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Abstract

Recent advances in speech foundation mod-001
els are largely driven by scaling both model002
size and data, enabling them to perform a wide003
range of tasks, including speech recognition.004
Traditionally, ASR models are evaluated us-005
ing metrics like Word Error Rate (WER) and006
Character Error Rate (CER), which depend on007
ground truth labels. As a result of limited la-008
beled data from diverse domains and testing009
conditions, the true generalization capabilities010
of these models beyond standard benchmarks011
remain unclear. Moreover, labeling data is012
both costly and time-consuming. To address013
this, we propose a novel label-free approach014
for approximating ASR performance metrics,015
eliminating the need for ground truth labels.016
Our method utilizes multimodal embeddings017
in a unified space for speech and transcription018
representations, combined with a high-quality019
proxy model to compute proxy metrics. These020
features are used to train a regression model021
to predict key ASR metrics like Word Error022
Rate (WER) and Character Error Rate (CER).023
We experiment with over 40 models across 14024
datasets representing both standard and in-the-025
wild testing conditions. Our results show that026
we approximate the metrics within a single-027
digit absolute difference across all experimental028
configurations, outperforming the most recent029
baseline by more than 50%.030

1 Introduction031

Automatic Speech Recognition (ASR) models have032

made significant advancements in recent years,033

achieving near-human performance on several stan-034

dard evaluation benchmarks (Radford et al., 2022;035

Seamless Communication, 2023; Communication036

et al., 2023; Harper et al., inter alia). These037

models are typically evaluated using metrics like038

Word Error Rate (WER) and Character Error Rate039

(CER) (Likhomanenko et al., 2020), which are es-040

sential for assessing model performance.041

However, these metrics are dependent on 042

ground truths, which are often scarce in resource- 043

constrained environments, and human labeling is 044

both costly and time-consuming. To mitigate this 045

challenge, several reference-free evaluation meth- 046

ods are proposed (Yuksel et al., 2023b; Kalgaonkar 047

et al., 2015; Swarup et al., 2019; Qiu et al., 2021; 048

Del-Agua et al., 2018; Raj et al., 2011). While 049

these approaches eliminate the reliance on labeled 050

data, they primarily offer relative assessments of 051

transcription quality, rather than providing precise 052

error counts or rates. As a result, their applicability 053

in real-world scenarios, where actionable perfor- 054

mance metrics are crucial for further model refine- 055

ment and deployment, is limited. 056

Given the limitations of both methods, approxi- 057

mating ASR metrics has emerged as a promising al- 058

ternative for label-free evaluation (Chowdhury and 059

Ali, 2023; Sheshadri et al., 2021b; Ali and Renals, 060

2018). This approach typically involves training 061

regression (Jalalvand et al., 2016) and/or classifi- 062

cation models (Sheshadri et al., 2021a) on top of 063

speech and text encoders. While this method offers 064

a close approximation of error metrics, several im- 065

portant questions remain unresolved. Specifically, 066

an approximation model trained on dataset sam- 067

pled from D to predict ASR metrics for a source 068

model M must be evaluated under diverse con- 069

ditions: 1) on test data that is IID (independent 070

and identically distributed) sampled from D; 2) 071

on out-of-distribution (OOD) data representing di- 072

verse domains and recording conditions; 3) on IID 073

data, but transcription from a target model T ; and 074

4) on OOD data with transcriptions from a target 075

model T . Most prior works (Chowdhury and Ali, 076

2023; Sheshadri et al., 2021b) focus primarily on 077

the first condition. Moreover, recent advancements 078

in multimodal foundation models offer new op- 079

portunities to directly train regression models on 080

unified speech and text embeddings. 081

To address these critical research gaps, we pro- 082
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pose a novel framework for approximating the per-083

formance of a wide range of ASR models, both084

on standard benchmarks and in-the-wild scenarios.085

Specifically, we compute the similarity between086

speech and text embeddings in a unified space,087

capturing the semantic alignment between the two088

modalities. Additionally, we incorporate a high-089

quality reference model as a proxy, based on the090

intuition that agreement with a reliable proxy cor-091

relates with transcription quality, as shown in prior092

works (Waheed et al., 2025). These features are093

then used to train a regression model to predict key094

ASR metrics, such as WER, CER, and absolute095

word and character error counts.096

In summary, our work represents one of the097

most comprehensive studies to date on approx-098

imating ASR metrics at scale, in terms of both099

data and model coverage. Our proposed approach100

serves as a reference-free evaluation particularly101

suited for label-scarce scenarios. Beyond evalua-102

tion, our method is especially valuable for tasks103

such as pseudo-labeling, where high-quality tran-104

scriptions are essential for downstream applications105

like knowledge distillation (Waheed et al., 2024;106

Gandhi et al., 2023).107

Our contributions are as follows:108

• We evaluate over 40 ASR models across 14109

diverse evaluation setups, including both stan-110

dard benchmarks and domain-specific, unseen111

conditions followed by training regression112

models to approximate ASR metrics.113

• We compare our approach with the most re-114

cent work on approximating ASR metrics115

and demonstrate over a 100% improvement116

against the strong baseline.117

• We conduct a rigorous ablation study to an-118

alyze the impact of different experimental119

configurations, providing deeper insights into120

the robustness of our approach. Our findings121

show that our method is resilient to diverse122

evaluation setups and requires only a small123

amount of training data.124

Outline. The remainder of this paper is organized125

as follows: Section 2 reviews related work. Sec-126

tion 3 presents our proposed methodology. Sec-127

tions 4 and 5 detail our experimental setup, results,128

and ablation study, respectively. Section 6 con-129

cludes the paper and outlines future directions.130

Reproducibility. We are committed to making131

all code, data, configurations, and logs available132

upon acceptance. Additionally, we will provide a 133

lightweight Python package to seamlessly use our 134

trained approximators. 135

2 Related Work 136

Automatic speech recognition (ASR) has seen re- 137

markable progress in recent years, driven by ad- 138

vances in deep learning and the availability of ex- 139

tensive training datasets (Radford et al., 2022; Com- 140

munication et al., 2023). Transformer (Vaswani 141

et al., 2023) based models, in particular, have sig- 142

nificantly contributed to these developments by ef- 143

fectively capturing long-range dependencies and 144

contextual nuances in speech, achieving state-of- 145

the-art (SOTA) performance across diverse bench- 146

marks (Kheddar et al., 2024; Dhanjal and Singh, 147

2024; Zimerman and Wolf, 2023). While tradi- 148

tional evaluation metrics like Word Error Rate 149

(WER) and Character Error Rate (CER) are de- 150

facto evaluation metrics in benchmarking ASR sys- 151

tems (Lin et al., 2021; Park et al., 2024), scenarios 152

where ground truth transcriptions are unavailable 153

have caught interest in reference-free ASR evalu- 154

ation methods (Karbasi and Kolossa, 2022; Wang 155

et al., 2024; Kuhn et al., 2024). 156

Reference-free ASR evaluation methods aim 157

to estimate ASR performance without requiring 158

ground truth transcriptions (Ospanov et al., 2024). 159

Earlier approaches rely on heuristic features or 160

metadata such as speaker demographics, back- 161

ground noise, and linguistic characteristics (Lit- 162

man et al., 2000; Yoon et al., 2010), limiting their 163

applicability across varied contexts. However, re- 164

cent advancements focus on deep learning-based 165

frameworks, such as convolutional neural networks 166

(CNNs) (Elloumi et al., 2018) and contrastive learn- 167

ing methhods (Yuksel et al., 2023a), to predict ASR 168

quality directly from encoded speech and text. For 169

instance, methods like NoRefER (Yuksel et al., 170

2023b) employ Siamese architectures fine-tuned on 171

ASR hypotheses, achieving high correlation with 172

traditional metrics and improving WER by optimiz- 173

ing hypothesis ensembling (Park et al., 2024). 174

Efforts to approximate ASR metrics have ex- 175

plored hybrid approaches that combine traditional 176

and reference-free methods, such as leveraging 177

word confidence scores, linguistic embeddings, or 178

post-processing adaptations to estimate WER and 179

CER without explicit references (Ali and Renals, 180

2020, 2018; Kuhn et al., 2024; Negri et al., 2014). 181

However, these approaches often suffer from re- 182
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liance on specific ASR models or domain char-183

acteristics, limiting their generalizability. Unlike184

existing methods, our work addresses these limi-185

tations by introducing a robust, model and data-186

agnostic framework that evaluates ASR outputs187

across diverse datasets and configurations, empha-188

sizing adaptability to unseen domains and varia-189

tions.190

3 Methodology191

We present a scalable and robust method to ap-192

proximate ASR performance metrics using multi-193

modal unified embeddings, proxy references, and194

regression models. The primary goal is to elimi-195

nate reliance on ground-truth labels, enabling per-196

formance evaluation in label-scarce scenarios. The197

pipeline consists of three components: representa-198

tion similarity in a unified speech-text embedding199

space, agreement with a high-quality proxy ref-200

erence, and a regression model trained on these201

features to predict ASR metrics. Our pipeline dia-202

gram is shown in Appendix 3 Figure 3.203

3.1 Similarity in Unified Representation204

Space205

The foundation of our approach is the SONAR206

model (Duquenne et al., 2023), a state-of-the-art207

multimodal (speech-text) model trained to produce208

unified embeddings for both speech and text inputs.209

Let xspeech represent the input speech signal and210

xtext denote the corresponding ASR-generated tran-211

scription. SONAR maps these inputs to a shared212

embedding space, generating espeech and etext:213

espeech = fSONAR(xspeech), etext = fSONAR(xtext)
(1)214

where fSONAR represents the embedding model.215

The alignment between these embeddings is quan-216

tified using cosine similarity:217

Similarity(xspeech, xtext) =
espeech · etext

∥espeech∥∥etext∥
(2)218

This similarity metric serves as an initial indicator219

of transcription quality, with higher values suggest-220

ing better alignment between the speech and text221

representations.222

3.2 Agreement with a Proxy Reference223

To complement the similarity score, we utilize224

proxy references generated by a high-quality ASR225

model, denoted as xproxy. The comparison between226

the ASR-generated transcription xtext and the proxy227

reference xproxy is quantified using Word Error 228

Rate (pWER) and Character Error Rate (pCER) 229

as defined in Appendix A.1. 230

These metrics assess transcription quality by 231

comparing it with a reliable proxy reference, with- 232

out using ground-truth labels at any stage. Proxy 233

references are dynamically selected by profil- 234

ing 41 models across datasets and ranking them 235

by average performance. For each target ASR 236

model, the reference is the highest-ranking model 237

other than the target itself. For example, if 238

whisper-large-v3 ranks highest, the reference 239

for whisper will be the second-best model. This 240

ensures the proxy reference is both relevant and 241

reliable for evaluating the target model. 242

3.3 Regression Model for Metric Prediction 243

The extracted features, including similarity scores 244

and proxy metrics, are concatenated to form 245

the input to a regression model. Let z = 246

[Similarity, pWER/pCER] represent the feature 247

vector. The regression model g estimates the ASR 248

metrics ŷ, denoted as aWER and/or aCER: 249

ŷ = g(z) (3) 250

The regression model is an ensemble of Random 251

Forest, Gradient Boosting, and Histogram-based 252

Gradient Boosting regressors. Each base model 253

is fine-tuned via grid search for hyperparameter 254

optimization. The ensemble is trained to mini- 255

mize the mean absolute error between predicted 256

and ground-truth metrics. Additionally, a ridge 257

regression model with non-negativity constraints 258

is included in the ensemble to ensure predictions 259

remain within valid ranges. Additional details of 260

our regression pipeline are provided in Section 4, 261

with hyperparameter details in Appendix A.4. 262

3.4 Evaluation 263

We evaluate the regression model’s performance 264

across four setups, including IID and OOD data 265

and different model configurations. Specifically, 266

we train our regression model on one ASR system 267

(source) on one dataset and evaluate it on both 268

IID and OOD data for the source model and for a 269

target model. These scenarios assess the model’s 270

robustness and generalization under diverse real- 271

world conditions. 272

Let DM,B denote the 10 benchmark datasets, and 273

DM,W represent the four in-the-wild datasets, as 274

described in Section 4.1, where M ∈ {S, T} refers 275

to either the source model S or the target model T . 276
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The regression model is trained on data Dtrain
S,B ∼277

