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ABSTRACT

Optimizing Directed Acyclic Graph (DAG) workflow makespan by scheduling
techniques is a critical issue in the high performance computing area. Many
studies in recent years combined Pointer Network (PtrNet) with reinforcement
learning (RL) to schedule DAGs by generating DAG task priorities in a sequence-
to-sequence manner. However, these PtrNet-based scheduling methods need to
repeatedly compute the decoder’s hidden state or context embeddings according
to the recent local decisions, which leads to limited capability of exploiting the
DAG global topological structure, high computation complexity and inability to
achieve one-shot scheduling. To address these issues, we propose GAA-PtrNet,
a novel PtrNet based on graph attention aggregation (GAA) for one-shot DAG
workflow scheduling. In GAA-PtrNet, we compute the pair-wise graph attention
scores among nodes in one-shot, then directly aggregate these scores to obtain the
probability of selecting candidate nodes. Consequently, the explicit decoder or
context embedding structure in PtrNet is omitted in our GAA-PtrNet, and the net-
work takes only one shot forward propagation to infer a solution for a whole DAG
scheduling problem, significantly reducing the computation complexity. Addi-
tionally, to train GAA-PtrNet, we design a training strategy based on policy gradi-
ent RL with dense reward signal and demonstration learning. To our knowledge,
GAA-PtrNet is the first network model to achieve PtrNet-based one-shot DAG
scheduling. GAA-PtrNet can better handle with DAG workflow structures, pro-
viding high quality DAG scheduling solutions. The experimental results show
that the proposed method is superior in terms of objective and runs about 10 times
faster when compared to previous PtrNet-based methods, and also performs better
than other learning-based DAG scheduling methods.

1 INTRODUCTION

The Directed Acyclic Graph (DAG) scheduling problem arises in the high performance computing
field (Hosseini Shirvani, 2024).It is a class of NP-hard Combinatorial Optimization Problems (COP),
involving large and complex DAG workflow, and homogeneous or heterogeneous computation re-
sources. In this domain, DAG is used to represent the parallel and sequential relationships among
computation tasks. These tasks modeled as the nodes in the DAG, and the directed edges in the DAG
represent the precedence constraints among the tasks. The goal is to achieve the best performance
by determining an optimal node execution or priority order and allocating then to computation re-
sources. In recent years, machine learning, especially reinforcement learning (RL) technique, has
already shown promise in DAG scheduling (Gu et al., 2025). A common network architecture
for RL-based DAG scheduling consists of a Graph Neural Network (GNN) encoder to extract work-
flows’ structural information, and a policy network to output scheduling decisions (Mao et al., 2019)
(Zhou et al., 2022) (Song et al., 2023) (Yu et al., 2023) (Dong et al., 2023).

Since DAG scheduling problem can be interpreted as a ordering problem over the problem compo-
nents, Pointer Network (PtrNet) (Vinyals et al., 2015), as a sequence learning method, has shown its
distinct advantages. Kintsakis et al. (2019) first introduces PtrNet into DAG workflow scheduling,
which follows the foundational structure proposed by Bello et al. (2016). It encodes the task features
with a long short-term memory (LSTM) encoder, and feeds the feature embeddings to an LSTM de-
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coder. At each decision step, it computes the additive attention scores the current candidate actions
according to the the decoder’s hidden state, and the task with the highest attention score (i.e., the
pointer) is selected for the following scheduling, thereby this method constructs the entire task prior-
ity sequence incrementally. Such similar PtrNet-based scheduling method is adopted by Dong et al.
(2021) Zhao et al. (2022) Chen & Wang (2024) and Li et al. (2022) for DAG scheduling. In contrast,
Lee et al. (2020) Lee et al. (2021) Shi & Yu (2023) and Wang et al. (2023), follows the improved
PtrNet proposed by Deudon et al. (2018) and Kool et al. (2018). These works abandon calculat-
ing attention scores from LSTM decoder’s hidden state. Instead, they take the context embedding
of the current environment state and recent decisions to compute attention, partly addressing the
limitations of traditional LSTM-based PtrNet scheduler for graphed structure problems.

However, these PtrNet-based scheduling methods still suffer from limited capability of exploiting
the global topological structure of DAGs, high time complexity and inability to achieve one-shot
scheduling. As shown in Fig 1a, to construct a complete solution, PtrNet requires to repeatedly
calculate the decoder hidden states or the context embeddings according to the observed environ-
ment state and recent decisions, and further obtain the attention scores of the candidate decisions
according to these hidden states or embeddings. Consequently, their performance are often limited
by their reliance on local information from recent decisions, which fail to capture long-range de-
pendencies and the global topological structure inherent in the DAG. The repeated calculation of
decoder’s hidden states or context embeddings also leads to high computational complexity (Bello
et al., 2016).

In this paper, we propose GAA-PtrNet, a novel PtrNet based on graph attention aggregation (GAA)
for one-shot DAG scheduling, as shown in Fig 1b. GAA-PtrNet consists of a trainable network to
generate pair-wise node attention scores in one shot, and a scheduler that aggregates attention scores
to obtain sampling probabilities. In the network, a GNN encoder is employed to obtain DAG task
nodes’ embeddings, then the pair-wise attention scores between all task nodes are obtained by graph
attention mechanism. The attention scores are obtained through a one-shot forward propagation of
the network. In the scheduler, at each sequencing step the attention scores between the subgraph
formed by the scheduled tasks and each candidate task are aggregated to calculate the probability to
select candidate nodes. Furthermore, to train GAA-PtrNet, we design a training strategy based on
policy gradient RL with dense reward signal and demonstration learning. The key contributions of
this study are as follows:

(a) Existing PtrNet. (b) Our proposed GAA-PtrNet.

Figure 1: The illustrated comparison of existing PtrNet and our GAA-PtrNet in DAG scheduling.
vπ(1), vπ(2), ... represent the nodes scheduled at each steps.

1. We propose GAA-PtrNet, a novel PtrNet based on GAA for one-shot DAG scheduling. By
calculating the attention scores among the DAG tasks in a one-shot way, and further computing the
decision sampling probability through attention aggregation. GAA-PtrNet has strong capabilities to
deal with workflow’s topological structures with low time complexity. To the best of our knowledge,
this is the first network model to achieve PtrNet-based one-shot DAG scheduling.

2. We design a training strategy based on policy gradient RL with dense reward signal and demon-
stration learning To train GAA-PtrNet for DAG scheduling. Comprehensive experimental results
show that the proposed method is superior in terms of objective and runs about 10 times faster when
compared to previous PtrNet-based methods, and also performs better than other learning-based
DAG scheduling methods.
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2 PRELIMINARIES

2.1 DAG TASK MODEL

In a typical DAG scheduling problem G = (V,E,X), the node set V = {v1, v2, ..., v|V |} represents
the computation tasks. X = {x1, x2, ..., x|V |} is the attribution of each task node, primarily includ-
ing the computational workload ci, the output data size bi, etc. The directed edges E ⊆ V × V
denotes the precedence constraints among tasks. If (vi, vj) ∈ E, vj cannot start until vi is com-
pleted. For the convenience of calculation, a pseudo entrance task node will be created for the whole
DAG scheduling problem, with all the nodes without predecessor to be its successors. Each task vi is
associated with a processing time di. Some DAG systems require to consider the data transmission
time (zi) between processors. A task node can be ready and executed only after all its predecessors’
execution and transmission is finished.

