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Abstract

Developing trustworthy artificial intelligence requires moving beyond black-box
performance metrics toward understanding models’ internal computations. Mech-
anistic Interpretability (MI) addresses this by identifying the algorithmic mech-
anisms underlying model behaviors, yet its scientific rigor critically depends on
the reliability of its findings. In this work, we argue that interpretability methods
such as circuit discovery should be viewed as statistical estimators, subject to
questions of variance and robustness. To illustrate this statistical framing, we
present a systematic stability analysis of a state-of-the-art circuit discovery method:
EAP-IG. We evaluate its variance and robustness through a comprehensive suite
of controlled perturbations, including input resampling, prompt paraphrasing, hy-
perparameter variation, and injected noise within the causal analysis itself. Across
various models and tasks, our results demonstrate that EAP-IG can exhibit high
structural variance and sensitivity to hyperparameters, questioning the stability of
its findings. Based on these results, we offer a set of best-practice recommendations
for the field, advocating for the routine reporting of stability metrics to promote a
more rigorous and statistically grounded science of interpretability.

1 Introduction

As Al systems are increasingly deployed in real-world applications, the need for robust interpretability
methods becomes more urgent. Understanding the internal mechanisms of these models is critical
not only for diagnosing failures and improving robustness [3]], but also for complying with emerging
legal frameworks that mandate explainability [S1].

Mechanistic Interpretability (MI) has emerged as a promising research direction aiming to reverse-
engineer the specific algorithms learned by deep neural networks [38]. A central approach in
MI involves identifying functional sub-networks called “circuits” that are responsible for particular
capabilities [39}13]]. These circuits are typically identified through interventions on the computational
graph: setting the network in counterfactual states and measuring the effect of components on outputs
[49,135,119,47]. The long-term vision of MI is to become a fully-fledged scientific discipline that
studies trained models using scientific discovery tools similar to those of the natural sciences [8} 28]].

However, MI currently faces foundational challenges that limit its scientific rigor. Interpretability
methods may produce valid explanations in random, untrained networks. For instance, feature
attribution methods generate similar saliency maps for random and trained models [1]], sparse
autoencoders can extract plausible “explanations” from random weights [20], and many incompatible
circuits can even be discovered in networks with random behavior [31]]. This highlights a non-
identifiability problem: multiple incompatible explanations may satisfy current MI criteria [31],
creating generalizability issues in MI explanations. For instance, circuits discovered in one setting
often fail to transfer to others [[52]].
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Figure 1: In gpt2-small, varying multiple circuit finding parameters at once (resampling strategy,
aggregation method, type of intervention, EAP method, and pruning strategy) yields many different
circuits, which we display along with the union and median circuit (left). In the center, the MDS
projection of the pairwise Jaccard index matrix shows that none of the tested EAP methods consistently
yields circuits with lower variance (tighter clustering).

To evolve from exploratory techniques into a rigorous scientific discipline, MI must adopt the
standards of empirical science, most notably statistical inference [15,[30]]. Scientific validity requires
formulating testable hypotheses [41, 24]], quantifying observational variability (fluctuations due to
sampling or measurement noise; |6} [7), and representing uncertainty in our conclusions via measures
of variability like confidence intervals [27, 9]]. However, MI has yet to systematically integrate those
practices. Circuits are often reported without quantification of their statistical stability, robustness to
perturbations, and uncertainty estimates [43]]. For instance, how does altering the dataset slightly,
shifting the input distribution, or resampling change the discovered circuit? How sensitive are the
findings of circuit discovery methods to hyperparameters? These limitations prevent us from assessing
the generalizability, reliability, and ultimately, the validity of MI explanations [43], 129} 23]].

In this work, we argue that mechanistic interpretability must be reframed as a problem of statistical
inference. As a case study, we focus on a family of state-of-the-art MI techniques: Edge Activation
Patching (EAP;40) and its variants, notably EAP with Integrated Gradients (EAP-IG;[19). We use
EAP to systematically investigate how principles of statistical robustness and variability apply to the
outputs of MI methods: the discovered circuits themselves.

Our empirical analysis evaluates the stability of EAP-generated circuits under controlled variations:
small shifts in input distributions, bootstrap resampling of input data, and changes in method
hyperparameters. We conduct experiments across three tasks and three model architectures, providing
both qualitative and quantitative evidence of the circuits’ variability. Our results show that the circuits
identified by EAP exhibit high variance under data resampling and are sensitive to hyperparameter
choices: small perturbations in data or changes in the analysis pipeline often yield substantially
different circuit structures. This is visually summarized in Fig.[T} which shows the disparity of circuits
found when different perturbations are applied simultaneously. In light of these findings, we propose
a set of best practices for the MI community, including the systematic use of bootstrap resampling
and the reporting of stability metrics to foster a more rigorous and reliable science of interpretability.

