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ABSTRACT

Multi-agent systems built on Large Language Models (LLMs) show exceptional
promise for complex collaborative problem-solving, yet they face fundamental
challenges stemming from context window limitations that impair memory con-
sistency, role adherence, and procedural integrity. This paper introduces Intrin-
sic Memory Agents, a novel framework that addresses these limitations through
structured agent-specific memories that evolve intrinsically with agent outputs.
Specifically, our method maintains role-aligned memory templates that preserve
specialized perspectives while focusing on task-relevant information. We bench-
mark our approach on the PDDL dataset, comparing its performance to existing
state-of-the-art multi-agentic memory approaches and showing an improvement
of 38.6% with the highest token efficiency. An additional evaluation is performed
on a complex data pipeline design task, and we demonstrate that our approach
produces higher quality designs across 5 metrics: scalability, reliability, usability,
cost-effectiveness, and documentation, plus additional qualitative evidence of the
improvements. Our findings suggest that addressing memory limitations through
structured, intrinsic approaches can improve the capabilities of multi-agent LLM
systems on structured planning tasks.

1 INTRODUCTION

Recent advances in large language models (LLMs) have enabled their application as autonomous or
semi-autonomous agents capable of complex reasoning and decision-making (Huang et al., |2024)).
Multi-agent LLM systems, where multiple LLM instances interact to solve problems collaboratively,
have shown particular promise for tasks requiring diverse expertise (Park et al., 2023} |Qian et al.|
2025). These systems leverage the complementary capabilities of specialized agents to address
challenges that would be difficult for single-agent approaches to resolve effectively.

Despite their theoretical advantages, multi-agent LLM systems face several implementation chal-
lenges that limit their practical effectiveness, from coordination overhead, to the consistency in role
adherence among the agents (Li et al., 2024c). Most critically, the fixed-size context windows of
LLMs restrict their ability to maintain long-term conversational context, an issue that is exacerbated
in multi-agent frameworks with multiple agents in a single conversation. This leads to issues such
as perspective inconsistency, forgetting key requirements, and procedural drift. Current solutions
such as Retrieval-Augmented Generation (RAG) (Lewis et al., 20205 |Gao et al.| 2024)) and agentic
memory approaches (Packer et al., [2024; |Xu et al., 2025} |Chhikara et al., [2025) are designed for
single-agent and user interaction scenarios, which do not account for the volume of information
growing with the number of agents.

To address these challenges, we introduce Intrinsic Memory Agents, a novel multi-agent architecture
that uses structured, agent-specific memories aligned with conversational objectives. Unlike previ-
ous approaches, our system updates memories that are specific to each agent, ensuring heterogeneity
and memories that reflect both historical context and recent developments while preserving agent-
specific perspectives. The intrinsic nature of memory updates, derived directly from agent outputs
rather than external summarization, ensures unique memories that maintain consistency with agent-
specific reasoning patterns and domain expertise. We evaluate our approach through benchmarking
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and through a specific data pipeline design case study to show its practical usage. The evalua-
tion demonstrates that our Intrinsic Memory Agents approach yields significant improvements in
conversational coherence, role consistency, and collaborative efficiency compared to conventional
multi-agent implementations. These improvements translate to qualitative enhancements in solution
quality without increasing the number of conversation turns, suggesting broad applicability across
domains where multi-agent LLM systems are deployed.

The main contributions of our work are as follows:

* Structured Memory Templates: Predefined memory structures aligned with agent roles
and conversational objectives.

* Intrinsic Memory Updates: Memory updates derived from agent outputs rather than ex-
ternal summarization.

* Agent-Specific Memory: Independent memories maintained for each agent to preserve
perspective autonomy.

2 RELATED WORK

Recent years have seen significant progress in the development of multi-agent systems powered
by LLMs. These systems have been applied in various domains, such as software development,
scientific experimentation, gaming, and social simulation (L1 et al.,[2024c)). For example, in software
development, multi-agent systems enable concurrent consideration of architectural design, security,
user experience, and performance optimization (Hong et al.,|2024). Hallucinations due to outdated
knowledge or retrieval extraction issues remains a major challenge which limits the effectiveness of
multi-agent systems [Huang et al.[(2025). The use of a shared knowledge base or memory storage is
an important aspect to maintain up-to-date, coherent and correct information among agents.

2.1 MEMORY IN AGENT-BASED SYSTEMS

In agent-based systems, memory is pivotal for maintaining context, learning from historical interac-
tions, and making informed decisions. As|Zhang et al.[(2024)) noted, memory supports tasks such
as ensuring conversation consistency and effective role-playing for single-agent systems. In multi-
agent systems, memory facilitates coordination, communication, and collaborative problem-solving,
as|Guo et al.|(2024) discussed.