DS,B and evaluated on the IID test set Dtest-IID
S,B ∼278

DS,B , consisting of 80% and 20% of the data, re-279

spectively. Additionally, the model is evaluated on280

Dtest-IID
T,B , DS,W , and DT,W . Below, we detail the281

formulation of each evaluation setup.282

Case 1: IID Evaluation (Source S) The regres-283

sion model is trained on Dtrain
S,B and evaluated on284

Dtest-IID
S,B . Let xS1 = f(s, oS) represent the similar-285

ity between input speech s and the ASR output oS ,286

and xS2 = g(oS , r) represent the agreement with287

the proxy reference r, where oS is the ASR output288

produced by the source model S. The evaluation is289

formulated as:290

LS
IID = E(xS

1 ,x
S
2 ,y)∼Dtest-IID

S,B

[
L(h(xS1 , xS2 ), y)

]
(4)291

Case 2: IID Evaluation (Target T ) The regres-292

sion model trained on Dtrain
S,B is evaluated on the293

IID test set Dtest-IID
T,B . Let xT1 = f(s, oT ) represent294

the similarity between input speech s and the ASR295

output oT , and xT2 = g(oT , r) represent the agree-296

ment with the proxy reference r, where oT is the297

ASR output produced by the target model T . The298

evaluation is expressed as:299

LT
IID = E(xT

1 ,xT
2 ,y)∼Dtest-IID

T,B

[
L(h(xT1 , xT2 ), y)

]
(5)300

Case 3: OOD Evaluation (Source S) The re-301

gression model trained on Dtrain
S,B is evaluated on the302

out-of-distribution set DS,W . Let xS1 = f(s, oS)303

represent the similarity between the input speech304

s and the ASR output oS , and xS2 = g(oS , r) rep-305

resent the agreement with the proxy reference r,306

where oS is the ASR output produced by the source307

model S. The evaluation is defined as:308

LS
OOD = E(xS

1 ,x
S
2 ,y)∼DS,W

[
L(h(xS1 , xS2 ), y)

]
(6)309

Case 4: OOD Evaluation (Target T ) The re-310

gression model trained on Dtrain
S,B is evaluated on the311

out-of-distribution set DT,W , using the ASR output312

produced by the target model T . Let xT1 = f(s, oT )313

represent the similarity between the input speech314

s and the ASR output oT , and xT2 = g(oT , r) rep-315

resent the agreement with the proxy reference r,316

where oT is the ASR output produced by the target317

model T . The evaluation is expressed as:318

LT
OOD = E(xT

1 ,xT
2 ,y)∼DT,W

[
L(h(xT1 , xT2 ), y)

]
(7)319

Note. For computational feasibility, the primary320

experiments train the regression model on 9 out321

of the 10 datasets in Dtrain
S,B and evaluate it on the 322

remaining dataset, as well as on all four datasets 323

in DOOD
S,B . This process is repeated for each dataset 324

in Dtrain
S,B , ensuring robust evaluation across various 325

testing conditions. No examples from DM,OOD are 326

used at any stage for training the regression model. 327

4 Experiments 328

In this section, we present the experimental setup 329

used to evaluate our ASR metrics approximation 330

tool. We describe the datasets, models, and regres- 331

sion pipeline used in our experiments, highlighting 332

the diversity of ASR systems and testing condi- 333

tions. 334

4.1 Datasets 335

To evaluate the robustness and generalizability 336

of our ASR metrics approximation tool, we use 337

datasets sourced from multiple distributions, di- 338

vided into two types: Standard Benchmark and 339

Wild Challenge datasets. Below we describe 340

the datasets and provide additional details in Ap- 341

pendix A.2 Table 3. 342

Standard Benchmark Datasets. We include 343

widely used datasets representing diverse domains 344

and acoustic conditions. LibriSpeech (Panayotov 345

et al., 2015) provides 1,000 hours of English 346

read audiobooks, covering both clean and noisy 347

conditions. TED-LIUM (Rousseau et al., 2014) 348

consists of TED talks from 2,000 speakers. Gi- 349

gaSpeech (Chen et al., 2021) spans audiobooks, 350

podcasts, and YouTube, incorporating both read 351

and spontaneous speech. SPGISpeech (Technolo- 352

gies, 2021) features 5,000 hours of earnings calls 353

with a focus on orthographic accuracy. Com- 354

mon Voice (Ardila et al., 2020) is a multilingual, 355

crowdsourced corpus with diverse accents. Earn- 356

ings22 (Rio et al., 2022) provides 119 hours of 357

accented, real-world earnings calls. Additional 358

datasets include AMI (IHM) (Carletta et al., 2005), 359

with 100 hours of English meeting recordings from 360

non-native speakers, and People’s Speech (Galvez 361

et al., 2021), emphasizing inclusivity and linguis- 362

tic diversity. SLUE-VoXCeleb (Shon et al., 2022) 363

contains conversational voice snippets, capturing 364

diverse speaking styles and emotions. 365

Wild Datasets. The wild set focuses on real- 366

world variability and challenging scenarios. Pri- 367

mock57 (Papadopoulos Korfiatis et al., 2022) in- 368

cludes telemedicine consultations with diverse ac- 369

cents, ages, and scenarios, recorded by clinicians 370
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and actors. VoxPopuli Accented (Wang et al., 2021)371

contains multilingual speeches from European Par-372

liament recordings, rich in named entities. AT-373

COsim (Jan van Doorn, 2023) features 10 hours of374

non-native English speech from air traffic control375

simulations with clean utterance-level transcrip-376

tions. Additionally, we include a noisy subset of377

LibriSpeech (Panayotov et al., 2015), which reflects378

challenging real-world conditions.379

4.2 Models380

We evaluate our ASR metrics approximation for381

a range of state-of-the-art ASR models, put into382

three categories based on their architecture and383

functionality. Below we describe the datasets and384

provide additional details in Appendix A.2 and in385

Table 4.386

Encoder-Decoder Models. We include multiple387

encoder-decoder families of models capable of per-388

forming ASR tasks in a zero-shot setting. More389

specifically, we include whisper (Radford et al.,390

2023) and distil-whisper (Gandhi et al., 2023)391

models which perform really well across diverse392

testing settings. We also include seamless (Com-393

munication et al., 2023; Seamless Communica-394

tion, 2023; Barrault et al., 2025), SpeechT5 (Ao395

et al., 2022) which are unified encoder-decoder396

framework for tasks such as ASR, speech synthe-397

sis, translation, and voice conversion. MMS (Pratap398

et al., 2023) supports hundreds of languages and399

excels in resource-constrained scenarios. Moon-400

shine (2) (Jeffries et al., 2024), a lightweight and401

efficient model, is designed for edge deployments402

with strong performance.403

NeMo-ASR Models. We use multiple models404

from the NeMo-ASR (Gulati et al., 2020; Variani405

et al., 2020; Noroozi et al., 2024; Tang et al., 2023;406

Harper et al.) toolkit by NVIDIA. These models407

include architectures such as Canary and Parakeet,408

which use highly efficient speech encoders like409

Fast-Conformer (Rekesh et al., 2023) in combina-410

tion with various decoders (CTC, RNN-T, TDT)411

and Conformer-CTC (Guo et al., 2021), making412

them suitable for a wide range of ASR tasks. In our413

work, we evaluate 11 models from the NeMo-ASR414

toolkit.415

Encoder-Only and Decoder-Only Models. We416

include self-supervised encoder-only models417

and their derivatives, as well as decoder-only418

models like SpeechLLM. Specifically, we use419

Wav2Vec2 (Schneider et al., 2019; Baevski420

et al., 2020), HuBERT (Hsu et al., 2021), and421

Data2Vec (Baevski et al., 2022). Additionally, 422

we include speech language models like Speech- 423

LLM (Rajaa and Tushar), which combines speech 424

embeddings with language models to predict meta- 425

data such as speaker attributes, emotions, and ac- 426

cents, offering robust multimodal capabilities. 427

4.3 Experimental Setup 428

We evaluate all models listed in Section 4.2 on 429

1000 examples sampled randomly from the test 430

split of each dataset, as described in Section 4.1. 431

Since all models are trained at a 16 kHz sampling 432

rate, we (re)sample the audio inputs accordingly. 433

For ASR, we employ greedy decoding without us- 434

ing specialized decoding strategies, and all other 435

parameters are default unless otherwise specified. 436

Orthographic transcriptions undergo basic text post- 437

processing before computing ASR metrics, using 438

the implementation from whisper 1. We obtain all 439

models from Huggingface Hub 2 and implement 440

the ASR pipeline using the Transformers (Wolf 441

et al., 2020) library. 442

For multimodal embeddings, we use 443

SONAR (Duquenne et al., 2023), a 1024- 444

dimensional sentence-level multilingual 445

embedding model. Specifically, we utilize 446

text_sonar_basic_encoder for text encoding 447

and speech_sonar_basic_encoder for speech 448

encoding. These encoders provide unified rep- 449

resentations, enabling text reconstruction from 450

speech. 451

The regression framework uses a stacking en- 452

semble with base regressors and a final estima- 453

tor. Hyperparameter tuning is performed with 454

RandomizedSearchCV to minimize MAE. The 455

model is trained on 9 benchmark datasets and eval- 456

uated on the remaining benchmark dataset and 457

four in-the-wild datasets. This process is repeated 458

for all 10 benchmark datasets. Additional details 459

of the regression pipeline are provided in Section 3 460

and low-level details in Appendix A.4.1. 461

We conduct ASR experiments on a single 462

A100/H100 GPU, while the regression model train- 463

ing runs on CPUs. Although ASR time and mem- 464

ory consumption depend on the model size, em- 465

bedding extraction for 1000 audio-text pairs takes 466

approximately one minute on a single consumer- 467

grade GPU without parallelization or additional 468

efficiency measures. Appendix A.4 provides fur- 469

ther experimental setup details. 470

1https://bit.ly/enormwhisper
2https://huggingface.co/models
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Baselines. The recent literature directly aligned471