2 Related Work

2.1 Circuit Discovery and Causal Mediation Analysis

Numerous methodologies exist to identify the circuits central to MI’s goals. Causal Mediation
Analysis (CMA) [40l 48] provides a formal framework that investigates how an intervention (e.g.,
an input) affects an outcome (e.g., a model’s prediction) via mediators (e.g., neuron activations). In



DNNs, CMA helps test hypotheses about internal components’ causal roles. Interventional techniques
like activation patching [50, [16} [19] manipulate mediators to quantify their influence.

Building on CMA, circuit discovery methods have evolved from feature visualization [57} 45] to
techniques identifying interconnected structures. Notable examples include causal tracing [32] and its
variants [33}114], as well as methods like Automated Circuit Discovery (ACDC; |10, which employs
activation patching to find interpretable circuits. Other lines of inquiry explore program synthesis via
M1, though applications have focused on simpler architectures such as RNNs [34]]. Our work focuses
on Edge Activation Patching with Integrated Gradients (EAP-1G) [19]. EAP combines causal patching
with gradient-based attribution (integrated gradients for EAP-IG) to score individual edge importance,
and also measures the impact of excluded components when producing a circuit. We selected the
EAP family for its reported state-of-the-art performance in identifying sparse, fine-grained edge-level
circuits [46l [19], making it an ideal candidate for studying the stability of such granular discoveries.

2.2 Evaluation of Circuit Discovery Methods

A core challenge in MI is the absence of "ground truth" circuits, as the notion of a single correct circuit
can be ill-defined or non-identifiable [36} 31]]. Thus, evaluation relies on proxy metrics assessing
desirable properties: faithfulness (how accurately the circuit reflects model behavior, often tested
by perturbing or ablating the identified circuit components within the full model; [10} 21} [19, 44),
sufficiency/predictive power (whether the isolated circuit can reproduce the target behavior; 4} 55)),
interpretability (a qualitative assessment of understandability and alignment with intuition; [39), and
sparsity/minimality (a preference for simpler, concise circuits; 13} 21} [11). These criteria are often
applied post-hoc and qualitatively.

2.3 Stability and Robustness in Circuit Discovery

While the broader field of eXplainable AI (XAI) has increasingly recognized the importance of
robustness, particularly for feature attribution methods where explanations like saliency maps can
be sensitive to minor input changes [[17} 25| I58]] or vary with training seeds [1} 156], systematic
investigation into the stability and robustness of MI-derived circuits is less developed.

MI also faces internal challenges. For example, interventions based on discovered circuits may not
generalize reliably; edits derived from methods like causal training can fail to extend to novel contexts,
casting doubts on the robustness of the underlying identified mechanism itself [22]]. Furthermore,
MI outputs can be prone to "interpretability illusions", where analytical techniques might highlight
artifacts to statistical correlations rather than genuine computational mechanisms [26]. The challenge
of non-identifiability, where multiple distinct and incompatible circuits can equally satisfy common
evaluation metrics [31]], further complicates claims about discovering the true underlying circuits.

While these issues of generalization failure, susceptibility to illusions, and non-identifiability differ
from sensitivity to data or parameter perturbations that we focus on, they collectively underscore a
pressing concern: MI findings may not always be stable or reliably reflect true model operations. This
broader context motivates our focus on the statistical robustness and variability of discovered circuits
when subjected to controlled perturbations. To our knowledge, dedicated studies analyzing the
stability of circuit discovery outputs to variations in input data, experimental conditions, or method
hyperparameters are scarce. This paper aims to fill this gap by empirically studying the stability of
EAP-derived circuits, thereby contributing to developing more rigorous evaluation practices in M1

3 Formal Setup

This section outlines a general framework for quantifying the stability of circuits discovered by MI
methods, which we then apply to the EAP family as a case study. We identify two main sources of
instability in discovered circuits:

* Variance refers to the statistical variability of the discovered circuit (i.e., the output of the MI
method) when resampling the input data used for its discovery. It captures the sensitivity of the
method to the specific sample of data drawn from an underlying distribution. This aligns with
standard statistical notions of sampling variance.



* Robustness refers to the stability of a discovered circuit when subjected to controlled changes in
the analytical setup. These changes can include variations in the MI method’s hyperparameters or
perturbations to the experimental conditions used during circuit discovery (e.g., adding noise to
interventions). This assesses the circuit’s sensitivity to the researcher’s methodological decisions
and the specifics of the analysis pipeline.