Memory in LLMs can be categorized under short-term memory and long-term memory. Short-term
memory is information that fits within the model’s fixed context window. Commercial LLMs such
as GPT-40 (OpenAl, [2024) and Claude (Anthropic, [2024) are able to process large contexts of over
100K tokens, with some models such as Gemini 2.5 Pro (Comanici et al.,|2025) able to process over
1 million tokens in its context window. However, the hard limit of the context window size remains,
and increasing the context length does not necessarily increase reasoning or learning capabilities
of the LLM (Li et al.,[2024b)). This is because the long context can move the relevant information
further away from each other in the context window.

Long-term memory is information that persists beyond the context window or single instance of
an LLM. This information can be stored in external databases and retrieved using RAG techniques
(Lewis et al., [2020; |Gao et al.l [2024). Long-term memory aims to alleviate the issue of short-term
memory’s limited capacity, but introduces other disadvantages such as retrieval noise, the complexity
of building a retrieval system, latency, and storage costs (Asai et al.} 2024} |Yu et al., [2024).

The limitations of context length and existing memory mechanisms are particularly pronounced in
multi-agent settings, where the volume of information exchanged grows with the number of agents
involved |Li et al.| (2024a). As multi-agent conversations extend, the probability of critical informa-
tion being at a long distance or even excluded from the accessible context increases dramatically.
This information loss undermines the primary advantage of multi-agent systems: The integration
of diverse, specialized perspectives toward cohesive solutions He et al.| (2025). This is exacerbated
by current long-term memory approaches which provide a homogeneous memory for the agents,
decreasing the benefits of having agents focused on a single part of the task. Our proposed approach
therefore focuses on the heterogeneity of agents and their memories, ensuring that each agent main-
tains a memory that is uniquely relevant to their role.



Under review as a conference paper at ICLR 2026

2.2  AGENTIC MEMORY

Agentic memory offers a solution to long-term memory and limited contextual information by pe-
riodically condensing conversation history into concise summaries (Wang et al.| 2025; [Chen et al.,
2024). These approaches generate sequential or hierarchical summaries that capture key decisions
and insights from previous exchanges. Some agentic memory approaches combine with RAG ap-
proaches by storing the summarized contexts for retrieval later in the conversation (Xu et al., 2022),
or by storing in- and out-of-context memory in a hierarchical system to dynamically adapt the cur-
rent context (Packer et al., 2024} Xu et al.| [2025). While agentic memory methods provide better
contextual integration than pure retrieval approaches, they frequently lose critical details during the
condensation process. Furthermore, the undirected and unstructured nature of general summariza-
tion often fails to preserve role-specific perspectives and specialized knowledge that are essential to
effective multi-agent collaboration.

Our proposed Intrinsic Memory Agents similarly uses an agentic memory approach to summarize
and store information. Unlike existing approaches, we introduce structured heterogeneous memory
for each agent in the multi-agent system to maintain specialized roles in collaborative tasks, and
apply a structured template to each agent ensuring a cohesive memory structure. This addresses the
limitations of existing memory mechanisms by ensuring that each agent maintains its own mem-
ory, reflecting both historical context and new information while maintaining heterogeneous agent-
specific perspectives and expertise.

3 INTRINSIC MEMORY AGENTS

The various agentic memory approaches are all designed in single-agent scenarios to remember
crucial details when interacting with an end-user. Due to the multi-turn long conversations between
agents, a direct implementation of single-agent agentic memory becomes complicated and resource-
intensive, with each agent requiring retrieval systems and distinct contextual updates.

We propose Intrinsic Memory Agents, a framework for multi-agent LLM systems that maintains
agent-specific structured memories aligned with conversational objectives. Figure [I]illustrates the
architecture of our Intrinsic Memory Agents framework. In this approach a query is made by the
user, the first agent makes a comment based on its role description, the conversation is updated,
followed by a memory update for the agent that commented, there is a check for consensus and the
cycle starts again. The context in this case is made up of both the agent’s intrinsic memory and
the conversation, meaning that as the conversation continues the agents increasingly diverge in their
interpretation of that context.

[ No ]o—[ Consensus? ]—-[ Yes ]

“Propose a data
pipeline to process this
EV sensor dataset”

select_next_speaker

Response

Oim = Li(Cim)

Cign = feontext (M, Hin)

Conversation History

[ [ J
dh dah
Ay 4 Ay
{Rn, Ln} {R, L;} {Ri, Ly}

AN AN AN
M, M; M,

Figure 1: Intrinsic Memory Agents Framework. For n agents and m conversation turns, each agent
A,, contains its own role description R,, and language model L,,. Its memory M,, ,, is updated
based on the input context C,, ,,, and output O,, .
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3.1 FRAMEWORK DEFINITION

Let us define the multi-agent system A = {43, A, ..., Ay} consisting of NV agents. Each agent
A, = {Rn, M,, LLM,} is characterized by a role specification R,, that defines the agent’s exper-
tise domain and objectives, a structured memory M, that evolves throughout the conversation, and
an LLM instance L LM, which may share parameters between agents.