with our approach is limited. For instance,472

eWER (Ali and Renals, 2018) and eWER2 (Ali473

and Renals, 2020) estimate error rates based474

on the input signal, which differs from our ap-475

proach. In contrast, we incorporate the model’s476

output transcript into the error rate approxima-477

tion function. The most closely related recent478

works are WERBERT (Sheshadri et al., 2021a) and479

eWER3 (Chowdhury and Ali, 2023), which share480

a similar overall architecture. Both use encoders481

for text, speech, and other modalities, followed by482

a regression model trained in an end-to-end setting.483

Since eWER3 is the more recent of the two, we use484

it as our baseline. In eWER3, the speech encoder485

is wav2vec2 (Baevski et al., 2020), and the text486

encoder is roberta-base (Liu et al., 2019), with a re-487

gression model trained on top while both encoders488

remain frozen. Given the unavailability of public489

code or pretrained models for evaluation, we imple-490

ment eWER3 with some modifications to ensure a491

fair comparison. Specifically, we extract features492

from both encoders and apply PCA for dimension-493

ality reduction on each modality before training494

our regression pipeline. For both speech and text,495

we experiment with 32 and 64 PCA components496

(referred to as nc in Table 2).497

5 Results498

We conduct experiments using two dataset cate-499

gories: standard benchmarks and in-the-wild, as500

described in Section 4.1. For each ASR model,501

a leave-one-out strategy is used, training the re-502

gression model on 9 benchmark datasets and test-503

ing it on the remaining benchmark dataset and all504

four in-the-wild datasets. This ensures compre-505

hensive evaluation exclusively on out-of-domain506

data. Additionally, in-domain testing is included507

in ablation studies, as detailed in Section 5.3. The508

regression model is trained to predict absolute error509

counts (word and character levels), which are nor-510

malized by the reference length to compute approx-511

imate error rates (aWER and aCER). We also512

train regression models to directly predict WER513

and CER.514

5.1 Evaluation on In-the-Wild Datasets515

The wild datasets provide a realistic testbed for516

evaluating the regression model’s ability to approx-517

imate error rates under real-world conditions. The518

results are presented in Table 1. High-performing519

Model LS_Noise Primock57 ATCOsim VP_Acc

w2v2-ls 8.8/10.2 32.8/35.6 43.0/49.5 20.4/26.4
can-1b 4.1/6.4 16.2/13.4 30.4/35.5 23.2/12.1
d2v-base 14.9/16.4 39.6/41.7 66.0/71.2 28.4/33.8
d2v-large 7.2/8.6 28.3/30.7 44.0/51.1 21.4/26.5
distil-l-v2 7.3/9.2 18.3/13.0 69.5/66.7 14.9/14.5
distil-l-v3 6.1/8.3 18.4/12.9 69.0/63.6 14.8/14.0
distil-s.en 9.1/10.6 19.3/14.7 74.9/69.1 14.6/14.7
sm4t-l 11.2/12.3 41.7/37.8 75.0/82.5 29.3/19.9
sm4t-m 14.9/15.6 44.1/39.7 54.6/60.4 30.5/22.5
hub-l-ls-ft 7.3/8.8 29.5/32.0 50.4/56.9 21.4/26.6
hub-xl-ls-ft 6.8/8.3 31.1/32.9 46.7/53.0 21.8/27.7
mms-1b-a 9.5/11.1 36.2/34.4 63.4/71.8 29.9/23.8
mms-1b-f102 24.0/24.9 70.2/67.8 93.4/99.0 39.4/38.2
moon-b 11.3/12.4 19.9/18.5 65.5/66.2 17.1/20.8
moon-t 15.5/17.4 29.2/29.5 62.9/68.5 22.1/26.2
par-ctc-0.6b 4.6/7.4 16.3/13.8 32.9/42.9 16.3/13.8
par-ctc-1.1b 4.5/6.9 16.6/14.1 30.9/39.9 16.4/12.4
par-rnnt-0.6b 3.8/6.9 16.3/13.2 31.6/41.8 17.3/12.6
par-rnnt-1.1b 3.5/6.1 14.6/13.3 27.3/37.6 18.1/10.4
par-tdt-1.1b 3.4/6.0 13.5/13.2 28.3/35.7 17.9/10.2
pkt-ctc-110m 6.1/8.6 16.7/13.0 39.9/42.4 19.2/12.5
sm4t-v2-l 7.2/8.4 34.6/31.7 52.4/57.6 33.8/24.5
spchllm-1.5B 15.3/16.6 42.0/41.8 121.1/125.457.0/59.3
spchllm-2B 13.9/15.6 39.4/40.3 60.6/64.1 39.2/44.1
stt-cfc-l 5.8/6.8 16.1/17.6 35.9/38.0 18.6/11.5
stt-cfc-s 9.7/11.2 22.2/24.6 43.7/47.7 16.4/15.6
stt-fc-cfc-l 6.8/10.0 17.6/23.9 34.9/47.6 18.9/13.3
stt-fc-td-l 6.0/8.8 17.0/20.6 34.5/46.5 21.1/15.1
w2v2-960h 17.4/18.5 44.7/47.1 68.4/74.0 29.9/36.5
w2v2-crelpos 5.9/7.4 28.5/30.3 47.2/54.0 22.4/26.7
w2v2-crope 6.6/8.1 31.7/33.4 49.8/56.9 21.9/26.3
w2v2-l-960h 11.6/12.6 37.8/40.2 66.4/72.7 26.3/33.3
w2v2-l-lv60-s 7.8/9.4 33.1/35.5 40.5/48.8 19.3/24.9
w2v2-l-rft-ls 10.0/11.5 32.2/34.6 48.9/55.7 22.0/28.6
whisper-l 6.2/8.1 18.8/13.9 65.3/66.9 18.7/15.9
whisper-l-v2 5.4/6.6 19.0/13.1 64.8/74.8 20.0/18.1
whisper-l-v3 4.6/5.9 18.7/12.0 64.7/73.9 19.2/18.1
whisper-l-v3-t 4.9/6.0 18.5/12.3 66.0/72.5 24.3/23.2
whisper-m.en 6.5/7.9 19.5/14.0 66.2/73.8 27.6/26.4
whisper-s.en 8.2/9.7 20.0/15.1 67.1/73.8 17.3/17.5
whisper-tiny 18.5/20.7 30.0/26.6 97.6/102.5 29.8/33.2

Table 1: Actual and approximated WER (↓), sepa-
rated by a slash, on out-of-distribution wild datasets.
The regression model is trained independently for each
ASR model on standard benchmarks, making the wild
datasets out-of-distribution. Model names are shortened
due to space. See Table 7 for full names.

models, like canary-1b, demonstrate strong agree- 520

ment between predicted and actual error rates. For 521

example, on VP_Accented, canary-1b achieves a 522

WER of 23.2% and an aWER of 12.1%, with 523

a minimal difference of 1.1%. On Primock57, a 524

clinical consultation dataset, the model shows ro- 525

bustness with a WER of 16.2% and an aWER 526

of 13.4%, highlighting its effective generalization 527

across diverse and domain-specific contexts. 528

Models like data2vec-audio-large-960h also 529

maintain strong performance, with deviations con- 530

sistently under 2% on various datasets. For ex- 531

ample, on LibriSpeech-test-noise, the model’ ac- 532

tual WER is 7.2% while the approximated aWER 533

is 8.6%, showcasing its reliability in noisy con- 534
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Figure 1: Actural and approximated WER for four mod-
els across standard benchmark.

ditions. Even on acoustically complex datasets535

like ATCOsim, where the WER is 44.0% and the536

aWER is 51.1%, the model exhibits a reasonable537

alignment between approximated and actual error538

rates.539

In contrast, models with high actual error rates,540

such as mms-1b-fl102, show slightly larger devi-541

ations, particularly on datasets with challenging542

conditions. For instance, on ATCOsim, the WER543

is 93.4% and the aWER is 99.0%, resulting in a544

significant deviation of 5.6%, the highest observed545

across all in-the-wild datasets. Similarly, on Pri-546

mock57, where the WER is 70.2% and the aWER547

is 67.8%, the approximation also struggles to align548

due to the inherently high error rates. This high-549

lights that extreme error cases often correspond to550

semantically nonsensical outputs, where the distinc-551

tion between high and extremely high error rates552

becomes less relevant.553

5.2 Evaluation on Benchmark Datasets554

We summarize results on 10 standard benchmark555

datasets in Appendix A.5 Tables 8 and 9. Each556

table reports actual WER/CER alongside the ap-557

proximated WER/CER (denoted by aWER/aCER).558

Overall, models such as parakeet-tdt-1.1b and559

whisper-large-v3 show relatively small differences560

between WER and aWER, indicating reliable ap-561

proximations. For instance, the actual WER for562

whisper-large-v3 on AMI_IHM is 19.0% com-563

pared to aWER of 17.1%, that’s only a 1.9% gap.564

Conversely, some challenging datasets (e.g., CV11565

and Earnings22) reveal larger discrepancies for566

specific models, particularly those with higher over-567

all error rates. For example, mms-1b-fl102 exhibits568

a wide WER/aWER gap on Earnings22, suggest-569

ing difficulty handling accented or domain-specific 570

speech. 571

In general, high-performing ASR models demon- 572

strate small WER–aWER gaps, indicating that it’s 573

easy to approximate when error rates are low. How- 574

ever, models with higher WERs or faced with more 575

acoustically or linguistically challenging test sets 576

tend to show wider divergences between WER and 577

aWER. Despite these variations, most results re- 578

main within a reasonable margin, highlighting the 579

robustness of our approximation model in diverse 580

out-of-distribution scenarios. 581

These results underscore the critical role of 582

model quality in achieving reliable approxima- 583

tions. The approximation framework remains ef- 584

fective for high-performing models, while devi- 585

ations tend to increase in cases of semantically 586

divergent or poorly structured outputs, reflecting 587

the inherent challenges in approximating errors for 588

low-performing systems. 589

5.3 Ablation 590

We conduct ablation experiments to evaluate the 591

robustness of the approximation model and the 592

contributions of its individual components. Us- 593

ing the evaluation setup outlined in Section 3.4, 594

we select data2vec-audio-base-960h as the source 595

model (S) and wav2vec2-base-960h as the target 596

model (T ). The results are summarized in Ta- 597

ble 2, where IID results correspond to Case-I 3.4, 598

and D, M , and D + M under OOD represent 599

Case II 3.4, Case-III 3.4, and Case-IV 3.4, re- 600

spectively. The reference model’s r value repre- 601

sents the average WER across all datasets. We 602

include reference models with varying r values, 603

such as whisper-large-v3 (r = 17.8), whisper- 604

medium.en (r = 20.1), whisper-tiny (r = 33.4), 605

and mms-1b-fl102 (r = 51.0). 606

The results in Table 2 demonstrate the impor- 607

tance of proxy references in improving the re- 608

gression model’s performance. Training without 609

proxy references (w/o PR) significantly increases 610

the mean absolute error (MAE) across all condi- 611

tions. For instance, the IID MAE increases from 612

1.03 (Base) to 3.13, and the OOD D + M MAE 613

rises from 1.07 (Base) to 3.33, highlighting the es- 614

sential role of proxy references in approximation. 615

Increasing the number of high-quality proxy ref- 616

erences (MPR) further reduces errors. Under IID 617

conditions, the MAE decreases from 1.00 with 618

n = 2 to 0.93 with n = 5. Similarly, in OOD 619

D +M , the error drops from 1.06 (MPR, n = 2) 620
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Method IID OOD
D M D + M