We aim to move beyond treating discovered circuits as singular, definitive findings. Instead, in line
with modern statistical thinking that cautions against over-reliance on single point estimates [34], we
wish to provide quantitative measures of their stability and associated performance characteristics
under these different sources of perturbation, thereby offering a more nuanced understanding of their
reliability.

3.1 General Formalization of Circuit Discovery

Let My be a trained neural network. A general circuit discovery process aims to identify a subgraph
(circuit) C = (V, E¢) within My. This process typically involves:

* Input data (D): A dataset of input samples x; used specifically for the circuit discovery analysis
(typically distinct from the dataset originally used to train the model My. These inputs are chosen
to elicit distinct model behaviors or internal states that the MI method will then analyze.

» Experimental conditions (£): The strategy for causal analysis. This specifies how interventions are
performed on Mpy’s internal components (e.g., neuron activations, edge weights), including which
components are targeted, how their states are modified (e.g., ablated, patched), and which aspects
of the model’s behavior (e.g. specific logits, loss changes) are measured to quantify the effects of
these interventions.

* Observational data generation: The application of experimental conditions £ to model My with
inputs from D produces a set of observations O. This data O = Observe(Mpy, D, £) consists of
quantitative measurements (e.g., changes in model loss, output probabilities, internal activation
patterns) corresponding to each intervention performed.

» Component scoring and circuit identification algorithm (A) and hyperparameters (A): This stage
typically involves two steps. First, individual components (e.g., edges) are assigned scores based on
the observation data O (e.g., their estimated impact on a task metric). Second, a circuit identification
algorithm selects a subset of components that form the final circuit from these scores using specific
selection criteria and hyperparameters (e.g., number of edges to keep, a threshold, search strategy).

Thus, the discovered circuit C' can be seen as the output of a composite function: C' =
Ap(Observe(My, O, D, £)). For simplicity, we represent the entire circuit discovery method as
Fep, such that C = Fop(My, D, Ametmod), Where Apemoa collectively represents all parameters
governing £ and A. Different MI methods make distinct choices for D, &, A, and its hyperparameters.

Our study focuses on EAP [46] and its variants [19]. While the underlying principles of EAP can
be applied to score nodes (such as neurons or attention heads), our investigation centers on its
common use for identifying important edges. EAP methods first involve an edge scoring stage,
where individual edges are scored based on their influence on a pre-defined task-specific performance
metric (or loss function) when subjected to causal interventions (patching). Following edge scoring,
a circuit selection stage is employed. This stage uses the computed edge scores, a chosen selection
algorithm, and hyperparameters to determine the final set of edges in the circuit C'. The EAP variants
primarily define different methodologies for the edge scoring stage. They differ in their choices
for &€ (specifically, how edge effects, reflected as changes in the task metric, are measured through
patching and input/activation interpolation) and the initial part of .4 (how raw observational data O is
processed into edge scores). These scoring methods are as follows:

* Base EAP: Computes a first-order approximation of each edge’s indirect effect (the estimated
change in the task metric upon corrupting the edge) by multiplying the change in downstream
activations a, by the gradient of the task metric with respect to a,, evaluated on clean inputs.

* EAP-IG (inputs): An adaptation of EAP that improves circuit quality by averaging the gradient of
the task metric (with respect to input embeddings) over m interpolation steps between clean and
corrupted input embeddings, then using this to estimate edge importance.



* EAP-IG (activations): Similar to EAP-IG (inputs), but estimates edge importance by averaging the
gradient of the task metric (w.r.t. intermediate activations) while interpolating these activations
directly between their clean and corrupted values (for nodes) or the activations influencing an edge.

* Clean-Corrupted: A simplified variant that scores components based on the change in the task
metric or its gradient measured only in the clean and corrupted states.

After scoring, circuit selection can use several algorithms such as greedy search (working backward
from output logits or forward from inputs), threshold pruning, or top-N pruning. These selection
algorithms often have their own hyperparameters, such as whether to use absolute values, the number
of edges N, or the specific threshold. They may also include steps to ensure graph connectivity. In
our work, we consistently adhere to the iterative greedy search procedure described in the original
EAP-IG paper [19]. This involves selecting an initial set of n edges based on the absolute values of
their scores (starting with n = 30), then incrementally increasing n up to 2000 until a path from input
to output is found within the selected subgraph. If this fails, we say that no faithful circuit is found.

The operational hyperparameters we investigate for the edge scoring stage of these four EAP method-
ologies are the type of aggregation (how multiple scores contributing to an edge’s final importance are
combined, e.g., mean, median) and intervention (the nature of the corruption applied during patching,
e.g., zero ablation, patching from a corrupted input, mean ablation, mean-positional ablation).

