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Abstract

Developing trustworthy artificial intelligence requires moving beyond black-box1

performance metrics toward understanding models’ internal computations. Mech-2

anistic Interpretability (MI) addresses this by identifying the algorithmic mech-3

anisms underlying model behaviors, yet its scientific rigor critically depends on4

the reliability of its findings. In this work, we argue that interpretability methods5

such as circuit discovery should be viewed as statistical estimators, subject to6

questions of variance and robustness. To illustrate this statistical framing, we7

present a systematic stability analysis of a state-of-the-art circuit discovery method:8

EAP-IG. We evaluate its variance and robustness through a comprehensive suite9

of controlled perturbations, including input resampling, prompt paraphrasing, hy-10

perparameter variation, and injected noise within the causal analysis itself. Across11

various models and tasks, our results demonstrate that EAP-IG can exhibit high12

structural variance and sensitivity to hyperparameters, questioning the stability of13

its findings. Based on these results, we offer a set of best-practice recommendations14

for the field, advocating for the routine reporting of stability metrics to promote a15

more rigorous and statistically grounded science of interpretability.16

1 Introduction17

As AI systems are increasingly deployed in real-world applications, the need for robust interpretability18

methods becomes more urgent. Understanding the internal mechanisms of these models is critical19

not only for diagnosing failures and improving robustness [3], but also for complying with emerging20

legal frameworks that mandate explainability [51].21

Mechanistic Interpretability (MI) has emerged as a promising research direction aiming to reverse-22

engineer the specific algorithms learned by deep neural networks [38]. A central approach in23

MI involves identifying functional sub-networks called “circuits” that are responsible for particular24

capabilities [39, 13]. These circuits are typically identified through interventions on the computational25

graph: setting the network in counterfactual states and measuring the effect of components on outputs26

[49, 35, 19, 47]. The long-term vision of MI is to become a fully-fledged scientific discipline that27

studies trained models using scientific discovery tools similar to those of the natural sciences [8, 28].28

However, MI currently faces foundational challenges that limit its scientific rigor. Interpretability29

methods may produce valid explanations in random, untrained networks. For instance, feature30

attribution methods generate similar saliency maps for random and trained models [1], sparse31

autoencoders can extract plausible “explanations” from random weights [20], and many incompatible32

circuits can even be discovered in networks with random behavior [31]. This highlights a non-33

identifiability problem: multiple incompatible explanations may satisfy current MI criteria [31],34

creating generalizability issues in MI explanations. For instance, circuits discovered in one setting35

often fail to transfer to others [52].36
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Figure 1: In gpt2-small, varying multiple circuit finding parameters at once (resampling strategy,
aggregation method, type of intervention, EAP method, and pruning strategy) yields many different
circuits, which we display along with the union and median circuit (left). In the center, the MDS
projection of the pairwise Jaccard index matrix shows that none of the tested EAP methods consistently
yields circuits with lower variance (tighter clustering).

To evolve from exploratory techniques into a rigorous scientific discipline, MI must adopt the37

standards of empirical science, most notably statistical inference [15, 30]. Scientific validity requires38

formulating testable hypotheses [41, 24], quantifying observational variability (fluctuations due to39

sampling or measurement noise; 6, 7), and representing uncertainty in our conclusions via measures40

of variability like confidence intervals [27, 9]. However, MI has yet to systematically integrate those41

practices. Circuits are often reported without quantification of their statistical stability, robustness to42

perturbations, and uncertainty estimates [43]. For instance, how does altering the dataset slightly,43

shifting the input distribution, or resampling change the discovered circuit? How sensitive are the44

findings of circuit discovery methods to hyperparameters? These limitations prevent us from assessing45

the generalizability, reliability, and ultimately, the validity of MI explanations [43, 29, 23].46

In this work, we argue that mechanistic interpretability must be reframed as a problem of statistical47

inference. As a case study, we focus on a family of state-of-the-art MI techniques: Edge Activation48

Patching (EAP; 46) and its variants, notably EAP with Integrated Gradients (EAP-IG; 19). We use49

EAP to systematically investigate how principles of statistical robustness and variability apply to the50

outputs of MI methods: the discovered circuits themselves.51

Our empirical analysis evaluates the stability of EAP-generated circuits under controlled variations:52

small shifts in input distributions, bootstrap resampling of input data, and changes in method53

hyperparameters. We conduct experiments across three tasks and three model architectures, providing54

both qualitative and quantitative evidence of the circuits’ variability. Our results show that the circuits55

identified by EAP exhibit high variance under data resampling and are sensitive to hyperparameter56

choices: small perturbations in data or changes in the analysis pipeline often yield substantially57

different circuit structures. This is visually summarized in Fig. 1, which shows the disparity of circuits58

found when different perturbations are applied simultaneously. In light of these findings, we propose59

a set of best practices for the MI community, including the systematic use of bootstrap resampling60

and the reporting of stability metrics to foster a more rigorous and reliable science of interpretability.61

