
Taming LLMs with Gradient Grouping

Anonymous ACL submission

Abstract001

Training large language models (LLMs) poses002
unique challenges due to their increasing pa-003
rameter counts and heterogeneous architectures.004
While adaptive optimizers like AdamW help005
adapt parameter-wise gradient variations, they006
struggle to estimate learning rates across LLM007
parameters efficiently, which causes training in-008
stability, inefficient convergence, and poor com-009
patibility with parameter-efficient fine-tuning010
(PEFT) techniques such as LoRA. Inspired by011
the low-rank properties of LLMs, we introduce012
Scaling with Gradient Grouping (SGG), an op-013
timizer wrapper that exploits the inherent low-014
rank structures to adapt learning rates through015
gradient clustering and cluster-specific scaling.016
SGG groups gradients into K clusters per T017
iterations and computes cluster-specific statis-018
tics to calibrate step sizes, simplifying learning019
rate estimation from a high-dimensional prob-020
lem to tractable low-dimensional ones. As a021
modular wrapper, SGG integrates effortlessly022
with mainstream optimizers while maintain-023
ing PEFT compatibility. Experiments on C4,024
GLUE, and Alpaca show that SGG consistently025
achieves faster convergence and lower losses026
compared to existing methods. Furthermore,027
SGG’s robustness across varying batch sizes028
and learning rates makes it a promising choice029
for efficient and effective LLM optimization.030

1 Introduction031

Optimization techniques have long served as the032

cornerstone in today’s deep learning systems, en-033

abling the training of increasingly powerful large034

language models (LLMs) that drive breakthroughs035

across various domains. Among these, adaptive036

optimizers (Kingma and Ba, 2015; Loshchilov and037

Hutter, 2019; You et al., 2020) stand out due to038

their ability to dynamically adjust learning rates039

for each parameter, which is beneficial given the040

heterogeneous LLM architectures (Liu et al., 2020;041

Zhang et al., 2025b; Li et al., 2024c). Yet, as LLMs042

scale to billions of parameters, these approaches 043

may impose substantial memory overhead due to 044

the storage of gradient statistics (e.g., first/second 045

moments), which limits their practical applicability, 046

especially for resource-constrained scenarios. 047

To deal with this cost, parameter-efficient fine- 048

tuning (PEFT) (Hu et al., 2021; Dettmers et al., 049

2024) has garnered increasing attention, which ex- 050

ploits the intrinsic low-rank structure within LLMs 051

to reduce trainable parameters. However, such an 052

efficiency often comes at the price of performance 053

degradation compared to their full-rank counterpart 054

(Table 4), while requiring extra architecture modifi- 055

cation through auxiliary low-rank branches. In par- 056

allel, efforts have been made for memory-efficient 057

optimizers (Shazeer and Stern, 2018; Luo et al., 058

2023; Zhu et al., 2024a), which aim to compress 059

optimizer states by approximating gradient statis- 060

tics. Though memory-efficient, specific gradient 061

information might be discarded due to the heuristic 062

priors, resulting in inconsistent performance across 063

tasks (Table 5). This leaves practitioners at a dead- 064

lock: either accept performance drop with LoRA, 065

or incur unstable gains via gradient decomposition. 066

In this paper, we argue that while each model 067

parameter requires its own gradient statistics, LLM 068

training may benefit from striking a balance be- 069

tween naive per-parameter tuning and fixed global 070

ones. On the one hand, recent studies show that 071

attention and MLP layers exhibit distinct yet inter- 072

nally consistent gradient behaviors (Li et al., 2024c; 073

Zhang et al., 2025b), revealing significant patterns 074

that previous methods fail to exploit. This observa- 075

tion aligns well with the low-rank priors in LLM pa- 076

rameters, where a small parameter count could play 077

a dominant role in model capacity. Thus, naively 078

tuning gradient statistics for each parameter may 079

not only waste resources but destabilize the train- 080

ing, as outliers and noisy gradients may influence 081

the optimization process (Zhao et al., 2024a; Nasiri 082

and Garraghan, 2025), as summarized in Table 1. 083

1

Gradient (Momentum)

De
ns
ity

Adam
SGG (Cluster 1)
SGG (Cluster 2)

(a) Gradiant Distribution
Learning Rate

De
ns
ity

Adam
SGG (Cluster 1)
SGG (Cluster 2)

(b) Learning Rate Distribution

Adam
SGG (Cluster 1)
SGG (Cluster 2)

Grad Norm

De
ns
ity

(c) Grad Norm Distribution

Figure 1: Clustering Phenomenon in LLM Pre-training with LLaMA-1B on C4. Selecting parameters from the
12-th FFN layers, (a) and (b) visualize distributions of parameter-wise gradients gt and the corresponding adaptive
learning rates αt at the 5k-th iteration, where SGG captures two clusters of gradients and scaling with two groups of
learning rates. (c) shows group-wise (or layer-wise) L2-grad norm distributions of all layers, where SGG captures
the inherent heterogeneous patterns of different layers with group-wise learning rate scaling.

Along this line, we first conduct pilot studies084

with LLaMA-1B (in Figure 1) to examine gradient085

statistics distributions during LLM training. Inter-086

estingly, it shows consistent salient patterns with087

a few distinct peaks, which lines up with our intu-088

ition above. This suggests that per-parameter learn-089

ing rate adaptation may be redundant, and there090

is room for improving efficiency along this line.091

Based on these insights, we introduce Scaling with092

Gradient Grouping (SGG), an optimizer wrapper093

that bridges this gap by unifying sparse gradient094

patterns with learning rate adaptation. As shown in095

Algorithm 1, SGG dynamically groups parameter-096

wise gradients of each layer through mini-batch097

K-Means clustering. Subsequently, it employs me-098

dian absolute deviation (MAD) to measure and099

calibrate learning rates for each group. Thus, SGG100

achieves a balance between global and local adap-101

tation while mitigating training instability.102

Experiments on C4, GLUE, and Alpaca show103

that SGG not only improves convergence but natu-104

rally aligns with the low-rank priors of PEFT up-105

dates, achieving superior match with PEFT tech-106

niques (Table 4). More importantly, SGG operates107

as a plug-and-play module, providing compatibility108

with mainstream optimizers and PEFT techniques109

without architecture modifications.110

Our contributions can be summarized as follows:111

• We introduce SGG, an optimizer wrapper112

that leverages gradient clustering and cluster-113

specific scaling to adaptively adjust learning114

rates for robust and effective LLM training.115

• We show that SGG is compatible with exist-116

ing optimizers and PEFT techniques, offering a117

plug-and-play solution without extensive modi-118

fications to the overall LLM training pipeline.119

• Through extensive experiments on C4, GLUE,120

and Alpaca, we demonstrate that SGG can121

bring faster convergence, lower loss values, 122

and reduced oscillation compared to state-of- 123

the-art methods for LLM training. 124

2 Methodology 125

2.1 Problem Defenition 126

In this subsection, we first preview the key steps of 127

mainstream optimizers with Algorithm 1, to clarify 128

how SGG integrates as a plug-and-play module. 129

The initial optimization step computes gradients 130

gl with respect to model parameters θl from the l-th 131

layer. This procedure is typically carried out itera- 132

tively using gradient-based optimizers. At iteration 133

t, the computation of gradient gtl is given by: 134

g
(t)
l = ∇

θ
(t−1)
l

L(θ(t−1)
l ,D) (1) 135

where D denotes the training dataset and θt−1
l is 136

the identical parameter updated at last iteration. 137

Next, momentum estimation introduces historical 138

gradient information to stabilize updates. As for 139

vanilla SGD (Sinha and Griscik, 1971), this step is 140

trivial (mt
l = gtl), while momentum-based optimiz- 141

ers employ exponential moving averages (EMA) to 142

smooth out short-term fluctuations: 143

m
(t)
l = MomentumEstimate(g(t)l ,m

(t−1)
l , β1) (2) 144

where β1 controls the retention of past gradients 145

and mt−1
l is the momentum output from last it- 146

eration. Subsequently, adaptive optimizers (e.g., 147

Adam and AdaGrad) compute parameter-specific 148

rates using second-moment estimates: 149

α
(t)
l = LREstimate(α(t−1)

l ,m
(t)
l , β2, η

(t)) (3) 150

where ηt indicates the scheduled global learning 151

rate at iteration t and β1 is the decay rate similar to 152

2

Table 1: Overview of Optimization Algorithms from several aspects, including typical optimizers (Opt.), PEFT
techniques, and optimizer wrapper. We take a neural network layer W ∈ Rm×n (m ≤ n) as an example with LoRA
rank r ≪ m and the cluster number K ≪ m, where the weight and optimization states are considered. (a) As for
optimization properties, we consider the cost of Adaptive Learning Rate (LR), where the extra state is used for its
estimation (e.g., second-order moment (2nd-moment), Non-negative Matrix Factorization (NMF), and SGG’s cluster
indices). (b) For LLM’s low-rank property, we consider the way and cost of utilizing low-rank priors. (c) As for
performance, we report the averaged PPL (%)↓ and Accuracy (%)↑ for C4 pre-training in Table 4 and GLUE SFT in
Table 5 with the GPU memory in PyTorch implementation, where Adam (full-rank) is regraded as our baseline.

Type Method Adaptive LR Basic State Extra State Low-Rank Plugin Extra Branch C4↓ GLUE↑ GPU Memory
Classical Opt. SGD ✗ Weight & Grad. ✗ ✗ ✗ ✗ − -0.50 2mn
Adaptive LR Opt. Adam Param-wise mn Weight & Grad. 2nd-Moment mn ✗ ✗ ✗ 23.36 86.24 3mn
Efficient Opt. CAME Param-wise mn Weight & Grad. NMF 2(m+ n) NMF ✗ ✗ -1.64 -0.85 2mn+ 2(m+ n)

PEFT LoRA ✗ Full-rank Grad. ✗ LoRA ✓ r(m+ n) +5.06 -0.31 +3r(m+ n)
Opt. Wrapper SGG Group-wise K Optimizer Indices (mn+K) Clustering ✓ ✗ -1.99 +1.00 +0

Algorithm 1 Scaling with Gradient Grouping

Require: Parameters {θl}Ll=1, global learning rate η, opti-
mizer momentum (β1, β2), learning objective L, dataset
D, cluster number K, cluster indices C, recluster interval
T , scaling factor S, scaling EMA decay β3.