3.2 Variance, Robustness, and Circuit Properties

We evaluate the properties of each discovered circuit C}; (generated under a specific condition £,
such as a particular data sample Dy, or hyperparameter setting A,. We generate a set of IV circuits
{C1,C4,...,Cn} by varying these conditions (e.g., through bootstrapping D or changing A, then
analyze the statistics of these properties across the set.

Circuit performance metrics. Those assess how well each individual circuit C;, when operating
as a standalone model M, replicates the task-specific behavior of the original full model M.
These metrics are evaluated on a relevant evaluation dataset Dey,. In many circuit discovery settings,
including typical EAP-IG usage, D.y, = D. Using a separate test set would assess generalization to
unseen data. In this paper, we follow the common practice where D,y = D, and report the mean p,
variance o2, and coefficient of variation C'V = ¢/ of each circuit performance metric.

* Circuit Error: This measures the frequency with which the circuit M, produces a different
prediction than the full model My on D.y,. For tasks where a discrete prediction M (x) can
be derived from the model’s output for an input z, circuit error is defined as CE(C;, My) =

m ZIEDeval ]I[Mcl (l‘) # Mg(x)]

* Circuit Divergence: The Kullback-Leibler divergence Dxi.(Pus, (y|x)||Parc, (y]2)) between the
full output probability distributions of My and M, averaged over D.,q;. This quantifies the
overall difference in predictive distributions.

Circuit structural similarity metric (Jaccard Index). This measures the consistency of the structure
(edges/nodes) of the discovered circuits themselves, independent of their performance. For any pair
of circuits C;, Cj from the set of N discovered circuits, with respective edge sets E;, F;, the Jaccard

index is J(E;, E;) = } SoRE)oF } . We report the mean and variance of the pairwise Jaccard indices.
i J

3.3 Assessing Stability

We investigate the stability of discovered circuits across multiple dimensions. For each experimental
run (iterated over seed values), we apply one of the following variations:

Input data resampling (bootstrap). To estimate the variance of circuit properties attributable to
the specific input data sample D, we employ bootstrap resampling [12]. New datasets are created by
resampling with replacement from the original dataset. The circuit discovery method is then applied
to each resampled dataset.

Data meta-distribution shifts. To assess circuit stability when the input data originates from related
but distinct data-generating processes, we either generate multiple independent datasets from the



same underlying meta-distribution (meta-dataset) or replace input prompts with a paraphrased version
(re-prompting). We then apply the circuit discovery method to each newly generated dataset.

Experimental intervention noise. To evaluate circuit stability when the interventions within the
experimental conditions are perturbed, we introduce noise during the intervention phase. Specifically,
noise of a controlled amplitude and fixed direction is added to the relevant token embeddings. Circuits
are discovered under various noise amplitudes, allowing for the analysis of their stability to such
perturbations in the causal analysis itself.

Base method comparison. The four base EAP methodologies are applied separately to a consistent
input dataset and a default, fixed set of hyperparameters for the aggregation and intervention type.

Hyperparameter sensitivity. For a given designated EAP variant, we vary the aggregation and
intervention type while fixing other hyperparameters.

4 Experimental setup

We re-use three tasks and three datasets from the EAP-IG paper, consisting of pairs of clean and
corrupted inputs:

* In the Indirect Object Identification (IOI) dataset [52], clean inputs are pairs of sentences
involving two proper nouns, such as "Then, Lisa and Sara went to the garden. Lisa gave a drink to".
In corrupted inputs, the name in the second sentence is replaced with another random one, such as
"Sara". The task consists in predicting the missing name, and model performance is evaluated by
measuring the logit difference between the missing name and the corrupted one. We use the dataset
from Hanna et al. [19] and the generator from Wang et al. [52].

* In the Subject-Verb Agreement dataset [37], clean and corrupted inputs are noun phrases differing
only in number (e.g., "Some worker" vs. "workers"). The model must predict a verb that agrees
with the subject. Performance is evaluated using the logit difference between both forms of the
reference verb. We use the generator from Warstadt et al. [53]], adapted to create only pairs of the
type "The [NOUN_SG]"/"The [NOUN_PL]" for ease of application to EAP. Prompt paraphrasing
was not implemented for this task due to the grammar-based nature of the data generation process.

* In the Greater-Than dataset [18]], clean inputs are sentences such as "The plan lasted from the
year 1142 to the year 11". In corrupted inputs, the start year’s last two digits are replaced with
"01". The model is then asked to predict a year that must fall in the correct range. The evaluation
metric is the difference in probability between correct and incorrect outputs. We use the dataset
from Hanna et al. [19] and the generator from Hanna et al. [18]].

