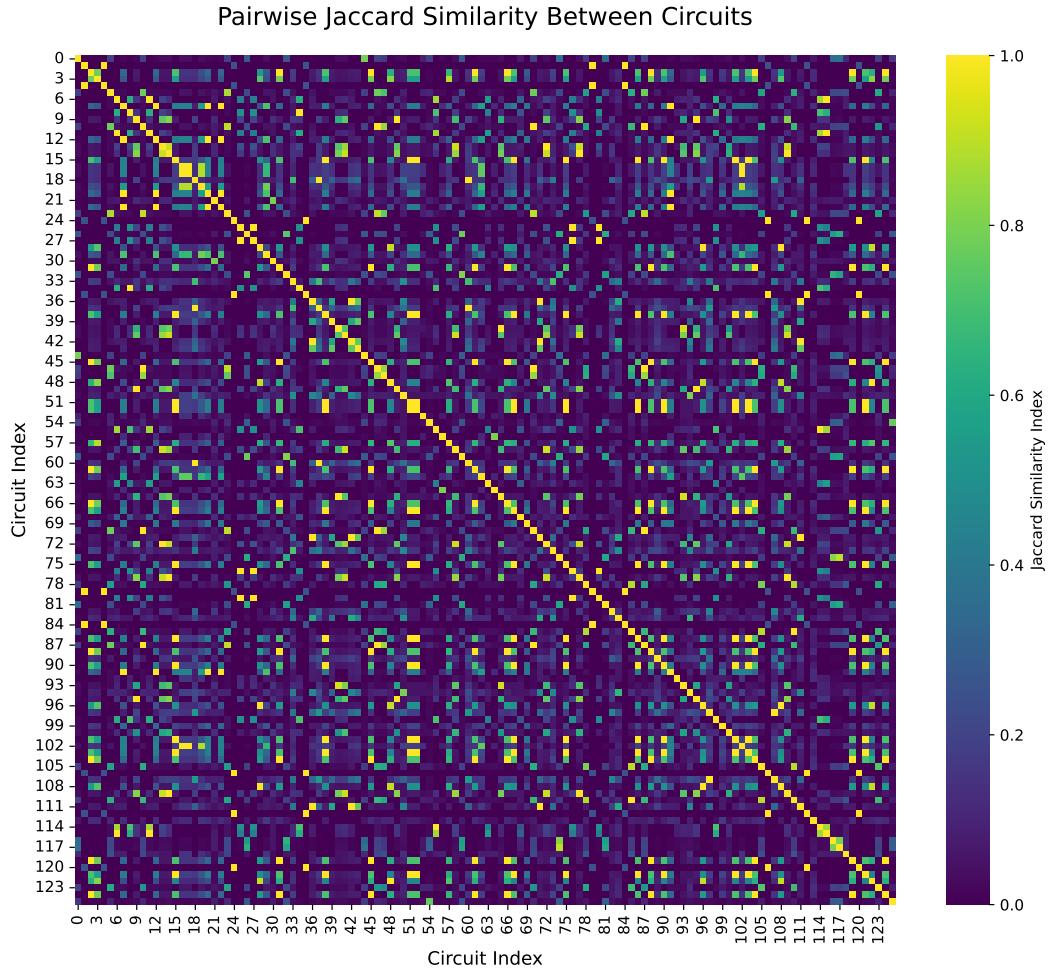


Figure 3: Full heatmap of the pairwise Jaccard index between circuits displayed in Figure 1 (circuits found in gpt2-small on the Greater-Than task while varying all parameters)

Table 4: Aggregated results from Figure 2 for bootstrap resampling.