The conversation consists of a sequence of turns 1" = t1, t2, ..., t3y where each turn ¢, involves an
agent selection function o (¢,,) — A, that determines which agent speaks, an input context C), ,
constructed for the selected agent, an output O, ,,, generated by the selected agent, and a memory
update operation for the selected agent.

Critically, our framework separates the input context construction and memory update processes,
allowing for agent-specific memory maintenance while preserving a shared conversation space.

3.2 STRUCTURED MEMORY TEMPLATES

For each agent A,,, we define a structured memory template M T, that specifies the organization of
agent-specific memories. The template consists of a set of memory slots MT,, = {51, 52, ..., Sk }
Each slot Sy is defined by a descriptive identifier (e.g., “domain_expertise”, “current_position”,
’proposed_solution”), formatted in JSON. The template can be nested so that each slot can have
its own descriptive identifier with further detailed information. The structured nature of the mem-
ory templates ensures that updates remain focused on role-relevant information while maintaining
consistency with the agent’s expertise domain.

3.3 MEMORY UPDATE MECHANISM

For each agent in the system, we maintain a structured memory M, that evolves over time. Let
M, ., represent the memory of agent n after m conversation turns. The memory update process
works as follows:

Agent A,, receives input context C', ,,, consisting of relevant conversation history H,, and previous
memory My, m—1,

On,m = fcontext(HmaMn,m—1)§ (D
and agent A,, generates output O,, ,,, using the underlying LLM L,,,

Then with the generated output O, ,,, and the previous memory M, ,,,—1, we update the slot content
using a memory update function,

Mn,m = fmemory,updale(Mn,m—la On,m)- (3)

The memory update function fmemory_update is implemented as a prompted LLM operation. Specifi-
cally, for the previous memory M, ,,,—1 at turn m — 1 and agent output O, ,,, at turn m, the update
function constructs the prompt as shown in Figure[d The LLM’s response to this prompt becomes
the updated memory M, ,,,. The context construction function feonex: presented in equation 1| de-
termines what information is provided to an agent when generating a response. The algorithm takes
the existing conversation history and agent memory, appending both to the context and using the
remaining tokens to include the rest of the conversation history. The full algorithm pseudo-code is
displayed in the Appendix [A] Algorithm I]

This algorithm prioritizes:

1. The initial task description to maintain objective alignment.
2. The agent’s structured memory to preserve role consistency.
3. The most recent conversation turns to maintain immediate context.
By prioritizing memory inclusion over exhaustive conversation history, the algorithm ensures that

agents maintain role consistency and task alignment even when conversation length exceeds context
window limitations.
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4 PDDL BENCHMARK

To evaluate our approach, we test our memory agents against the PDDL (Planning Domain Defi-
nition Language) numeric benchmark. PDDL involves structured planning tasks from AgentBoard
(Ma et al.l 2024), where the agents generate executable plans for abstract problem domains, evalu-
ating their reasoning and coordination.

For numerical benchmarks, we follow the same experimental methodology as G-Memory (Zhang
et al.| [2025), another memory framework for multi-agent systems. We re-run the G-Memory frame-
Work as we cannot directly compare to the published G-Memory results which were benchmarked
with GPT-40-mini as the base language model. We chose to use the G-Memory framework as a
comparison as the framework implements a variety of existing memory architectures, allowing us
to compare our Intrinsic Memory Agents with existing architectures and benchmarks. G-Memory
uses Autogen for multi-agent simulation, matching our use of Autogen for our architecture. We
chose to use the PDDL dataset as its structured planning task is the intended use case for the In-
trinsic Memory Agents and aligns with the data pipeline case study detailed in Section[5] We run
Llama3.1:8b for the numeric benchmarks using Ollamawith 1 repetition. We use a larger model
for the numeric benchmarks as initial tests on the 3b model found poor results for every benchmark
and memory framework. We use a single run with a set seed for reproducibility. Our computa-
tional infrastructure utilizes a high performance computing cluster with A100 GPUs, running on
GNU/Linux 4.18.0-553.e18_10.x86_64.