2.2 DAG SCHEDULING

We consider list scheduling: when existing ready tasks and an idle processor, the ready task with the
highest priority is immediately selected and assigned to the processor. Determining the priority list
Solution(G) = [vπ(1), vπ(2), ..., vπ(|V |)] is the core of DAG scheduling, where π : {1, 2, ..., |V |} −→
{1, 2, ..., |V |}. Note that Solution(G) is not necessarily the actual execution order of G. Rather, it
is a topological order of G, while each valid Solution(G) does correspond to one valid execution
order. We regard each step in constructing this topological order as a decision point, while the
selectable nodes at each step are define as the current candidate nodes. The ultimate goal is to
generate a Solution(G) that optimizes the target, such as makespan.

2.3 POINTER NETWORK FOR DAG SCHEDULING.

The studies that use the foundational PtrNet by Bello et al. (2016) for DAG scheduling (Dong et al.
(2021) Zhao et al. (2022) Chen & Wang (2024) Li et al. (2022)) apply a LSTM decoder structure to
obtain the current states’ embeddings, as shown in equation 1, where h1, h2, ..., h|V | are the feature
vectors of each task node, h(z) is the encoder’s output, and h

(s)
t is the decoder’s hidden state at t.

They then calculate the attention scores (ut
i) among h

(s)
t and the task nodes in the candidate node

set S(t)
C by equation 2, where a, Wref and Wq are learnable matrices.

h(z) = LSTMEncoder(h1, h2, ..., h|V |), h
(s)
t = LSTMdecoder(h(s)

t−1, h
(z)) (1)

ut
i =

{
aT tanh(Wrefhi +Wqh

(s)
t ), i ∈ S

(t)
C

−∞, i /∈ S
(t)
C

(2)

As for those DAG scheduling studies following the PtrNet of Kool et al. (2018) (e.g., Lee et al.
(2020) Lee et al. (2021)), rather than using a LSTM-based structure, they construct a context em-
bedding h

(c)
t by concatenating the feature vectors of the task node that are chosen in recent decisions,

and the global feature vector of G. They then calculate the attention scores at t (ut
i) of the candi-

dates in S
(t)
C according to h

(c)
t by equation 3, where WQ, WK are learnable matrices and dim is the

embedding’s dimension.

ut
i =

{
(WQh

(c)
t )(WKhi)

T

√
dim

, i ∈ S
(t)
C

−∞, i /∈ S
(t)
C

(3)

After getting the attention scores (ut
i) of the nodes in S

(t)
C , these methods would apply a softmax

in order to obtain the probability of selecting each task node among S
(t)
C , as shown in equation 4,

where Cclip is the constant coefficient to clip the unnormalized log-probabilities.

P (vi|t) =
exp(Cclip · tanh(ut

i))∑
vj∈V exp(Cclip · tanh(ut

j)))
(4)
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3 PROPOSED METHOD

3.1 MOTIVATION

Traditional PtrNet-based DAG scheduling methods rely on repeatedly computing the decoder hidden
states or context embeddings according to the current observed environment state and the previous
decisions at every decision step, and calculating the candidate node attention scores in order to
obtain differentiable decision probabilities. Thus, these models tend to rely heavily on recent local
decisions, at the expense of capturing the DAG’s global structural properties. Furthermore, the
repeated computation causes high computational complexity.

We believe that these limitations can be addressed by leveraging the graph attention and its aggre-
gation. Considering that the principle of PtrNet lies in computing the candidate node’s attention
scores according to the current state (represented by the decoder hidden states or context embed-
dings), such attention can be obtained directly by aggregating the graph attention scores between
the already scheduled nodes and the candidate nodes. Compared with the method in the existing
PtrNets, graph attention is more effective in capturing the topological features of DAGs. Moreover,
the attention scores between graph nodes can be obtained with one shot forward propagation of the
network, which reduces the time complexity.

In this section, we propose GAA-PtrNet, a novel PtrNet based on GAA for one-shot DAG schedul-
ing. GAA-PtrNet consists of a trainable network to generate pair-wise node attention scores, and a
scheduler that aggregates attention scores to obtain sampling probabilities. In the network, we uti-
lize a GNN encoder to extract the DAG workflow to obtain node embeddings, then we utilize graph
attention mechanism to calculate pair-wise attention scores between all task nodes. The embeddings
and attention scores are obtained through a one-shot network forward propagation, which has low
time complexity. In the scheduler, at each sequencing step in scheduling, the sampling probabilities
of each candidate nodes is obtained through GAA between the scheduled tasks and each candidate
tasks. We also design a training strategy based on policy gradient RL with dense reward signal and
demonstration learning. The overview of the proposed method is illustrated in Fig 2.

Figure 2: The overall framework of GAA-PtrNet.

3.2 GRAPH ATTENTION SCORE CALCULATION AND AGGREGATION

Our proposed GAA-PtrNet consists 2 key components: (1) a network to calculate attention scores
in one-shot, and (2) a scheduler to calculate sampling probability through GAA.

We firstly demonstrate the method to obtain pair-wise node raw graph attention scores between task
nodes through the network. For each task vi, its attributions xi along with environment information
are concatenated in to a feature vector, as its raw feature. Then we utilize a bi-directional GNN to
extract the DAG’s structural information into embedded node features [h1, h2, ..., h|V |], as formu-
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Figure 3: The procedure to obtain sampling probabilities of candidates by GAA. Each term in the
raw attention score matrix indicates the attention from a task node (indexed by row) to another
(indexed by column). In the attention masks (on the left of the figure), the dark cells indicate the
scheduled or candidate nodes. These masks are applied to the raw attention score matrix to obtain
the masked attention matrix at t. A softmax operation is then performed over the masked attention
(equation 7), followed by a column-wise summation (equation 8), resulting in the aggregated nor-
malized attention from S

(t)
F to each in S

(t)
C , which is the probabilities of selecting each candidates.

lated in equation 5. Subsequently, we compute pair-wise node raw graph attention score from the H
and the edges E, yielding an attention matrix U (equation 6), where the attention between nodes vi
and vj is denoted by u<i,j>.

H = [h1, h2, ..., h|V |] = GNN(G) (5)

U = [u<i,j>] = GraphAttn(H,E) (6)

Then, the scheduler computes the decision probability at each step directly according to the graph
attention scores. The attention score α

(t)
<i,j> of attending S

(t)
F to each candidate task node vj ∈ S

(t)
C

is calculated by applying a softmax operation over the raw attention scores at the level of the full
sets between S

(t)
F and S

(t)
C , as shown in equation 7.