We conduct experiments across three large language models to assess the consistency of our findings:
» gpt2-small [42]: This model was selected due to its scale and widespread use as a foundational

benchmark in numerous MI studies, including the original EAP, EAP-IP, and ACDC papers.

* Llama-3.2-1B [2]: This larger, recent decoder-only transformer model trained on different data
allows us to test the generality of circuit stability observations on a more recent architecture.

* Llama-3.2-1B-Instruct [2[]: The instruction fine-tuned variant of the previous model, allowing
us to investigate whether the fine-tuning process, which significantly alters model behavior and
capabilities, also impacts the stability characteristics of discovered circuits.

5 Results

In all our experiments, KL divergence and circuit error are highly correlated and display similar
trends; we only report the latter in this section, and the former in the appendix.

5.1 Circuit Variance under Data Resampling

We first investigate the variance of discovered circuits when the input data is resampled. Figure 2]
shows the circuit error and pairwise Jaccard index for circuits discovered using different resampling
strategies across all models and tasks, revealing significant variability across these axes.
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Figure 2: Circuit error and pairwise Jaccard index of circuits found across the three models, tasks,
and types of perturbation. One point represents one circuit.

Table 1: Average value (1) and average Coefficient of Variation (CV) of the circuit error and Jaccard
index across different resampling strategies, averaged over tasks and models.

Resampling Strategy | Circuit Error | Jaccard Index
m cv m cVv
Bootstrap 0.440 0.123 | 0.561 0.335
Meta-Dataset 0.300 0.094 | 0.790 0.132
Prompt Paraphrasing | 0.150 0.134 | 0.799 0.131

We observe a notable difference in performance between GPT-2 and the larger Llama models. Circuits
identified in GPT-2 consistently exhibit lower circuit error and higher structural stability (higher
Jaccard index). While smaller models are often used as testbeds for developing MI methods, this
suggests that circuit discovery may be more challenging and yield more unstable results in the larger,
more capable models that are of ultimate interest. In contrast, we observe no notable, systematic
difference between the instruction-tuned and base Llama models, suggesting that instruction tuning
may not fundamentally alter the stability or discoverability of the underlying circuits.

Furthermore, the distribution of the Jaccard index for GPT-2 appears to be multimodal, particularly
visible under the bootstrap and meta-dataset resampling conditions. This suggests that the discovery
process can converge to multiple, distinct, yet stable circuit solutions for the same task, echoing the
concept of non-identifiability.

Finally, the choice of perturbation significantly impacts circuit stability across all models. Table
[I] provides a quantitative summary. Bootstrap resampling induces the highest structural variance,
indicated by the lowest average Jaccard index (0.561) and the highest corresponding CV (0.335). The
circuits found via bootstrapping also have the highest average error (0.440), indicating they are not
only structurally different but also less faithful to the original model’s behavior. This highlights a
critical vulnerability of the EAP-IG method, demonstrating its high sensitivity to the data sample.
In contrast, resampling via a meta-dataset or prompt paraphrasing yields more stable and faithful
circuits (Jaccard indices of resp. 0.790 and 0.799) and lower variance.

Table [I] provides a quantitative summary of these results. Bootstrap resampling tields the highest
structural variance, as indicated by the lowest average Jaccard index (0.561) and the highest CV of
the Jaccard index (0.335). This suggests that circuits discovered using EAP-IG are highly sensitive to
the data used in their identification. The circuits discovered under bootstrap resampling also exhibit
the highest average circuit error (0.440), indicating that the resulting circuits are not only structurally
different but also less faithful to the original model’s behavior. In contrast, using a meta-dataset or
prompt paraphrasing results in more stable circuits, with higher Jaccard indices (resp. 0.790 and
0.799) and lower CVs. While this suggests that EAP-IG can find more consistent circuits when the



data distribution is stable, even with different specific examples, the high variance under bootstrap
resampling highlights a critical vulnerability of the method to sampling effects.

5.2 Hyperparameter Choices and Circuit Discovery

Table 2: Comparison of the circuits found in Llama-3.2-1B-Instruct on the base dataset while varying
either the EAP method, aggregation or intervention performed. For each task, we report the median
circuit (bold) computed across all 7 rows, as well as the Jaccard index of that median circuit to each
configuration’s circuit. Results for other models are reported in the appendix.