4.1 BENCHMARKING RESULTS

Memory Average rewards Average tokens
No Memory 0.0231 117,437
G-Memory 0.0231 118,316
Generative 0.0530 121,105
MemoryBank 0.0305 80,599
MetaGPT 0.0601 127,860
Voyager 0.0250 133,268
ChatDev 0.0583 107,043
Intrinsic Memory  0.0833 140,418

Table 1: Performance comparison between different memory architectures on PDDL. We record the
average rewards per task and average number of tokens used of per task. The best results for each
benchmark are highlighted in bold.

Table [T] shows the rewards and tokens used for different memory architectures with a multi-agent
system on the PDDL benchmark problems. We find substantially better average rewards for PDDL
at 0.0833 compared to the next highest with MetaGPT at 0.0601. The improved rewards come at a
cost of increased token usage, the highest among all memory architectures, requiring 12,558 more
tokens than MetaGPT. Based on token efficiency, defined as average reward per token, Intrinsic
Memory shows the best result at 5.933 x 10~7 with ChatDev coming second, which has a token
efficiency of 5.466 x 107,

The PDDL dataset are structured planning tasks, which fits the intended use case of Intrinsic Mem-
ory for agent discussion, planning and design. As Intrinsic Memory assigns agent-specific memory,
it can more clearly distinguish planning and actions to complete tasks. More tokens are used by
Intrinsic Memory to generate structured templates per agent per round of discussion, and is a worth-
while trade-off in both reward score and token efficiency. Notably, all memory architectures except
ChatDev and Intrinsic Memory, the most token efficient methods, utilize cross-trial memory, in
which memory is stored and carried across tasks, which significantly helps give few-shot examples
when agents are stuck in a loop in the environment.

"https://github.com/bingreeky/GMemory
*https://ollama.com/library
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5 DATA PIPELINE DESIGN CASE STUDY

As a practical case study to evaluate our approach, we applied our memory agents to a collaborative
data pipeline design, a complex task requiring multiple perspectives. We run 10 independent outputs
with eight specialized agents:

1. Evaluation Agent (EA) evaluates the output solutions.

[\

. Knowledge Integration Agent (KIA) summarizes each discussion round (e.g. after every
agent has contributed at least once).

. Data Engineer Agent (DEA) determines the data processing needs.

. Infrastructure Engineer (IA) designs the cloud infrastructure.

. Business Objective Engineer (BOA) checks against business requirements.
. Machine Learning Engineer (MLE) provides ML implementation.

~N N L AW

. Conversation Delegation Agent (CDA) is responsible for facilitating the collaborative
process.

8. Documentation Joining Agent (DJE) is responsible for producing final output after con-
sensus is reached among agents.

The agents are tasked with designing a cloud-based data pipeline architecture through a structured
process involving proposals, discussions, and consensus formation. The full prompts and task de-
scriptions can be found in Appendix [B]

The output requirements include a concise summary, high-level plan, resource estimates, and a
structured JSON specification.

5.1 SYSTEM CONFIGURATIONS

We evaluated two system configurations: First, the Baseline System which consists of a standard
multi-agent implementation without structured memory. It uses standard prompt templates for each
agent role, relying exclusively on conversation history for context. This limits the most recent con-
versation turns due to context window constraints. Second is our Intrinsic Memory System ap-
proach with agent-specific structured memories. It implements role-specific memory templates, up-
dates memories intrinsically based on agent outputs, and constructs context using both conversation
history and structured memories.

Both systems used identical agent roles and task specifications, with Llama-3.2-3b as the underlying
LLM. Each agent role was initialized with the same role description and initial instructions across
the two system configurations to ensure a fair comparison.

An agent selection function iterates through each worker agent and the conversation delegation agent
(CDA), ensuring that all agents are represented in the discussion. Once all agents have accepted a
proposed solution, marked through the ”’ACCEPT” flag, the CDA emits a "FINALIZE” flag, prompt-
ing the Documentation Engineer Agent to produce the final data pipeline output. The full algorithm
for finalisation and ordering of agents is displayed in the Appendix[A] Algorithm [2]

5.2 EVALUATION METRICS

To evaluate the quality of the data pipeline designs generated by our memory agents, and to compare
to the pipeline designs generated from default Autogen, we use an LLM as a judge (Zheng et al.,
2023)) to score each pipeline design and provide a qualitative analysis to support these scores. We
evaluated the multi-agent system performance under the following metrics:

* Scalability: ability for the data pipeline to handle increasing data volumes or user loads.
 Reliability: ability for the data pipeline to handle failures and ensure data integrity.

» Usability: is there enough detail in the data pipeline design for developers to implement
the design?

» Cost-effectiveness: balance between costs and benefits of each chosen component.
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Figure 2: LLM-as-a-Judge metrics for the Data Pipeline design case study.

* Documentation: how well-justified and documented is the choice of elements for the data
pipeline?