Ensure: Optimized model parameters θ.
1: Initialize:
2: RandomInit({θ0l }Ll=1) ▷ Model parameters
3: {α0

l }Ll=1 ← η ▷ Adaptive learning rates
4: {Cl}Ll=1 ← 0 ▷ Cluster assignment
5: {Sl}Ll=1 ← 1 ▷ Cluster scaling factor
6: for each iteration t = 1, 2, . . . do
7: ηt ← LearningRateScheduler(η, t)
8: for each layer l = 1, 2, . . . , L do
9: Gradient Computation

10: gtl ← ∇θt−1
l
L(θt−1,D)

11: Momentum Estimation
12: mt

l ← MomentumEstimate(gtl ,m
t−1
l , β1)

13: Learning Rate Adaptation
14: αt

l ← LREstimate(αt−1
l ,mt

l , β2, η
t)

15: if t mod T == 0 then ▷ Re-clustering
16: Assign Gradient Clusters
17: Ctl ← GradientCluster(mt

l ,K)
18: Update Scaling Factors
19: St

l ← ScaleUpdate(Ctl , gtl , β3)
20: end if
21: Apply Cluster-Specific Scaling
22: αt

l ← αt
l · St

l [Ctl] ▷ Cluster-wise scaling
23: Parameter Updates
24: θtl ← θt−1

l − αt
l ·mt

l

25: end for
26: end for

β1. In contrast, non-adaptive methods use sched-153

uled global rates here (αt
l = ηt). As aforemen-154

tioned, this step faces the challenges of increasing155

memory overhead, especially for large models.156

The final step applies the learning rate scaled157

momentum αt
l ·mt

l to parameter updates:158

θ
(t)
l = θ

(t−1)
l − α

(t)
l ·m(t)

l (4)159

where the update rule is shared across optimizers,160

differing only in how the mt
l and αt

l are derived.161

As an optimizer wrapper, our SGG operates on162

optimizer’s internal states (mt
l , α

t
l) without modify-163

ing the optimization pipeline. Thus, it allows seam- 164

less integration with any optimizer implementing 165

the above steps, from SGD to Adam-mini (Zhang 166

et al., 2024). In the following sections, we detail 167

the clustering methods and scaling factor updates. 168

2.2 Gradient Grouping 169

As mentioned in Section 1, we suggest that LLM 170

optimization requires a middle ground between per- 171

parameter adaptation and global statistics. To vali- 172

date this, we conduct empirical analysis of gradient 173

statistics with LLaMA-1B pretraining on C4. 174

As shown in Figure 1, we obtain several ob- 175

servations: (i) Low-Rank Clustering: Both layer- 176

and parameter-wise gradients form 2-4 dominant 177

clusters per layer, with attention and MLP layers 178

exhibiting distinct distributions. (ii) Outlier Impact: 179

Less than 20% of parameter-wise gradients account 180

for most of the distribution, which may negatively 181

influence parameter-wise adaptation. 182

These findings demonstrate that existing per- 183

parameter learning rate tuning methods could be 184

redundant for LLM training, as a large number of 185

model parameters exhibit negligible updates. In- 186

stead, treating gradients as more coarse-grained 187

clusters, where parameters within a group share 188

similar optimization dynamics, could potentially 189

offer a promising path to reduce computation cost 190

while improving robustness. Therefore, we de- 191

sign GradientCluster(mt
l ,K) in Algorithm 1, a dy- 192

namic grouping strategy that maps parameter-wise 193

gradient of each layer to K clusters via mini-batch 194

K-means. We also conduct experiments in Figure 2 195

to show the effectiveness of mini-batch K-means. 196

By grouping gradients with similar characteristics, 197

SGG reduces sensitivity to sparse gradients, en- 198

abling more stable learning rate adjustments. 199

3

2.3 Scaling Factor Estimation200

Then, we design ScaleUpdate(Ct
l , g

t
l , β3) to pro-201

duce the accurate scaling factor St
l of gradient clus-202

ters at iteration t. It contains two sub-tasks: (i)203

presenting the variability and statistical properties204

of gradients with a robust measure; (ii) estimating205

and updating the scaling factor stability.206

Table 2: Analysis of Statistics for group-wise gradiant
estimation in SGG, where parameter-wise degenerated
to Adam-like baseline. Validation Perplexity (PPL)↓ is
reported with C4 pre-trained LLaMA architecture.

Statistic Param-wise Mean Var. Sign(Var.) L2-norm MAD
60M 34.06 30.68 31.17 30.75 30.89 30.34
1B 15.56 14.63 14.72 14.68 14.66 14.56

As for the measure of each gradient cluster,207

we investigate several commonly adopted statis-208

tics that reflect the significance of gradients, in-209

cluding Mean, Variance (like the second mo-210

ment used in Adam), Sign of Variance (used in211

SignSGD (Bernstein et al., 2018)), and L2-norm212

(used in LARS (Ginsburg et al., 2018)) in Table 2.213

Since gradients within the same cluster should214

share similar structural properties, we propose Me-215

dian Absolute deviation (MAD) as a robust esti-216

mation of the status difference of each group. For217

each cluster index c ∈ K of l-th layer, MADt
l,c can218

be computed as follows:219

MADt
l,c = median

(∣∣mt
l − median(mt

l · Ct
l [c])

∣∣) ,
(5)220

where Ct
l [c] denotes the selected mask of the c-221

th cluster of the l-th layer, As shown in Table 2,222

MAD captures the statistical difference between223

the whole layer and each cluster, offering the best224

validation performance. Subsequently, the scaling225

factor Sl[c] for cluster c can be computed as the226

inverse of MAD to ensure the group with higher227

gradient variability obtains smaller weights:228

St
l [c] =

1

MADt
l,c + ϵ

, (6)229

where ϵ = 10−8 is a small constant for numerical230

stability. As for stable updating, the scaling factors231

are updated periodically every T iterations using232

EMA update to smooth out short-term fluctuations:233

St
l [c] = β3 ·St−1

l [c]+(1−β3) ·
1

MADt
c,l + ϵ

, (7)234

where β3 denotes EMA decay controlling the im-235

pact of history accumulation.236

Table 3: Performance Gains and Costs of SGG. Val-
idation Perplexity (PPL)↓, total training hours and the
peak GPU memory are reported with LLaMA-1B on
C4. GPU and CPU versions of SGG store the extra opti-
mization state in GPU and CPU memory, respectively.

Method PPL Training Time Memory
Adam 15.56 110h 7.8G
Adam+SGG (GPU) +6.5% (-1.01) +1.8% (+2h) +4.3G
Adam+SGG (CPU) +6.5% (-1.00) +8.2% (+9h) +0.0G

0

5

10

15

20

25

30

35

K-Means MB K-Means GMM DBSCAN

PPL (%) Training Time (x10h)

K-Means Mini-batch K-Means GMM DBSCAN

14.52 14.56 15.14 15.37

123h 119h
141h 135h

Figure 2: Analysis of Clustering Strategies in SGG
with LLaMA-1B on C4. Validation Perplexity↓ and
total pre-training hours↓ are reported, where Mini-batch
K-Means achieves the best trade-off between PPL and
the additional clustering costs (the lowest bar).

As for practical implementation, there are two 237

trade-off problems between performances and ef- 238

ficiency in SGG. (i) How to choose clustering 239

methods with a certain reclustering interval T ? 240

We consider four popular clustering methods, K- 241

Means (MacQueen et al., 1967), Mini-batch K- 242

Means (Sculley, 2010), GMM (Kambhatla and 243

Leen, 1994), and DBSCAN (Ester et al., 1996), and 244

choose the mini-batch K-Means because of its bal- 245

ance between performance and computional costs, 246

as shown in Figure 2. We empirically design a flex- 247

ible schedule that set the interval T as 10% of the 248

total training iterations, as verified in Figure 5. (ii) 249

Where to store the clustering indices {Cl}Ll=1 and 250

scaling factors {Sl}Ll=1 and compute clustering? 251

As shown in Table 3, we compare the performance, 252

training time, and GPU memory of putting them 253

on GPU or CPU. We found that the peak memory 254

of computing GPU clustering is remarkable while 255

storing {Cl}Ll=1 and {Sl}Ll=1 in the CPU memory 256

will not delay the training. Therefore, we use the 257

CPU version that performing clustering and storing 258

extra optimization states on CPU, which does not 259

require extra GPU memories and increase negligi- 260

ble training time, as summarized in Table 1. 261

3 Experiments 262

3.1 Experimental Setup 263

Task Information. To verify performance gains 264

and generalizability of SGG, we choose 20 pub- 265

4

0.0 0.5 1.0 1.5 2.0 2.2
Token Seen (Billions)

20

25

30

35

40

45

50

Va
lid

at
io

n
Pe

rp
le

xi
ty

 (
%

)
Adam
Adam (LoRA)
Adam+SGG
Adam+SGG (LoRA)

(a) LLaMA-130M Pre-training

0.0 2.5 5.0 7.5 10.0 12.5
Token Seen (Billions)

15

20

25

30

Va
lid

at
io

n
Pe

rp
le

xi
ty

 (
%

)

Adam
Adam (LoRA)
Adam+SGG
Adam+SGG (LoRA)

(b) LLaMA-1B Pre-training

60M 130M 350M 1B
Parameter Scales

15

20

25

30

35

40

45

50

Va
lid

at
io

n
Pe

rp
le

xi
ty

 (
%

)

LoRA
Low-Rank
ReLoRA
GaLore
LoRA+SGG

(c) Parameter Scaling-up
Figure 3: C4 Pre-training with LLaMA using full-rank and LoRA optimization methods. (a) and (b) show the fast
convergence and performance gains over the baseline (Adam or LoRA) with SGG. (c) shows SGG yields consistent
performance gains over LoRA, which orthogonally captures low-rank properties from gradients.

lic datasets for experiments, including large lan-266

guage datasets, Vision Question Answering (VQA)267

datasets, and standard multimodal large language268

model (MLLM) evaluation benchmarks. (1) Pre-269

training on C4: We utilized the en subset of the270

C4 dataset, a cleaned and high-quality version of271

Common Crawl’s web corpus, which has been fil-272

tered for toxic content (Köpf et al., 2023). (2) SFT273

on GLUE Benchmark: We fine-tuned our model274

on the GLUE benchmark, a widely-used evalua-275

tion framework for NLP tasks such as sentiment276

analysis, question answering, and textual entail-277

ment (Wang, 2018). (3) PEFT with Commonsense278

Reasoning Tasks: Building on the LLM-Adapters279

framework (Hu et al., 2023), we evaluated PEFT280

methods on LLaMA across 8 Commonsense Rea-281

soning (CS) datasets: BoolQ (Clark et al., 2019),282

PIQA (Bisk et al., 2020), SIQA (Sap et al., 2019),283

HellaSwag (Zellers et al., 2019), WinoGrande (Sak-284

aguchi et al., 2021), ARC (ARC-Easy and ARC-285

Challenge) (Clark et al., 2018), and OBQA (Mi-286

haylov et al., 2018). (4) RLHF with DPO: Us-287

ing the TRL library, we implemented RLHF with288

DPO to align the model with human preferences.289

The Qwen2.5 0.5B model was trained on the ul-290

trafeedback_binarized dataset, which includes bi-291

nary preference labels (von Werra et al., 2020).292

(5) Comparison of MLLM Tasks: including VQA293

benchmarks such as GQA (Hudson and Manning,294

2019), TextVQA (Singh et al., 2019), SciVQAI295

(evaluation on the imageset of ScienceVQA) (Lu296

et al., 2022), VQAv2 (Goyal et al., 2017), and297

Vizwiz (Gurari et al., 2018), as well as MLLM298

evaluation benchmarks including POPE (Li et al.),299

MMBench (Liu et al., 2025), MMBench-Chinese300

(MMBenchCN) (Liu et al., 2025), SEEDI (Li et al.,301

2023), and MME (Perception) (Yin et al., 2023).302

Implementation Details SGG is implemented in303

PyTorch, compatible with mainstream optimizers304

by several lines of code and no network modifica-305

Table 4: Comparison Results of LLaMA Pre-training
on C4 with full-rank and low-rank optimization. The
validation Perplexity (%)↓ is reported for scaling-up
parameters. Bold and green types denote the best results
and performance gains compared to related baselines.