Parameters Greater-Than 101 SVA
CErr  Size Jacc. to Median | CErr  Size Jacc. to Median | CErr  Size Jacc. to Median

EAP, sum, patching 020 23 0.417 0.69 3 0.286 076 18 0.536
EAP-IG-activations, sum, patching 020 17 0.098 0.69 12 0.125 076 24 0.531
EAP-IG-inputs, median, patching 020 10 0.086 0.69 6 1.000 075 21 0.840
EAP-IG-inputs, sum, mean 019 28 1.000 0.72 7 0.182 073 24 0.960
EAP-IG-inputs, sum, mean-positional | 0.41 33 0.298 0.82 6 1.000 073 22 0.808
EAP-IG-inputs, sum, patching 020 16 0.571 0.69 7 0.182 075 25 1.000
clean-corrupted, sum, patching 020 16 0.419 0.69 9 0.071 076 16 0.577

We next evaluate the robustness of circuit discovery to the value of hyperparameters within the EAP-
IG framework. Figure[T] (in the introduction) provides a visual summary of how varying multiple
parameters at once leads to a high diversity in circuits found in gpt2-small for the IOI task.

Table 2] provides a detailed analysis for Llama-3.2-1B-Instruct across all tasks. For each task, we
report the circuit error, size, and Jaccard similarity to the median circuit for different EAP variants
and hyperparameters. The results show considerable variation in the discovered circuits depending
on the configuration. For instance, in the Greater-Than task, the Jaccard similarity to the median
circuit ranges from 0.086 to 1. Similarly, for the IOI task, some circuits have a Jaccard similarity
of 1 to the median, while others are as low as 0.071. This indicates that the choice of EAP variant
and hyperparameters can lead to substantially different circuits, and highlights the importance of
reporting these choices and assessing their impact on the final results.

5.3 Sensitivity to Experimental Noise

Table 3: Average and standard deviation of the circuit error (left) and pairwise Jaccard (right) index
of the circuits found in gpt2-small when using noise with amplitude [0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1,
2, 5] as intervention.
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To assess the robustness of EAP-IG to perturbations in the causal analysis itself, we replace the
intervention method with injected noise into the token embeddings as the intervention method. Table
[3] shows the effect of increasing noise amplitude on circuit error and pairwise Jaccard index for
gpt2-small on the Greater-Than and IOI tasks.



Increasing the noise amplitude generally leads to an increase in circuit error and a decrease in the
Jaccard index, indicating less stable and less faithful circuits. When the noise amplitude is above 0.5,
the circuits found are more stable but perform poorly. The averaged CVs of the Jaccard index and
circuit error across tasks peak at a noise amplitude of around 0.2, while the average circuit error itself
remains relatively low at this level. This suggests that a moderate amount of noise can be a useful tool
for probing the stability of discovered circuits, revealing structural instabilities without drastically
impacting the circuit’s functional performance. A plot of the CVs can be found in the appendix.

6 Discussion

Our empirical analysis of EAP-IG reveals significant variability in discovered circuits under perturba-
tion, underscoring the need for a more statistically rigorous approach to MI. We find that circuits are
sensitive to the specific data sample used for discovery, the choice of hyperparameters, and noise in
the causal analysis. Our key findings are as follows:

* High Variance: Circuits discovered with EAP-IG exhibit high variance when the input data is
resampled using bootstrapping. This suggests that a circuit identified from a single dataset may not
be representative of the underlying mechanism and may be an artifact of the sample.

* Hyperparameter Sensitivity: The structure of discovered circuits is highly sensitive to the choice
of EAP variant and its hyperparameters. This lack of robustness to methodological choices poses a
challenge for the reproducibility and generalizability of MI findings.

» Impact of Noise: Introducing noise into the causal interventions degrades circuit performance, but
can also help assess circuit stability. We found that moderate levels of noise can effectively reveal
structural instabilities.

As aresult, we propose recommendations to promote a more statistically grounded science of MI:

1. Report Stability Metrics Routinely. We strongly advocate for the routine reporting of stability
metrics alongside circuit discovery results. Specifically, we recommend that researchers report the
variance of circuit structure and performance (e.g., the average pairwise Jaccard index and the
CV of the circuit error) under bootstrap resampling of the input data. This practice, common in
mature scientific fields, would provide a crucial measure of the statistical reliability of the found
circuits [[12} 15]]. Our publicly available codebase[]_-] facilitates the computation of these metrics.

2. Justify and Report Hyperparameter Choices. Given the sensitivity of EAP-IG to hyperparam-
eter settings, it is crucial that researchers transparently report and justify their choices. When
possible, a sensitivity analysis should be conducted to assess the impact of different hyperparameter
settings on the discovered circuits.

3. Use Noise for Robustness Checks. We recommend using noise injection during causal analysis
as a controlled stress test for discovered circuits. Reporting how circuit stability and performance
degrade with increasing noise can provide valuable insights into the robustness of the identified
mechanisms. A noise level of 0.2 seems to be a good starting point for gpt2-small, as it reveals
structural variance without excessively harming performance.