The scalability and reliability metrics are chosen as core requirements in modern data pipelines.
Scalability reflects the ability to grow the pipeline to handle larger volumes of data and users,
while reliability ensures the pipeline is consistent and fault-tolerant, both of which are crucial if
the pipeline were to be deployed. Usability and documentation metrics reflect the details and design
decisions taken. A strong design is not useful if it does not contain enough detail or is too abstract
to be practically implemented. Usability measures whether the output designs are detailed and clear
enough for engineering teams to implement. Design decisions must be well-documented, with clear
justifications and explanations for each component, which reveals the reasoning behind the agents’
choices. Finally, the cost-effectiveness metric evaluates whether the pipeline design has considered
and balanced the need for computation resources with the cost of those resources. Run-time metrics
such as latency and throughput are not included in our evaluation metrics as we only present the
design of the data pipelines to be evaluated, and do not implement the designs into code

5.3 DATA PIPELINE DESIGN PERFORMANCE

The median and standard deviation of each quality metric is presented in Figure [2 The Intrinsic
Memory system shows consistent improvement on all metrics compared to the baseline Autogen,
with Usability as the only metric where there is not a statistically significant difference.

The Documentation quality focuses on the clarity and how well-justified the design choices are.
While Intrinsic Memory helps to boost the Documentation score over the baseline, the score is still
relatively low at a mean of 3.56. This suggests that retaining memory of the conversation alone
does not guarantee good justification, and while some context and attributes of each component are
remembered, the reasons for choosing the components are not. This could be a problem with the
training corpus, and a requirement for better annotated training data. Similarly, the Usability score
is low with means of 3 and 3.67 for the baseline and Intrinsic Memory , respectively.

The improved quality comes at a cost of additional tokens outlined in Table [2] Intrinsic Memory
uses on average 32% more tokens than the baseline as it outputs are more descriptive on average,
although the number of conversation turns is similar and not statistically significant. This indicates
that the addition of a memory module costs additional token overhead to maintain, but does not
increase the number of conversation turns between agents.
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Table 2: Mean efficiency and LLM-as-a-Judge metrics after 10 independent runs, with p-values cal-
culated using a Wilcoxon ranked sum test. Usability and number of conversation turns is highlighted
in italics as the metrics that do not show statistical significance between the baseline and our Intrin-
sic Memory approach.

Metric Baseline Intrinsic p-value
Autogen Memory
Tokens 36077 47830 0.0195
Conversation turns 143 16 0.2632
Scalability 5 7 0.0041
Reliability 3.56 4.89 0.005
Usability 3 3.67 0.0948
Cost-effectiveness  3.22 4.67 0.004
Documentation 2 3.56 0.0017

5.4 QUALITATIVE ANALYSIS OF DATA PIPELINE OUTPUTS

Figure [3]shows snippets for one component from the highest-scoring outputs for the intrinsic mem-
ory agent system and baseline Autogen system.

"Component 1": "Data Ingestion (AWS Kinesis)",

"pros": "Scalable, fault-tolerant, and supports
high-throughput data ingestion from multiple sources.",

"cons": "Requires additional infrastructure costs for
increased capacity.",

"design": "Use Kinesis to collect and process data from camera
sources, lidar source, radar sources, and other IoT devices.",

"details": "Implement custom Kinesis data stream for each data

source, with appropriate buffering and queuing mechanisms to
handle varying data volumes"

(a) Intrinsic Memory Agent system sample from highest-scoring output. This data pipeline received
scores of Scalability: 8, Reliability: 5, Usability: 4, Cost-effectiveness: 6, Documentation: 4

"Component 1":

"Name": "Data Ingestion",

"Description”": "Ingest data from various sources (camera,
lidar, radar) at high speeds”,

"Implementation difficulties": 7,

"Maintainability difficulties": 6

(b) Baseline Autogen system system sample from highest-scoring output. This data pipeline received
scores of Scalability: 5, Reliability: 4, Usability: 3, Cost-effectiveness: 3, Documentation: 2

Figure 3: Snippets of one component within the data pipeline design from both systems. The full
outputs can be found in the appendix in Figures and@

The Intrinsic Memory Agent system outperforms the baseline system across the five quality met-
rics. In terms of scalability, the Intrinsic Memory Agent system is capable of providing an overall
assessment of scalability, specifically around varying data volumes, whereas the baseline system
encapsulates that measure only in the form of “maintenance difficulty” for each component of the
pipeline. In terms of reliability, the Intrinsic Memory Agent provides considerations for AWS Kine-
sis’s fault tolerance, as well as the need for appropriate buffering and queuing mechanisms to handle
varying data volumes. The Intrinsic Memory Agent provides a more descriptive Usability output
of the Intrinsic and a clearer pathway to implementation. Neither system makes specific observa-
tions for the cost-effectiveness on an individual component basis, but the Intrinsic Memory Agent
does provide an overall numerical evaluation of the pipeline’s cost-effectiveness. Finally, the Intrin-
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sic Memory Agent ultimately provides justification and documents its recommendation under each
component, including pros and cons for each component choice.