Method Date 60M 130M 350M 1B
Pre-training with Full-Rank Optimizers
Adam ICLR’15 34.06 25.08 18.80 15.56
Adam-mini ICML’24 34.10 24.85 19.05 16.07
LAMB ICLR’20 33.04 24.37 18.26 15.84
LION NeurIPS’23 32.42 24.05 18.10 15.47
Adam+SGG Ours 30.34 23.32 17.34 14.56
∆ Gain -3.72 -1.76 -1.46 -1.00
Pre-training with Memory-efficient Optimizers
Adafactor ICML’18 32.57 23.98 17.74 15.19
Low-Rank arXiv’22 78.18 45.51 37.41 34.53
CAME ACL’23 31.37 23.38 17.45 14.68
CAME+SGG Ours 30.15 22.91 17.09 14.35
∆ Gain -1.22 -0.46 -0.36 -0.33
APOLLO MLSys’25 31.55 22.94 16.85 14.20
APOLLO+SGG Ours 30.18 22.52 16.54 13.95
∆ Gain -1.37 -0.42 -0.31 -0.25
Low-Rank Pre-training
LoRA ICLR’22 34.99 33.92 25.58 19.21
ReLoRA ICLR’23 37.04 29.37 29.08 18.33
GaLore ICML’24 34.88 25.36 18.95 15.64
LoRA+SGG Ours 30.62 23.62 17.86 14.73
∆ Gain -4.37 -10.30 -7.72 -4.48
Training Tokens 1.1B 2.2B 6.4B 13.1B

tions. Key hyperparameters include cluster number 306

K ∈ {2, 3}, recluster interval T is 10% of total 307

iterations, and scaling EMA decay β3 = 0.9, em- 308

pirically tuned for balancing both efficiency and 309

performance. Clustering indices and scaling fac- 310

tors can also be stored in CPU memory to avoid 311

GPU overhead, ensuring scalability. We reproduce 312

results with gray and blue backgrounds, while other 313

results are taken from their official papers. All ex- 314

periments are conducted with A100-80G GPUs and 315

reported with three runs. 316

3.2 Comparison Results with LLMs 317

Pre-training on C4. Following GaLore (Zhao 318

et al., 2024a), we employ LLaMA-based architec- 319

5

Table 5: Comparison Results of GLUE Benchmark with full-rank and low-rank (LoRA) SFT. Top-1 accuracy
(%)↑ is reported for all sub-tasks, while bold and green types denote the best results and relative performance gains.

Optimizer Rank CoLA STS-B MRPC RTE SST2 MNLI QNLI QQP Average
Full-Rank SFT
SGD Full 62.12 90.73 87.74 79.06 94.26 87.53 92.29 92.22 85.74
AdamW Full 62.24 90.92 91.30 79.42 94.57 87.18 92.33 92.28 86.24
LAMB Full 62.09 90.59 88.72 75.45 94.72 87.71 92.42 91.46 85.40
CAME Full 62.16 90.43 89.02 75.94 94.61 87.13 92.31 91.54 85.39
APOLLO Full 62.45 90.70 90.36 77.53 94.58 87.57 92.40 92.12 85.96
SGD+SGG Full 63.70 +1.58 90.92 +0.19 88.50 +0.76 79.42 +0.36 94.61 +0.35 87.97 +0.44 92.62 +0.33 92.67 +0.45 86.30 +0.56
AdamW+SGG Full 63.36 +1.12 91.22 +0.30 92.65 +1.35 80.87 +1.45 95.58 +1.01 88.32 +1.14 92.88 +0.55 93.32 +1.04 87.28 +1.00
LAMB+SGG Full 62.47 +0.38 90.90 +0.31 89.46 +0.74 76.53 +1.08 94.95 +0.23 87.81 +0.10 92.89 +0.47 91.78 +0.32 85.85 +0.45
Low-Rank SFT
SGD (LoRA) 4 60.32 90.31 87.75 79.06 94.27 87.39 92.16 91.89 85.39
AdamW (LoRA) 4 61.38 90.57 91.07 78.70 92.89 86.82 92.18 91.29 85.61
LAMB (LoRA) 4 61.51 90.33 89.46 74.73 94.27 87.51 92.48 91.57 85.23
DoRA 4 60.38 90.50 88.24 74.73 93.69 − 92.59 − −
GaLore (LoRA) 4 60.35 90.73 92.25 79.42 94.04 87.00 92.24 91.06 85.89
SGD+SGG 4 61.57 +1.25 90.50 +0.19 88.50 +0.75 80.14 +1.08 94.61 +0.37 87.65 +0.26 92.37 +0.21 92.24 +0.35 85.95 +0.56
AdamW+SGG 4 62.36 +0.98 91.10 +0.53 92.12 +1.05 80.51 +1.81 95.06 +2.17 88.18 +1.36 92.62 +0.44 93.06 +1.77 86.88 +1.27
LAMB+SGG 4 62.47 +0.96 90.90 +0.57 89.46 +0.30 75.53 +0.80 94.95 +0.34 87.73 +0.12 92.92 +0.41 91.78 +0.36 85.72 +0.49
SGD (LoRA) 8 60.57 90.29 88.48 79.42 94.32 87.44 92.23 92.10 85.61
AdamW (LoRA) 8 61.83 90.80 91.90 79.06 93.46 86.94 92.25 91.22 85.93
LAMB (LoRA) 8 61.89 90.78 89.21 79.42 94.61 87.61 92.51 91.42 85.35
DoRA 8 58.36 90.63 88.97 75.09 93.81 − 92.68 − −
GaLore (LoRA) 8 60.06 90.82 92.01 79.78 94.38 87.17 92.20 91.11 85.94
SGD+SGG 8 61.61 +1.04 90.63 +0.34 89.46 +0.98 80.87 +1.45 94.61 +0.29 87.93 +0.49 92.53 +0.30 92.48 +0.38 86.27 +0.66
AdamW+SGG 8 62.36 +0.53 91.10 +0.30 92.12 +0.22 80.51 +1.45 95.06 +1.60 88.17 +1.23 92.65 +0.40 92.85 +1.63 86.85 +0.92
LAMB+SGG 8 62.47 +0.58 90.90 +0.12 89.46 +0.25 76.53 +1.80 94.95 +0.34 87.85 +0.24 92.87 +0.36 91.78 +0.36 85.85 +0.50

tures for full-rank and low-rank pre-training on320

C4, maintaining consistent hyperparameters across321

model sizes while tuning learning rates individu-322

ally. Experiments are conducted in BF16 format for323

memory efficiency, with learning rates calibrated324

within a fixed computational budget. Results show325

that integrating SGG with various optimizers con-326

sistently reduces validation perplexity (Table 4) and327

accelerates convergence (Figure 3), highlighting its328

efficacy as a plug-in optimization method. Further329

details are provided in appendix.330

SFT on GLUE Benchmark. We fine-tuned the331

pre-trained RoBERTa-base model on GLUE tasks332

using SFT. Experimental results demonstrate that333

integrating SGG with various optimizers signifi-334

cantly boosts performance in both full-rank and335

low-rank SFT scenarios (Table 5). Notably, SGG336

consistently enhances accuracy across multiple337

GLUE tasks, with AdamW+SGG achieving par-338

ticularly significant improvements. For instance,339

in the MRPC task, AdamW+SGG achieves gains340

of +1.35% (full-rank) and +1.05% (low-rank, rank341

4). The MNLI task also shows substantial improve-342

ments, with increases of +1.14% (full-rank) and343

+1.36% (low-rank, rank 4). This plug-and-play344

approach demonstrates versatility and robustness345

across diverse rank constraints.346

PEFT with Commonsense Reasoning Tasks.347

Following LLM-Adaptor, we evaluate eight CS348

tasks with top-1 accuracy (%) and GPU memory 349

consumption, where LLaMA-7B is fine-tuned by 350

AdamW on a unified training set with the LoRA 351

rank r = 32 and evaluated with each sub-set. As 352

shown in Table 6, SGG improves LoRA by +2.9% 353

and outperforms or achieves competitive perfor- 354

mances among classical PEFT baselines (Prefix (Li 355

and Liang, 2021), Series (Houlsby et al., 2019), and 356

Parallel (He et al., 2021)) and latest PEFT meth- 357

ods (DoRA, GaLore, and Fira (Chen et al., 2024)). 358

View Table A3 and Appendix A for details. 359

Table 6: Comparison Results of LLaMA PEFT on
Commonsense Reasoning datasets. The accuracy (%)↑
of six selected datasets and the average (AVG) results
of eight datasets are reported, and Table A3 shows full
results. Bold and green types denote the best results
and performance gains over the baseline.

Method BoolQ PIQA SIQA WG Arc-E OBQA AVG
Parallel 67.9 76.4 78.8 78.9 73.7 75.2 72.2
LoRA 68.9 80.7 77.4 78.8 77.8 74.8 74.7
DoRA 69.7 83.4 78.6 81.0 81.9 79.2 78.4
GaLore 69.5 82.0 75.1 18.0 80.7 78.0 62.7
Fira 69.4 82.6 78.0 81.2 82.2 80.8 76.9
LoRA+SGG 70.3 83.6 78.8 80.9 81.5 79.0 77.6
∆ Gain +1.4 +2.9 +1.4 +2.1 +3.7 +4.2 +2.9

RLHF with DPO. Following the default TRL li- 360

brary settings, including optimization hyperparam- 361

eters and the training pipeline, the effectiveness 362

of DPO in improving preference alignment was 363

systematically evaluated while maintaining com- 364

putational efficiency. As shown in Table 8, the 365

6

Table 7: Comparison of MLLM Tasks with LLaVA
variants and diverse optimizers. Top-1 accuracy (%)↑ is
reported for selected tasks, AVG denotes the averaged
results, and Table A6 shows full results. MMB and
MMBCN indicate MMbench and MMbench (Chinese).

Optimizer
Image Question Answering Benchmarks

AVG
GQA VizWiz SciVQAI VQAT MMB MMBCN POPE

BLIP-2 41.0 19.6 61.0 42.5 − − 85.3 −
InstructBLIP 49.2 34.5 60.5 50.1 36.0 23.7 79.8 47.7
Qwen-VL 59.3 35.2 67.1 63.8 38.2 7.4 − −
TinyLLaVA 62.0 − 69.1 59.1 66.9 − 86.4 −
MoE-LLaVA 62.6 − 70.3 57.0 68.0 − 85.7 −
LLaVA-Phi − − 68.4 48.6 59.8 − 85.0 −
LLaVA-NeXT 64.2 57.6 70.1 64.9 67.4 60.6 86.5 67.3
LLaVA-MOD 58.7 39.2 68.0 58.5 66.3 61.9 87.0 62.8
LLaVA-KD-2B 62.3 44.7 64.7 53.4 64.0 63.7 86.3 62.7

LLaVA-v1.5 Full-Rank SFT
AdamW 62.0 50.0 66.8 58.2 64.3 58.3 85.9 63.6
Adafactor 62.7 48.2 70.7 57.1 66.1 60.4 86.0 64.5
LAMB 43.8 53.3 61.5 43.4 43.2 41.8 81.2 52.6
AdamW+SGG 62.4 50.1 68.8 58.4 65.6 59.9 86.6 64.5
∆ Gain +0.4 +0.1 +2.0 +0.2 +1.3 +1.6 +0.7 +0.9
Adafactor+SGG 62.8 50.6 71.6 57.3 66.3 60.8 86.0 65.1
∆ Gain +0.1 +2.4 +0.9 +0.2 +0.2 +0.4 +0.0 +0.6
LAMB+SGG 44.0 53.3 61.8 43.5 43.3 41.9 81.3 52.7
∆ Gain +0.2 +0.0 +0.3 +0.1 +0.1 +0.1 +0.1 +0.1
LLaVA-v1.5 Low-Rank SFT (AdamW)
LoRA 63.0 47.8 68.4 58.2 66.1 58.9 86.4 64.1
LoRA+SGG 63.4 51.0 70.1 58.6 66.7 59.4 86.6 65.1
∆ Gain +0.4 +2.2 +1.5 +0.4 +0.6 +0.5 +0.2 +1.0
LLaVA-v1.5 8-bit Low-Rank SFT (AdamW)
Q-LoRA 54.3 50.7 66.4 52.5 56.0 49.8 82.9 58.9
Q-LoRA+SGG 55.1 51.3 66.7 53.0 56.1 51.0 83.4 59.5
∆ Gain +0.8 +0.6 +0.3 +0.5 +0.1 +0.2 +0.5 +0.6

combination of AdamW with SGG achieved the366

highest Top-1 accuracy of 72.02% using LoRA367

training, demonstrating a significant gain of 1.80%368

compared to the baseline.369

3.3 Comparison Results with MLLMs370

Following LLaVA-v1.5, the MLLM models in-371

clude a pre-trained Vicuna-v1.5-7B (Chiang et al.,372

2023), a pre-trained 2×MLP, and a pre-trained373

CLIP (Radford et al., 2021), which is supervised374

fine-tuned for one epoch with a batch size of 64.375

As for the Full-Rank SFT, we consider AdamW,376

Adafactor, and LAMB as the baseline optimizers,377

whose details of optimizer hyperparameters and378

training settings are provided in Table A5, and379

also display results of mainstream MLLM meth-380

ods. As shown in Table 7, results of VQA and381

benchmark tasks verify that SGG could improve382

AdamW by +0.9% with 64.5 average performance.383

With Adafactor, SGG could get extra +0.6% per-384

formance compared to the vanilla one, especially385

on VizWzi VQA task, SGG brings +2.4% capabil-386

ity. To further validate the effectiveness of SGG387

with PEFT and low-bit quantization scenarios, we388

Table 8: Comparison Results of DPO Tasks with
Qwen2.5-0.5B using full-rank and LoRA training. Top-
1 accuracy (%)↑ is reported, while bold and green types
denote the best results and gains compared to baselines.