Model Name	Circuit Error			KL Divergence			Pairwise Jaccard Index		
	μ	σ^2	CV	μ	σ^2	CV	μ	σ^2	CV
Greater-Than									
Llama-3.2-1B	0.21	$4.67 \cdot 10^{-4}$	0.10	$6.91 \cdot 10^{-7}$	$1.29 \cdot 10^{-14}$	0.16	0.42	$5.93 \cdot 10^{-3}$	0.18
Llama-3.2-1B-Instruct	0.21	$5.94 \cdot 10^{-4}$	0.12	$6.43 \cdot 10^{-7}$	$6.50 \cdot 10^{-16}$	0.04	0.33	$1.36 \cdot 10^{-2}$	0.36
IOI									
Llama-3.2-1B	0.66	$2.51 \cdot 10^{-3}$	0.08	$5.48 \cdot 10^{-6}$	$1.29 \cdot 10^{-13}$	0.07	0.39	$1.07 \cdot 10^{-1}$	0.85
Llama-3.2-1B-Instruct	0.69	$2.62 \cdot 10^{-3}$	0.07	$9.26 \cdot 10^{-6}$	$4.44 \cdot 10^{-13}$	0.07	0.34	$6.72 \cdot 10^{-2}$	0.76
gpt2-small	0.11	$7.32 \cdot 10^{-4}$	0.24	$1.23 \cdot 10^{-6}$	$8.80 \cdot 10^{-14}$	0.24	0.67	$1.57 \cdot 10^{-2}$	0.19
SVA									
Llama-3.2-1B	0.80	$1.02 \cdot 10^{-3}$	0.04	$1.61 \cdot 10^{-5}$	$4.02 \cdot 10^{-13}$	0.04	0.66	$1.55 \cdot 10^{-2}$	0.19
Llama-3.2-1B-Instruct	0.75	$1.04 \cdot 10^{-3}$	0.04	$1.87 \cdot 10^{-5}$	$3.97 \cdot 10^{-13}$	0.03	0.69	$1.20 \cdot 10^{-2}$	0.16
gpt2-small	0.08	$5.00 \cdot 10^{-4}$	0.29	0	0	1.00	0	0.00	

Table 5: Aggregated results from Figure 2 for meta-dataset resampling.

Model Name	Circuit Error			KL Divergence			Pairwise Jaccard Index		
	μ	σ^2	CV	μ	σ^2	CV	μ	σ^2	CV
Greater-Than									
Llama-3.2-1B	0.24	$3.06 \cdot 10^{-5}$	0.02	$5.58 \cdot 10^{-7}$	$3.56 \cdot 10^{-16}$	0.03	0.74	$8.17 \cdot 10^{-3}$	0.12
Llama-3.2-1B-Instruct	0.18	$1.05 \cdot 10^{-4}$	0.06	$6.46 \cdot 10^{-7}$	$1.31 \cdot 10^{-16}$	0.02	0.51	$1.83 \cdot 10^{-2}$	0.27
IOI									
Llama-3.2-1B	0.15	$1.67 \cdot 10^{-4}$	0.09	$5.75 \cdot 10^{-7}$	$6.68 \cdot 10^{-16}$	0.04	0.86	$1.25 \cdot 10^{-2}$	0.13
Llama-3.2-1B-Instruct	0.22	$3.30 \cdot 10^{-4}$	0.08	$6.19 \cdot 10^{-7}$	$1.53 \cdot 10^{-15}$	0.06	0.76	$2.13 \cdot 10^{-2}$	0.19
gpt2-small	0.03	$5.23 \cdot 10^{-5}$	0.22	$4.72 \cdot 10^{-5}$	$1.91 \cdot 10^{-12}$	0.03	0.88	$5.75 \cdot 10^{-3}$	0.09
SVA									
Llama-3.2-1B	0.77	$3.60 \cdot 10^{-4}$	0.02	$1.54 \cdot 10^{-5}$	$8.18 \cdot 10^{-14}$	0.02	0.80	$1.06 \cdot 10^{-2}$	0.13
Llama-3.2-1B-Instruct	0.74	$2.52 \cdot 10^{-4}$	0.02	$1.84 \cdot 10^{-5}$	$2.05 \cdot 10^{-13}$	0.02	0.77	$1.07 \cdot 10^{-2}$	0.13
gpt2-small	0.06	$2.18 \cdot 10^{-4}$	0.23	0	0		1.00	0	0.00

Table 6: Aggregated results from Figure 2 for prompt paraphrasing.