Overall, the Intrinsic Memory Agent provides a more descriptive answer and more value to engineers
by specifying tools, configurations and trade-offs. For example, its Data Ingestion design recom-
mends Apache Storm or AWS Lambda, whereas the baseline simply states “Ingest data from various
sources (camera, lidar, radar) at high speeds.” Similarly, the IMA cites OpenCV and TensorFlow for
image processing, PCL and Open3D for point-cloud handling, and MATLAB plus machine-learning
libraries for radar signals. Although some precise configuration settings remain unspecified, the
baseline merely names each component without offering implementation details or alternatives.

The components specified by the Intrinsic Memory Agent are more relevant to the problem spec-
ification. The data pipeline design task explicitly specifies the input data contains lidar and radar
data sources, in which the PCL and Open3D are libraries specifically used for lidar data processing.
This contrasts the vague “Lidar data processing” component of the baseline, which only contains a
general description to process the data without providing any details.

6 DISCUSSION AND LIMITATIONS

Although the Intrinsic Memory Agent approach shows improved performance across the data
pipeline generation task and the selected benchmarks, further validation is required across a broader
set of complex tasks, potentially with varying number of agents, models, and memory templates.
The structured memory templates are currently created manually, which does not easily transfer
across tasks. An automated or generalized method to producing structured memory templates would
improve the Intrinsic Memory Agent’s ability to adapt to new tasks.

The results demonstrate that a movement towards heterogeneity of agents leads to an improvement
in performance of the multi-agent system, allowing agents to focus more specifically on an area of
the design. This indicates that methods to provide additional heterogeneity, such as the ability to
fine-tune agents towards their specialisation, might see additional performance gains, alongside the
personalization of memories focused on individual experience.

7 CONCLUSION

This paper introduces Intrinsic Memory Agents, a novel multi-agent LLM framework that constructs
agent-specific heterogeneous structured memories to enhance multi-agent collaboration in discus-
sion and planning tasks. Evaluation on the PDDL dataset, and on a practical data pipeline design
problem demonstrates our framework’s improved performance on structured planning tasks, with
a 38% increase over the next best memory architecture, and maintaining the best token efficiency
despite the increased token usage.

Results on the data pipeline case study further show the Intrinsic Memory Agents’ enhanced ability
to collaborate on complex tasks. The Intrinsic Memory Agent system outperforms the baseline sys-
tem across all quality measures of scalability, reliability, usability, cost-effectiveness, and documen-
tation, as well as an ability to more closely follow the task specification, providing more actionable
recommendations by suggesting specific tools and frameworks, as well as trade-off details of each
component in the pipeline.
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REPRODUCIBILITY STATEMENT

‘We have taken care to ensure that our experiments and results are transparent and reproducible by de-
tailing the models, computational setup, code, statistical tests, and prompts used in our experiments.
The LLM model (Llama3.2:3b) is cited, named, and referenced in the main text. The computational
infrastructure used, including the GPU model names and operating system are specified in section 4]
of the main text. For code, the names and versions of relevant Python libraries are specified within
the supplementary code files. A Wilcoxon rank-sum test is used to test statistical significance for the
data pipeline case study. P-values and standard deviation measures are included in the performance
analysis in section [5.3] A single run with a set seed is used for the PDDL benchmark, with the
seed specified within the supplementary code. All code for running the data pipeline case study and
PDDL benchmarks are included in the supplementary materials. Finally, the selected prompts of the
multi-agent and Intrinsic memory architecture are shown in Appendix |[B| Further prompts for each
agent can be found as part of the supplementary code, under the “prompts” directory.
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A  ALGORITHMS

This section contains the context construction algorithm presented in Section [3| and the finalisation
algorithm presented in[5.1}

Algorithm 1 The context construction algorithm, which takes the current conversation history, mem-
ory of the agent, and maximum number of tokens. It appends the most recent conversation turn and
agent memory to the context first, before using the remainder of the tokens to append the rest of the
conversation history, ensuring the memory and most recent output is always included.

def construct_context(conversation_history ,
agent_memory ,
max_tokens):

context = []