α
(t)
<i,j> =

exp(u<i,j>)∑
vk∈S

(t)
C ,vl∈S

(t)
F

exp(u<k,l>)
, vi ∈ S

(t)
F , vj ∈ S

(t)
C (7)

For each candidate node vj ∈ S
(t)
C , we aggregate its attention scores from S

(t)
F by summation, as

formulated in equation 8. This yields α
<S

(t)
F ,j>

, the attention from whole subgraph S
(t)
F to vj ,

which also corresponds to the probability P (vj |S(t)
F ) of selecting vj from S

(t)
C at time step t. This

probability is differentiable and will be further used in the loss function computation. According to
the probability distribution in equation 8, we would sample the node vπ(t) from S

(t)
C , as the decision

at t. This procedure is illustrated in Fig 3. Note that as established in Section 3, we have assumed
that each DAG workflow is augmented with a dummy entrance task node. Hence, at time step 0,
when no nodes have been scheduled yet (S(0)

F = ∅), attention aggregation is unnecessary. In this
occasion, the entry node is selected directly, with P (vπ(1)|S

(1)
F ) = 1.

P (vj |S(t)
F ) = α

<S
(t)
F ,j>

=
∑

vi∈S
(t)
F

α
(t)
<i,j> (8)

The softmax result α(t)
<i,j> in equation 7 can also be interpreted as the probability to select the node

pair < i, j > from all the node pairs between S
(t)
F and S

(t)
C . Then, by performing summation in

equation 8, we obtain the joint probability to select all node pairs containing vj ∈ S
(t)
C , which can

be interpreted as the probability to select vj from S
(t)
C .
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equation 7 regards that all raw attention scores are in a unified scale, but the queries for these atten-
tion scores are from different task nodes in S

(t)
F . This raises a potential concern: could differences in

the scale of the attention scores across different queries introduce bias in the probabilities computed
by equation 8. We believe this issue can be mitigated. In equation 15, the parameters a and W are
shared, and the node embeddings H are generated by the same GNN, ensuring that the resulting
attention scores lie within a comparable scale. However, since the attention scores are computed in
a query-wise manner (i.e., for each node individually), we recommend applying a normalization to
the attention scores originating from the same query node vi ∈ S

(t)
F before applying equation 7. As

for equation 14, it adopts a global self-attention, where all attention scores are computed within a
unified scale, and thus do not require additional normalization.

3.3 GAA-PTRNET-BASED DAG SCHEDULING PROCESS AND TIME COMPLEXITY ANALYSIS.

The scheduling procedure is demonstrated in Algorithm 1 in Appendix A. Given the scheduling
problem G, the network firstly calculates H , then the scheduler updates S(t)

C and S
(t)
F step by step,

and repeatedly aggregates attention to obtain the sampling probabilities over S(t)
C . At each step, a

vπ(t) is sampled accordingly, finally obtaining the whole priority list Solution(G). An example
about the procedure for GAA-PtrNet to schedule a DAG is also illustrated in Appendix B.

We analyze the time complexity for GAA-PtrNet to schedule G = {V,E,X}. Assume the em-
bedding dimension in the network is dim, and the average size of S

(t)
F and S

(t)
C to be |SF | and

|SC |. An L-level GNN requires O(L(|V | × dim2 + |E| × dim)) to generate node embeddings
(take graph convolution network for example). Since different PtrNet-based scheduling methods
may use similar GNN encoder, we mainly compare the time to make a complete schedule when
the embeddings are already obtained. It takes O(|E| × dim + |V | × dim2) for equation 15 or
O(|V |2 + |V | × |E| + |V |2 × dim + |V | × dim2) for equation 14 to compute the raw attention
scores. At each timestep, it takes O(|SF | × |SC |) to conduct softmax, and probability calculation is
conducted with with O(|SF |+|SC |) (upper bounded by O(|V |)). As a brief summary, the time com-
plexity for GAA-PtrNet to make a schedule is O(|E| × dim+ |V | × dim2 + |V | × (|SF | × |SC |))
or O(|V |2 × dim + |V | × dim2 + |V |(|V | + |SF | × |SC |)), which are both upper bounded by
O(|V |2 × dim+ |V | × dim2 + |V |3).

Table 1: Time complexity of GAA-PtrNet and existing PtrNet when scheduling DAGs.

Method Scheduling Upper bound of scheduling

GAA-PtrNet O(|E| × dim+ |V | × dim2 + |V |(|SF | × |SC |)) O(|V |2 × dim+ |V | × dim2 + |V |3)
PtrNet-LSTM O(|V |2 × dim2 + |V | × |SC | × dim2 + |V | × |SC |) O(|V |2 × dim2)

PtrNet-CE O(|V | × |SC |
2
× dim+ |V | × |SC | × dim2) O(|V |2 × dim2 + |V |3 × dim)

We denote the existing PtrNet base on LSTM structure and additive attention as PtrNet-LSTM, and
the PtrNet structure with context embedding (CE) and dot-product attention as PtrNet-CE. Given
the node embeddings, PtrNet-LSTM spends O(|V |(dim2 + |SC | × dim2)) to generate a complete
solution, in which O(|V | × dim2) is the time for the LSTM cell in one step, and O(|SC | × dim2) is
additive attention. So the overall time complexity for PtrNet-LSTM is O(|V |2 × dim2 + |V ||Sc| ×
dim2+ |V |×|SC |) upper bounded by O(|V |2×dim2). Similarly, PtrNet-CE has a O(|V |×|SC |2×
dim + |V ||SC | × dim2) time complexity, which is upper bounded by O(|V |2 × dim2 + |V |3 ×
dim), which is much higher than our proposed GAA-PtrNet. Moreover, in our method, the per-
step computational complexity within the iterative scheduling loop is independent of the network
dimension dim, as it involves only attention operations. Therefore, the advantage of our approach
becomes more pronounced as the number of nodes in the DAG workflow increases. We intuitively
compare the scheduling time complexity of GAA-PtrNet and existing PtrNet in Table 1.

3.4 TRAINING STRATEGY WITH POLICY GRADIENT RL

We use policy gradient to train our model. Solution(G) and the corresponding differentiable deci-
sion probabilities obtained by GAA-PtrNet can form a complete sampling trajectory of RL. Instead

6
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of using the a single final makespan value (C(Solution(G))) of Solution(G) as the reward of this
whole sampling trajectory, we introduce dense returns of each individual node-level selection deci-
sion as the dense reward signal, in order to guide the optimization of each node-level decision. It is
based on the distance of each node’s contribution in the objective to the final objective. The return
R(t) at time step t can be estimated by equation 9, where C(vπ(t)) indicates the latest completion
time among all scheduled nodes when vπ(t) is finished. The value of C(vπ(t)) can be obtained
during the simulation procedure when computing Solution(G).