2 Related Work62

2.1 Circuit Discovery and Causal Mediation Analysis63

Numerous methodologies exist to identify the circuits central to MI’s goals. Causal Mediation64

Analysis (CMA) [40, 48] provides a formal framework that investigates how an intervention (e.g.,65

an input) affects an outcome (e.g., a model’s prediction) via mediators (e.g., neuron activations). In66
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DNNs, CMA helps test hypotheses about internal components’ causal roles. Interventional techniques67

like activation patching [50, 16, 19] manipulate mediators to quantify their influence.68

Building on CMA, circuit discovery methods have evolved from feature visualization [57, 45] to69

techniques identifying interconnected structures. Notable examples include causal tracing [32] and its70

variants [33, 14], as well as methods like Automated Circuit Discovery (ACDC; 10, which employs71

activation patching to find interpretable circuits. Other lines of inquiry explore program synthesis via72

MI, though applications have focused on simpler architectures such as RNNs [34]. Our work focuses73

on Edge Activation Patching with Integrated Gradients (EAP-IG) [19]. EAP combines causal patching74

with gradient-based attribution (integrated gradients for EAP-IG) to score individual edge importance,75

and also measures the impact of excluded components when producing a circuit. We selected the76

EAP family for its reported state-of-the-art performance in identifying sparse, fine-grained edge-level77

circuits [46, 19], making it an ideal candidate for studying the stability of such granular discoveries.78

2.2 Evaluation of Circuit Discovery Methods79

A core challenge in MI is the absence of "ground truth" circuits, as the notion of a single correct circuit80

can be ill-defined or non-identifiable [36, 31]. Thus, evaluation relies on proxy metrics assessing81

desirable properties: faithfulness (how accurately the circuit reflects model behavior, often tested82

by perturbing or ablating the identified circuit components within the full model; 10, 21, 19, 44),83

sufficiency/predictive power (whether the isolated circuit can reproduce the target behavior; 4, 55),84

interpretability (a qualitative assessment of understandability and alignment with intuition; 39), and85

sparsity/minimality (a preference for simpler, concise circuits; 13, 21, 11). These criteria are often86

applied post-hoc and qualitatively.87

2.3 Stability and Robustness in Circuit Discovery88

While the broader field of eXplainable AI (XAI) has increasingly recognized the importance of89

robustness, particularly for feature attribution methods where explanations like saliency maps can90

be sensitive to minor input changes [17, 25, 58] or vary with training seeds [1, 56], systematic91

investigation into the stability and robustness of MI-derived circuits is less developed.92

MI also faces internal challenges. For example, interventions based on discovered circuits may not93

generalize reliably; edits derived from methods like causal training can fail to extend to novel contexts,94

casting doubts on the robustness of the underlying identified mechanism itself [22]. Furthermore,95

MI outputs can be prone to "interpretability illusions", where analytical techniques might highlight96

artifacts to statistical correlations rather than genuine computational mechanisms [26]. The challenge97

of non-identifiability, where multiple distinct and incompatible circuits can equally satisfy common98

evaluation metrics [31], further complicates claims about discovering the true underlying circuits.99

While these issues of generalization failure, susceptibility to illusions, and non-identifiability differ100

from sensitivity to data or parameter perturbations that we focus on, they collectively underscore a101

pressing concern: MI findings may not always be stable or reliably reflect true model operations. This102

broader context motivates our focus on the statistical robustness and variability of discovered circuits103

when subjected to controlled perturbations. To our knowledge, dedicated studies analyzing the104

stability of circuit discovery outputs to variations in input data, experimental conditions, or method105

hyperparameters are scarce. This paper aims to fill this gap by empirically studying the stability of106

EAP-derived circuits, thereby contributing to developing more rigorous evaluation practices in MI.107

3 Formal Setup108

This section outlines a general framework for quantifying the stability of circuits discovered by MI109

methods, which we then apply to the EAP family as a case study. We identify two main sources of110

instability in discovered circuits:111

• Variance refers to the statistical variability of the discovered circuit (i.e., the output of the MI112

method) when resampling the input data used for its discovery. It captures the sensitivity of the113

method to the specific sample of data drawn from an underlying distribution. This aligns with114

standard statistical notions of sampling variance.115
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• Robustness refers to the stability of a discovered circuit when subjected to controlled changes in116

the analytical setup. These changes can include variations in the MI method’s hyperparameters or117

perturbations to the experimental conditions used during circuit discovery (e.g., adding noise to118

interventions). This assesses the circuit’s sensitivity to the researcher’s methodological decisions119

and the specifics of the analysis pipeline.120

We aim to move beyond treating discovered circuits as singular, definitive findings. Instead, in line121

with modern statistical thinking that cautions against over-reliance on single point estimates [54], we122

wish to provide quantitative measures of their stability and associated performance characteristics123

under these different sources of perturbation, thereby offering a more nuanced understanding of their124

reliability.125

3.1 General Formalization of Circuit Discovery126

Let Mθ be a trained neural network. A general circuit discovery process aims to identify a subgraph127