eWER3(nc=32) 2.030.07 2.090.04 2.06 ± 0.03 2.120.04

eWER3(nc=64) 1.980.06 2.070.05 2.000.04 2.090.05

Base 1.030.03 1.050.01 1.030.02 1.070.01

w/o S 1.040.03 1.050.01 1.040.03 1.050.01

w/o PR 3.130.07 3.220.02 3.230.05 3.330.02

w/ MPR (n=2) 1.000.02 1.040.02 0.990.02 1.060.02

w/ MPR (n=3) 0.960.02 0.970.01 0.950.02 0.990.01

w/ MPR (n=4) 0.950.02 0.960.02 0.940.02 0.980.02

w/ MPR (n=5) 0.930.02 0.930.01 0.920.02 0.950.01

w/MPR (n=10) 0.900.02 0.930.01 0.880.02 0.950.01

w/MPR (n=20) 0.890.02 0.960.02 0.870.02 0.960.02

w/ mMPR (n=3) 0.980.02 0.960.02 0.970.02 0.980.02

w/ mMPR (n=5) 0.940.02 0.940.02 0.930.01 0.960.02

w/mMPR (n=10) 0.920.02 0.940.02 0.910.02 0.960.02

w/mMPR (n=20) 1.040.02 1.050.01 1.020.02 1.040.01

Base (r=17.8) 1.310.04 1.440.02 1.310.04 1.400.01

Base (r=20.1) 1.360.04 1.360.01 1.340.03 1.340.01

Base (r=33.4) 1.550.04 1.690.02 1.550.04 1.630.02

Base (r=51.0) 2.030.02 2.100.01 2.080.05 2.090.01

w/o S (r=17.8) 1.470.04 1.560.01 1.480.04 1.540.01

w/o S (r=20.1) 1.550.02 1.500.01 1.550.03 1.500.01

w/o S (r=33.4) 1.790.07 1.890.02 1.780.06 1.820.02

w/o S (r=51.0) 2.230.02 2.240.01 2.280.04 2.210.01

Table 2: Mean absolute error (↓) between predicted
word error count and actual error count (in absolute
terms) across different configurations. PR - Proxy Ref-
erence, S - Similarity, MPR - Multiple PR, D - Data, M
- Model. The OOD results are averaged across four wild
datasets. n is the number of proxy references. r↓ is the
average WER for proxy reference across 14 datasets.
Superscript represents the standard deviation across five
runs.

to 0.95 (MPR, n = 5), demonstrating that multiple621

high-quality references enhance model robustness.622

The quality of references, quantified by the r-623

value, also plays a critical role. For example, in624

IID conditions, the MAE increases from 1.31 for625

r = 17.8 to 2.03 for r = 51.0. A similar trend is626

observed in OOD D +M , where the MAE rises627

from 1.40 (r = 17.8) to 2.09 (r = 51.0). The628

absence of similarity (w/o S) combined with low-629

quality proxies further degrades performance, un-630

derscoring the importance of both high-quality ref-631

erences and similarity measures. These trends are632

similarly observed for character-level error count633

approximation, as detailed in Appendix Table 6.634

Scaling Training Data for Regression. To evalu-635

ate the impact of training data size on the regression636

model, we scale the data from 1K to 10K examples637

in increments of 1K. As shown in Figure 2, the638

Figure 2: Mean absolute error (↓) between predicted
and actual word error counts across varying training
data sizes for the regression model. The model was
trained on 10 standard benchmarks and evaluated on
four in-the-wild test sets.

model’s performance does not exhibit a clear trend 639

with increasing training data size. Some datasets 640

show slight improvements with more data; others 641

show minimal improvement. This suggests that the 642

regression model is largely agnostic to the size of 643

the training data. In fact, it appears that a relatively 644

small dataset of just 1,000 examples is sufficient 645

to train a robust approximation model. This under- 646

scores the model’s ability to generalize effectively 647

with limited data, making it an efficient choice for 648

scenarios with constrained datasets. 649

6 Conclusion 650

We present a framework for approximating ASR 651

metrics, demonstrating its effectiveness in general- 652

izing to unseen, in-the-wild, and challenging con- 653

ditions. Our results show that the model performs 654

well with absolute error counts, consistently outper- 655

forming strong baseline, with error rates remaining 656

relatively low. We show that our proposed method 657

achieves consistent performance across 40 ASR 658

models and 14 evaluation setups, including both 659

standard benchmarks and domain-specific condi- 660

tions. The trained regression model can be effi- 661

ciently used to approximate ASR metrics, partic- 662

ularly in data-constrained environments, such as 663

critical domains with limited labeled data. In sum- 664

mary, our work bridges the gap between theoretical 665

advancements and real-world applications, paving 666

the way for more reliable and scalable ASR sys- 667

tems. While in this work, we explore the impact 668

of training data size within a single language, fu- 669

ture work will focus on extending this framework to 670

support multiple languages and exploring language- 671

agnostic ASR metric approximation. 672
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7 Limitations673

In this work, we introduced a framework for ap-674

proximating ASR metrics, evaluated across various675

ASR models and datasets. Despite the promising676

results, there are several limitations to consider.677

Evaluation. While our evaluation setup is com-678

prehensive, consisting of over 40 models and 14679

datasets representing various acoustic and linguis-680

tic conditions such as natural noise, dialects, and681

accents—far surpassing previous works—we have682

not explored more nuanced conditions such as gen-683

der, non-native speech, and approximation across684

various age groups. Additionally, while the frame-685

work has demonstrated strong performance in ap-686

proximating ASR metrics across multiple datasets,687

its generalization to highly diverse or extreme real-688

world conditions might still require further investi-689

gation.690

Language. Furthermore, the evaluation is currently691

limited to a single language; expanding this frame-692

work to multiple languages or achieving language-693

agnostic ASR metric approximation remains an694

important direction for future work.695

Compute. While, unlike previous works, our final696

approximator is a simple machine learning model697

that does not require GPUs to run, we do utilize a698

single GPU for multimodal embedding extraction,699

which could be performed on any consumer-grade700

GPU.701

8 Ethics Statement702

Data Collection and Release. The datasets used703

in our experiments consist of publicly available704

ASR data from both benchmark and in-the-wild705

sources, as detailed in Section 4.1. We ensure that706

the use of these datasets aligns with the princi-707

ples of fair use, specifically in a non-commercial708

academic context or as specified in their original709

license. All datasets are openly accessible, and no710

private or confidential data is included in this work711

to the best of our knowledge.712

Intended Use. By enabling the approximation713

of ASR performance metrics with minimal data,714

our work has the potential to impact applications715

in domains with limited data availability, such as716

healthcare, emergency response, and low-resource717

language research. We believe our approach will718

foster further research in scalable, low-cost ASR719

systems with comprehensive evaluation, benefiting720

industries and research areas that serve underrepre-721

sented or resource-limited populations. 722

Potential Misuse and Bias. While our regression 723

model has demonstrated effectiveness in approx- 724

imating ASR metrics, it is important to consider 725

potential misuse and bias. Given that our model 726

is trained on diverse datasets, including those with 727

various linguistic, acoustic, and demographic vari- 728

ations, there is a risk that the model may inherit bi- 729

ases present in the data, particularly with respect to 730

accents, dialects, and socio-linguistic factors. Ad- 731

ditionally, as our model approximates error rates, it 732

could be misused in applications where the approx- 733

imation may not be sufficient for real-world critical 734

tasks. We recommend cautious deployment and fur- 735

ther evaluation in sensitive applications, especially 736

those where fairness and accuracy are critical. 737
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Figure 3: Pipeline diagram for our framework. The
proxy reference is an ASR model that takes input speech
and generates a transcription. We use the output from
the source model as a hypothesis and the output from the
proxy reference as a reference ground truth to calculate
the WER and CER, which we denote as pWER and
pCER. We then use this along with similarity in SONAR
embeddings for input speech and hypothesis to train the
regression model.