Model Name	Circuit Error			KL Divergence			Pairwise Jaccard Index		
	μ	σ^2	CV	μ	σ^2	CV	μ	σ^2	CV
Greater-Than									
Llama-3.2-1B	0.22	$7.77 \cdot 10^{-5}$	0.04	$7.09 \cdot 10^{-7}$	$2.05 \cdot 10^{-15}$	0.06	0.64	$1.42 \cdot 10^{-2}$	0.19
Llama-3.2-1B-Instruct	0.17	$7.46 \cdot 10^{-5}$	0.05	$5.43 \cdot 10^{-7}$	$1.04 \cdot 10^{-16}$	0.02	0.85	$4.20 \cdot 10^{-3}$	0.08
IOI									
Llama-3.2-1B	0.16	$1.66 \cdot 10^{-4}$	0.08	$5.42 \cdot 10^{-7}$	$9.45 \cdot 10^{-16}$	0.06	0.88	$1.01 \cdot 10^{-2}$	0.11
Llama-3.2-1B-Instruct	0.18	$3.44 \cdot 10^{-4}$	0.10	$6.06 \cdot 10^{-7}$	$1.43 \cdot 10^{-15}$	0.06	0.74	$1.80 \cdot 10^{-2}$	0.18
gpt2-small	0.01	$2.27 \cdot 10^{-5}$	0.40	$4.31 \cdot 10^{-5}$	$1.42 \cdot 10^{-12}$	0.03	0.89	$7.66 \cdot 10^{-3}$	0.10

Table 7: Comparison of the circuits found in Llama-3.2-1B, using a similar setup to that of Table 2.

Parameters	Greater-Than				IOI				SVA			
	CErr	KL-Div	Size	Jacc. to Median	CErr	KL-Div	Size	Jacc. to Median	CErr	KL-Div	Size	Jacc. to Median
EAP, sum, patching	-	-	-	-	0.64	$5.4 \cdot 10^{-6}$	7	0.400	0.80	$1.6 \cdot 10^{-9}$	16	0.355
EAP-IG-activations, sum, patching	-	-	-	-	0.64	$5.4 \cdot 10^{-6}$	117	0.042	0.80	$1.6 \cdot 10^{-5}$	28	0.421
EAP-IG-inputs, median, patching	-	-	-	-	0.65	$5.4 \cdot 10^{-6}$	11	0.385	0.80	$1.6 \cdot 10^{-5}$	24	0.923
EAP-IG-inputs, sum, mean	-	-	-	-	0.67	$5.4 \cdot 10^{-6}$	5	0.714	0.75	$1.4 \cdot 10^{-5}$	26	1.000
EAP-IG-inputs, sum, mean-positional	-	-	-	-	0.77	$8.8 \cdot 10^{-6}$	8	0.500	0.69	$1.5 \cdot 10^{-5}$	25	0.962
EAP-IG-inputs, sum, patching	0.23	$6.0 \cdot 10^{-7}$	21	-	0.65	$5.4 \cdot 10^{-6}$	7	1.000	0.80	$1.6 \cdot 10^{-5}$	26	1.000
clean-corrupted, sum, patching	-	-	-	-	0.59	$5.2 \cdot 10^{-6}$	448	0.016	0.80	$1.6 \cdot 10^{-5}$	16	0.355

Table 8: Detailed results for Table 2, including KL divergence.

Parameters	Greater-Than				IOI				SVA			
	CErr	KL-Div	Size	Jacc. to Median	CErr	KL-Div	Size	Jacc. to Median	CErr	KL-Div	Size	Jacc. to Median
EAP, sum, patching	0.20	$6.4 \cdot 10^{-7}$	23	0.417	0.69	$9.1 \cdot 10^{-6}$	3	0.286	0.76	$1.9 \cdot 10^{-5}$	18	0.536
EAP-IG-activations, sum, patching	0.20	$6.4 \cdot 10^{-7}$	17	0.098	0.69	$9.1 \cdot 10^{-6}$	12	0.125	0.76	$1.9 \cdot 10^{-5}$	24	0.531
EAP-IG-inputs, median, patching	0.20	$6.4 \cdot 10^{-7}$	10	0.086	0.69	$9.1 \cdot 10^{-6}$	6	1.000	0.75	$1.9 \cdot 10^{-5}$	21	0.840
EAP-IG-inputs, sum, mean	0.19	$7.1 \cdot 10^{-7}$	28	1.000	0.72	$9.3 \cdot 10^{-6}$	7	0.182	0.73	$1.6 \cdot 10^{-5}$	24	0.960
EAP-IG-inputs, sum, mean-positional	0.41	$5.7 \cdot 10^{-6}$	33	0.298	0.82	$1.7 \cdot 10^{-5}$	6	1.000	0.73	$1.7 \cdot 10^{-5}$	22	0.808
EAP-IG-inputs, sum, patching	0.20	$6.4 \cdot 10^{-7}$	16	0.571	0.69	$9.1 \cdot 10^{-6}$	7	0.182	0.75	$1.8 \cdot 10^{-5}$	25	1.000
clean-corrupted, sum, patching	0.20	$6.4 \cdot 10^{-7}$	16	0.419	0.69	$9.1 \cdot 10^{-6}$	9	0.071	0.76	$1.9 \cdot 10^{-5}$	16	0.577