Optimizer Full-Rank LoRA
SGD 70.10 69.73
AdamW 71.39 70.22
LAMB 70.82 70.39
SGD+SGG 70.82 +0.72 70.76 +1.03
AdamW+SGG 71.85 +0.47 72.02 +1.80
LAMB+SGG 71.32 +0.50 71.28 +0.89

conduct SFT with LoRA and 8-bit Quantization 389

LoRA (Q-LoRA (Dettmers et al., 2024)) with the 390

rank r = 128 and the scaling factor α = 256. Ta- 391

ble 7 shows that SGG achieves an average 65.1 392

score and brings additional performance gains over 393

LoRA of +2.2% on the VizWiz task. With QLoRA 394

(8-bit) SFT, SGG also brings +0.6% performance 395

gain. Please refer to Table A6 for full results. 396

3.4 Analysis of Learning Rate Scaling 397

The relationship between batch size and learning 398

rate (LR) is a critical focus in the LLM community 399

due to its significant impact on training efficiency 400

and stability. A key challenge is the surge phe- 401

nomenon (Li et al., 2024b), where the optimal LR 402

for Adam-like optimizers varies with batch size dif- 403

ferently, complicating large-scale distributed train- 404

ing and requiring careful hyperparameter tuning to 405

prevent instability or suboptimal convergence. Tak- 406

ing SFT on Alpaca (Taori et al., 2023) with Adam 407

as an example, Figure 4 shows that SGG yields ro- 408

bust validation loss across varying batch sizes and 409

learning rates, even with extremely large batch size 410

of 4096 and LR of 1e-1. It suggests that SGG effec- 411

tively mitigates gradient outliers and dynamically 412

adjusts LRs, ensuring consistent and significant 413

loss convergence within controlled batch size and 414

LR configurations. Refer to Appendix C for details. 415

3.5 Ablation Study 416

We analyze SGG’s clustering designs and hyper- 417

parameters from two aspects. Regarding cluster 418

scaling, Table 9 shows that the cluster number K 419

can be easily tuned in {2,3} for diverse tasks ac- 420

cording to the warnings from mini-batch K-Means. 421

The interval T can be robustly determined as 10% 422

of total training iterations, e.g., T = 1k iterations 423

for LLaMA-60M in Figure 5(a). For scaling decay 424

β3, Figure 5(b) verifies its choice as 0.9. 425

7

10 5 10 4 10 3 10 2 10 1

SFT Learning Rate

0

2

4

6

8

10

12

14

16
Va

lid
at

io
n

Pe
rp

le
xi

ty
 (

%
)

Adam (Batch Size=128)
Adam (Batch Size=512)
Adam (Batch Size=1024)
Adam (Batch Size=2048)
Adam (Batch Size=4096)
Adam+SGG (Batch Size=128)
Adam+SGG (Batch Size=512)
Adam+SGG (Batch Size=1024)
Adam+SGG (Batch Size=2048)
Adam+SGG (Batch Size=4096)

Figure 4: Scaling-up Learning Rate with diverse batch
sizes with Qwen2.5-0.5B SFT on Alpaca. Validation
loss↓ is plotted with Adam and Adam+SGG. SGG offers
robust performance gains even under extreme settings.

Table 9: Ablation Study of the cluster number K (task-
relevant) in SGG with various tasks, where ERR denotes
the running error of mini-batch K-Means.

Task Model K=1 (Adam) K=2 K=3 K=4
C4↓ LLaMA-60M 34.1 30.3 30.8 ERR
C4↓ LLaMA-130M 25.1 23.3 23.5 ERR
GLUE (MNLI)↑ RoBERT-Base 87.2 88.3 87.9 ERR
MLLM↑ LLaVA-1.5-7B 63.6 64.2 64.5 64.3

4 Related Work426

Efficient Optimization. Adaptive learning rate427

optimizers (Loshchilov and Hutter, 2019) are428

widely used in LLM training for balancing conver-429

gence and generalization, yet they struggle to scale430

effectively due to their dependence on global gra-431

dient statistics, which overlook the heterogeneous432

nature of LLM gradients (Zhao et al., 2024b; Zhang433

et al., 2025b). This heterogeneity, coupled with the434

low-rank structure of LLM parameters, often leads435

to inefficient updates and suboptimal convergence436

(Chen et al., 2024; Zhao et al., 2024a). Traditional437

methods like Adam exhibit limitations in handling438

LLM gradient dynamics under low-rank constraints439

(Li et al., 2024a), prompting the development of440

memory-efficient optimizers such as BAdam (Luo441

et al., 2025) and LISA (Pan et al., 2025). Tech-442

niques like Adam-mini (Zhang et al., 2024) and443

APOLLO (Zhu et al., 2024a) further demonstrate444

that reduced learning rates or SGD-like memory445

footprints can achieve competitive performance.446

However, challenges persist, particularly in scal-447

ing optimization for large models, as evidenced448

by the surge phenomenon in optimal learning rate449

and batch size scaling (Li et al., 2024b). Innova-450

tions like SPAM (Huang et al., 2025) and CAME451

(Luo et al., 2023) introduce momentum reset and452

confidence-guided strategies to stabilize training.453

SGG addresses these issues by clustering gradi-454

30.0

30.5

31.0

31.5

32.0

32.5

1/100 1/20 1/10 1
23.0

23.5

24.0

24.5

Reclustering T Interval

Va
lid

at
io

n
Pe

rp
le

xi
ty

 (%
)

LLaMA-60M
LLaMA-130M

(a) Recluster Interval T

30.4

30.6

0.9 0.99 0.999 0.9999
23.2

23.4

23.6

23.8

24.0

24.2

Scaling Decay Beta3

Va
lid

at
io

n
Pe

rp
le

xi
ty

 (%
)

LLaMA-60M
LLaMA-130M

(b) Scaling Decay β3

Figure 5: Ablation Study of two robust hyper-
parameters in SGG with LLaMA pre-training on C4.

ents and applying cluster-specific scaling, ensuring 455

tailored learning rates for each parameter group. 456

Parameter-efficient Fine-tuning. LLM appli- 457

cations have advanced significantly through 458

Parameter-efficient Fine-tuning (PEFT), with 459

LoRA (Hu et al., 2021) emerging as a cornerstone 460

technique. LoRA reduces the computational cost 461

by learning fewer trainable parameters, which are 462

low-rank perturbations to pre-trained weights. Re- 463

cent extensions, such as DoRA variants (Liu et al., 464

2024c; Nasiri and Garraghan, 2025), further en- 465

hance adaptation efficiency while maintaining per- 466

formance. However, LoRA and its variants face 467

notable limitations: reliance on Dropout for reg- 468

ularization often fails in short training regimes 469

(Kamalakara et al., 2022), suboptimal initializa- 470

tion slows convergence in sparse data scenarios, 471

and static scaling factors hinder adaptive learning 472

rate tuning (Dettmers et al., 2023). Efforts like 473

LoRA+ (Hayou et al., 2024) and LoRA-XS (Bałazy 474

et al., 2024) address some issues but remain chal- 475

lenged in multi-modality perception tasks (Ma 476

et al., 2024) and broader PEFT applications (Zhang 477

et al., 2025a). These limitations highlight the need 478

for low-rank optimization that is migratable and ad- 479

justs learning rates with low-rank properties, which 480

could be overcome with the gradient clustering and 481

cluster-specific scaling techniques in our SGG. 482

5 Conclusion 483

This paper introduces an efficient optimizer wrap- 484

per SGG that captures the inherent low-rank prop- 485

erties of LLM structures to estimate group-wise 486

adaptive learning rates through gradient cluster- 487

ing and cluster-specific scaling. Extensive exper- 488

iments across LLM pre-training, SFT and DPO 489

fine-tuning, and MLLM applications verify the con- 490

sistent performance gains of SGG upon popular 491

optimizers and LoRA with ignorable extra costs. 492

8

6 Limitations493

Border Impact. As LLM applications extend,494

the efficient algorithm of resource-constrained and495

large-scale optimization grows vital. Our proposed496

SGG offers a new angle for developing efficient497

and migratable optimizers by employing gradient498

clustering to estimate adaptive learning rates rather499

than applying NMF in parameter or gradient statis-500

tic estimation like LoRA variants and memory-501

efficient optimization. It makes SGG highly ver-502

satile and integrates seamlessly with full-rank op-503

timizers, memory-efficient optimizers, and LoRA504

algorithms to achieve significant performance gains505

across various LLM & MLLM applications with506

minimal extra cost.507

Limitations and Future Works. While SGG508

demonstrates promising results in improving the ef-509

ficiency and stability of LLM training, several limi-510

tations warrant further investigation. First, the cur-511

rent gradient grouping mechanism relies on heuris-512

tic clustering algorithms, which may not fully cap-513

ture the nuanced gradient patterns in more com-514

plex architectures. Future work could explore more515

sophisticated clustering techniques or even learn-516

able grouping strategies to enhance adaptability.517

Second, SGG’s performance has been primarily518

validated on a limited set of benchmarks; extend-519

ing evaluations to a broader range of tasks and520

model architectures would provide deeper insights521

into its generalizability. Lastly, the computational522

overhead of gradient clustering, though minimal,523

could be further optimized for extremely large-524

scale models. Addressing these limitations could525

pave the way for more robust and scalable opti-526

mization frameworks in the future.527

References528

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang,529
Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,530
and Jingren Zhou. 2023. Qwen-vl: A frontier large531
vision-language model with versatile abilities. arXiv532
preprint arXiv:2308.12966.533

Klaudia Bałazy, Mohammadreza Banaei, Karl Aberer,534
and Jacek Tabor. 2024. Lora-xs: Low-rank adap-535
tation with extremely small number of parameters.536
arXiv preprint arXiv:2405.17604.537

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzade-538
nesheli, and Anima Anandkumar. 2018. signsgd:539
compressed optimisation for non-convex problems.540
In International Conference on Machine Learning.541

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, 542
et al. 2020. Piqa: Reasoning about physical com- 543
monsense in natural language. In Proceedings of the 544
AAAI conference on artificial intelligence, volume 34, 545
pages 7432–7439. 546

Yuxuan Cai, Jiangning Zhang, Haoyang He, Xinwei 547
He, Ao Tong, Zhenye Gan, Chengjie Wang, and Xi- 548
ang Bai. 2024. Llava-kd: A framework of distilling 549
multimodal large language models. arXiv preprint 550
arXiv:2410.16236. 551

Xi Chen, Kaituo Feng, Changsheng Li, Xunhao Lai, Xi- 552
angyu Yue, Ye Yuan, and Guoren Wang. 2024. Fira: 553
Can we achieve full-rank training of llms under low- 554
rank constraint? arXiv preprint arXiv:2410.01623. 555