A Appendix1135

A.1 Methodology1136

pWER(xtext, xproxy) =
EditDistance(xtext, xproxy)

WordCount(xproxy)

(8)

1137

pCER(xtext, xproxy) =
EditDistance(xtext, xproxy)

CharCount(xproxy)

(9)

1138

A.2 Datasets1139

To evaluate the robustness and generalizability of1140

our ASR metrics approximation tool, data were1141

sourced from multiple repositories, which we di-1142

vided into two distinct groups: Standard Bench-1143

mark and Wild Challenge dataset.1144

A.2.1 Standard Benchmark Datasets1145

There are six datasets in total that fall under the1146

benchmark group. These datasets are categorized1147

based on their frequent use in ASR model training1148

and their representation of commonly encountered1149

domains in real-world applications.1150

LibriSpeech (Panayotov et al., 2015). prioritized 1151

speaker and content balance over explicit consid- 1152

eration of speech characteristics. It comprises 1153

approximately 1000 hours of English read audio- 1154

books, with subsets featuring both clean and noisy 1155

speech conditions to simulate different acoustic 1156

environments. While the dataset covers diverse 1157

subject matter, its focus on formal, clear speech 1158

from public domain books means it lacks the 1159

natural variability of spontaneous speech, limiting 1160

its representation of conversational or informal 1161

dialogue. 1162

TED-LIUM (Rousseau et al., 2014). contains 1163

TED Talks totaling 452 hours of English speech 1164

data from approximately 2,000 speakers, recorded 1165

in close-talk microphone conditions. The corpus 1166

features narrated speaking styles, capturing clear 1167

and articulate speech. While it provides non- 1168

orthographic transcriptions, lacking formatting 1169

such as capitalization and punctuation, it remains a 1170

valuable resource for training and benchmarking 1171

automatic speech recognition (ASR) models. 1172

GigaSpeech (Chen et al., 2021). is a multi- 1173

domain, multi-style speech recognition corpus 1174

incorporating diverse acoustic and linguistic 1175

conditions. It sources audio from three primary 1176

domains: audiobooks, podcasts, and YouTube, 1177

covering a wide range of speaking styles, including 1178

both read and spontaneous speech. The dataset 1179

covers a broad spectrum of topics, such as arts, 1180

science, sports, and more, making it highly 1181

versatile for training robust speech recognition 1182

models. 1183

SPGISpeech (Technologies, 2021). contains 1184

5,000 hours of professionally transcribed audio 1185

from corporate earnings calls, featuring both 1186

spontaneous and narrated speaking styles. It 1187

emphasizes orthographic accuracy, providing fully 1188

formatted text with capitalization, punctuation, and 1189

denormalization of non-standard words. 1190

Common Voice (Ardila et al., 2020). (a multi- 1191

lingual corpus of narrated prompts built through 1192

crowdsourcing. Recorded in teleconference 1193

conditions, the corpus features narrated speaking 1194

styles and emphasizes inclusivity by covering a 1195

wide range of accents and languages, including 1196

low-resource ones. 1197

Earnings22 (Rio et al., 2022). is a 119-hour 1198

corpus of English-language earnings calls from 1199

global companies, designed to address the lack 1200

of real-world, accented speech data in ASR 1201

benchmarking 1202
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1203

AMI (IHM) (Carletta et al., 2005). The AMI1204

Meeting Corpus is a 100-hour dataset of English1205

meeting recordings, featuring multimodal data1206

synchronized across close-talking and far-field1207

microphones, room-view and individual cameras,1208

slide projectors, and whiteboards. It includes1209

mostly non-native speakers recorded in three1210

rooms with varying acoustics. Digital pens1211

capture unsynchronized handwritten notes,1212

supporting research in speech recognition,1213

diarization, and multimodal interaction. Avail-1214

able under edinburghcstr/ami, it is widely used1215

for meeting analysis and speech processing studies.1216

1217

People’s Speech (Galvez et al., 2021). Thousands1218

of hours of labeled speech data collected from1219

diverse speakers, covering a wide range of1220

topics, accents, and speaking styles. The dataset1221

emphasizes inclusivity and linguistic diversity,1222

making it suitable for developing robust and1223

generalized speech models. It is widely used1224

in academic and industrial research to advance1225

the state-of-the-art in automatic speech recog-1226

nition (ASR) and other speech-related applications.1227

1228

SLUE - VolxCeleb (Shon et al., 2022).consists1229

of single-sided conversational voice snippets ex-1230

tracted from YouTube videos, originally designed1231

for speaker recognition. The dataset represents1232

natural, unscripted speech in diverse real-world1233

settings, capturing a wide range of speaking styles,1234

emotions, and acoustic conditions. Utterances1235

containing slurs were excluded, and partial words1236

were trimmed using a forced aligner to ensure1237

clean, usable segments.1238

1239

A.2.2 Wild Challenge Set1240

Primock57 (Papadopoulos Korfiatis et al.,1241

2022). contains mock consultations conducted by1242

seven clinicians and 57 actors posing as patients,1243

representing a diverse range of ethnicities, accents,1244

and ages. Each actor was provided with a detailed1245

case card outlining a primary care scenario, such1246

as urinary tract infections, cardiovascular issues, or1247

mental health concerns, ensuring the conversations1248

were realistic and clinically relevant. The consulta-1249

tions were recorded using telemedicine software,1250

capturing separate audio channels for clinicians1251

and patients, and transcribed by experienced1252

professionals to ensure accuracy.1253

VoxPopuli Accented (Wang et al., 2021). is a 1254

comprehensive multilingual speech corpus derived 1255

from European Parliament event recordings. It 1256

includes audio, transcripts, and timestamps sourced 1257

directly from the official Parliament website. Due 1258

to its origin, the dataset features a rich collection 1259

of named entities, making it particularly suitable 1260

for tasks like Named Entity Recognition (NER). 1261

ATCOsim (Jan van Doorn, 2023).is a specialized 1262

database containing ten hours of English speech 1263

from ten non-native speakers, recorded during 1264

real-time ATC simulations using close-talk 1265

headset microphones. It features orthographic 1266

transcriptions, speaker metadata, and session 1267

details. With a 32 kHz sampling frequency and 1268

10,078 clean, utterance-level recordings. 1269

1270

A.3 Models 1271

Whisper Models (Radford et al., 2023). is 1272

a transformer-based model that processes 80- 1273

dimensional log-mel filter bank features from 16 1274

kHz audio, utilizing a 2D CNN stack followed by a 1275

transformer encoder-decoder architecture. Trained 1276

on a vast multilingual dataset of 680,000 hours, 1277

it incorporates timestamp tokens into its vocab- 1278

ulary and operates on 30-second audio windows 1279

during inference, auto-regressively generating text 1280

sequences while leveraging encoder outputs as con- 1281

text. Variants of Whisper, such as Distilled, Large, 1282

Base, and Medium, offer different trade-offs in 1283

model size and performance, catering to diverse 1284

computational and accuracy requirements. 1285

Seamless Models (Communication et al., 2023; 1286

Seamless Communication, 2023; Barrault et al., 1287

2025). is a cutting-edge multilingual and multitask 1288

model for speech and text translation. Built on 1289

the UnitY architecture, it uses w2v-BERT 2.0 for 1290

speech encoding and NLLB for text encoding, 1291

supporting nearly 100 languages. A text decoder 1292

handles ASR and translation, while a text-to-unit 1293

(T2U) model and multilingual HiFi-GAN vocoder 1294

generate speech. Leveraging SONAR embeddings 1295

and SeamlessAlign (443,000 hours of aligned 1296

speech/text data), it achieves SOTA results in ASR, 1297

speech-to-text, speech-to-speech, and text-to-text 1298

translation, excelling in low-resource languages. It 1299

introduces BLASER 2.0 for robust evaluation and 1300

outperforms competitors in noisy environments. 1301

1302

Nemo-ASR-Models (Gulati et al., 2020; Vari- 1303

ani et al., 2020; Rekesh et al., 2023; Noroozi 1304
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Name Type Description

LibriSpeech Bench A corpus of approximately 1,000 hours of 16kHz
read English speech, derived from LibriVox audio-
books, segmented and aligned for ASR tasks.

TED-LIUM Bench Contains TED Talks totaling 452 hours of English
speech data from approximately 2,000 speakers,
recorded in close-talk microphone conditions.

GigaSpeech Bench A multi-domain, multi-style speech recognition cor-
pus incorporating diverse acoustic and linguistic con-
ditions, sourced from audiobooks, podcasts, and
YouTube.

SPGISpeech Bench Contains 5,000 hours of professionally transcribed
audio from corporate earnings calls, featuring both
spontaneous and narrated speaking styles.

Common Voice Bench A multilingual corpus of narrated prompts built
through crowdsourcing, recorded in teleconference
conditions, covering a wide range of accents and lan-
guages.

Earnings22 Bench A 119-hour corpus of English-language earnings
calls from global companies, designed to address
the lack of real-world, accented speech data in ASR
benchmarking.

AMI (IHM) Bench The AMI Meeting Corpus is a 100-hour dataset of
English meeting recordings, featuring multimodal
data synchronized across various devices.

People’s Speech Bench Contains thousands of hours of labeled speech data
collected from diverse speakers, covering a wide
range of topics, accents, and speaking styles.

SLUE - VoxCeleb Wild Consists of single-sided conversational voice snip-
pets extracted from YouTube videos, originally de-
signed for speaker recognition.

Primock57 Wild Contains mock consultations conducted by seven
clinicians and 57 actors posing as patients, repre-
senting a diverse range of ethnicities, accents, and
ages.

VoxPopuli Accented Wild A comprehensive multilingual speech corpus derived
from European Parliament event recordings, featur-
ing a rich collection of named entities.

ATCOsim Wild A specialized database containing ten hours of En-
glish speech from ten non-native speakers, recorded
during real-time air traffic control simulations.

Table 3: Overview of various ASR along with brief description.

et al., 2024; Tang et al., 2023; Harper et al.)1305

We included several NVIDIA’s NeMo advanced1306

automatic speech recognition (ASR) models, in-1307

cluding Canary, Parakeet (110M, 0.6B, and 1.1b),1308

Conformer-CTC, and Fast-Conformer, as each is1309

designed for specific use cases and optimized for1310

performance. Canary-1B is a state-of-the-art multi- 1311

lingual, multitask model featuring a FastConformer 1312

encoder and Transformer decoder. The Parakeet 1313

family includes models with a FastConformer en- 1314

coder paired with different decoders: CTC, RNN-T, 1315

or TDT. Conformer-CTC is a non-autoregressive 1316
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model based on the Conformer architecture, com-1317