R(t) = C(Solution(G))− C(vπ(t)) (9)

We further consider introducing advantage baseline on R(t), in order to stabilize the training. The
advantage baseline is computed by a heuristic algorithm. Specifically, before training on the work-
flow instance G, we schedule G by using the heuristic baseline, and record the objective cost value
upon the completion of each node vπ(t), denoted as Cheur(vπ(t)). Based on this, we can define the
advantage function A(t) as shown in equation 10. A(t) can be further normalized batch-wise into
Anormalized

(t) when there are multiple workflow instances G = G1, G2, ..., GB in training. In this way,
the policy gradient loss function can be modified into equation 11, where B is the batch size, and θ
represents all the parameters in the trainable neural network.

A(t) = R(t) − baseline = Cheur(vπ(t))− C(vπ(t)) (10)

∇θJ(θ) =
1

B

1

|Vm|

B∑
j=1

|Vm|∑
t=1

∇θlog P (vπ(t)|S
(t)
F ) ·Anormalized

m,(t) (11)

Demonstration learning is applied to initialize the training process, because the trajectories are sam-
pled in a Monte Carlo way: it is generated in one-shot, and no greedy rule is applied in sampling.
So, there might be blind exploration at the beginning of the training. We utilize genetic algorithm
to generate demonstration solutions to the scheduling problem instances at first, obtaining some
suboptimal solutions in the form of task execution orders. These solutions are converted to RL sam-
pling trajectories and the network would be trained on these trajectories for several episodes. This
can prevent the network from conducting inefficient exploration at the beginning of training. For
detailed description and interpretability analysis of the training strategy, please check Appendix G.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

In this section, we report experimental results to evaluate the contributions of our proposed method,
and the performance of our method compared with existing method. The training and simulation
of the experiments are conducted on a computer with Ubuntu 20.04 OS, Intel 6226R CPU, 256GB
RAM, and RTX 3090 (24GB) graphic card. The experiments are conducted using Python 3.9 as
the programming language. The neural network model is implemented based on PyTorch 2.7 and
torch-geometric 2.6. Details about the implementation of experiments are presented in Appendix E.

In order to thoroughly evaluate the adaptability and robustness of our proposed method across dif-
ferent scenarios, we introduce the following benchmarks in our experiments: TPC-H represents the
real-world DAG workflow scheduling scenario under homogeneous processor environment. Here,
we use the TPC-H benchmark generated by Wang et al. (2021). Pegasus is a real-world scien-
tific workflow scheduling tracing dataset with heterogeneous multiprocessor environment (Deel-
man et al., 2015). Randomly generated DAG workflows, TPC-H and Pegasus. In the ran-
domly generated DAG workflows, we generate DAG scheduling problems with varying shapes,
sizes, and task node attributes by tuning the parameters, following the DAG generation paradigm of
Topcuoglu et al. (2002). These parameters include graph shape parameter (β1), task node hetero-
geneity (β2), Computation-to-Communication Ratio (CCR) and average number of tasks in each
sub-DAG. Please check Appendix D for more details about these benchmarks.
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The target mainly includes average makespan of the DAG workflows. Also, speedup and relative
gap are applied to evaluate the performance. Speedup indicates how many times the generated
solution is faster in makespan to the case when all tasks are executed only on the fastest processor.
Relative gap indicates the gap in makespan relative to the heuristic baseline. Besides, we test the
runtime to infer a solution, in order to evaluate the time complexity of our method in practice.

4.2 RESULTS AND DISCUSSION

4.2.1 ABLATION STUDY ABOUT GAA-PTRNET

We compare the performance of GAA-PtrNet on DAG scheduling to PtrNet-LSTM and PtrNet-
CE. We also evaluate the influence of different attention mechanism used in GAA-PtrNet: the GAA-
PtrNet implemented by self-product attention with position encoding (Ying et al., 2021), donated as
GAA-PtrNet-SA , and the implementation based on classic graph attention network (Brody et al.,
2021), donated as GAA-PtrNet-GAT. Note that these are originally for graph representation pro-
pose, not for scheduling, modifications are necessary, please check Appendix E.1 for more details.

As presented in Table 3 and Table 2, and the additional results in Appendix F, both GAA-PtrNet-SA
and GAA-PtrNet-GAT outperform PtrNet-CE and PtrNet-LSTM in different evaluation matrices
on diverse benchmarks. In most cases, the performance difference between GAA-PtrNet-SA and
GAA-PtrNet-GAT is minor. This shows that the key factor behind the performance improvement
is our proposed GAA, rather than which graph attention computation method is selected.

We evaluated the average runtime of the model, i.e., the time required to infer a solution for a DAG
scheduling instance (Table 4). As predicted by the time complexity analysis, the one-shot scheduling
by GAA-PtrNet exhibits substantially better runtime performance than PtrNet-LSTM and PtrNet-
CE. Our method averagely runs 10 time faster. We further observed that problem size |V | is the
dominant factor influencing runtime, while the choice of graph attention computation method has
minor effect. We present only representative results on Pegasus in Table 4, since we found that the
runtime difference on different benchmarks is also minor. This shows that the runtime of GAA-
PrtNet is less sensitive to the DAG topology: although the number of edges |E| also affects the
complexity in the theoretical analysis, the main factor remains |V |. We believe this is because
GAA-PrtNet must explicitly invoke |V | times of loops to produce a complete solution, which is
the most time-consuming operation. Moreover, it can be observed that the actual runtime of our
GAA-PtrNet-based one-shot scheduling method increases relatively slowly with the growth of the
scheduling problem size, unlike existing PtrNet models whose runtime scales linearly with problem
size. We attribute this to the fact that conventional PtrNets repeatedly compute hidden states (or
context embeddings) and attention at every scheduling decision, which accounts for the majority of
the runtime, whereas our method avoids this overhead.

4.2.2 COMPARISON WITH BASELINE METHODS

Our approach is compared against these baselines: (1) The heuristic algorithms used as advantage
baselines in our method; (2) Jeon et al. (2023), a state-of-the-art RL-based one-shot DAG scheduling
method; (3) EGS (Sun et al., 2024), a DAG scheduling approach based on edge generation; (4)
POMO-DAG, our adapted implementation of the POMO (Kwon et al., 2020) for DAG scheduling.
Check Appendix E.3 for more details about the implementation of these baseline methods.

The results of comparison experiments are presented in Table 3, Table 2 and Appendix F. Our
method outperforms the RL-based one-shot DAG scheduling method proposed by Jeon et al. (2023).
We argue that this is because their method relies on the Plackett–Luce ranking model to generate a
priority list of DAG nodes, which is highly sensitive to the numerical distribution of the assigned
logits (i.e., priority values). This results in less stability in training and may require extensive hy-
perparameter tuning. On the contrary, our method does not need to conduct such ranking model.
Since Jeon et al. (2023) is a one-shot scheduling algorithm, we also compared the runtime of their
method with ours in Table 4. The results show that our method is not slower; on the contrary, it is
even faster on problems of scale 400. When compared with POMO-DAG, our method consistently
yields better results. Compared to EGS, our method achieves similar or even better solution quality.
We attribute this to that the search space in EGS is significantly larger. In contrast, our search space
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is constrained to the candidate node set. In summary, our method demonstrates advantages over
existing learning-based DAG scheduling methods across different DAG scheduling scenarios.