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, 556
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan 557
Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. 558
2023. Vicuna: An open-source chatbot impressing 559
gpt-4 with 90%* chatgpt quality. See https://vicuna. 560
lmsys. org (accessed 14 April 2023), 2(3):6. 561

Christopher Clark, Kenton Lee, Ming-Wei Chang, 562
Tom Kwiatkowski, Michael Collins, and Kristina 563
Toutanova. 2019. Boolq: Exploring the surprising 564
difficulty of natural yes/no questions. arXiv preprint 565
arXiv:1905.10044. 566

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, 567
Ashish Sabharwal, Carissa Schoenick, and Oyvind 568
Tafjord. 2018. Think you have solved question an- 569
swering? try arc, the ai2 reasoning challenge. arXiv 570
preprint arXiv:1803.05457. 571

Wenliang Dai, Junnan Li, Dongxu Li, Anthony 572
Meng Huat Tiong, Junqi Zhao, Weisheng Wang, 573
Boyang Li, Pascale Fung, and Steven Hoi. 2023. In- 574
structblip: Towards general-purpose vision-language 575
models with instruction tuning. arXiv preprint 576
arXiv:2305.06500. 577

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and 578
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning 579
of quantized llms. Advances in neural information 580
processing systems, 36:10088–10115. 581

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and 582
Luke Zettlemoyer. 2024. Qlora: Efficient finetuning 583
of quantized llms. Advances in Neural Information 584
Processing Systems, 36. 585

Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xi- 586
aowei Xu. 1996. A density-based algorithm for dis- 587
covering clusters in large spatial databases with noise. 588
In Knowledge Discovery and Data Mining. 589

Boris Ginsburg, Igor Gitman, and Yang You. 2018. 590
Large batch training of convolutional networks with 591
layer-wise adaptive rate scaling. In International 592
Conference on Learning Representations (ICLR). 593

Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv 594
Batra, and Devi Parikh. 2017. Making the v in vqa 595
matter: Elevating the role of image understanding 596

9

in visual question answering. In Proceedings of the597
IEEE conference on computer vision and pattern598
recognition, pages 6904–6913.599

Danna Gurari, Qing Li, Abigale J Stangl, Anhong Guo,600
Chi Lin, Kristen Grauman, Jiebo Luo, and Jeffrey P601
Bigham. 2018. Vizwiz grand challenge: Answering602
visual questions from blind people. In Proceedings of603
the IEEE conference on computer vision and pattern604
recognition, pages 3608–3617.605

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. 2024.606
Lora+: Efficient low rank adaptation of large models.607
arXiv preprint arXiv:2402.12354.608

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-609
Kirkpatrick, and Graham Neubig. 2021. Towards a610
unified view of parameter-efficient transfer learning.611
International Conference on Learning Representa-612
tions (ICLR).613

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,614
Bruna Morrone, Quentin de Laroussilhe, Andrea Ges-615
mundo, Mona Attariyan, and Sylvain Gelly. 2019.616
Parameter-efficient transfer learning for nlp. ArXiv.617

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan618
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,619
and Weizhu Chen. 2021. Lora: Low-rank adap-620
tation of large language models. arXiv preprint621
arXiv:2106.09685.622

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-623
Peng Lim, Lidong Bing, Xing Xu, Soujanya Po-624
ria, and Roy Ka-Wei Lee. 2023. Llm-adapters:625
An adapter family for parameter-efficient fine-626
tuning of large language models. arXiv preprint627
arXiv:2304.01933.628

Tianjin Huang, Ziquan Zhu, Gaojie Jin, Lu Liu,629
Zhangyang Wang, and Shiwei Liu. 2025. Spam:630
Spike-aware adam with momentum reset for stable631
llm training. arXiv preprint arXiv:2501.06842.632

Drew A Hudson and Christopher D Manning. 2019.633
Gqa: A new dataset for real-world visual reasoning634
and compositional question answering. In Proceed-635
ings of the IEEE/CVF conference on computer vision636
and pattern recognition, pages 6700–6709.637

Siddhartha Rao Kamalakara, Acyr Locatelli, Bharat638
Venkitesh, Jimmy Ba, Yarin Gal, and Aidan N639
Gomez. 2022. Exploring low rank training of deep640
neural networks. arXiv preprint arXiv:2209.13569.641

Nanda Kambhatla and Todd K. Leen. 1994. Classifying642
with gaussian mixtures and clusters. In Advances in643
Neural Information Processing Systems (NeurIPS),644
page 681–688, Cambridge, MA, USA. MIT Press.645

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A646
method for stochastic optimization. In International647
Conference on Learning Representations (ICLR).648

Andreas Köpf, Yannic Kilcher, Dimitri Von Rütte, 649
Sotiris Anagnostidis, Zhi Rui Tam, Keith Stevens, 650
Abdullah Barhoum, Duc Nguyen, Oliver Stan- 651
ley, Richárd Nagyfi, et al. 2023. Openassistant 652
conversations-democratizing large language model 653
alignment. Advances in Neural Information Process- 654
ing Systems, 36:47669–47681. 655

Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yix- 656
iao Ge, and Ying Shan. 2023. Seed-bench: Bench- 657
marking multimodal llms with generative compre- 658
hension. arXiv preprint arXiv:2307.16125. 659

Guangyan Li, Yongqiang Tang, and Wensheng Zhang. 660
2024a. Lorap: Transformer sub-layers deserve differ- 661
entiated structured compression for large language 662
models. arXiv preprint arXiv:2404.09695. 663

Junnan Li, Dongxu Li, Caiming Xiong, and Steven 664
Hoi. 2022. Blip: Bootstrapping language-image pre- 665
training for unified vision-language understanding 666
and generation. In International conference on ma- 667
chine learning, pages 12888–12900. PMLR. 668

Shuaipeng Li, Penghao Zhao, Hailin Zhang, Xingwu 669
Sun, Hao Wu, Dian Jiao, Weiyan Wang, Chengjun 670
Liu, Zheng Fang, Jinbao Xue, et al. 2024b. Surge 671
phenomenon in optimal learning rate and batch size 672
scaling. arXiv preprint arXiv:2405.14578. 673

Siyuan Li, Juanxi Tian, Zedong Wang, Luyuan Zhang, 674
Zicheng Liu, Weiyang Jin, Yang Liu, Baigui Sun, and 675
Stan Z Li. 2024c. Unveiling the backbone-optimizer 676
coupling bias in visual representation learning. arXiv 677
preprint arXiv:2410.06373. 678

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning: 679
Optimizing continuous prompts for generation. Pro- 680
ceedings of the 59th Annual Meeting of the Asso- 681
ciation for Computational Linguistics and the 11th 682
International Joint Conference on Natural Language 683
Processing, pages 4582–4597. 684

Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Xin Zhao, 685
and Ji-Rong Wen. Evaluating object hallucination 686
in large vision-language models. In The 2023 Con- 687
ference on Empirical Methods in Natural Language 688
Processing. 689

Bin Lin, Zhenyu Tang, Yang Ye, Jiaxi Cui, Bin Zhu, 690
Peng Jin, Junwu Zhang, Munan Ning, and Li Yuan. 691
2024. Moe-llava: Mixture of experts for large vision- 692
language models. arXiv preprint arXiv:2401.15947. 693

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan 694
Zhang, Sheng Shen, and Yong Jae Lee. 2024a. Llava- 695
next: Improved reasoning, ocr, and world knowledge. 696

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae 697
Lee. 2024b. Visual instruction tuning. Advances in 698
neural information processing systems, 36. 699

Liyuan Liu, Xiaodong Liu, Jianfeng Gao, Weizhu Chen, 700
and Jiawei Han. 2020. Understanding the difficulty 701
of training transformers. In Conference on Empirical 702
Methods in Natural Language Processing. 703

10

https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo704
Molchanov, Yu-Chiang Frank Wang, Kwang-Ting705
Cheng, and Min-Hung Chen. 2024c. Dora: Weight-706
decomposed low-rank adaptation. arXiv preprint707
arXiv:2402.09353.708

Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li,709
Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi710
Wang, Conghui He, Ziwei Liu, et al. 2025. Mm-711
bench: Is your multi-modal model an all-around712
player? In European conference on computer vi-713
sion, pages 216–233. Springer.714

Ilya Loshchilov and Frank Hutter. 2019. Decoupled715
weight decay regularization. In International Confer-716
ence on Learning Representations (ICLR).717

Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-718
Wei Chang, Song-Chun Zhu, Oyvind Tafjord, Peter719
Clark, and Ashwin Kalyan. 2022. Learn to explain:720
Multimodal reasoning via thought chains for science721
question answering. Advances in Neural Information722
Processing Systems, 35:2507–2521.723

Qijun Luo, Hengxu Yu, and Xiao Li. 2025. Badam: A724
memory efficient full parameter optimization method725
for large language models. Advances in Neural Infor-726
mation Processing Systems, 37:24926–24958.727

Yang Luo, Xiaozhe Ren, Zangwei Zheng, Zhuo728
Jiang, Xin Jiang, and Yang You. 2023. Came:729
Confidence-guided adaptive memory efficient opti-730
mization. arXiv preprint arXiv:2307.02047.731

Feipeng Ma, Hongwei Xue, Guangting Wang, Yizhou732
Zhou, Fengyun Rao, Shilin Yan, Yueyi Zhang, Siy-733
ing Wu, Mike Zheng Shou, and Xiaoyan Sun. 2024.734
Visual perception by large language model’s weights.735
arXiv preprint arXiv:2405.20339.736

James MacQueen et al. 1967. Some methods for clas-737
sification and analysis of multivariate observations.738
In Proceedings of the fifth Berkeley symposium on739
mathematical statistics and probability, volume 1,740
pages 281–297. Oakland, CA, USA.741

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish742
Sabharwal. 2018. Can a suit of armor conduct elec-743
tricity? a new dataset for open book question answer-744
ing. arXiv preprint arXiv:1809.02789.745

Hamid Nasiri and Peter Garraghan. 2025. Edora:746
Efficient weight-decomposed low-rank adaptation747
via singular value decomposition. arXiv preprint748
arXiv:2501.12067.749

Rui Pan, Xiang Liu, Shizhe Diao, Renjie Pi, Jipeng750
Zhang, Chi Han, and Tong Zhang. 2025. Lisa: layer-751
wise importance sampling for memory-efficient large752
language model fine-tuning. Advances in Neural753
Information Processing Systems, 37:57018–57049.754

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya755
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-756
try, Amanda Askell, Pamela Mishkin, Jack Clark,757
et al. 2021. Learning transferable visual models from758

natural language supervision. In International confer- 759
ence on machine learning, pages 8748–8763. PMLR. 760

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat- 761
ula, and Yejin Choi. 2021. Winogrande: An adver- 762
sarial winograd schema challenge at scale. Commu- 763
nications of the ACM, 64(9):99–106. 764

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan 765
LeBras, and Yejin Choi. 2019. Socialiqa: Com- 766
monsense reasoning about social interactions. arXiv 767
preprint arXiv:1904.09728. 768

D. Sculley. 2010. Web-scale k-means clustering. In 769
International Conference on World Wide Web. 770

Noam M. Shazeer and Mitchell Stern. 2018. Adafactor: 771
Adaptive learning rates with sublinear memory cost. 772
ArXiv, abs/1804.04235. 773

Fangxun Shu, Yue Liao, Le Zhuo, Chenning Xu, Lei 774
Zhang, Guanghao Zhang, Haonan Shi, Long Chen, 775
Tao Zhong, Wanggui He, et al. 2024. Llava-mod: 776
Making llava tiny via moe knowledge distillation. 777
arXiv preprint arXiv:2408.15881. 778

Amanpreet Singh, Vivek Natarajan, Meet Shah, 779
Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh, 780
and Marcus Rohrbach. 2019. Towards vqa models 781
that can read. In Proceedings of the IEEE/CVF con- 782
ference on computer vision and pattern recognition, 783
pages 8317–8326. 784