(circuit) C = (VC , EC) within Mθ. This process typically involves:128

• Input data (D): A dataset of input samples xi used specifically for the circuit discovery analysis129

(typically distinct from the dataset originally used to train the model Mθ. These inputs are chosen130

to elicit distinct model behaviors or internal states that the MI method will then analyze.131

• Experimental conditions (E): The strategy for causal analysis. This specifies how interventions are132

performed on Mθ’s internal components (e.g., neuron activations, edge weights), including which133

components are targeted, how their states are modified (e.g., ablated, patched), and which aspects134

of the model’s behavior (e.g. specific logits, loss changes) are measured to quantify the effects of135

these interventions.136

• Observational data generation: The application of experimental conditions E to model Mθ with137

inputs from D produces a set of observations O. This data O = Observe(Mθ, D, E) consists of138

quantitative measurements (e.g., changes in model loss, output probabilities, internal activation139

patterns) corresponding to each intervention performed.140

• Component scoring and circuit identification algorithm (A) and hyperparameters (Λ): This stage141

typically involves two steps. First, individual components (e.g., edges) are assigned scores based on142

the observation data O (e.g., their estimated impact on a task metric). Second, a circuit identification143

algorithm selects a subset of components that form the final circuit from these scores using specific144

selection criteria and hyperparameters (e.g., number of edges to keep, a threshold, search strategy).145

Thus, the discovered circuit C can be seen as the output of a composite function: C =146

AΛ(Observe(Mθ, O,D, E)). For simplicity, we represent the entire circuit discovery method as147

FCD, such that C = FCD(Mθ, D,Λmethod), where Λmethod collectively represents all parameters148

governing E and A. Different MI methods make distinct choices for D, E , A, and its hyperparameters.149

Our study focuses on EAP [46] and its variants [19]. While the underlying principles of EAP can150

be applied to score nodes (such as neurons or attention heads), our investigation centers on its151

common use for identifying important edges. EAP methods first involve an edge scoring stage,152

where individual edges are scored based on their influence on a pre-defined task-specific performance153

metric (or loss function) when subjected to causal interventions (patching). Following edge scoring,154

a circuit selection stage is employed. This stage uses the computed edge scores, a chosen selection155

algorithm, and hyperparameters to determine the final set of edges in the circuit C. The EAP variants156

primarily define different methodologies for the edge scoring stage. They differ in their choices157

for E (specifically, how edge effects, reflected as changes in the task metric, are measured through158

patching and input/activation interpolation) and the initial part of A (how raw observational data O is159

processed into edge scores). These scoring methods are as follows:160

• Base EAP: Computes a first-order approximation of each edge’s indirect effect (the estimated161

change in the task metric upon corrupting the edge) by multiplying the change in downstream162

activations ax by the gradient of the task metric with respect to ax, evaluated on clean inputs.163

• EAP-IG (inputs): An adaptation of EAP that improves circuit quality by averaging the gradient of164

the task metric (with respect to input embeddings) over m interpolation steps between clean and165

corrupted input embeddings, then using this to estimate edge importance.166
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• EAP-IG (activations): Similar to EAP-IG (inputs), but estimates edge importance by averaging the167

gradient of the task metric (w.r.t. intermediate activations) while interpolating these activations168

directly between their clean and corrupted values (for nodes) or the activations influencing an edge.169

• Clean-Corrupted: A simplified variant that scores components based on the change in the task170

metric or its gradient measured only in the clean and corrupted states.171

After scoring, circuit selection can use several algorithms such as greedy search (working backward172

from output logits or forward from inputs), threshold pruning, or top-N pruning. These selection173

algorithms often have their own hyperparameters, such as whether to use absolute values, the number174

of edges N, or the specific threshold. They may also include steps to ensure graph connectivity. In175

our work, we consistently adhere to the iterative greedy search procedure described in the original176

EAP-IG paper [19]. This involves selecting an initial set of n edges based on the absolute values of177

their scores (starting with n = 30), then incrementally increasing n up to 2000 until a path from input178

to output is found within the selected subgraph. If this fails, we say that no faithful circuit is found.179

The operational hyperparameters we investigate for the edge scoring stage of these four EAP method-180

ologies are the type of aggregation (how multiple scores contributing to an edge’s final importance are181

combined, e.g., mean, median) and intervention (the nature of the corruption applied during patching,182

e.g., zero ablation, patching from a corrupted input, mean ablation, mean-positional ablation).183

3.2 Variance, Robustness, and Circuit Properties184

We evaluate the properties of each discovered circuit Ck (generated under a specific condition k,185

such as a particular data sample Dk or hyperparameter setting Λk. We generate a set of N circuits186