Future Directions. Our work opens up several avenues for future research. The high variance of
discovered circuits suggests that instead of seeking a single "true" circuit, it might be more fruitful to
characterize a distribution over possible circuits. This could be achieved by developing methods that
explicitly model the uncertainty in circuit discovery. The set of circuits generated via bootstrapping
in this study is a first approximation of such a distribution.

Our findings also motivate the development of new circuit discovery methods that are explicitly
designed to be more robust to data sampling and hyperparameter choices. One promising direction
is to incorporate a stability objective into the circuit discovery process itself, such as searching for
circuits that are not only faithful but also stable across bootstrap resamples or noise perturbations.

Finally, while our study focused on EAP-IG, the statistical framework we have proposed is broadly
applicable to other circuit discovery methods. We encourage the community to adopt similar stability
analyses for other techniques to build a more complete picture of the reliability of MI findings.

'On GitHub,


https://github.com/MelouxM/EAP-IG_variance

By embracing statistical rigor, we can move towards a more mature and trustworthy science of
mechanistic interpretability.
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Pairwise Jaccard Similarity Between Circuits

Circuit Index

Figure 3: Full heatmap of the pairwise Jaccard index between circuits displayed in Figure[T] (circuits
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found in gpt2-small on the Greater-Than task while varying all parameters)

Table 4: Aggregated results from Figure 2] for bootstrap resampling.
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Circuit Error KL Divergence Pairwise Jaccard Index

Model Name U o? CV | p o? CV | p o? cv
Greater-Than

Llama-3.2-1B 021 4.67-107* 0.10 | 6.91-10"7 1.29-107* 0.16 | 042 593-10~2 0.18
Llama-3.2-1B-Instruct | 0.21 5.94-10"* 0.12 | 6.43-10~7 6.50-1071¢ 0.04 | 0.33 1.36-10"2 0.36
101

Llama-3.2-1B 0.66 2.51-107% 0.08 | 548-10"¢ 1.29-10~* 0.07 | 0.39 1.07-10"' 0.85
Llama-3.2-1B-Instruct | 0.69 2.62-1072 0.07 | 9.26-107% 4.44-10~'% 0.07 | 0.34 6.72-1072 0.76
gpt2-small 0.11 7.32-107* 024 | 1.23-107¢ 8.80-10"* 0.24 | 0.67 1.57-1072 0.19
SVA

Llama-3.2-1B 0.80 1.02-107% 0.04 | 1.61-107> 4.02-10~* 0.04 | 0.66 1.55-10"2 0.19
Llama-3.2-1B-Instruct | 0.75 1.04-107% 0.04 | 1.87-10~°> 3.97-107* 0.03 | 0.69 1.20-1072 0.16
gpt2-small 0.08 5.00-107* 029 | 0 0 1.00 0 0.00
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Table 5: Aggregated results from Figure 2| for meta-dataset resampling.

Circuit Error KL Divergence Pairwise Jaccard Index

Model Name U o? CV | p o? CV | p o? cv
Greater-Than

Llama-3.2-1B 024 3.06-107° 0.02 | 5.58-10"7 3.56-107'¢ 0.03 | 0.74 8.17-1072 0.12
Llama-3.2-1B-Instruct | 0.18 1.05-10"* 0.06 | 6.46-10~7 1.31-10~'¢ 0.02 | 0.51 1.83-10"2 0.27
101

Llama-3.2-1B 0.15 1.67-107* 0.09 | 5.75-10"7 6.68-107'¢ 0.04 | 0.86 1.25-10"2 0.13
Llama-3.2-1B-Instruct | 0.22 3.30-10~* 0.08 | 6.19-10~7 1.53-10~% 0.06 | 0.76 2.13-10"2 0.19
gpt2-small 0.03 5.23-107° 022 | 4.72-107° 1.91-107'2 0.03 | 0.88 5.75-1072 0.09
SVA

Llama-3.2-1B 0.77 3.60-10~% 0.02 | 1.54-107> 8.18-10"* 0.02 | 0.80 1.06-10"2 0.13
Llama-3.2-1B-Instruct | 0.74 2.52-10~* 0.02 | 1.84-10~° 2.05-10"* 0.02 | 0.77 1.07-10"2 0.13
gpt2-small 0.06 2.18-107* 023 |0 0 1.00 0 0.00

Table 6: Aggregated results from Figure 2] for prompt paraphrasing.