Naresh K. Sinha and Michael P. Griscik. 1971. A 785
stochastic approximation method. IEEE Transac- 786
tions on Systems, Man, and Cybernetics, SMC- 787
1(4):338–344. 788

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann 789
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, 790
and Tatsunori B Hashimoto. 2023. Stanford alpaca: 791
An instruction-following llama model. 792

Leandro von Werra, Younes Belkada, Lewis Tunstall, 793
Edward Beeching, Tristan Thrush, Nathan Lambert, 794
Shengyi Huang, Kashif Rasul, and Quentin Gal- 795
louédec. 2020. Trl: Transformer reinforcement learn- 796
ing. https://github.com/huggingface/trl. 797

Alex Wang. 2018. Glue: A multi-task benchmark and 798
analysis platform for natural language understanding. 799
arXiv preprint arXiv:1804.07461. 800

Qinghao Ye, Haiyang Xu, Jiabo Ye, Ming Yan, An- 801
wen Hu, Haowei Liu, Qi Qian, Ji Zhang, and Fei 802
Huang. 2024. mplug-owl2: Revolutionizing multi- 803
modal large language model with modality collabo- 804
ration. In Proceedings of the IEEE/CVF Conference 805
on Computer Vision and Pattern Recognition, pages 806
13040–13051. 807

Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing 808
Sun, Tong Xu, and Enhong Chen. 2023. A survey on 809
multimodal large language models. arXiv preprint 810
arXiv:2306.13549. 811

11

https://github.com/huggingface/trl

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu,812
Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan Song,813
James Demmel, Kurt Keutzer, and Cho-Jui Hsieh.814
2020. Large batch optimization for deep learning:815
Training BERT in 76 minutes. In International Con-816
ference on Learning Representations (ICLR).817

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali818
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a819
machine really finish your sentence? arXiv preprint820
arXiv:1905.07830.821

Dan Zhang, Tao Feng, Lilong Xue, Yuandong Wang,822
Yuxiao Dong, and Jie Tang. 2025a. Parameter-823
efficient fine-tuning for foundation models. arXiv824
preprint arXiv:2501.13787.825

Yushun Zhang, Congliang Chen, Tian Ding, Ziniu Li,826
Ruoyu Sun, and Zhiquan Luo. 2025b. Why trans-827
formers need adam: A hessian perspective. Ad-828
vances in Neural Information Processing Systems,829
37:131786–131823.830

Yushun Zhang, Congliang Chen, Ziniu Li, Tian Ding,831
Chenwei Wu, Yinyu Ye, Zhi-Quan Luo, and Ruoyu832
Sun. 2024. Adam-mini: Use fewer learning rates to833
gain more. arXiv preprint arXiv:2406.16793.834

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang835
Wang, Anima Anandkumar, and Yuandong Tian.836
2024a. Galore: Memory-efficient llm training837
by gradient low-rank projection. arXiv preprint838
arXiv:2403.03507.839

Rosie Zhao, Depen Morwani, David Brandfonbrener,840
Nikhil Vyas, and Sham Kakade. 2024b. Deconstruct-841
ing what makes a good optimizer for language mod-842
els. arXiv preprint arXiv:2407.07972.843

Baichuan Zhou, Ying Hu, Xi Weng, Junlong Jia, Jie Luo,844
Xien Liu, Ji Wu, and Lei Huang. 2024. Tinyllava: A845
framework of small-scale large multimodal models.846
arXiv preprint arXiv:2402.14289.847

Hanqing Zhu, Zhenyu Zhang, Wenyan Cong, Xi Liu,848
Sem Park, Vikas Chandra, Bo Long, David Z Pan,849
Zhangyang Wang, and Jinwon Lee. 2024a. Apollo:850
Sgd-like memory, adamw-level performance. arXiv851
preprint arXiv:2412.05270.852

Yichen Zhu, Minjie Zhu, Ning Liu, Zhiyuan Xu, and853
Yaxin Peng. 2024b. Llava-phi: Efficient multi-modal854
assistant with small language model. In Proceed-855
ings of the 1st International Workshop on Efficient856
Multimedia Computing under Limited, pages 18–22.857

12

Appendix858

A Implementation Details859

SGG is implemented in PyTorch and seamlessly in-860

tegrates with mainstream optimizers such as SGD861

and Adam, requiring no modifications to the net-862

work architecture and only minimal changes to the863

optimization loop. Key hyperparameters include864

the number of clusters K ∈ {2, 3}, the recluster865

interval T (typically set to 10% of the total train-866

ing iterations), and the scaling factor EMA decay867

β3 = 0.9. These hyperparameters are empirically868

tuned to balance computational efficiency and opti-869

mization performance. To ensure scalability, clus-870

tering indices and scaling factors are stored in CPU871

memory, reducing GPU memory overhead while872

maintaining efficient access during training. This873

design choice allows SGG to handle large-scale874

models without significant memory bottlenecks.875

The core of SGG involves grouping gradients876

into clusters and applying cluster-specific scaling877

factors to the learning rates. For optimizers like878

Adam, the momentum estimates mt
l (which pro-879

vide a smoothed representation of the gradients) are880

flattened and clustered instead. The clustering is881

performed using the MiniBatchKMeans algorithm882

from the sklearn library, which is efficient and883

suitable for large datasets. During clustering, the884

flattened gradients or momentum estimates are re-885

shaped into a 2D array of shape (N, 1), where N is886

the total number of elements in the gradient tensor.887

After clustering, each gradient element is assigned888

to a cluster, and the scaling factors Sl are updated889

using an EMA of the median gradient magnitudes890

within each cluster. These scaling factors are then891

applied to the learning rates during the parameter892

update step, enabling adaptive and cluster-specific893

optimization. The entire process is computationally894

efficient, with clustering performed on the CPU and895

only the final scaling factors transferred to the GPU896

for parameter updates.897

B Evaluation Setups and Experimental898

Results899

B.1 LLM Pre-training on C4900

We conducted extensive pre-training experiments901

on LLaMA-based large language models using the902

C4 dataset. The C4 dataset, a meticulously cleaned903

and processed version of Common Crawl’s web904

corpus, serves as a benchmark for pre-training lan-905

guage models and learning word representations.906

To closely replicate real-world pre-training condi- 907

tions, we implemented a no-repetition training pro- 908

tocol over a substantial data volume, scaling our ex- 909

periments across model sizes up to 7 billion param- 910

eters. We provide a comprehensive overview of 911

the LLaMA architecture and the specific hyperpa- 912

rameters employed during pre-training (Tabel A1). 913

The hyperparameters are standardized across all 914

model sizes, with a maximum sequence length 915

of 256 tokens and a batch size of 131,000 tokens. 916

Across all experiments, we implemented a learning 917

rate warmup phase for the initial 10% of the train- 918

ing steps, followed by a cosine annealing schedule 919

that gradually reduces the learning rate to 10% of 920

its initial value. 921

For each model size (ranging from 60 mil- 922

lion to 1 billion parameters), we performed 923

a systematic hyperparameter search to iden- 924

tify the optimal learning rate from the set 925

{0.01, 0.005, 0.001, 0.0005, 0.0001}, with selec- 926

tion criteria based on validation perplexity. No- 927

tably, SGG demonstrated remarkable robustness 928

to hyperparameter variations, maintaining stable 929

performance across different model sizes with a 930

consistent learning rate. 931

B.2 LLM SFT on GLUE Benchmark 932

The GLUE benchmark, a widely-used evaluation 933

framework for NLP tasks such as sentiment anal- 934

ysis, question answering, and textual entailment 935

(Wang, 2018), serves as a robust platform for as- 936

sessing model performance. In this study, we fine- 937

tuned the pre-trained RoBERTa-Base model on the 938

GLUE benchmark using the Hugging Face imple- 939

mentation. The model was trained for 30 epochs 940

with a batch size of 16 for all tasks, except for 941

CoLA, which utilized a batch size of 32. We metic- 942

ulously tuned the learning rate and scale factor 943

for the SGG optimization technique. Table A2 de- 944

tails the hyperparameters employed for fine-tuning 945

RoBERTa-Base with SGG. 946

The results, as presented in Table 5, demon- 947

strate the efficacy of SGG in enhancing model 948

performance across various GLUE sub-tasks. No- 949

tably, SGG consistently improves the top-1 ac- 950

curacy when applied to different optimizers, in- 951

cluding SGD, AdamW, and LAMB. For instance, 952

SGD+SGG achieves a significant performance gain 953

of +1.58 on CoLA and +0.76 on MRPC com- 954

pared to the standard SGD optimizer. Similarly, 955

AdamW+SGG shows remarkable improvements, 956

with gains of +1.45 on RTE and +1.01 on SST2. 957

13

Table A1: Hyperparameters of LLaMA models for evaluation.

Params Hidden Intermediate Heads Layers Steps Data Amount

60M 512 1376 8 8 10K 1.3 B
130M 768 2048 12 12 20K 2.6 B
350M 1024 2736 16 24 60K 7.8 B
1 B 2048 5461 24 32 100K 13.1 B

Table A2: Hyperparameters of fine-tuning RoBERTa base.

MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

Batch Size 16 16 16 32 16 16 16 16
Epochs 30 30 30 30 30 30 30 30
Learning Rate 2E-05 1E-05 3E-05 3E-05 1E-05 1E-05 1E-05 2E-05
Rank Config. Full
Max Seq. Len. 512

Batch Size 16 16 16 32 16 16 16 16
Epochs 30 30 30 30 30 30 30 30
Learning Rate 2E-05 1E-05 3E-05 3E-05 1E-05 1E-05 1E-05 2E-05
Rank Config. r = 4
Max Seq. Len. 512

Batch Size 16 16 16 32 16 16 16 16
Epochs 30 30 30 30 30 30 30 30
Learning Rate 2E-05 2E-05 2E-05 3E-05 1E-05 2E-05 2E-05 3E-05
Rank Config. r = 8
Max Seq. Len. 512

These enhancements underscore the advantage of958

SGG in stabilizing and accelerating the conver-959

gence of gradient-based optimization methods, par-960

ticularly in low-rank settings where computational961

efficiency is crucial. The consistent performance962

gains across multiple tasks and optimizers high-963

light SGG’s potential as a robust technique for fine-964

tuning large-scale language models, making it a965

valuable addition to the NLP toolkit.966

B.3 LLM PEFT with Commonsense967

Reasoning Tasks968

Following LLM-Adaptor (Hu et al., 2023), we969

evaluate eight Commonsense Reasoning tasks970

with top-1 accuracy (%) and GPU memory con-971

sumption, including BoolQ (Clark et al., 2019),972

PIQA (Bisk et al., 2020), SIQA (Sap et al., 2019),973

HellaSwag (Zellers et al., 2019), WinoGrande (Sak-974

aguchi et al., 2021), ARC-Easy (ARC-E) and975

ARC-Challenge (ARC-C) (Clark et al., 2018),976

and OBQA (Mihaylov et al., 2018). As SFT se-977

tups in LLM-Adaptor, we combine the training978

datasets from all sub-tasks to fine-tune the pre-979

trained LLaMA-7B for 3 epochs using AdamW980

optimizer with a basic learning rate of 1e-4, a batch981

size of 32, the rank r = 32. Then, we evalu-982

ate each sub-task individually using its respective983

testing dataset. Three classical PEFT baselines, 984

Prefix-tuning (Prefix) (Li and Liang, 2021), Series 985

Adapter (Series) (Houlsby et al., 2019), and Paral- 986

lel Adapter (Parallel) (He et al., 2021), and three 987

popular PEFT methods, DoRA (Liu et al., 2024c), 988

GaLore (Zhao et al., 2024a), and Fira (Chen et al., 989

2024), are compared in Table A3. Our SGG con- 990

sisently improves eight sub-tasks over LoRA by 991

+2.9% without extra GPU memory, achieving com- 992

petitive performances with well-designed PEFT 993

methods with LoRA+SGG. 994

B.4 LLM RLHF with DPO 995

In our experiments, we employed the Direct Prefer- 996

ence Optimization (DPO) approach to fine-tune 997

the Qwen2.5-0.5B model using the ultrafeed- 998

back_binarized dataset, which contains binary pref- 999

erence labels that facilitate the alignment of the 1000

model with human preferences (von Werra et al., 1001

2020). The training process was conducted using 1002

both full-rank and LoRA strategies, with the latter 1003

being particularly effective in reducing the number 1004

of trainable parameters while maintaining compet- 1005

itive performance. The hyperparameters for the 1006

training included a learning rate of 5.0× 10−7 for 1007

full-rank training and 5.0× 10−6 for LoRA, with 1008

a single training epoch and a batch size of 2 per de- 1009

14

Table A3: Full Comparison Results of LLaMA PEFT on eight commonsense reasoning datasets with the accuracy
(%)↑ and the GPU memory↓, where only the weights and optimization states are considered. ChatGPT results are
obtained by Zero-shot CoT with gpt-3.5-turbo API. Bold and green types denote the best results and performance
gains compared to related baselines.