bining self-attention and convolution for global and1318

local feature extraction. It uses CTC loss and a lin-1319

ear decoder, supporting both sub-word (BPE) and1320

character-level encodings. While Fast-Conformer1321

is an optimized version of the Conformer architec-1322

ture, offering significant speed improvements (2.4x1323

faster) with minimal quality degradation. It uses 8x1324

depthwise convolutional subsampling and reduced1325

kernel sizes for efficiency.1326

Wav2Vec2 Models (Schneider et al., 2019;1327

Baevski et al., 2020). is a self-supervised pre-1328

trained model designed to process raw audio inputs1329

and generate speech representations. The model ar-1330

chitecture consists of three key components: a con-1331

volutional feature encoder, a context network, and1332

a quantization module. The convolutional feature1333

encoder converts raw waveforms into latent repre-1334

sentations, which are then processed by the context1335

network a transformer based stack with 24 blocks,1336

a hidden size of 1024, 16 attention heads, and a1337

feed-forward dimension of 4096 to capture con-1338

textual information.The quantization module maps1339

these latent representations to quantized forms.1340

HuBERT Models (Hsu et al., 2021). is a self-1341

supervised learning framework designed for speech1342

representation learning where CNN-encoded audio1343

features are randomly masked. During training,1344

the model predicts cluster assignments for masked1345

regions of the input speech, forcing it to learn both1346

acoustic and language models from continuous in-1347

puts.1348

Audio/Speech Language Models 1.5B and 2B1349

(Rajaa and Tushar) is a multi-modal Language1350

Model designed to analyze and predict metadata1351

from a speaker’s turn in a conversation. It inte-1352

grates a speech encoder to convert speech signals1353

into meaningful embeddings, which are then pro-1354

cessed alongside text instructions by TinyLlama-1355

1.1B-Chat-v1.0 to generate predictions. The model1356

accepts 16 KHz audio inputs and predicts metadata1357

such as SpeechActivity, Transcript, Gender, Age,1358

Accent, and Emotion.1359

SpeechT5 (Ao et al., 2022). unified modal frame-1360

work capable of handling a wide range of tasks,1361

including automatic speech recognition (ASR),1362

speech synthesis, speech translation, voice con-1363

version, speech enhancement, and speaker identifi-1364

cation.Its audio post-net, which can incorporate1365

speaker embeddings to enable prosody transfer,1366

making it effective for tasks like voice conversion1367

and speech synthesis. By leveraging its encoder-1368

decoder architecture, SpeechT5 can generate high- 1369

quality mel-spectrograms from text input while pre- 1370

serving speaker-specific characteristics like emo- 1371

tion and gender. 1372

A.4 Experiments 1373

A.4.1 Regression Pipeline. 1374

The regression framework is a stacking ensemble 1375

comprising multiple base regressors and a final 1376

estimator. We perform basic hyperparameter tun- 1377

ing using RandomizedSearchCV with 5-fold cross- 1378

validation, with the objective to minimize mean 1379

absolute error (MAE). The search explores key hy- 1380

perparameters such as n_estimators, max_depth, 1381

learning_rate, and min_samples_split, bal- 1382

ancing model complexity and generalization. We 1383

provide hyperparameter and other details in 5. The 1384

model is trained on 14 datasets divided into two 1385

groups: bench (10 standard benchmark datasets) 1386

and in-the-wild (4 diverse, real-world datasets). A 1387

leave-one-out strategy is applied to the bench set, 1388

where the model is trained on 9 datasets and eval- 1389

uated on the remaining one. All trained models 1390

are also evaluated on the in-the-wild set, which 1391

remains isolated during training to assess out-of- 1392

domain generalization. 1393

A.5 Results 1394

This is an appendix. 1395
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Figure 4: Comparison of Actual vs Approximated WER across models.
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Figure 5: Comparison of Actual vs Approximated CER across models.
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Model Type and Models Description

nemo_asr
– parakeet-ctc-1.1b
– parakeet-ctc-0.6b
– stt_en_conformer_ctc_large
– stt_en_fastconformer_ctc_large
– stt_en_conformer_ctc_small
– parakeet-tdt-1.1b
– parakeet-rnnt-1.1b
– parakeet-rnnt-0.6b
– stt_en_fastconformer_transducer_large
– parakeet-tdt_ctc-110m
– canary-1b

NVIDIA’s NeMo ASR models offer diverse architectures for speech-to-text
applications. The Conformer-CTC model combines self-attention and con-
volutional operations, using Connectionist Temporal Classification (CTC)
loss for efficient transcription. The Conformer-Transducer extends this by
incorporating a Recurrent Neural Network Transducer (RNNT) decoder for
autoregressive modeling. The Conformer-HAT variant separates label and
blank score predictions, enhancing integration with external language models.
For improved performance, the Fast-Conformer introduces depthwise con-
volutional subsampling, achieving approximately 2.4x faster encoding with
minimal accuracy loss.

speechbrain
– asr-wav2vec2-librispeech

SpeechBrain provides robust models for ASR and speaker recognition.

data2vec
– data2vec-audio-large-960h
– data2vec-audio-base-960h

Data2Vec models by Facebook are designed for speech representation learn-
ing and ASR. These models use a unified learning framework for multiple
modalities.

wav2vec2
– wav2vec2-large-960h-lv60-self
– wav2vec2-large-robust-ft-libri-960h
– wav2vec2-large-960h
– wav2vec2-base-960h
– wav2vec2-conformer-rope-large-960h-ft
– wav2vec2-conformer-rel-pos-large-960h-ft

Wav2Vec2 models leverage self-supervised learning on raw audio for ASR.
With advanced configurations, these models provide high accuracy for diverse
speech-to-text tasks.

mms
– mms-1b-all
– mms-1b-fl102

The Multilingual Speech (MMS) models by Facebook excel at speech recog-
nition for multiple languages and accents.

hubert
– hubert-xlarge-ls960-ft
– hubert-large-ls960-ft

HuBERT models provide high-quality speech representations for ASR and
other downstream speech tasks.

seamless
– hf-seamless-m4t-large
– hf-seamless-m4t-medium
– seamless-m4t-v2-large

Seamless models focus on multilingual transcription and translation, offering
robust real-time speech processing solutions.

speechllm
– speechllm-1.5B
– speechllm-2B

SpeechLLM models are fine-tuned for ASR and text generation, leveraging
billions of parameters for high performance.

whisper
– whisper-large-v3
– distil-large-v3
– whisper-large-v2
– whisper-large-v3-turbo
– distil-large-v2
– whisper-large
– whisper-tiny
– whisper-medium.en
– distil-small.en
– whisper-small.en

Whisper models by OpenAI provide state-of-the-art transcription and transla-
tion capabilities for multilingual ASR. These models range from tiny to large
configurations.

moonshine
– moonshine-base
– moonshine-tiny

Moonshine models are lightweight and optimized for efficient ASR on edge
devices with minimal computational resources.

Table 4: Overview of various ASR along with brief description.

20



Model Hyperparameter Values

Random Forest (RF)

n_estimators {100, 200, 300, 500, 700, 1000}
max_depth {5, 10, 15, 20, 25, 30}
min_samples_split {2, 5, 10, 15, 20}
min_samples_leaf {1, 2, 4, 8}

Gradient Boosting (GBR)

n_estimators {100, 200, 400, 600, 800}
learning_rate {0.001, 0.01, 0.05, 0.1, 0.2}
max_depth {3, 5, 7, 10}
min_impurity_decrease {0.0, 0.001, 0.01, 0.1, 0.2}

HistGradientBoosting (HGB)

max_iter {100, 200, 300, 400, 500}
learning_rate {0.001, 0.01, 0.05, 0.1, 0.2}
max_depth {3, 5, 7, 10, 15}
loss {Poisson}

Ridge Regression (Final Estimator)
alpha {1e-3, 1e-2, 0.1, 1, 10, 100, 1000}
positive {True}

Pipeline passthrough {True}

Table 5: Hyperparameter details for regression model.
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Method IID OOD
D M D + M

Base 3.790.16 3.560.06 3.760.18 3.690.06

w/o S 3.830.14 3.650.06 3.820.16 3.730.07

w/o PR 8.430.28 8.360.08 8.670.24 8.660.08

w/ MPR (n=2) 3.690.14 3.570.06 3.660.17 3.690.06

w/ MPR (n=3) 3.620.13 3.440.07 3.580.15 3.560.07

w/ MPR (n=4) 3.570.13 3.400.06 3.530.13 3.520.06

w/ MPR (n=5) 3.490.13 3.370.06 3.470.12 3.490.07

w/ mMPR (n=3) 3.610.15 3.400.09 3.570.13 3.510.09

w/ mMPR (n=5) 3.800.15 3.470.03 3.770.13 3.560.04

Base (r=11.9) 4.680.17 5.160.06 4.640.16 5.060.05

Base (r=14.0) 4.840.18 4.880.07 4.750.17 4.770.07

Base (r=20.2) 5.130.12 5.380.07 5.120.10 5.300.07

Base (r=23.5) 5.600.13 6.120.07 5.690.21 6.030.05

w/o S (r=11.9) 5.500.21 5.840.06 5.550.21 5.650.05

w/o S (r=14.0) 5.730.12 5.500.05 5.710.13 5.370.06

w/o S (r=20.2) 6.160.18 6.240.08 6.130.10 5.970.09

w/o S (r=23.5) 6.380.09 6.770.08 6.430.16 6.580.08

Table 6: Mean absolute error between predicted char-
acter error count and actual character error count (in
absolute terms) across different configurations. R - Re-
gression, C - Classification, PR - Proxy Reference, S -
Silarity, MPR - Multiple PR. The OOD results are av-
eraged across five wild datasets. Superscript represents
the standard deviation across five runs.
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Model LS_Noise Primock57 Atcosim VP_accented

asr-wav2vec2-librispeech 4.2/5.8 17.2/20.8 18.8/21.9 9.8/14.0
canary-1b 1.5/3.8 10.1/9.7 16.4/19.4 15.6/9.0
data2vec-audio-base-960h 7.0/8.1 20.5/23.7 29.5/32.0 13.3/17.8
data2vec-audio-large-960h 3.1/4.2 14.1/17.4 20.0/23.8 10.6/14.4
distil-large-v2 3.5/5.2 11.5/9.2 49.5/41.8 10.2/9.4
distil-large-v3 2.7/4.6 11.9/9.1 49.4/40.5 10.1/9.0
distil-small.en 4.2/5.8 12.2/10.4 50.7/41.8 9.7/9.2
hf-seamless-m4t-large 6.5/7.5 32.1/30.6 54.7/57.2 21.8/15.8
hf-seamless-m4t-medium 9.4/10.1 34.4/32.7 35.5/37.9 23.1/17.9
hubert-large-ls960-ft 3.0/4.2 14.4/17.4 21.3/25.0 10.0/14.3
hubert-xlarge-ls960-ft 2.7/4.1 15.3/18.1 20.1/23.8 10.2/14.5
mms-1b-all 3.6/4.8 19.5/19.1 27.2/31.8 17.0/12.6
mms-1b-fl102 9.0/10.0 35.0/33.2 55.4/57.3 18.2/17.6
moonshine-base 5.7/6.8 12.4/12.1 42.6/39.5 10.9/12.6
moonshine-tiny 8.5/9.9 17.9/19.0 38.2/38.4 13.2/15.1
parakeet-ctc-0.6b 1.7/3.7 10.1/9.9 16.2/22.7 9.7/9.0
parakeet-ctc-1.1b 1.7/3.6 10.0/10.1 14.8/21.4 10.0/8.0
parakeet-rnnt-0.6b 1.3/3.4 10.1/9.4 16.9/24.1 10.9/8.8
parakeet-rnnt-1.1b 1.3/3.3 9.1/9.7 14.5/21.3 11.2/7.2
parakeet-tdt-1.1b 1.1/3.1 8.2/9.4 14.0/20.0 10.9/6.8
parakeet-tdt_ctc-110m 2.5/4.7 10.3/9.2 22.3/24.2 12.4/8.6
seamless-m4t-v2-large 3.5/4.6 24.6/23.7 31.6/35.8 25.2/19.8
speechllm-1.5B 9.9/11.2 30.1/31.4 85.4/88.7 47.3/49.0
speechllm-2B 8.4/9.3 25.3/27.7 33.5/36.1 24.0/28.3
stt_en_conformer_ctc_large 2.1/3.4 8.8/11.2 17.1/18.2 11.1/7.5
stt_en_conformer_ctc_small 4.3/5.7 12.7/15.6 21.6/23.6 9.5/9.7
stt_en_fastconformer_ctc_large 3.0/5.6 10.1/16.3 17.3/25.1 11.5/9.2
stt_en_fastconformer_transducer_large 2.8/5.0 10.6/14.3 18.7/25.3 14.2/11.9
wav2vec2-base-960h 7.9/9.1 23.3/26.7 30.3/33.2 13.7/18.9
wav2vec2-conformer-rel-pos-large-960h-ft 2.6/3.8 14.7/17.4 21.0/24.5 11.2/14.7
wav2vec2-conformer-rope-large-960h-ft 2.9/4.0 16.1/18.7 22.2/25.9 11.0/14.2
wav2vec2-large-960h 5.1/6.3 19.1/22.4 28.8/31.8 12.2/17.4
wav2vec2-large-960h-lv60-self 3.5/5.0 17.6/21.0 18.6/23.0 9.3/13.6
wav2vec2-large-robust-ft-libri-960h 4.5/5.8 15.7/19.0 20.7/24.2 10.0/14.7
whisper-large 2.9/4.2 13.7/10.6 49.3/47.5 13.7/11.9
whisper-large-v2 2.6/3.8 15.3/12.5 48.6/51.5 15.3/14.2
whisper-large-v3 2.0/3.3 12.3/8.7 48.9/48.3 14.3/13.6
whisper-large-v3-turbo 2.0/3.2 12.4/8.8 48.3/49.9 19.7/19.0
whisper-medium.en 3.3/4.3 13.1/10.5 49.1/49.2 23.8/20.6
whisper-small.en 4.2/5.3 13.1/10.8 48.4/51.2 12.5/12.7
whisper-tiny 9.8/11.3 19.3/18.2 60.8/63.0 21.0/22.3