Table 2: Experimental results on TPC-H benchmark, with 3 different problem instance sizes (50,
100 and 150 sub-DAGs, with each sub-DAG containing averagely 9.17 task nodes)

Method TPC-H 50 TPC-H 100 TPC-H 150

makespan gap/% speed up makespan gap/% speed up makespan gap/% speed up

GAA-PtrNet-SA 21.37 -14.42 5.25 39.59 -7.54 5.37 67.08 -3.84 4.81
GAA-PtrNet-GAT 21.33 -14.58 5.26 42.18 -1.49 5.04 67.81 -2.79 4.96

PtrNet-LSTM 26.10 4.53 4.30 44.94 4.95 4.73 73.20 4.93 4.41
PtrNet-CE 26.19 4.88 4.28 44.18 3.18 4.81 72.84 4.42 4.43

STF (heuristic baseline) 24.97 - 4.49 42.85 - 4.96 69.76 - 4.63
Jeon et al. (2023) 23.73 -4.95 4.73 41.22 -3.81 5.15 74.02 6.11 4.35
POMO-DAG 46.90 87.8 2.39 90.30 110.74 2.35 141.90 103.43 2.27
EGS 24.58 -1.55 4.56 42.18 -1.56 5.04 68.99 -1.10 4.68

Table 3: Experimental results on SIPHT dataset in Pegasus, with 4 different problem instance sizes
(averagely 100, 200, 300, and 400 task nodes).

Method SIPHT-100 SIPHT-200 SIPHT-300 SIPHT-400

makespan gap/% speed up makespan gap/% speed up makespan gap/% speed up makespan gap/% speed up

GAA-PtrNet-SA 191.1 -15.81 2.43 340.3 -4.891 2.45 542.1 -0.20 2.51 708.5 -0.88 2.51
GAA-PtrNet-GAT 191.7 -15.55 2.42 338.8 -3.41 2.51 542.7 -0.05 2.50 708.3 -0.91 2.51

PtrNet-LSTM 205.0 -9.69 2.27 352.8 -1.40 2.41 552.2 1.69 2.46 717.5 0.38 2.48
PtrNet-CE 207.5 -8.59 2.24 354.8 -0.84 2.40 557.0 2.58 2.44 719.6 0.67 2.476

HEFT (heuristic baseline) 227.0 - 2.05 357.8 - 2.38 543.0 - 2.51 714.8 - 2.49
Jeon et al. (2023) 218.5 -3.74 2.23 352.2 -1.57 2.42 550.6 1.40 2.47 712.7 -0.29 2.50
POMO-DAG 214.0 -5.74 2.17 367.5 2.72 2.31 575.8 6.05 2.36 741.9 3.80 2.40
EGS 200.6 -11.63 2.32 346.3 -3.21 2.46 542.8 -0.04 2.51 710.2 -0.42 2.51

Table 4: Runtime comparison on Pegasus. We tested DAGs of various scales and, for each scale,
compared results across different benchmarks. Each value in the table denotes the runtime (in sec-
onds).

Method size = 100 size = 200 size = 300 size = 400

SIPHT LIGO GENOME SIPHT LIGO GENOME SIPHT LIGO GENOME SIPHT LIGO GENOME

GAA-PtrNet-SA 0.126 0.129 0.130 0.219 0.226 0.225 0.292 0.300 0.299 0.347 0.356 0.354
GAA-PtrNet-GAT 0.136 0.128 0.129 0.228 0.226 0.223 0.301 0.297 0.298 0.355 0.357 0.356

PtrNet-LSTM 1.343 1.389 1.387 2.645 2.718 2.710 3.921 4.054 4.015 5.202 5.391 3.994
PtrNet-CE 1.064 1.097 1.097 2.081 2.138 2.130 3.086 3.188 3.159 4.108 4.231 3.156

Jeon et al. (2023) 0.07 0.08 0.08 0.15 0.16 0.15 0.26 0.26 0.27 0.43 0.43 0.46

5 CONCLUSION

In this paper, we propose a novel PtrNet based on GAA for one-shot DAG scheduling. By calculat-
ing the graph attention scores in a one-shot way and obtaining the task node sampling probability
through GAA, GAA-PtrNet achieves one-shot DAG scheduling. It can handle with DAG work-
flows’ complex topological structure with low time complexity. We also propose a RL-based policy
gradient training strategy for GAA-PtrNet. We conducted comparative and ablation experiments on
various DAG scheduling scenarios, demonstrating the superiority of our method in terms of solution
quality and runtime. This suggest that our method have potential for further extension and opti-
mization in large-scale or real-time DAG workflow environments. This is the first network model to
achieve PtrNet-based one-shot DAG scheduling. As future work, we will expand this foundational
study to more specific high performance computation applications by considering more domain
knowledge and multiple optimization objectives.
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the benchmark sources in Appendix D, and present the implementation details in Appendix E.
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A THE ALGORITHM OF ONE-SHOT DAG SCHEDULING BY GAA-PTRNET

Algorithm 1 Scheduling a DAG workflow instance by GAA-PtrNet

Input: Workflow instance G = (V,E, I)
Output: Task node priority list [vπ(1), vπ(2), ..., vπ(|V ])]

1: Calculate the node embeddings H by equation 5
2: Calculate the raw attention scores {u<i,j>} by equation 15 or equation 14 on Greserved.
3: Set the time step t = 1, the priority list O = [ ], the scheduled set S(t)

F = ∅
4: while t ≤ |V | do
5: Collet the current candidate task node set S(t)

C

6: Softmax the raw attention scores over S(t)
C and S

(t)
F by equation 7

7: Calculate the probability to select each node in S
(t)
C by equation 8

8: Sample vπ(t) based on the probabilities. Append vπ(t) to O and insert it to S
(t)
F

9: Assign vπ(t) to a processor according to the EFT principle.
10: end while

B A ILLUSTRATIVE EXAMPLE OF ONE-SHOT DAG SCHEDULING BY
GAA-PTRNET

Figure 4: An example of scheduling a DAG with 5 task nodes by GAA-PtrNet

Fig 4 shows an example of scheduling a DAG with 5 task nodes by GAA-PtrNet. In Fig 4, at the
beginning, the pseudo entry node v1 is processed in advance. At timestep 2, the scheduled node
subset is S

(2)
F = v1, and the candidate subset is S

(2)
C = v2, v3. Through GAA, we obtain the

probability to sample v2 and v3, and the node that the scheduler eventually sample is v3. Next, at
timestep 3, the scheduled node subset is S

(3)
F = v1, v3, and the candidate subset is S

(2)
C = v2, v4.