Table 9: Comparison of the circuits found in gpt2-small, using a similar setup to that of Table 2.

Parameters	IOI				SVA			
	CErr	KL-Div	Size	Jacc. to Median	CErr	KL-Div	Size	Jacc. to Median
EAP, sum, patching	0.10	$1.2 \cdot 10^{-6}$	12	0.391	0.06	0	1	1.000
EAP-IG-activations, sum, patching	0.10	$1.3 \cdot 10^{-6}$	5	0.042	0.05	0	21	0.000
EAP-IG-inputs, median, patching	0.11	$1.2 \cdot 10^{-6}$	20	1.000	0.06	0	1	1.000
EAP-IG-inputs, sum, mean	0.12	$1.3 \cdot 10^{-6}$	20	1.000	0.07	$3.2 \cdot 10^{-6}$	1	1.000
EAP-IG-inputs, sum, mean-positional	0.14	$2.1 \cdot 10^{-5}$	21	0.783	0.08	$1.6 \cdot 10^{-5}$	1	1.000
EAP-IG-inputs, sum, patching	0.11	$1.2 \cdot 10^{-6}$	20	1.000	0.06	0	1	1.000
EAP-IG-inputs, sum, zero	-	-	-	-	0.00	0	1	1.000
clean-corrupted, sum, patching	0.11	$1.2 \cdot 10^{-6}$	19	0.696	0.06	0	1	1.000

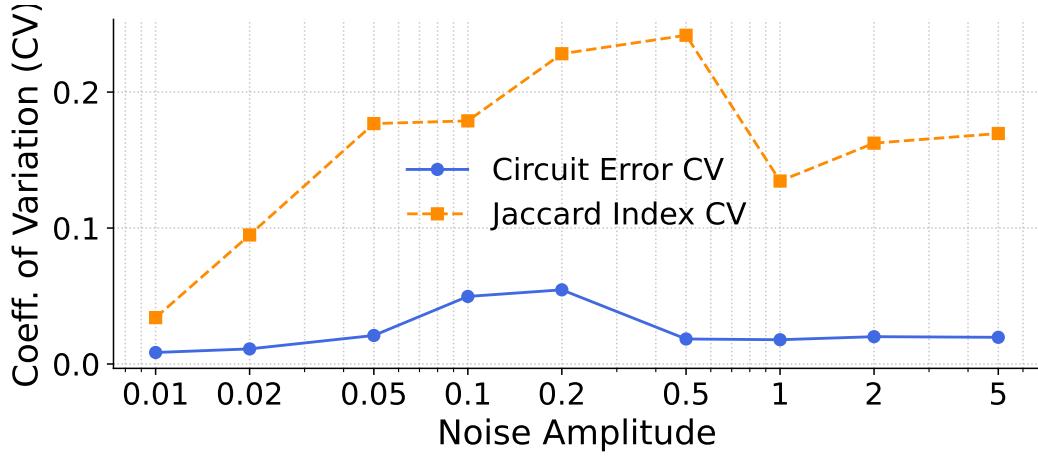


Figure 4: CV of circuit metrics for different noise amplitudes in gpt2-small, averaged across tasks.

Table 10: Detailed results for Table 3, including KL divergence. Values are plotted for noise amplitudes in [0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5].