Table 7: Actual and approximated CER (↓), separated by a slash, on out-of-distribution wild datasets. The regression
model is trained independently for each ASR model on standard benchmarks, making the wild datasets out-of-
distribution.
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Model AMI_IHM CV11 Earnings22 Gigaspeech LibriSpeechclean

WER/aWER CER/aCER WER/aWER CER/aCER WER/aWER CER/aCER WER/aWER CER/aCER WER/aWER CER/aCER

asr-wav2vec2-librispeech 28.4/30.5 13.8/17.6 25.0/29.7 11.7/15.0 37.3/33.2 21.3/16.1 16.6/16.5 6.9/7.4 1.8/3.8 0.5/2.2
canary-1b 15.4/17.6 9.2/12.7 8.7/14.2 4.1/8.5 21.8/16.0 15.8/9.1 11.1/6.9 5.5/4.3 1.5/5.7 0.5/3.5
data2vec-audio-base-960h 39.9/40.4 19.9/23.5 37.8/42.3 18.3/21.7 50.8/48.6 28.0/25.0 23.8/23.5 10.1/10.8 2.8/4.0 0.9/1.6
data2vec-audio-large-960h 34.1/36.1 16.9/21.2 23.3/27.9 10.9/14.1 37.7/34.5 21.2/16.7 17.0/16.6 7.2/7.4 1.8/3.9 0.5/1.7
distil-large-v2 17.8/16.8 11.2/11.5 14.2/19.7 7.1/10.6 19.3/20.0 12.5/13.7 12.8/8.2 7.1/5.4 3.4/6.7 1.5/4.2
distil-large-v3 18.5/17.3 11.6/11.7 13.7/19.4 6.6/10.3 18.4/19.8 12.1/13.0 12.2/7.9 6.9/5.3 2.8/6.6 1.2/4.1
distil-small.en 18.5/18.4 11.1/12.6 18.5/23.1 9.4/12.5 21.2/21.4 13.6/14.7 13.1/8.6 7.3/5.7 3.7/7.6 1.6/4.5
hf-seamless-m4t-large 36.3/33.9 25.4/25.1 9.5/13.2 5.1/7.4 30.7/32.8 21.1/23.9 24.2/21.1 16.7/15.7 3.2/4.8 1.5/2.7
hf-seamless-m4t-medium 40.6/37.2 29.5/28.9 11.3/14.3 6.0/7.4 33.7/35.9 23.9/26.4 30.2/28.1 22.3/21.7 3.8/5.3 1.6/2.9
hubert-large-ls960-ft 31.1/33.6 15.2/19.8 24.1/28.8 10.6/13.6 37.6/34.4 20.6/16.3 19.3/18.3 8.1/7.8 2.1/3.7 0.6/1.6
hubert-xlarge-ls960-ft 31.1/34.3 15.0/20.0 24.1/28.7 10.5/13.9 37.3/34.9 20.4/15.9 18.1/17.4 7.3/7.6 2.0/3.8 0.6/1.7
mms-1b-all 37.0/36.2 19.1/20.8 22.5/27.5 8.9/12.5 34.1/30.6 19.6/15.1 19.4/16.9 8.3/7.6 4.2/6.2 1.3/2.7
mms-1b-fl102 75.4/73.3 35.1/33.9 42.6/45.3 17.8/19.9 50.6/52.3 24.2/26.5 37.2/35.7 15.7/15.2 15.8/17.3 5.1/5.9
moonshine-base 15.6/24.7 9.4/16.7 20.8/25.4 10.8/13.8 24.3/25.6 15.9/16.6 14.2/10.4 8.1/6.8 3.4/6.3 1.3/3.7
moonshine-tiny 21.3/25.3 12.8/16.7 26.7/31.7 14.4/17.3 31.2/32.7 19.7/20.2 16.6/14.1 9.1/8.6 4.5/7.2 1.8/4.2
parakeet-ctc-0.6b 17.0/23.1 10.0/16.3 10.7/21.1 5.1/11.2 24.7/19.1 16.9/11.5 12.0/8.6 6.1/5.2 2.0/5.1 0.7/2.5
parakeet-ctc-1.1b 15.7/21.4 9.0/15.3 10.5/20.1 5.2/11.0 24.0/17.7 16.6/10.7 12.2/7.9 6.2/5.0 1.8/5.4 0.5/2.6
parakeet-rnnt-0.6b 18.8/24.0 11.7/17.9 8.5/19.9 4.2/10.8 25.2/18.7 17.5/11.5 11.7/9.0 6.2/5.4 1.8/5.5 0.6/3.2
parakeet-rnnt-1.1b 18.6/23.5 11.7/17.2 6.7/19.6 3.4/10.5 25.7/17.9 18.4/11.4 11.3/8.4 6.0/5.0 1.5/5.0 0.5/3.3
parakeet-tdt-1.1b 17.1/23.5 10.2/16.9 7.2/19.6 3.4/10.6 24.5/16.6 17.1/10.0 10.2/7.8 4.9/4.7 1.3/6.0 0.4/2.9
parakeet-tdt_ctc-110m 18.5/18.8 10.7/13.6 12.7/17.7 6.9/10.1 22.2/14.8 15.7/9.2 12.6/8.2 6.2/5.0 2.6/6.7 0.9/3.8
seamless-m4t-v2-large 43.0/42.3 30.2/30.2 8.2/12.3 3.9/6.3 47.3/47.4 33.7/33.9 25.7/23.2 18.1/17.2 2.7/4.4 1.0/2.5
speechllm-1.5B 67.7/69.3 51.5/55.0 18.5/22.7 10.0/12.7 50.8/48.2 38.3/35.4 27.5/26.0 18.1/18.3 10.5/12.1 7.3/9.2
speechllm-2B 38.6/40.8 24.3/28.2 24.6/28.2 16.5/18.3 47.3/45.0 32.5/30.8 24.4/23.6 13.5/13.8 7.0/9.3 4.5/4.8
stt_en_conformer_ctc_large 15.3/19.9 7.9/13.4 10.4/15.4 4.7/8.0 24.8/20.0 16.4/10.7 13.2/10.6 5.9/5.6 2.2/3.7 0.7/2.4
stt_en_conformer_ctc_small 21.2/24.4 11.2/15.4 19.1/24.1 8.9/12.2 29.3/25.3 19.0/14.1 15.5/14.9 7.2/7.7 3.9/5.4 1.4/3.1
stt_en_fastconformer_ctc_large 20.3/24.0 11.7/15.3 9.5/19.3 4.6/10.2 27.3/21.5 18.3/13.0 14.5/14.7 7.2/8.2 1.9/5.2 0.7/2.8
stt_en_fastconformer_transducer_large 19.8/22.0 12.9/16.8 9.3/18.0 4.7/9.8 31.5/26.9 23.0/18.8 13.6/13.2 7.4/7.8 1.8/3.9 0.6/2.6
wav2vec2-base-960h 37.9/38.7 18.7/21.9 40.6/45.7 19.5/22.8 51.1/48.6 28.2/25.4 26.2/26.6 11.7/12.2 3.7/4.5 1.1/1.9
wav2vec2-conformer-rel-pos-large-960h-ft 35.0/38.7 18.5/24.1 23.7/28.0 10.7/13.7 38.4/36.2 21.7/17.6 18.5/17.2 8.5/7.9 1.6/3.3 0.5/1.5
wav2vec2-conformer-rope-large-960h-ft 34.3/36.4 18.0/22.7 23.6/28.5 11.6/15.0 36.9/33.9 21.4/16.7 17.9/17.7 7.3/7.6 1.8/3.8 0.5/1.6
wav2vec2-large-960h 34.0/36.4 16.4/20.2 34.1/38.6 16.2/19.4 46.4/43.4 25.4/21.7 20.6/20.5 8.6/9.1 2.9/4.3 0.8/2.1
wav2vec2-large-960h-lv60-self 29.1/31.5 15.5/19.5 23.1/28.8 11.0/15.0 36.7/32.5 20.8/15.7 17.6/17.2 7.5/8.0 1.7/3.5 0.5/1.9
wav2vec2-large-robust-ft-libri-960h 30.5/33.9 13.8/19.2 25.0/29.3 10.7/13.8 37.1/33.5 20.5/15.7 18.0/17.6 7.1/7.7 2.8/4.3 0.8/2.3
whisper-large 18.5/18.3 12.3/13.0 13.0/18.0 6.6/9.3 18.8/20.3 12.3/14.9 12.2/7.7 7.1/5.1 2.8/5.1 1.4/3.5
whisper-large-v2 18.6/17.1 12.1/11.8 11.3/15.5 5.7/8.0 19.0/21.5 13.0/15.8 12.5/7.1 7.3/4.9 2.8/5.1 1.5/3.2
whisper-large-v3 19.0/17.1 12.3/12.0 9.9/14.5 4.9/6.9 18.2/20.7 12.1/14.9 12.5/7.3 7.2/4.9 2.2/4.0 0.9/2.9
whisper-large-v3-turbo 19.0/17.5 12.3/11.9 12.6/16.1 6.3/8.1 18.8/21.1 12.9/15.6 12.2/6.8 7.1/4.6 2.4/4.4 1.1/2.5
whisper-medium.en 20.3/18.8 13.7/14.5 14.3/17.8 7.2/9.2 20.1/22.6 13.3/16.5 12.8/7.6 7.6/5.5 3.3/5.5 1.8/3.5
whisper-small.en 19.8/17.9 12.8/12.2 17.8/21.9 9.3/11.3 20.6/22.9 13.6/16.3 12.8/8.1 7.3/5.1 3.3/5.6 1.4/3.1
whisper-tiny 26.7/25.1 16.7/17.0 33.5/40.3 17.7/20.9 33.8/35.4 22.0/25.4 20.6/18.2 12.0/11.0 7.9/11.2 3.4/5.1