Assume v4 is sampled. Then, similarly, the scheduler samples v2 at timestep 4, and v5 at timestep
5. The final priority list is Solution(G) = [v1, v3, v4, v2, v5].
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C RELATED WORKS

C.1 RL FOR DAG SCHEDULING

While most existing studies on DAG workflow scheduling in cloud computing and cluster com-
puting area still rely on heuristic (Topcuoglu et al., 2002) (Djigal et al., 2021) or meta-heuristic
algorithms (Xie et al., 2021) (Qin et al., 2023), learning-based approaches are gradually becoming
the mainstream. Yang et al. (2019) was the first to introduce model-based reinforcement learning
in the distributed and cloud-based system to schedule scientific workflow. Mao et al. (2019) first
proposed to introduce GNN into RL model in order to extract structural features of the workflow in-
stances to make better decisions. But it cannot handle heterogeneous computing resources and large
scale workflows. A GNN encoder to extract workflows’ structural information, and a policy net-
work to output scheduling decisions, have been the common network architecture in the RL-based
workflow scheduling studies(Zhou et al., 2022) (Song et al., 2023) (Qi et al., 2024). Most of the ex-
isting studies followed the Markov Decision Process (MDP) to select a candidate task node at each
step, constructing the whole solution incrementally (Yu et al., 2023) (Dong et al., 2023) . Jeon et al.
(2023) argued that such methods require to re-encode the entire graph instance in each step, leading
to excessive computation, so they attempted to learn to output the node logits as their global fixed
priorities for all nodes in a one-shot manner. But its training stability was highly sensitive to the dis-
tribution of the logits. Wang et al. (2021) and Sun et al. (2024) attempted to learn to prioritize task
nodes indirectly by modifying the DAG’s topological structure, rather than directly generating task
priority lists. But these approaches often suffered from an excessively large search space. A com-
mon challenge for RL-based workflow scheduling approaches is sparse reward in training: the agent
can obtain an accurate feed back on its decision only after the whole workflow instance is scheduled,
so that the model has to be optimized with a limited amount of global reward signal. Some works
Chen et al. (2023) Wang et al. (2025) Nasuta et al. (2024) tried to overcome this challenge, but they
were limited in specific application domains, rather than providing general solutions.

C.2 RL COMBINED WITH PTRNET FOR DAG SCHEDULING

Just like other COP, workflow scheduling in high performance computing environment involves
reordering the components (i.e., task , resource, or meta-heuristics rules) of the given problem in-
stance. Under this background, PtrNet, as a sequence learning method, have shown its distinct
advantages. PtrNet was initially proposed to handle sequence-to-sequence learning tasks in natural
language processing area (Vinyals et al., 2015). Bello et al. (2016) firstly proposed to utilize Ptr-
Net to solve routing problems, and Ma et al. (2019) introduced GNN to PtrNet as the encoder to
better encode the graph-structured problem instance. Their basic idea was followed by many DAG
workflow scheduling studies Dong et al. (2021) Zhao et al. (2022) Chen & Wang (2024) Li et al.
(2022). To address the limitations of LSTM-based PtrNet in handling non-sequential structures,
Deudon et al. (2018) modified the method of Bello et al. (2016) by computing the attention of con-
text embedding, instead of the LSTM decoder’s hidden state, to the candidate actions. In order to
improve the computation parallelization and scaling potential, Kool et al. (2018) further modified
the attention calculation in in PtrNet-based COP solver with dot-product attention (Vaswani et al.,
2017), instead of the traditional additive attention mechanism (Bahdanau et al., 2014). Their method
are followed by many recent task scheduling studies Lee et al. (2020) Lee et al. (2021) (Shi & Yu,
2023) (Wang et al., 2023). But in general, these methods suffer from high computational complex-
ity and are often limited to capturing local information within the graph. Moreover, the potential of
GNN-based graph attention mechanisms (Veličković et al., 2017) (Ying et al., 2021) (Brody et al.,
2021) for pointer networks has not been fully explored.

D MORE INFORMATION ABOUT THE BENCHMARKS

D.1 RANDOMLY GENERATED DAG WORKFLOWS

To evaluate the performance of our method in scheduling multiple workflow instances, we generate a
set of random DAG workflows as test cases. We adopt it as the benchmark for testing DAG workflow
scheduling algorithm under the simulated heterogeneous multiprocessor setting. Under such setting,
the attributes of task node vi include the computational workload ci and the output data size bi . For
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each processor m, the key attribute is its computational capacity fm. Assuming that task node vi
is assigned to processor m, the processing time di (as described in section 2) can be calculated as
Equation equation 12.

di =
ci
fm

(12)

Besides, heterogeneous multiprocessor environment requires to consider the transmission time zi
between processors: a task node cannot begin execution until all of its predecessor nodes have
completed both their computation, and the transmission of their output data to the processor on
which it is scheduled. Specifically, if a task node vi and its successor vj are assigned to different
processors, then a transmission time is related to the output data size of vi and the bandwidth of
computing environment. If both vi and vj are assigned to the same processor, the transmission time
is considered negligible. This definition of zi is formalized in Equation equation 13.

zi =

{
bi

bandwidth , if vi and vj are on different processors
0, if vi and vj are on the same processor

(13)

Following Topcuoglu et al. (2002), the randomly generation process considers the following key
parameters: (1) Graph shape parameter (β1): this parameter characterizes the depth of the DAG.
(2) Task node heterogeneity (β2) : this captures the diversity in computational workloads ci and
data sizes bi among different task nodes. (3) Computation-to-Communication Ratio (CCR):
defined as the ratio between the average task processing time and the average data transmission
time. (4) Average number of tasks in each sub-DAG in the whole DAG scheduling problem.

By tuning these parameters, we construct a diverse set of DAG workflows with varying struc-
tures and heterogeneity levels, simulating real-world heterogeneous environments in the parallel
computing area. In the experimental setup, we vary one parameter at a time while fixing the
remaining parameters to randomly assigned constant values. For each configuration, we gen-
erate multiple scheduling problem instances to examine how the method’s performance changes
with respect to the chosen parameter. Specifically, the parameter β1 is tested with a range of
β1 = {0.1, 1.0, 1.5}. For β2, it’s tested with a range of β2 = {1.0, 1.5}. CCR is in a range of
CCR = {0.1, 0.5, 1.0, 2.0, 5.0, 10.0}. |V | is tested in a range of |V | = {10, 20, 30}. Each schedul-
ing problem instance contains 20 independent sub-DAGs.

Our proposed method outputs only the execution order of the nodes, while the assignment of each
node to a processor is determined using the Earliest Finish Time (EFT)-greedy rule. Specifically,
for a given node to be scheduled, which is determined by the RL network, the EFT-greedy rule dis-
patches it to the processor that results in the earliest possible finish time. We adopt HEFT (Topcuoglu
et al., 2002) as the advantage baseline for dense reward signal under this setting. HEFT is a classic
list-based heuristic algorithm for DAG scheduling on heterogeneous processors. It computes the
priority (rank-up) of each node based on the average finish time of its successor nodes, and then
assigns each node to a processor using the EFT-greedy rule.