# Include the initial task description
context.append(conversation_history [0])
context.append(agent_memory )

# Add most recent conversation turns until context limit is reached
remaining_tokens = max_tokens — count_tokens(context)
recent_turns = []

for turn in reversed(conversation_history [1:]):
turn_tokens = count_tokens(turn)
if turn_tokens <= remaining_tokens:
recent_turns.insert (0, turn)
remaining_tokens —= turn_tokens
else:
break

context.extend(recent_turns)
return context
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Algorithm 2 The finalisation algorithm that specifies the order of agents speaking. It is a modified
round-robin discussion between the agents: The discussion begins with each of the worker agents
(BOA, DEA, MLA, TA) contributing to the conversation, with each worker’s turn being followed by
the conversation delegation agent (CDA). Once the workers have each had their turn, the knowledge
integration agent and evaluation agent make their contributions, and the cycle begins again. The
CDA is programmed to dedicate a certain number of turns to discussion, proposals, and consensus.
The number of turns dedicated to each conversation stage is tracked, and once the consensus round
is reached, each agent is asked to confirm if they agree with the proposed solution or not. If all agree
on the proposed solution as being acceptable, the CDA will emit a "FINALIZE” response, triggering
the documentation joining agent (DJE) to compile the agreed response and format it according to
the task requirements.

workers = [BOA, DEA, MLA, IA]
global turn_counter
turn_counter += 1

if "FINALIZATION” in groupchat.messages[—1][ content’]:
return DJE
if last_speaker is CDA:
global worker_counter
w = workers[ worker_counter %4]
worker_counter += 1
print (f’worker_counter :m{worker_counter}’)
return w
elif last_speaker in workers:
if worker_counter %4 ==
return KIA
else:
return CDA
elif last_speaker is KIA:
return ERA
elif last_speaker is ERA:
return CDA
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B FULL PROMPTS AND EXAMPLE OUTPUTS

You are maintaining the memory of an agent working as [ROLE]
in a multi-agent conversation. Use the old memory and the
newest output by the agent to populate and up- date the
current memory json with factual information.

For context, old memory content:
[MEMORY_CONTENT]

Current content generated by the agent:
[AGENT_OUTPUT]

Update the memory content to incorporate new information
while preserving key historical context. The updated content
should be concise and focus on information relevant to both
the old memory and the newly generated output.

Figure 4: Prompt of the memory update function, where ROLE is the agent’s role specification
R,; MEMORY_CONTENT is the current content M, ,,_1; AGENT_OUTPUT is the agent’s output
On.m.-
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AURNRY

This discussion session is set up to discuss the best data
pipeline for a real time data intensive machine learning training
and inference self driving application. The goal is to discuss and
find consensus on how to set up the data pipeline, including each
component in the data pipeline.

You can assume that we have access to AWS.

*xData Description:xx Real-time data of cars driving in street.
There are 6 camera sources with data in .jpg format; 1 lidar source
in .pcd.bin format; and 5 radar sources with data in .pcd format.

*xDiscussion and Design:*x

- Emphasize comprehensive understanding of the data sources,
processing requirements, and desired outcomes.

- Encourage each other to engage in an open discussion on potential
technologies, components, and architectures that can handle the
diverse data streams and real-time nature of the data.

- Keep the conversation on design and evaluating the pros and
cons of different design choices, considering scalability,
maintainability, and cost-effectiveness.

— The team should agrees on a final architectural design,
justifying the choices made.

— The team should produce the required the document
PIPELINE_OVERVIEW. json.

+**xFinal Output:xx*

— Produce a concise summary of the agreed-upon pipeline
architecture, highlighting its key components and connections.

— Provide a high-level plan and rationale for the design,
explaining why it is well-suited for the given data and use case.
- Estimate the cloud resources, implementation efforts, and
associated costs, providing a rough breakdown and complexity
rating.

— Generate a ‘PIPELINE_OVERVIEW.json' file, detailing the proposed
complete architecture in JSON format with the following fields:

— \Platform\: A cloud service provider’s name if the cloud
solution is the best, or \local server" if locally hosted servers
are preferred.

- \Component 1": The first component in the pipeline framework.

- \Component 2": The second component in the pipeline framework.
Continue until all required components are listed.

— \Implementation difficulties": A rating from 1 to 10 (lowest to
highest) .

— \Maintenance difficulties": A rating from 1 to 10 (lowest to
highest) .

*xInstructions: xx

- Remember, this is a collaborative design discussion, not a
project execution. Refrain from assigning tasks with deadlines.
— Keep the conversation focused on architectural choices,
technologies, and potential challenges.

— Emphasize the importance of a well-thought-out design. A

Figure 5: Prompt for the Data Pipeline design. This is the task description provided to all agents in
the system.
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ANA YR

You are an expert in data pipeline design evaluation. Your
task is to evaluate the following data pipeline design based
on its description. For each of the specified metrics,
assign a score from 1 to 10, where 1 is the lowest and 10

is the highest. Provide a brief justification for each
score. Be critical and harsh if the design is poor and give
it a low score. Base your evaluation solely on the provided
description. Do not assume any additional information.