Model PEFT Memory BoolQ PIQA SIQA HellaSwag WinoGrande Arc-E Arc-C OBQA Average
ChatGPT − − 73.1 85.4 68.5 78.5 66.1 89.8 79.9 74.8 77.0

Prefix 0.05G 64.3 76.8 73.9 42.1 72.1 72.9 54.0 60.6 64.6
Series 0.42G 63.0 79.2 76.3 67.9 75.7 74.5 57.1 72.4 70.8

Parallel 1.49G 67.9 76.4 78.8 69.8 78.9 73.7 57.3 75.2 72.2
LoRA 0.35G 68.9 80.7 77.4 78.1 78.8 77.8 61.3 74.8 74.7

LLaMA-7B DoRA 0.26G 69.7 83.4 78.6 87.2 81.0 81.9 66.2 79.2 78.4
GaLore 0.26G 69.5 82.0 75.1 32.2 18.0 80.7 65.8 78.0 62.7

Fira 0.26G 69.4 82.6 78.0 76.8 81.2 82.2 64.4 80.8 76.9
LoRA+SGG 0.35G 70.3 83.6 78.8 81.7 80.9 81.5 65.3 79.0 77.6

∆ Gain +0.00 +1.4 +2.9 +1.4 +3.6 +2.1 +3.7 +4.0 +4.2 +2.9

vice. Gradient accumulation was set to 8 steps, and1010

gradient checkpointing was enabled to optimize1011

memory usage.1012

The optimization process utilized several opti-1013

mizers, including SGD, AdamW, and LAMB, with1014

and without the addition of the SGG (Stochastic1015

Gradient with Gain) technique. As shown in Ta-1016

ble 8, the inclusion of SGG consistently improved1017

the Top-1 accuracy across all optimizers. For in-1018

stance, AdamW with SGG achieved a Top-1 accu-1019

racy of 71.85% in full-rank training, representing1020

a gain of 0.47% over the baseline AdamW. Simi-1021

larly, in LoRA training, AdamW with SGG reached1022

72.02%, a significant improvement of 1.80% com-1023

pared to the baseline. These results underscore1024

the advantage of SGG in enhancing the optimiza-1025

tion process, particularly in scenarios where com-1026

putational efficiency and model performance are1027

critical.1028

The LoRA configuration used a rank (r) of1029

32 and alpha (α) of 16, which provided a bal-1030

ance between model complexity and performance.1031

The evaluation strategy was set to steps, with1032

evaluations conducted every 50 steps, and log-1033

ging was performed every 25 steps to moni-1034

tor the training progress. The output direc-1035

tory was designated as Qwen2-0.5B-DPO, and the1036

no_remove_unused_columns flag was enabled to1037

retain all columns in the dataset during training.1038

B.5 MLLM SFT with LLaVA Variants1039

To validate the generalization capability of the1040

SGG-equipped optimizer, we also verify it on some1041

variants of LLaVA (Liu et al., 2024b). i.e. LLaVA-1042

v1.5-7b, LLaVA-LoRA, LLaVA-v1.3. And we1043

choose some mainstream multi-modal LLMs at Ta-1044

ble 7, e.g. BLIP (Li et al., 2022), InstructBLIP (Dai1045

et al., 2023), Qwen-VL (Bai et al., 2023), Qwen- 1046

VL-Chat, mPLUG-Owl2 (Ye et al., 2024), and 1047

some variant of LLaVA, Tiny-LLaVA (Zhou et al., 1048

2024), MoE-LLaVA (Lin et al., 2024), LLaVA- 1049

Phi (Zhu et al., 2024b), LLaVA-NeXT (Liu et al., 1050

2024a), LLaVA-MOD (Shu et al., 2024), and 1051

LLaVA-KD-2B (Cai et al., 2024). 1052

Setup and Settings: Following the LLaVA- 1053

v1.5, we use a pre-trained Vicuna-v1.5-7B (Chiang 1054

et al., 2023) as the language decoder. A pre-trained 1055

2×MLP as the connector to align the visual tokens 1056

to text tokens. The connector was trained by the 1057

LCS-558K datasets for one epoch. For the visual 1058

encoder, CLIP (Radford et al., 2021) encodes and 1059

extracts the visual representation from the images. 1060

In our experiments, we validate three different op- 1061

timizers: AdamW, Adafactor, and LAMB. The de- 1062

tails of the optimizer hyperparameters and some 1063

training settings are shown in Table A5. 1064

Supervised Fine-tuning: We keep the visual 1065

encoder frozen and update the parameters of the 1066

connector and LLM for training. For the Full-Rank 1067

Supervised Fine-Tuning (SFT), the learning rate 1068

was set to 2e-5, the batch size was 64, and train- 1069

ing one epoch on llava-v1.5-mix665k dataset. 1070

To further validate the effectiveness of SGG in 1071

the light parameters and low-bit quantization sce- 1072

nario, we conducted an experiment to train the 1073

Low-Rank (LoRA) and 8-bit Quantization LoRA 1074

(Q-LoRA (Dettmers et al., 2024)) SFT method. 1075

These methods have unique advantages in param- 1076

eter efficiency and training speed. For the LoRA 1077

and Q-LoRA SFT, the rank r of LoRA is 128, the 1078

learning rate scaling factor α is 256, the batch size 1079

set is 64, and training one epoch. These low-rank 1080

methods are based on the LLaVA-v1.5. 1081

Results: Table 7 and Table A6 present the re- 1082

15

Table A4: Full Comparison Results of LLaMA Pre-training on C4 using full-rank and memory-efficient
optimization with model size ranging from 60M to 1B. The validation perplexity (PPL)↓ and GPU memory (Mem.)↓
are reported, where only the weights and optimization states are considered for the memory. Bold and green types
denote the best results and performance gains compared to related baselines.

Method Date 60M 130M 350M 1B
PPL Mem. PPL Mem. PPL Mem. PPL Mem.

Adam ICLR’25 34.06 0.36G 25.08 0.76G 18.80 2.06G 15.56 7.80G
Adam-mini ICML’24 34.10 0.23G 24.85 0.48G 19.05 1.32G 16.07 4.75G
LAMB ICLR’20 33.04 0.36G 24.37 0.77G 18.26 2.07G 15.84 7.81G
LION NIPS’23 32.42 0.36G 24.05 0.75G 18.10 2.05G 15.47 7.73G
Adam+SGG Ours 30.34 0.36G 23.32 0.76G 17.34 2.06G 14.56 7.80G
∆ Gain -3.72 +0.00 -1.76 +0.00 -1.46 +0.00 -1.00 +0.00
Adafactor ICML’18 32.57 0.24G 23.98 0.61G 17.74 1.53G 15.19 6.65G
Low-Rank arXiv’22 78.18 0.26G 45.51 0.54G 37.41 1.08G 34.53 3.57G
CAME ACL’23 31.37 0.25G 23.38 0.62G 17.45 1.55G 14.68 6.70G
CAME+SGG Ours 30.15 0.25G 22.91 0.62G 17.09 1.55G 14.35 6.70G
∆ Gain -1.22 +0.00 -0.46 +0.00 -0.36 +0.00 -0.33 +0.00
APOLLO MLSys’25 31.55 0.24G 22.94 0.52G 16.85 1.22G 14.20 4.38G
APOLLO+SGG Ours 30.18 0.24G 22.52 0.52G 16.54 1.22G 13.95 4.38G
∆ Gain -1.37 +0.00 -0.42 +0.00 -0.31 +0.00 -0.25 +0.00
LoRA ICLR’22 34.99 0.36G 33.92 0.80G 25.58 1.76G 19.21 6.17G
ReLoRA ICLR’23 37.04 0.36G 29.37 0.80G 29.08 1.76G 18.33 6.17G
GaLore ICML’24 34.88 0.24G 25.36 0.52G 18.95 1.22G 15.64 4.38G
GaLore+SPAM ICLR’25 32.39 0.24G 23.98 0.52G 18.28 1.22G 14.73 6.17G
LoRA+SGG Ours 30.62 0.36G 23.62 0.80G 17.86 1.76G 14.73 6.17G
∆ Gain -4.37 +0.00 -10.30 +0.00 -7.72 +0.00 -4.48 +0.00
Training Tokens 1.1B 2.2B 6.4B 13.1B

60M 130M 350M 1B
Parameter Scales

15.0

17.5

20.0

22.5

25.0

27.5

30.0

32.5

35.0

Va
lid

at
io

n
Pe

rp
le

xi
ty

 (
%

)

Adam
Adam-mini
LAMB
LION
Adam+SGG

(a) Full-Rank Optimizers

60M 130M 350M 1B
Parameter Scales

15.0

17.5

20.0

22.5

25.0

27.5

30.0

32.5

Va
lid

at
io

n
Pe

rp
le

xi
ty

 (
%

)

Adafactor
CAME
APOLLO
APOLLO-mini
APOLLO+SGG

(b) Memory-efficient Optimizers

Figure A1: Parameter Scaling-up on C4 pre-training with various optimization methods.

sults of SGG on VQA and benchmark tasks. Ta-1083

ble 7 shows the results of seven representative tasks,1084

while Table A6 displays the full results of nine1085

tasks. For the Full-Rank SFT, on the AdamW op-1086

timizer, SGG achieves 64.5 average performance1087

on the 7 different tasks, which brings +0.9% per-1088

formance compared to the AdamW baseline. On1089

the Adafactor, SGG could get extra +0.6% per-1090

formance compared to the vanilla Adafactor, es-1091

pecially on VizWzi VQA task, SGG could bring1092

+2.4% capability. With LAMB+SGG, our perfor-1093

mance can reach 52.7. For the LoRA SFT, our SGG1094

could achieve 65.1 scores, and on the VizWiz task,1095

it brings additional performance gains of +2.2%.1096

For the 8-bit experiments, Table 7 shows that our1097

SGG with AdamW could also bring some perfor- 1098

mance. 1099

C Empirical Analysis 1100

C.1 Analysis of Gradient Clustering 1101

Figure 1 illustrates the gradient clustering phe- 1102

nomenon observed during the pre-training of the 1103

LLaMA-1B model on the C4 dataset, focusing 1104

on gradients, adaptive learning rates, and gradient 1105

norms. LLMs exhibit unique gradient dynamics 1106

due to their massive scale, sparse activations, and 1107

hierarchical structure. SGG leverages these char- 1108

acteristics to improve optimization efficiency and 1109

convergence. Gradients in LLMs often follow a 1110

heavy-tailed distribution, with a small fraction of 1111

16

Table A5: Details of the hyperparameters for the opti-
mizers and experiment settings.