D.2 TPC-H

We adopt TPC-H as the benchmark for DAG workflow scheduling under the homogeneous single-
processor setting. Since it’s a homogeneous processor scenario, there is no need to dispatch tasks to
specific processors in such setting. Each task node vi has a fixed processing time di and computation
resource requirement qi. The total resource consumption of concurrently running tasks must not
exceed the system’s maximum resource capacity. We use the open source code 1 implemented by
Wang et al. (2021) to generate TPC-H instances. Shortest Time First (STF) heuristic is adopted as
the advantage baseline for TPC-H in our research. At each decision point, the STF rule selects the
task with the shortest processing time.

1https://github.com/Thinklab-SJTU/PPO-BiHyb/tree/main/dag_data/tpch
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D.3 PEGASUS

Pegasus (Deelman et al., 2015) 2 provides an open-source workflow trace data generated from vari-
ous scientific computing applications. We adopt LIGO, SIPHT and Genome data in Pegasus dataset
as the benchmark for DAG workflow scheduling under the real-world heterogeneous multiprocessor
setting. Since it’s also a heterogeneous multiprocessor environment, similar with the randomly gen-
erated workflows, the task processing time is calculated by equation 12 and transmission time should
be considered calculated by equation 13. EFT-greedy rule is utilized to dispatch the scheduled task
nodes to the processors. HEFT is used as the advantage baseline for the dense reward signal.

E IMPLEMENTATION DETAILS

E.1 IMPLEMENTATION ABOUT THE GRAPH ATTENTION FOR SCHEDULING

We compare GAA-PtrNet with 2 different graph attention calculation methods: the GAA-PtrNet
implemented by self-product attention with position encoding in equation 14 (Brody et al., 2021)
, and the implementation by classic graph attention in equation 15 (Ying et al., 2021), where a,
W , WQ and WK are learnable weight matrices, and dim is the embedding dimensionality. equa-
tion 14 applies self-attention over all node pairs at the graph level, and incorporates a learnable bias
term bϕ(vi,vj) to encode the shortest-path distance ϕ(vi, vj) between nodes. equation 15 computes
attention only between adjacent nodes, and we mask out non-adjacent pairs.

u<i,j> = [
(HWQ)(HWK)T√

dim
]<i,j> + bϕ(vi,vj) (14)

u<i,j> =

{
aTW [hi||hj ] , (vj , vi) ∈ E

−∞ , (vj , vi) /∈ E
(15)

It is important to note that in the original formulation of Brody et al. (2021), a LeakyReLU layer is
applied to u<i,j>, because it is then used to compute weights for the following feature aggregation.
However, in our method, since we directly use the raw attention scores to compute softmax proba-
bilities, we omit the activation layer in equation 15. This modification ensures that the softmax is
directly conducted on the raw attention logits, and the results are more interpretable as probability.

Moreover, in the original paper of Brody et al. (2021) and Ying et al. (2021), the attention follows
the direction of edges in the graph. But in GAA-PtrNet, the attention scores is employed to compute
the sampling probabilities. Therefore, to compute the attention from the scheduled node set to the
unscheduled nodes, the edge directions must be reversed. As a result, we apply these attention
module to the reversed DAG, Greserved.

E.2 NEURAL NETWORK AND HYPER PARAMETER SETTINGS

In the trainable neural network of GAA-PtrNet, as well as the implementation of PtrNet-LSTM
and PtrNet-CE in ablation study, we use a Graphormer(Ying et al., 2021) GNN 3 (which is re-
leased under the MIT license) with 4 layers and 4 attention heads, obtaining node embeddings
[h1, h2, ..., h|V |]. It processes both the input DAG and its reversed graph simultaneously and out-
puts 32-dimension node embeddings for each task nodes. In our proposed method and the ablation
study, each attention mechanism used to output the raw attention scores for GAA is restricted to a
single head, and the dimension of its learnable matrices is 32, in order to keep consistent with the
dimension of the node embeddings. We train each benchmark for at most 5000 epochs, although it
actually converged much earlier than this epoch. The batch size is set to be 16. The Adam optimizer
is employed with learning rate 5× 10−4.

2https://pegasus.isi.edu/workflow_gallery/
3https://github.com/microsoft/Graphormer
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E.3 BASELINE IMPLEMENTATION

Jeon et al. (2023). The original authors didn’t release their source code, the idea described in their
paper is sufficiently clear and straightforward for us to reproduce.

POMO-DAG. We build POMO-DAG upon the POMO 4 proposed by Kwon et al. (2020), adapting
its problem instance encoder to a Graphormer-based GNN (Ying et al., 2021) so that it can process
DAG scheduling problems.

EGS. For EGS (Sun et al., 2024), the basic framework of the original code is publicly available5.
We retained the original structure and implemented the missing policy network and training proce-
dure that were not released.

E.4 SIMULATION AND EVALUATION ENVIRONMENT

To evaluate the generated scheduling solutions and obtain both the overall optimization objective and
node-level dense reward signals, we implemented a DAG workflow simulation environment based
on the open-source SimPy 6 platform in Python language. This simulator is further wrapped into
an OpenAI Gym7 environment to integrate with reinforcement learning frameworks. It is capable
to simulate all three aforementioned benchmarks, and can be extended to support other scheduling
scenarios if necessary.

F ADDITIONAL EXPERIMENTAL RESULTS

F.1 ADDITIONAL RESULTS ON PEGASUS BENCHMARK

Table 5: Experimental results on LIGO, Pegasus benchmark, with 4 different problem instance sizes
(averagely 100, 200, 300, and 400 task nodes).

Method LIGO-100 LIGO-200 LIGO-300 LIGO-400

makespan gap/% speed up makespan gap/% speed up makespan gap/% speed up makespan gap/% speed up

GAA-PtrNet-SA 211.0 -2.98 2.49 460.7 -0.48 2.49 666.9 -0.51 2.50 956.9 -0.25 2.50
GAA-PtrNet-GAT 211.8 -2.62 2.48 460.6 -0.50 2.50 666.1 -0.63 2.51 956.6 -0.28 2.50

PtrNet-LSTM 216.0 -0.70 2.44 466.6 0.81 2.47 670.7 0.06 2.49 960.9 0.17 2.49
PtrNet-CE 216.4 -0.51 2.23 467.1 0.89 2.47 671.0 0.10 2.49 961.3 0.21 2.49

HEFT (heuristic baseline) 217.5 - 2.42 462.9 - 2.49 670.3 - 2.49 959.3 - 2.49
Jeon et al. (2023) 217.0 -0.23 2.42 465.1 0.47 2.48 670.8 0.07 2.49 962.8 0.36 2.49
POMO-DAG 216.7 -0.37 2.43 473.8 2.35 2.43 675.3 0.75 2.47 969.1 1.02 2.47
EGS 214.2 -1.52 2.46 462.5 -0.09 2.49 669.9 -0.06 2.49 956.9 -0.25 2.50

Table 6: Experimental results on GENOME, Pegasus benchmark, with 4 different problem instance
sizes (averagely 100, 200, 300, and 400 task nodes).