{C1, C2, . . . , CN} by varying these conditions (e.g., through bootstrapping D or changing Λ, then187

analyze the statistics of these properties across the set.188

Circuit performance metrics. Those assess how well each individual circuit Ci, when operating189

as a standalone model MCi , replicates the task-specific behavior of the original full model Mθ.190

These metrics are evaluated on a relevant evaluation dataset Deval. In many circuit discovery settings,191

including typical EAP-IG usage, Deval = D. Using a separate test set would assess generalization to192

unseen data. In this paper, we follow the common practice where Deval = D, and report the mean µ,193

variance σ2, and coefficient of variation CV = σ/µ of each circuit performance metric.194

• Circuit Error: This measures the frequency with which the circuit MCi
produces a different195

prediction than the full model Mθ on Deval. For tasks where a discrete prediction M(x) can196

be derived from the model’s output for an input x, circuit error is defined as CE(Ci,Mθ) =197
1

|Deval|
∑

x∈Deval
1[MCi(x) ̸= Mθ(x)].198

• Circuit Divergence: The Kullback-Leibler divergence DKL(PMθ(y|x)||PMCi
(y|x)) between the199

full output probability distributions of Mθ and MCi , averaged over Deval. This quantifies the200

overall difference in predictive distributions.201

Circuit structural similarity metric (Jaccard Index). This measures the consistency of the structure202

(edges/nodes) of the discovered circuits themselves, independent of their performance. For any pair203

of circuits Ci, Cj from the set of N discovered circuits, with respective edge sets Ei, Ej , the Jaccard204

index is J(Ei, Ej) =
|Ei∩Ej |
|Ei∪Ej | . We report the mean and variance of the pairwise Jaccard indices.205

3.3 Assessing Stability206

We investigate the stability of discovered circuits across multiple dimensions. For each experimental207

run (iterated over seed values), we apply one of the following variations:208

Input data resampling (bootstrap). To estimate the variance of circuit properties attributable to209

the specific input data sample D, we employ bootstrap resampling [12]. New datasets are created by210

resampling with replacement from the original dataset. The circuit discovery method is then applied211

to each resampled dataset.212

Data meta-distribution shifts. To assess circuit stability when the input data originates from related213

but distinct data-generating processes, we either generate multiple independent datasets from the214
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same underlying meta-distribution (meta-dataset) or replace input prompts with a paraphrased version215

(re-prompting). We then apply the circuit discovery method to each newly generated dataset.216

Experimental intervention noise. To evaluate circuit stability when the interventions within the217

experimental conditions are perturbed, we introduce noise during the intervention phase. Specifically,218

noise of a controlled amplitude and fixed direction is added to the relevant token embeddings. Circuits219

are discovered under various noise amplitudes, allowing for the analysis of their stability to such220

perturbations in the causal analysis itself.221

Base method comparison. The four base EAP methodologies are applied separately to a consistent222

input dataset and a default, fixed set of hyperparameters for the aggregation and intervention type.223

Hyperparameter sensitivity. For a given designated EAP variant, we vary the aggregation and224

intervention type while fixing other hyperparameters.225

4 Experimental setup226

We re-use three tasks and three datasets from the EAP-IG paper, consisting of pairs of clean and227

corrupted inputs:228

• In the Indirect Object Identification (IOI) dataset [52], clean inputs are pairs of sentences229

involving two proper nouns, such as "Then, Lisa and Sara went to the garden. Lisa gave a drink to".230

In corrupted inputs, the name in the second sentence is replaced with another random one, such as231

"Sara". The task consists in predicting the missing name, and model performance is evaluated by232

measuring the logit difference between the missing name and the corrupted one. We use the dataset233

from Hanna et al. [19] and the generator from Wang et al. [52].234

• In the Subject-Verb Agreement dataset [37], clean and corrupted inputs are noun phrases differing235

only in number (e.g., "Some worker" vs. "workers"). The model must predict a verb that agrees236

with the subject. Performance is evaluated using the logit difference between both forms of the237

reference verb. We use the generator from Warstadt et al. [53], adapted to create only pairs of the238

type "The [NOUN_SG]"/"The [NOUN_PL]" for ease of application to EAP. Prompt paraphrasing239

was not implemented for this task due to the grammar-based nature of the data generation process.240

• In the Greater-Than dataset [18], clean inputs are sentences such as "The plan lasted from the241

year 1142 to the year 11". In corrupted inputs, the start year’s last two digits are replaced with242

"01". The model is then asked to predict a year that must fall in the correct range. The evaluation243

metric is the difference in probability between correct and incorrect outputs. We use the dataset244

from Hanna et al. [19] and the generator from Hanna et al. [18].245

We conduct experiments across three large language models to assess the consistency of our findings:246

• gpt2-small [42]: This model was selected due to its scale and widespread use as a foundational247

benchmark in numerous MI studies, including the original EAP, EAP-IP, and ACDC papers.248