Table 8: Actual and approximated WER and CER, separated by a slash, across five standard datasets. The regression
model is trained on nine datasets and tested on one, with this process repeated for all datasets, ensuring that the test
data is always out-of-distribution.
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Model peoples_speech slue_voxceleb spgispeech_S tedlium-dev-test voxpopuli_en

WER/aWER CER/aCER WER/aWER CER/aCER WER/aWER CER/aCER WER/aWER CER/aCER WER/aWER CER/aCER

asr-wav2vec2-librispeech 35.6/32.9 19.8/17.7 19.5/20.4 9.8/12.2 11.1/12.2 4.8/4.7 10.3/11.1 5.2/5.8 14.3/12.6 6.6/5.1
canary-1b 16.5/22.5 11.1/15.2 14.9/11.1 10.8/8.2 3.2/6.7 2.0/3.9 7.9/7.6 5.9/5.0 6.4/4.9 3.9/3.4
data2vec-audio-base-960h 43.4/38.6 24.4/20.8 26.1/27.6 13.0/15.5 19.2/19.8 8.2/7.9 13.6/14.2 6.3/6.4 18.9/17.5 8.5/7.1
data2vec-audio-large-960h 35.1/31.3 20.0/17.3 20.4/22.1 10.3/12.9 11.3/12.0 4.9/4.7 9.9/10.6 4.5/5.0 14.9/13.4 6.9/5.5
distil-large-v2 17.4/21.8 12.2/14.1 16.0/10.8 11.4/7.4 3.7/7.6 1.8/4.5 10.4/8.5 8.8/5.4 9.5/8.2 5.8/4.6
distil-large-v3 17.4/21.6 12.4/13.8 14.4/10.0 10.3/6.8 3.6/7.4 1.8/4.5 10.7/9.2 8.6/5.7 9.3/6.7 5.8/4.1
distil-small.en 19.0/22.5 13.3/14.3 15.9/11.4 11.3/7.8 4.0/7.9 1.9/4.7 10.8/8.8 9.1/5.6 10.2/7.4 6.4/4.3
hf-seamless-m4t-large 38.5/41.5 29.2/30.1 47.2/42.8 39.4/36.1 16.2/18.7 11.5/13.0 19.8/19.1 15.7/14.4 8.1/6.5 5.0/3.6
hf-seamless-m4t-medium 43.6/45.7 33.6/34.2 50.9/47.4 43.2/40.3 12.9/15.5 8.8/10.4 27.0/26.2 21.3/20.0 8.8/7.3 5.5/4.4
hubert-large-ls960-ft 34.1/31.3 18.8/17.7 20.8/22.0 10.1/12.3 11.6/12.4 4.9/4.6 11.0/12.0 5.3/5.4 15.0/13.6 6.9/5.4
hubert-xlarge-ls960-ft 35.5/31.5 19.5/16.0 20.3/22.1 9.9/12.3 11.9/12.3 4.8/4.5 10.1/11.2 4.2/5.0 14.5/12.8 6.7/5.3
mms-1b-all 32.2/36.0 16.8/18.7 27.6/26.3 14.6/14.8 10.0/12.5 3.8/4.9 13.5/13.3 7.3/6.5 8.9/7.6 4.4/3.1
mms-1b-fl102 52.4/52.7 26.0/25.5 51.7/48.7 26.1/23.2 19.1/22.9 5.9/8.6 29.7/30.3 12.9/12.9 22.6/20.5 9.3/7.9
moonshine-base 26.4/26.2 18.1/17.5 17.0/13.8 11.6/9.1 6.4/7.5 3.4/3.9 5.8/7.0 3.4/4.1 11.7/9.9 6.7/4.6
moonshine-tiny 31.8/30.8 20.5/19.1 20.1/17.2 13.4/11.8 9.1/9.9 4.8/5.3 9.8/9.5 6.7/5.8 14.9/12.9 8.2/7.2
parakeet-ctc-0.6b 24.2/20.0 16.5/12.6 13.1/11.0 8.7/7.8 6.4/7.5 3.6/3.8 4.3/7.2 2.6/4.4 7.0/7.2 4.1/3.7
parakeet-ctc-1.1b 20.7/18.1 13.9/11.8 13.0/11.6 8.7/8.3 6.4/7.1 3.7/3.6 5.0/7.4 3.0/4.4 6.7/6.5 3.9/3.3
parakeet-rnnt-0.6b 21.9/17.9 15.4/12.2 14.5/11.6 10.0/8.6 4.9/7.3 2.9/3.7 5.0/6.9 3.0/4.0 6.4/6.7 3.8/3.7
parakeet-rnnt-1.1b 23.3/17.2 16.6/11.8 14.1/10.9 9.8/8.9 4.5/7.7 2.7/4.4 5.2/7.7 3.5/4.9 5.6/6.0 3.4/3.2
parakeet-tdt-1.1b 24.5/17.9 16.6/12.6 13.5/10.6 9.1/7.9 5.4/7.7 3.2/4.2 4.4/7.1 2.8/4.4 5.5/6.0 3.3/3.1
parakeet-tdt_ctc-110m 16.6/21.4 11.5/15.1 15.3/11.5 10.7/8.3 3.8/7.3 2.2/4.0 5.2/6.6 3.3/4.1 7.5/6.2 4.6/3.1
seamless-m4t-v2-large 35.0/36.3 25.1/24.9 45.1/43.2 35.9/34.7 11.7/13.6 7.6/8.7 26.5/25.5 21.0/19.1 8.0/7.8 5.7/5.0
speechllm-1.5B 45.1/44.5 32.7/32.0 60.3/60.8 44.1/46.8 10.6/10.9 6.2/5.8 19.4/17.6 14.2/11.9 30.8/29.9 22.0/21.3
speechllm-2B 52.9/53.1 36.6/35.7 36.9/37.8 25.8/27.3 14.6/15.3 8.1/7.5 18.8/16.7 12.9/9.4 28.7/27.7 18.5/17.5
stt_en_conformer_ctc_large 24.2/21.5 15.2/13.0 12.6/14.7 7.6/9.4 7.9/7.3 4.1/3.4 5.9/7.7 3.3/4.4 6.9/5.3 3.9/2.7
stt_en_conformer_ctc_small 31.3/26.9 19.0/15.7 16.6/17.8 9.6/11.7 10.0/9.4 5.1/4.1 8.0/9.9 3.9/5.2 8.9/7.3 5.0/3.8
stt_en_fastconformer_ctc_large 26.9/20.5 18.3/12.9 15.4/14.0 9.9/9.7 6.9/8.4 3.7/4.1 5.7/7.8 3.1/4.5 6.3/6.0 3.8/3.3
stt_en_fastconformer_transducer_large 26.5/20.4 19.0/13.8 16.9/15.1 11.3/11.1 6.0/7.9 3.4/4.0 4.9/7.0 2.8/4.4 6.7/6.9 4.1/3.8
wav2vec2-base-960h 44.7/40.1 24.5/20.6 27.3/28.7 13.5/15.7 21.5/22.4 8.9/8.7 13.8/14.7 6.1/6.6 20.5/19.4 9.1/7.8
wav2vec2-conformer-rel-pos-large-960h-ft 37.3/34.7 21.2/19.7 20.3/22.1 10.6/13.4 12.0/12.2 5.2/4.6 11.7/12.3 6.6/6.3 14.8/13.1 6.9/5.5
wav2vec2-conformer-rope-large-960h-ft 35.3/32.1 20.4/19.3 20.6/22.1 10.4/12.9 11.7/12.5 5.1/4.8 10.9/11.8 5.5/6.0 14.5/13.4 6.9/5.4
wav2vec2-large-960h 38.9/35.7 21.6/19.2 23.2/25.1 11.5/13.7 16.3/17.1 6.9/6.6 12.2/13.2 5.6/6.1 18.1/16.7 8.2/7.0
wav2vec2-large-960h-lv60-self 32.5/29.4 18.7/15.7 20.2/20.8 10.7/12.9 10.4/12.2 4.3/4.7 9.5/10.5 4.2/4.9 13.5/12.5 6.4/5.2
wav2vec2-large-robust-ft-libri-960h 36.2/32.6 19.2/16.9 20.9/23.0 9.6/12.5 11.8/12.5 5.0/4.8 10.6/11.9 4.8/5.4 15.4/14.0 7.0/5.8
whisper-large 31.2/32.4 24.6/23.0 17.6/12.6 13.7/10.5 3.7/7.4 2.1/4.4 19.3/16.1 14.0/10.3 8.9/6.0 5.5/3.2
whisper-large-v2 18.8/25.2 14.2/18.1 18.7/15.1 14.8/12.1 4.1/7.7 2.4/4.8 28.3/25.3 19.4/14.4 8.7/6.8 5.5/3.8
whisper-large-v3 20.4/27.5 15.6/19.5 15.6/11.9 11.8/8.7 3.2/6.3 1.7/4.0 10.5/8.3 8.7/5.5 11.0/8.6 7.8/6.1
whisper-large-v3-turbo 16.0/23.7 12.0/16.5 15.3/11.9 11.5/9.0 3.1/6.3 1.7/3.9 9.9/8.1 8.5/5.2 13.3/11.1 9.8/7.9
whisper-medium.en 20.1/25.1 15.3/18.0 21.2/16.1 16.6/13.2 4.0/7.7 2.2/5.0 17.3/14.6 18.3/14.2 9.0/7.2 5.6/3.2
whisper-small.en 21.2/25.1 16.5/18.0 18.2/14.1 13.9/10.9 3.9/7.5 2.1/4.6 10.6/8.3 15.6/12.0 9.5/8.1 5.9/3.4
whisper-tiny 30.1/31.9 21.7/21.5 24.0/20.3 17.5/14.4 8.1/11.9 3.9/6.7 17.6/15.3 13.0/9.5 13.2/11.2 7.4/6.3

Table 9: Actual and approximated WER and CER, separated by a forward slash, across five standard datasets. The
regression model is trained on nine datasets and tested on one, with this process repeated for all datasets, ensuring
that the test data is always out-of-distribution.
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