Circuit Error KL Divergence Pairwise Jaccard Index

Model Name I o? CV | u o? CV | u o? cv
Greater-Than

Llama-3.2-1B 0.22 7.77-107° 0.04 | 7.09-10=7 2.05-10"% 0.06 | 0.64 1.42-10"2 0.19
Llama-3.2-1B-Instruct | 0.17 7.46-10"° 0.05 | 5.43-10~7 1.04-107'¢ 0.02 | 0.85 4.20-10~2 0.08
101

Llama-3.2-1B 0.16 1.66-10"* 0.08 | 5.42-10=7 9.45-10"¢ 0.06 | 0.88 1.01-1072 0.11
Llama-3.2-1B-Instruct | 0.18 3.44-10"* 0.10 | 6.06-10~7 1.43-10"' 0.06 | 0.74 1.80-1072 0.18
gpt2-small 0.01 227-107° 040 | 4.31-107° 1.42-107*2 0.03 | 0.89 7.66-10"2 0.10

Table 7: Comparison of the circuits found in Llama-3.2-1B, using a similar setup to that of Table

2

Parameters Greater-Than 101 SVA

CErr KL-Div_ Size Jacc.to Median | CErr  KL-Div  Size Jacc. to Median | CErr  KL-Div  Size Jacc. to Median
EAP, sum, patching - - - - 064 54-10°° 7 0.400 0.80 1.6-107 16 0.355
EAP-IG-activations, sum, patching 0.64 54-107¢ 117 0.042 080 1.6-107° 28 0.421
EAP-IG-inputs, median, patching 0.65 54-107% 11 0.385 080 1.6-107° 24 0.923
EAP-IG-inputs, sum, mean 067 54-107¢ 5 0.714 075 1.4-107° 26 1.000
EAP-IG-inputs, sum, mean-positional - - 077 88-107¢ 8 0.500 069 1.5-107> 25 0.962
EAP-IG-inputs, sum, patching 023 6.0-1077 21 0.65 54-107°¢ 7 1.000 080 1.6-107° 26 1.000
clean-corrupted, sum, patching - - 059 5.2-10°¢ 4. 0.016 080 1.6-107° 16 0.355

Table 8: Detailed results for Table [2] including KL divergence.

Parameters ‘ Greater-Than 101 SVA

CErr  KL-Div  Size Jacc.toMedian | CErr  KL-Div  Size Jacc. to Median | CErr KL-Div  Size Jacc. to Median
EAP, sum, patching 020 6.4-1071 23 0.417 069 9.1-10°° 3 0.286 076 19-107 18 0.536
EAP-IG-activations, sum, patching 020 6.4-1077 17 0.098 0.69 9.1-107° 12 0.125 076 1.9-107° 24 0.531
EAP-IG-inputs, median, patching 020 6.4-1077 10 0.086 069 9.1-107¢ 6 1.000 075 1.9-107° 21 0.840
EAP-IG-inputs, sum, mean 019 7.1-1077 28 1.000 072 93-107¢ 7 0.182 073 1.6-107° 24 0.960
EAP-IG-inputs, sum, mean-positional | 041 5.7-107% 33 0.298 082 1.7-107° 6 1.000 073 1.7-107° 22 0.808
EAP-IG-inputs, sum, patching 020 6.4-1077 16 0.571 069 9.1-1076¢ 7 0.182 075 1.8-107° 25 1.000
clean-corrupted, sum, patching 020 6.4-1077 16 0.419 0.69 9.1-107° 9 0.071 076 1.9-107° 16 0.577

Table 9: Comparison of the circuits found in gpt2-small, using a similar setup to that of Table 2]

Parameters

101

SVA

CErr  KL-Div  Size Jacc.toMedian | CEr  KL-Div ~ Size Jacc. to Median
EAP, sum, patching 010 1.2-10% 12 0.391 0.06 0 1 1.000
EAP-IG-activations, sum, patching 0.10 1.3-10°¢ 5 0.042 0.05 0 21 0.000
EAP-IG-inputs, median, patching 011 1.2-107% 20 1.000 0.06 0 1 1.000
EAP-IG-inputs, sum, mean 012 1.3-107¢ 20 1.000 0.07 3.2-107¢ 1 1.000
EAP-IG-inputs, sum, mean-positional | 0.14 2.1-107° 21 0.783 0.08 1.6-107° 1 1.000
EAP-IG-inputs, sum, patching 011 1.2-107% 20 1.000 0.06 0 1 1.000
EAP-IG-inputs, sum, zero - - - - 0.00 0 1 1.000
clean-corrupted, sum, patching 0.1 1.2-107¢ 19 0.696 0.06 0 1 1.000
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Figure 4: CV of circuit metrics for different noise amplitudes in gpt2-small, averaged across tasks.

Table 10: Detailed results for Table [3] including KL divergence. Values are plotted for noise
amplitudes in [0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5].
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