• Llama-3.2-1B [2]: This larger, recent decoder-only transformer model trained on different data249

allows us to test the generality of circuit stability observations on a more recent architecture.250

• Llama-3.2-1B-Instruct [2]: The instruction fine-tuned variant of the previous model, allowing251

us to investigate whether the fine-tuning process, which significantly alters model behavior and252

capabilities, also impacts the stability characteristics of discovered circuits.253

5 Results254

In all our experiments, KL divergence and circuit error are highly correlated and display similar255

trends; we only report the latter in this section, and the former in the appendix.256

5.1 Circuit Variance under Data Resampling257

We first investigate the variance of discovered circuits when the input data is resampled. Figure 2258

shows the circuit error and pairwise Jaccard index for circuits discovered using different resampling259

strategies across all models and tasks, revealing significant variability across these axes.260
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Figure 2: Circuit error and pairwise Jaccard index of circuits found across the three models, tasks,
and types of perturbation. One point represents one circuit.

Table 1: Average value (µ) and average Coefficient of Variation (CV) of the circuit error and Jaccard
index across different resampling strategies, averaged over tasks and models.

Resampling Strategy Circuit Error Jaccard Index
µ CV µ CV

Bootstrap 0.440 0.123 0.561 0.335
Meta-Dataset 0.300 0.094 0.790 0.132
Prompt Paraphrasing 0.150 0.134 0.799 0.131

We observe a notable difference in performance between GPT-2 and the larger Llama models. Circuits261

identified in GPT-2 consistently exhibit lower circuit error and higher structural stability (higher262

Jaccard index). While smaller models are often used as testbeds for developing MI methods, this263

suggests that circuit discovery may be more challenging and yield more unstable results in the larger,264

more capable models that are of ultimate interest. In contrast, we observe no notable, systematic265

difference between the instruction-tuned and base Llama models, suggesting that instruction tuning266

may not fundamentally alter the stability or discoverability of the underlying circuits.267

Furthermore, the distribution of the Jaccard index for GPT-2 appears to be multimodal, particularly268

visible under the bootstrap and meta-dataset resampling conditions. This suggests that the discovery269

process can converge to multiple, distinct, yet stable circuit solutions for the same task, echoing the270

concept of non-identifiability.271

Finally, the choice of perturbation significantly impacts circuit stability across all models. Table272

1 provides a quantitative summary. Bootstrap resampling induces the highest structural variance,273

indicated by the lowest average Jaccard index (0.561) and the highest corresponding CV (0.335). The274

circuits found via bootstrapping also have the highest average error (0.440), indicating they are not275

only structurally different but also less faithful to the original model’s behavior. This highlights a276

critical vulnerability of the EAP-IG method, demonstrating its high sensitivity to the data sample.277

In contrast, resampling via a meta-dataset or prompt paraphrasing yields more stable and faithful278

circuits (Jaccard indices of resp. 0.790 and 0.799) and lower variance.279

Table 1 provides a quantitative summary of these results. Bootstrap resampling tields the highest280

structural variance, as indicated by the lowest average Jaccard index (0.561) and the highest CV of281

the Jaccard index (0.335). This suggests that circuits discovered using EAP-IG are highly sensitive to282

the data used in their identification. The circuits discovered under bootstrap resampling also exhibit283

the highest average circuit error (0.440), indicating that the resulting circuits are not only structurally284

different but also less faithful to the original model’s behavior. In contrast, using a meta-dataset or285

prompt paraphrasing results in more stable circuits, with higher Jaccard indices (resp. 0.790 and286

0.799) and lower CVs. While this suggests that EAP-IG can find more consistent circuits when the287
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data distribution is stable, even with different specific examples, the high variance under bootstrap288

resampling highlights a critical vulnerability of the method to sampling effects.289

5.2 Hyperparameter Choices and Circuit Discovery290

Table 2: Comparison of the circuits found in Llama-3.2-1B-Instruct on the base dataset while varying
either the EAP method, aggregation or intervention performed. For each task, we report the median
circuit (bold) computed across all 7 rows, as well as the Jaccard index of that median circuit to each
configuration’s circuit. Results for other models are reported in the appendix.

Parameters Greater-Than IOI SVA
CErr Size Jacc. to Median CErr Size Jacc. to Median CErr Size Jacc. to Median

EAP, sum, patching 0.20 23 0.417 0.69 3 0.286 0.76 18 0.536
EAP-IG-activations, sum, patching 0.20 17 0.098 0.69 12 0.125 0.76 24 0.531
EAP-IG-inputs, median, patching 0.20 10 0.086 0.69 6 1.000 0.75 21 0.840
EAP-IG-inputs, sum, mean 0.19 28 1.000 0.72 7 0.182 0.73 24 0.960
EAP-IG-inputs, sum, mean-positional 0.41 33 0.298 0.82 6 1.000 0.73 22 0.808
EAP-IG-inputs, sum, patching 0.20 16 0.571 0.69 7 0.182 0.75 25 1.000
clean-corrupted, sum, patching 0.20 16 0.419 0.69 9 0.071 0.76 16 0.577