Method AdamW Adafactor LAMB
Modules and datasets

LLM Vicuan-v1.5-7B
Vision encoder CLIP-L-336px

Connector 2×MLP
Pretrain data LCS-558K

SFT data llava-v1.5-mix665k

Basic SFT settings
Learning rate 2e−5 2e−5 2e−5

Batch size 64 64 64
Betas (0.9, 0.999) ✗ (0.9, 0.999)

Epsilon 1e−8 (1e−30, 1e−3) 1e−6

Weight decay ✗ ✗ ✗

LR scheduler Cosine Cosine Cosine
Warmup ratio 0.03 0.03 0.03
Clip threshold ✗ 1.0 ✗

Clamp value ✗ ✗ 10
Cluster number 3 3 2

Recluster interval 1,000 1,000 1,000
Decay rate (0.95, 0.9) (0.95, 0.9) (0.95, 0.9)

Low-Rank hyperparameters
LoRA (r=128, α=256) ✓ ✗ ✗

8bit LoRA (r=128, α=256) ✓ ✗ ✗

parameters contributing disproportionately to the1112

overall gradient magnitude. SGG addresses this by1113

flattening gradients into high-dimensional vectors1114

and applying clustering algorithms (e.g., k-means)1115

to group parameters with similar behaviors. This1116

results in two distinct clusters: one for parameters1117

with large gradients (associated with salient fea-1118

tures or rare tokens) and another for those with1119

smaller gradients (associated with frequent but less1120

informative tokens). Adaptive learning rates are1121

then computed separately for each cluster, ensur-1122

ing stability for parameters with large gradients1123

and faster convergence for those with smaller gra-1124

dients. This contrasts with baseline methods that1125

apply uniform learning rates, failing to account for1126

the heavy-tailed gradient distributions typical of1127

LLMs.1128

Figure 3(c) depicts the layer-wise L2-gradient1129

norm distributions across all layers of the LLaMA-1130

1B model. Gradient norms vary significantly across1131

layers due to the hierarchical nature of LLMs. Ear-1132

lier layers (e.g., embedding and low-level trans-1133

former layers) exhibit smaller gradient norms, as1134

they focus on general syntactic and semantic pat-1135

terns. In contrast, deeper layers (e.g., higher-level1136

transformer layers) tend to have larger gradient1137

norms, as they model complex, context-dependent1138

relationships. SGG captures these patterns by1139

grouping parameters based on gradient norms and1140

applying layer-wise learning rate scaling. This en-1141

sures earlier layers receive larger updates for faster1142

learning of general patterns, while deeper layers 1143

receive smaller updates to maintain stability and 1144

prevent overfitting. Baseline methods, which lack 1145

such adaptive scaling, often struggle to optimize 1146

all layers simultaneously, leading to suboptimal 1147

convergence and poor generalization. 1148

The clustering of gradients, adaptive learning 1149

rates, and gradient norms in LLMs are deeply inter- 1150

connected phenomena. The heavy-tailed gradient 1151

distribution directly influences adaptive learning 1152

rates, as parameters with large gradients are as- 1153

signed smaller learning rates to prevent instability. 1154

This, in turn, affects gradient norms, as learning 1155

rate scaling impacts the magnitude of parameter 1156

updates. SGG’s ability to capture these relation- 1157

ships and adaptively scale learning rates based on 1158

gradient clustering and norm distributions leads to 1159

more stable and efficient optimization compared 1160

to baseline methods. Furthermore, the hierarchi- 1161

cal structure of LLMs introduces additional com- 1162

plexity, as different layers exhibit distinct gradient 1163

behaviors. SGG addresses this by leveraging layer- 1164

wise clustering and scaling, ensuring each layer 1165

is optimized according to its specific role. This 1166

is particularly critical for LLMs, where the inter- 1167

play between low-level and high-level features is 1168

essential for capturing the nuances of natural lan- 1169

guage. By preserving the inherent structure of the 1170

optimization landscape, SGG not only improves 1171

convergence but also enhances the model’s ability 1172

to generalize to unseen data. 1173

C.2 Analysis of Learning Rate Scaling 1174

We analyze the impact of learning rate scaling 1175

on the validation perplexity of the Qwen2.5-0.5B 1176

model fine-tuned on the Alpaca dataset. The ex- 1177

periments were conducted with varying batch sizes 1178

{128, 512, 1024, 2048, 4096} and learning rates 1179

{1e-1, 1e-2, 1e-3, 1e-4, 1e-5}, using both the Adam 1180

optimizer and Adam with SGG. The model was 1181

trained for 3 epochs with LoRA (rank=8) and fol- 1182

lowed the official settings of the Alpaca framework. 1183

The results, as depicted in Figure 4, demonstrate 1184

several key trends. First, as the batch size increases, 1185

the validation perplexity generally decreases, indi- 1186

cating that larger batch sizes contribute to more 1187

stable and efficient training. This effect is par- 1188

ticularly pronounced when SGG is applied, sug- 1189

gesting that SGG enhances the model’s ability to 1190

generalize even under extreme batch size settings. 1191

Second, lower learning rates (e.g., 1e-4, 1e-5) con- 1192

sistently yield better performance, especially when 1193

17

Table A6: Full Comparison Results with Mainstream MLLMs. Compared with counterparts. Top-1 accuracy
(%) is reported. AVG: The average of the nine benchmarks for comprehensive comparison except for MME. †:
reproduced results using the official code. Lots of the results are reported from LLaVA-KD (Cai et al., 2024).

Method LLM Optimizer
Image Question Answering Benchmarks

AVG
VQAv2 GQA VizWiz SciVQAI TextVQA MME MMBench MMBenchCN POPE SEEDI

BLIP-2 Vicuna-13B AdamW 65.0 41.0 19.6 61.0 42.5 − − − 85.3 − −
InstructBLIP Vicuna-7B AdamW − 49.2 34.5 60.5 50.1 − 36.0 23.7 79.8 − −
Qwen-VL Qwen-7B AdamW 78.8 59.3 35.2 67.1 63.8 − 38.2 7.4 − − −
Qwen-VL-Chat Qwen-7B AdamW 78.2 57.5 38.9 68.2 61.5 − 60.6 56.7 − − −
mPLUG-Owl2 LLaMA2-7B AdamW 79.4 56.1 54.5 68.7 54.3 − 66.5 − 85.8 − −
TinyLLaVA† Qwen1.5-4B AdamW 79.9 63.4 46.3 72.9 59.0 − 67.9 67.1 85.2 − −
TinyLLaVA Phi2-2.7B AdamW 79.9 62.0 − 69.1 59.1 − 66.9 − 86.4 − −
Bunny Phi2-2.7B AdamW 79.8 62.5 43.8 70.9 56.7 − 68.6 37.2 − − −
Imp-3B Phi2-2.7B AdamW − 63.5 54.1 72.8 59.8 − 72.9 46.7 − − −
MobileVLM MLLaMA-2.7B AdamW − 59.0 − 61.0 47.5 − 59.6 − 84.9 − −
MobileVLMv2 MLLaMA-2.7B AdamW − 61.1 − 70.0 57.5 − 63.2 − 84.7 − −
MoE-LLaVA Phi2-2.7B AdamW 79.9 62.6 − 70.3 57.0 − 68.0 − 85.7 − −
LLaVA-Phi Phi2-2.7B AdamW 71.4 − − 68.4 48.6 − 59.8 − 85.0 − −
LLaVA-NeXT Vicuna-1.5-7B AdamW 81.8 64.2 57.6 70.1 64.9 1519.0 67.4 60.6 86.5 70.2 69.3
LLaVA-NeXT Vicuna-1.5-13B AdamW 82.8 65.4 60.5 73.6 67.1 1575.0 70.0 64.4 86.2 71.9 71.3
MiniCPM-V MiniCPM-2.4B AdamW − 51.5 50.5 74.4 56.6 − 64.0 62.7 79.5 − −
MiniCPMv2 MiniCPM-2.4B AdamW − 52.1 60.2 76.3 73.2 − 68.5 67.2 86.3 − −
LLaVA-MOD Qwen1.5-1.8B AdamW − 58.7 39.2 68.0 58.5 − 66.3 61.9 87.0 − −
LLaVA-KD-2B Qwen1.5-1.8B AdamW 79.0 62.3 44.7 64.7 53.4 − 64.0 63.7 86.3 − −
LLaVA-v1.5/1.6 Full-Rank SFT
LLaVA-v1.5 Vicuna-1.5-7B AdamW 78.5 62.0 50.0 66.8 58.2 1510.7 64.3 58.3 85.9 66.2 65.6
LLaVA-v1.5 Vicuna-1.5-7B Adafactor − 62.7 48.2 70.7 57.1 1462.5 66.1 60.4 86.0 66.8 −
LLaVA-v1.5 Vicuna-1.5-7B LAMB − 43.8 53.3 61.5 43.4 1090.9 43.2 41.8 81.2 50.4 −
LLaVA-v1.5 Vicuna-1.5-7B AdamW+SGG 79.2 62.4 50.1 68.8 58.4 1526.3 65.6 59.9 86.6 66.4 66.4
∆ gain compared to AdamW +0.7 +0.4 +0.2 +2.0 +0.2 +15.6 +1.3 +1.6 +0.7 +0.2 +0.8
LLaVA-v1.5 Vicuna-1.5-7B Adafactor+SGG − 62.8 50.6 71.6 57.3 1477.2 66.3 60.8 86.0 67.3 −
∆ gain compared to Adafactor − +0.1 +2.4 +0.9 +0.2 +14.7 +0.2 +0.4 +0.0 +0.5 −
LLaVA-v1.5 Vicuna-1.5-7B LAMB+SGG − 44.0 53.3 61.8 43.5 1122.9 43.3 41.9 81.3 50.5 −
∆ gain compared to LAMB − +0.2 +0.0 +0.3 +0.1 +32.0 +0.1 +0.1 +0.1 +0.1 −
LLaVA-v1.5 Low-Rank SFT (AdamW)
LLaVA-v1.5 Vicuna-1.5-7B LoRA 79.1 63.0 47.8 68.4 58.2 1466.2 66.1 58.9 86.4 67.8 66.2
LLaVA-v1.5 Vicuna-1.5-7B LoRA+SGG − 63.4 51.0 70.1 58.6 1477.8 66.7 59.4 86.6 68.2 −
∆ gain compared to LoRA − +0.4 +2.2 +1.5 +0.4 +11.6 +0.6 +0.5 +0.2 +0.4 −

combined with larger batch sizes, highlighting the1194

importance of balancing these hyperparameters.1195

Notably, SGG provides robust performance gains1196

across all configurations, significantly reducing val-1197

idation perplexity compared to standard Adam opti-1198

mization. This improvement is attributed to SGG’s1199

ability to guide the optimization process more ef-1200

fectively, particularly in scenarios with large batch1201

sizes and varying learning rates. Overall, the results1202

underscore the effectiveness of SGG in enhancing1203

model performance, even in challenging training1204

conditions, and emphasize the critical role of hy-1205

perparameter tuning in achieving optimal results.1206

18

	Introduction
	Methodology
	Problem Defenition
	Gradient Grouping
	Scaling Factor Estimation

	Experiments
	Experimental Setup
	Comparison Results with LLMs
	Comparison Results with MLLMs
	Analysis of Learning Rate Scaling
	Ablation Study

	Related Work
	Conclusion
	Limitations
	Implementation Details
	Evaluation Setups and Experimental Results
	LLM Pre-training on C4
	LLM SFT on GLUE Benchmark
	LLM PEFT with Commonsense Reasoning Tasks
	LLM RLHF with DPO
	MLLM SFT with LLaVA Variants

	Empirical Analysis
	Analysis of Gradient Clustering
	Analysis of Learning Rate Scaling