Metrics:

1. Scalability: Ability to handle increasing data volumes
or user loads.

2. Reliability: Ability to handle failures and ensure data
integrity.

3. Usability: Enough detail for developers to implement the
design.

4. Cost-effectiveness: Balance between costs and benefits.
5. Documentation: How well-justified is the choice of
elements for the data pipeline

Provide your evaluation in the following format in a json
dict:

[metricl]: score: [score],
Justification: [justification],
[metric2]...

ANR YR

Figure 6: Prompt for the LLM-as-a-Judge to evaluate data pipeline designs.
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"Platform": "AWS",

"Component 1": "Data Ingestion (AWS Kinesis)",

"pros": "Scalable, fault-tolerant, and supports high-throughput
data ingestion from multiple sources.",

"cons": "Requires additional infrastructure costs for increased
capacity.",

"design": "Use Kinesis to collect and process data from camera
sources, lidar source, radar sources, and other IoT devices.",
"details": "Implement a custom Kinesis data stream for each data

source, with appropriate buffering and queuing mechanisms to handle
varying data volumes."

"Component 2": "Data Processing (AWS Lambda)",

"pros": "Serverless, scalable, and supports real-time data
processing with event-driven architecture.",

"cons": "Requires careful function design and optimization to
ensure efficient processing.",

"design": "Use Lambda functions to process data from Kinesis

streams, leveraging computer vision libraries for image processing,
point cloud reconstruction frameworks for lidar source data, and
radar signal processing libraries for radar source data.",
"details": "Implement separate Lambda functions for each data
source, with optimized function designs to handle varying data
volumes and processing requirements."

"Component 3": "Data Storage (Amazon S3)",

"pros": "Scalable, durable, and supports high-performance data
storage for large datasets.",

"cons": "Requires careful data management and access control
strategies.",

"design": "Use S3 as a centralized data repository for storing
processed data from Kinesis streams.",

"details": "Implement a custom S3 bucket structure to organize

data by source, with appropriate access controls and data
encryption mechanisms."

"Component 4": "Data Synchronization (AWS Step Functions)",
"pros": "Supports real-time data synchronization across different
data sources, with built-in workflow management and error
handling.",

"cons": "Requires careful workflow design and optimization to
ensure efficient data processing.",
"design": "Use Step Functions to synchronize data from Kinesis

streams, leveraging Lambda functions for data processing and S3 for
data storage.",

"details": "Implement a custom Step Function workflow to handle
data synchronization, with optimized function designs to handle
varying data volumes and processing requirements."

Figure 7: Example output from intrinsic memory agent system which scored the highest. The in-
trinsic memory agent system adheres to the initial prompt well, providing an answer in the correct
format, as well as providing sufficient justification for the choice of components, as well as imple-
mentation details.
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"Platform": "AWS",

"Component 1":

"Name": "Data Ingestion",

"Description": "Ingest data from various sources (camera, lidar,
radar) at high speeds",

"Implementation difficulties": 7,

"Maintainability difficulties": 6 ,

"Component 2":

"Name": "Image Processing",

"Description": "Process camera data in real-time to extract
relevant features",

"Implementation difficulties": 8,

"Maintainability difficulties": 7

’

"Component 3":

"Name": "Object Detection",

"Description": "Detect objects of interest (e.g., pedestrians,
cars, lanes) within image frames and track their movement over
time",

"Implementation difficulties": 9,

"Maintainability difficulties": 8

4
"Component 4":

"Name": "Lidar Data Processing",

"Description": "Process lidar data in real-time to estimate
distances, velocities, and other relevant metrics",
"Implementation difficulties": 8,

"Maintainability difficulties": 7

14
"Component 5":

"Name": "Radar Data Processing",

"Description": "Process radar data in real-time to estimate
distances, velocities, and other relevant metrics",
"Implementation difficulties": 8,

"Maintainability difficulties": 7

4

"Component 6":

"Name": "Data Fusion",

"Description": "Fuse the outputs from different sensors (camera,
lidar, radar) to create a more accurate representation of the
environment",

"Implementation difficulties": 9,

"Maintainability difficulties": 8

4

"Component 7":

"Name": "Model Training",

"Description": "Train machine learning models on large datasets
using AWS SageMaker’s Training Grounds feature",
"Implementation difficulties": 8,

"Maintainability difficulties": 7 ,

"Component 8":

"Name" : "Inference",

"Description": "Perform real-time inference on trained models,
making predictions on new, unseen data",

"Implementation difficulties": 9,

"Maintainability difficulties": 8

Figure 8: Example output from baseline Autogen system which scored the highest.
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