We next evaluate the robustness of circuit discovery to the value of hyperparameters within the EAP-291

IG framework. Figure 1 (in the introduction) provides a visual summary of how varying multiple292

parameters at once leads to a high diversity in circuits found in gpt2-small for the IOI task.293

Table 2 provides a detailed analysis for Llama-3.2-1B-Instruct across all tasks. For each task, we294

report the circuit error, size, and Jaccard similarity to the median circuit for different EAP variants295

and hyperparameters. The results show considerable variation in the discovered circuits depending296

on the configuration. For instance, in the Greater-Than task, the Jaccard similarity to the median297

circuit ranges from 0.086 to 1. Similarly, for the IOI task, some circuits have a Jaccard similarity298

of 1 to the median, while others are as low as 0.071. This indicates that the choice of EAP variant299

and hyperparameters can lead to substantially different circuits, and highlights the importance of300

reporting these choices and assessing their impact on the final results.301

5.3 Sensitivity to Experimental Noise302

Table 3: Average and standard deviation of the circuit error (left) and pairwise Jaccard (right) index
of the circuits found in gpt2-small when using noise with amplitude [0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1,
2, 5] as intervention.

Greater-Than

0.6

0.7

0.8

0.9 Mean
± 1

0.5

0.6

0.7

0.8

0.9

1.0

Mean
± 1

IOI

0.1000

0.1025

0.1050

0.1075

0.1100

0.1125 Mean
± 1

0.4

0.6

0.8

1.0

Mean
± 1

To assess the robustness of EAP-IG to perturbations in the causal analysis itself, we replace the303

intervention method with injected noise into the token embeddings as the intervention method. Table304

3 shows the effect of increasing noise amplitude on circuit error and pairwise Jaccard index for305

gpt2-small on the Greater-Than and IOI tasks.306
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Increasing the noise amplitude generally leads to an increase in circuit error and a decrease in the307

Jaccard index, indicating less stable and less faithful circuits. When the noise amplitude is above 0.5,308

the circuits found are more stable but perform poorly. The averaged CVs of the Jaccard index and309

circuit error across tasks peak at a noise amplitude of around 0.2, while the average circuit error itself310

remains relatively low at this level. This suggests that a moderate amount of noise can be a useful tool311

for probing the stability of discovered circuits, revealing structural instabilities without drastically312

impacting the circuit’s functional performance. A plot of the CVs can be found in the appendix.313

6 Discussion314

Our empirical analysis of EAP-IG reveals significant variability in discovered circuits under perturba-315

tion, underscoring the need for a more statistically rigorous approach to MI. We find that circuits are316

sensitive to the specific data sample used for discovery, the choice of hyperparameters, and noise in317

the causal analysis. Our key findings are as follows:318

• High Variance: Circuits discovered with EAP-IG exhibit high variance when the input data is319

resampled using bootstrapping. This suggests that a circuit identified from a single dataset may not320

be representative of the underlying mechanism and may be an artifact of the sample.321

• Hyperparameter Sensitivity: The structure of discovered circuits is highly sensitive to the choice322

of EAP variant and its hyperparameters. This lack of robustness to methodological choices poses a323

challenge for the reproducibility and generalizability of MI findings.324

• Impact of Noise: Introducing noise into the causal interventions degrades circuit performance, but325

can also help assess circuit stability. We found that moderate levels of noise can effectively reveal326

structural instabilities.327

As a result, we propose recommendations to promote a more statistically grounded science of MI:328

1. Report Stability Metrics Routinely. We strongly advocate for the routine reporting of stability329

metrics alongside circuit discovery results. Specifically, we recommend that researchers report the330

variance of circuit structure and performance (e.g., the average pairwise Jaccard index and the331

CV of the circuit error) under bootstrap resampling of the input data. This practice, common in332

mature scientific fields, would provide a crucial measure of the statistical reliability of the found333

circuits [12, 5]. Our publicly available codebase facilitates the computation of these metrics.334

2. Justify and Report Hyperparameter Choices. Given the sensitivity of EAP-IG to hyperparam-335

eter settings, it is crucial that researchers transparently report and justify their choices. When336

possible, a sensitivity analysis should be conducted to assess the impact of different hyperparameter337

settings on the discovered circuits.338

3. Use Noise for Robustness Checks. We recommend using noise injection during causal analysis339

as a controlled stress test for discovered circuits. Reporting how circuit stability and performance340

degrade with increasing noise can provide valuable insights into the robustness of the identified341

mechanisms. A noise level of 0.2 seems to be a good starting point for gpt2-small, as it reveals342

structural variance without excessively harming performance.343

Future Directions. Our work opens up several avenues for future research. The high variance of344

discovered circuits suggests that instead of seeking a single "true" circuit, it might be more fruitful to345

characterize a distribution over possible circuits. This could be achieved by developing methods that346

explicitly model the uncertainty in circuit discovery. The set of circuits generated via bootstrapping347

in this study is a first approximation of such a distribution.348

Our findings also motivate the development of new circuit discovery methods that are explicitly349

designed to be more robust to data sampling and hyperparameter choices. One promising direction350

is to incorporate a stability objective into the circuit discovery process itself, such as searching for351

circuits that are not only faithful but also stable across bootstrap resamples or noise perturbations.352