Method GENOME-100 GENOME-200 GENOME-300 GENOME-400

makespan gap/% speed up makespan gap/% speed up makespan gap/% speed up makespan gap/% speed up

GAA-PtrNet-SA 2435.5 -4.61 2.44 2351.2 -0.94 2.46 4723.3 -0.60 2.48 3451.1 -0.06 2.48
GAA-PtrNet-GAT 2438.4 -4.49 2.44 2348.1 -1.07 2.47 4721.4 -0.64 2.48 3473.5 0.559 2.47

PtrNet-LSTM 2497.4 -2.18 2.38 2386.9 0.57 2.43 4788.4 0.77 2.45 3505.5 1.51 2.44
PtrNet-CE 2493.9 -2.32 2.38 2386.2 -0.54 2.44 4796.1 0.93 2.44 3500.6 1.39 2.45

HEFT (heuristic baseline) 2553.1 - 2.33 2373.4 - 2.44 4751.9 - 2.46 3453.2 - 2.48
Jeon et al. (2023) 2511.4 -1.63 2.37 2369.9 -0.15 2.48 4755.3 0.07 2.46 3483.2 0.87 2.46
POMO-DAG 2472.0 -3.18 2.41 2367.2 -0.26 2.45 4783.2 0.66 2.45 3527.6 2.16 2.43
EGS 2475.6 -3.04 2.40 2356.2 -0.72 2.46 4730.0 -0.46 2.48 3453.0 -0.01 2.48

4https://github.com/yd-kwon/POMO
5https://github.com/binqi-sun/egs
6https://simpy.readthedocs.io/en/
7https://github.com/openai/gym
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F.2 ADDITIONAL RESULTS ON RANDOM GENERATED DAG WORKFLOWS

On the randomly generated DAG workflows, the performance differences between methods become
more pronounced. Therefore, we present the results using bar charts. In each chart in Table 5, 6, 7
and 8, we show the outcomes when varying a single DAG generation parameter. The x-axis denoting
the parameter values and each bar representing a different method. Since the makespan varies greatly
across different parameter settings, the y-axis reports the speedup instead of the makespan.

It can be noticed that, although the difference is minor in most cases, in some special cases of
randomly generated DAGs, the GAA-PtrNet-SA-based scheduling method obviously outperforms
GAA-PtrNet-GAT. We attribute this to its attention computation mechanism (originally proposed
by (Ying et al., 2021)), which does not limit attention to adjacent edges but instead leverages self-
attention combined with positional encoding to globally compute attention among all nodes in the
scheduling problem. This enables the model to capture dependencies even between nodes belonging
to disjoint sub-DAGs, thereby enhancing its performance in such cases.

Figure 5: The results when adjusting parameter β1.

Figure 6: The results when adjusting parameter β2.

Figure 7: The results when adjusting parameter CCR.
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Figure 8: The results when adjusting the number of nodes in each sub-DAG.

Figure 9: The curves of the makespan values evaluated on SIPHT-100 (the upper figure) and SIPHT-
200 (the lower figure) during training of GAA-PtrNet, with and without dense reward signals.

G DESCRIPTION AND ANALYSIS OF THE DENSE REWARD SIGNAL

The node-level reward signal for each scheduled node is computed based on its distance to the final
cost. Specifically:

1. Given a DAG scheduling problem G, we conduct the heuristic advantage baseline algorithm on
G, obtaining each task node’s individual baseline cost Cheur(vπ(t)).

2. For a sampled solution Solution(G), we simulate it using a SimPy-based simulator. and obtain
the overall makespan C(Solution(G)) in practice. For each task node vπ(t), we obtain its individual
cost C(vπ(t)) (e.g., its finish time) through simulation.

3. We obtain the return-like dense reward signal Rt of each task node vπ(t) by comparing the global
objective C(Solution(G)) with individual cost C(vπ(t)), according to Equation equation 9.

4. To derive the advantage-like feedback At, we further substract each baseline from Rt, according
to Equation equation 10.
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Figure 9 shows the curves of the makespan values evaluated on SIPHT-100 and SIPHT-200 during
training of GAA-PtrNet, with and without dense reward signals, as a function of training epochs.
It can be observed that introducing dense reward signals does not affect the quality of the final
convergence, but instead leads to faster and more stable convergence.

We found that the selection of advantage baseline used in the dense reward is minor. This is because
the heuristic algorithm provide constant estimates for each DAG scheduling problem instance, en-
suring the advantage estimation is unbiased. Additionally, these heuristics are near-optimal in many
cases, leading to similar schedules. As a result, the variance reduction benefit is preserved, while
introducing little bias.

By introducing the dense reward signal, our method improves the interpretability of one-shot
scheduling approaches to some extent. Specifically, the nodewise decisions, sampling probabili-
ties and dense reward signals can be regarded as an entire MDP sampling trajectory in RL (like a
trajectory by Monte Carlo sampling). This makes the interpretability of one-shot learning closer to
MDP-based incremental approaches than those one-shot methods with sparse rewards.

As for the demonstration learning, it serves as the approach for the initialization of the training.
Without demonstrations, we observe that the model may fall into blind exploration and even fail to
converge at all. We used the genetic algorithm for DAG scheduling proposed by Zhu et al. (2016) to
generate demonstrations.

H LLM USAGE IN THIS PAPER

In this paper, large language models are used only for writing embellishment and polishing, mainly
focusing on certain sentences in the introduction and abstract. All the innovative points are original
and no LLM was used for this.

20


	Introduction
	preliminaries
	DAG task model
	DAG scheduling
	Pointer network for DAG scheduling.

	Proposed method
	Motivation
	Graph attention score calculation and aggregation
	GAA-PtrNet-based DAG scheduling process and time complexity analysis.
	Training strategy with policy gradient RL

	Experiments
	Experimental setups
	Results and discussion
	Ablation study about GAA-PtrNet
	Comparison with baseline methods


	Conclusion
	Ethics and reproducibility statement
	The algorithm of one-shot DAG scheduling by GAA-PtrNet
	A illustrative example of one-shot DAG scheduling by GAA-PtrNet
	Related works
	RL for DAG scheduling
	RL combined with PtrNet for DAG scheduling

	More information about the benchmarks
	Randomly generated DAG workflows
	TPC-H
	Pegasus

	Implementation details
	Implementation about the graph attention for scheduling
	Neural network and hyper parameter settings
	Baseline implementation
	Simulation and evaluation environment

	Additional experimental results
	Additional results on Pegasus benchmark
	Additional results on random generated DAG workflows

	Description and analysis of the dense reward signal
	LLM usage in this paper