Finally, while our study focused on EAP-IG, the statistical framework we have proposed is broadly353

applicable to other circuit discovery methods. We encourage the community to adopt similar stability354

analyses for other techniques to build a more complete picture of the reliability of MI findings.355

By embracing statistical rigor, we can move towards a more mature and trustworthy science of356

mechanistic interpretability.357
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Figure 3: Full heatmap of the pairwise Jaccard index between circuits displayed in Figure 1 (circuits
found in gpt2-small on the Greater-Than task while varying all parameters)

Table 4: Aggregated results from Figure 2 for bootstrap resampling.
Circuit Error KL Divergence Pairwise Jaccard Index

Model Name µ σ2 CV µ σ2 CV µ σ2 CV
Greater-Than
Llama-3.2-1B 0.21 4.67 · 10−4 0.10 6.91 · 10−7 1.29 · 10−14 0.16 0.42 5.93 · 10−3 0.18
Llama-3.2-1B-Instruct 0.21 5.94 · 10−4 0.12 6.43 · 10−7 6.50 · 10−16 0.04 0.33 1.36 · 10−2 0.36
IOI
Llama-3.2-1B 0.66 2.51 · 10−3 0.08 5.48 · 10−6 1.29 · 10−13 0.07 0.39 1.07 · 10−1 0.85
Llama-3.2-1B-Instruct 0.69 2.62 · 10−3 0.07 9.26 · 10−6 4.44 · 10−13 0.07 0.34 6.72 · 10−2 0.76
gpt2-small 0.11 7.32 · 10−4 0.24 1.23 · 10−6 8.80 · 10−14 0.24 0.67 1.57 · 10−2 0.19
SVA
Llama-3.2-1B 0.80 1.02 · 10−3 0.04 1.61 · 10−5 4.02 · 10−13 0.04 0.66 1.55 · 10−2 0.19
Llama-3.2-1B-Instruct 0.75 1.04 · 10−3 0.04 1.87 · 10−5 3.97 · 10−13 0.03 0.69 1.20 · 10−2 0.16
gpt2-small 0.08 5.00 · 10−4 0.29 0 0 1.00 0 0.00
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Table 5: Aggregated results from Figure 2 for meta-dataset resampling.
Circuit Error KL Divergence Pairwise Jaccard Index

Model Name µ σ2 CV µ σ2 CV µ σ2 CV
Greater-Than
Llama-3.2-1B 0.24 3.06 · 10−5 0.02 5.58 · 10−7 3.56 · 10−16 0.03 0.74 8.17 · 10−3 0.12
Llama-3.2-1B-Instruct 0.18 1.05 · 10−4 0.06 6.46 · 10−7 1.31 · 10−16 0.02 0.51 1.83 · 10−2 0.27
IOI
Llama-3.2-1B 0.15 1.67 · 10−4 0.09 5.75 · 10−7 6.68 · 10−16 0.04 0.86 1.25 · 10−2 0.13
Llama-3.2-1B-Instruct 0.22 3.30 · 10−4 0.08 6.19 · 10−7 1.53 · 10−15 0.06 0.76 2.13 · 10−2 0.19
gpt2-small 0.03 5.23 · 10−5 0.22 4.72 · 10−5 1.91 · 10−12 0.03 0.88 5.75 · 10−3 0.09
SVA
Llama-3.2-1B 0.77 3.60 · 10−4 0.02 1.54 · 10−5 8.18 · 10−14 0.02 0.80 1.06 · 10−2 0.13
Llama-3.2-1B-Instruct 0.74 2.52 · 10−4 0.02 1.84 · 10−5 2.05 · 10−13 0.02 0.77 1.07 · 10−2 0.13
gpt2-small 0.06 2.18 · 10−4 0.23 0 0 1.00 0 0.00

Table 6: Aggregated results from Figure 2 for prompt paraphrasing.
Circuit Error KL Divergence Pairwise Jaccard Index

Model Name µ σ2 CV µ σ2 CV µ σ2 CV
Greater-Than
Llama-3.2-1B 0.22 7.77 · 10−5 0.04 7.09 · 10−7 2.05 · 10−15 0.06 0.64 1.42 · 10−2 0.19
Llama-3.2-1B-Instruct 0.17 7.46 · 10−5 0.05 5.43 · 10−7 1.04 · 10−16 0.02 0.85 4.20 · 10−3 0.08
IOI
Llama-3.2-1B 0.16 1.66 · 10−4 0.08 5.42 · 10−7 9.45 · 10−16 0.06 0.88 1.01 · 10−2 0.11
Llama-3.2-1B-Instruct 0.18 3.44 · 10−4 0.10 6.06 · 10−7 1.43 · 10−15 0.06 0.74 1.80 · 10−2 0.18
gpt2-small 0.01 2.27 · 10−5 0.40 4.31 · 10−5 1.42 · 10−12 0.03 0.89 7.66 · 10−3 0.10

Table 7: Comparison of the circuits found in Llama-3.2-1B, using a similar setup to that of Table 2.
Parameters Greater-Than IOI SVA

CErr KL-Div Size Jacc. to Median CErr KL-Div Size Jacc. to Median CErr KL-Div Size Jacc. to Median
EAP, sum, patching - - - - 0.64 5.4 · 10−6 7 0.400 0.80 1.6 · 10−5 16 0.355
EAP-IG-activations, sum, patching - - - - 0.64 5.4 · 10−6 117 0.042 0.80 1.6 · 10−5 28 0.421
EAP-IG-inputs, median, patching - - - - 0.65 5.4 · 10−6 11 0.385 0.80 1.6 · 10−5 24 0.923
EAP-IG-inputs, sum, mean - - - - 0.67 5.4 · 10−6 5 0.714 0.75 1.4 · 10−5 26 1.000
EAP-IG-inputs, sum, mean-positional - - - - 0.77 8.8 · 10−6 8 0.500 0.69 1.5 · 10−5 25 0.962
EAP-IG-inputs, sum, patching 0.23 6.0 · 10−7 21 - 0.65 5.4 · 10−6 7 1.000 0.80 1.6 · 10−5 26 1.000
clean-corrupted, sum, patching - - - - 0.59 5.2 · 10−6 448 0.016 0.80 1.6 · 10−5 16 0.355

Table 8: Detailed results for Table 2, including KL divergence.
Parameters Greater-Than IOI SVA

CErr KL-Div Size Jacc. to Median CErr KL-Div Size Jacc. to Median CErr KL-Div Size Jacc. to Median
EAP, sum, patching 0.20 6.4 · 10−7 23 0.417 0.69 9.1 · 10−6 3 0.286 0.76 1.9 · 10−5 18 0.536
EAP-IG-activations, sum, patching 0.20 6.4 · 10−7 17 0.098 0.69 9.1 · 10−6 12 0.125 0.76 1.9 · 10−5 24 0.531
EAP-IG-inputs, median, patching 0.20 6.4 · 10−7 10 0.086 0.69 9.1 · 10−6 6 1.000 0.75 1.9 · 10−5 21 0.840
EAP-IG-inputs, sum, mean 0.19 7.1 · 10−7 28 1.000 0.72 9.3 · 10−6 7 0.182 0.73 1.6 · 10−5 24 0.960
EAP-IG-inputs, sum, mean-positional 0.41 5.7 · 10−6 33 0.298 0.82 1.7 · 10−5 6 1.000 0.73 1.7 · 10−5 22 0.808
EAP-IG-inputs, sum, patching 0.20 6.4 · 10−7 16 0.571 0.69 9.1 · 10−6 7 0.182 0.75 1.8 · 10−5 25 1.000
clean-corrupted, sum, patching 0.20 6.4 · 10−7 16 0.419 0.69 9.1 · 10−6 9 0.071 0.76 1.9 · 10−5 16 0.577

Table 9: Comparison of the circuits found in gpt2-small, using a similar setup to that of Table 2.
Parameters IOI SVA

CErr KL-Div Size Jacc. to Median CErr KL-Div Size Jacc. to Median
EAP, sum, patching 0.10 1.2 · 10−6 12 0.391 0.06 0 1 1.000
EAP-IG-activations, sum, patching 0.10 1.3 · 10−6 5 0.042 0.05 0 21 0.000
EAP-IG-inputs, median, patching 0.11 1.2 · 10−6 20 1.000 0.06 0 1 1.000
EAP-IG-inputs, sum, mean 0.12 1.3 · 10−6 20 1.000 0.07 3.2 · 10−6 1 1.000
EAP-IG-inputs, sum, mean-positional 0.14 2.1 · 10−5 21 0.783 0.08 1.6 · 10−5 1 1.000
EAP-IG-inputs, sum, patching 0.11 1.2 · 10−6 20 1.000 0.06 0 1 1.000
EAP-IG-inputs, sum, zero - - - - 0.00 0 1 1.000
clean-corrupted, sum, patching 0.11 1.2 · 10−6 19 0.696 0.06 0 1 1.000
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Figure 4: CV of circuit metrics for different noise amplitudes in gpt2-small, averaged across tasks.

Table 10: Detailed results for Table 3, including KL divergence. Values are plotted for noise
amplitudes in [0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5].
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