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Abstract

Variational Bayes is a popular method for approximate inference but its derivation can be
cumbersome. To simplify the process, we give a 3-step recipe to identify the posterior form
by explicitly looking for linearity with respect to expectations of well-known distributions.
We can then directly write the update by simply “reading-off” the terms in front of those
expectations. The recipe makes the derivation easier, faster, shorter, and more general.

1. Introduction

Since its introduction in the early 90s (Hinton and Van Camp, 1993; Saul et al., 1996;
Jaakkola and Jordan, 1996), variational Bayes (VB) has become a prominent method for
approximate inference but, despite significant progress in probabilistic programming, deriv-
ing VB updates remains cumbersome for many. The main source of difficulty is the need to
derive closed-form expressions for the integrals. For example, consider observed data y and
latent vector z = (z1, z2, . . . , zK) for a model p(y, z), and assume that we seek a mean-field
posterior approximation: p(z|y) ≈ q(z) =

∏
i qi(zi). Then, a stationary point q∗(z) of the

evidence lower-bound (ELBO) satisfies the following (Bishop, 2006, Eq. 10.9),

log q∗i (zi) = Eq∗\i [log p(y, z)] + const., (1)

where the integral in the right hand side marginalizes out the rest of the variables (denoted
by z\i) using the marginal q∗\i(z\i); see a proof in App. A.

For conjugate-exponential (CE) family models, the integrals have closed-form expres-
sions, but deriving them can still be cumbersome. It is not uncommon to find papers where
these derivations take many pages of work. With such long derivations, it is easy to lose the
main intuition and elegance of the updates. Difficulty increases when non-conjugate factors
are also present. For such cases, despite using automatic differentiation, we still need to
make several difficult choices: Which optimizer to choose and are they compatible with the
conjugate updating? How to set the learning rate so that overall updates converge? And,
when using coordinate-wise updates, in what sequence should we update the variables?
Here, we present a recipe to derive the updates that simplify these difficulties.

Our recipe consists of 3-steps based on an alternate way to express Eq. 1. We assume an
exponential-family form for qλi(zi) ∝ exp (〈Ti(zi),λi〉) with natural parameter λi, sufficient
statistics Ti(·), and a constant base-measure. We can then write Eq. 1 in a form shown
below that uses the pair (λi,µi) where µi(λi) = Eqλi [Ti(zi)] is the expectation parameter:

λ∗i = ∇µi Eqλ [log p(y, z)]|µi=µ∗i
. (2)
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Here, we marginalize with respect to qλ(z) where λ = (λ1,λ2, . . . ,λK) and denote by
(λ∗i ,µ

∗
i ) the natural and expectation parameter pair for the optimal q∗i (zi). A proof is

given in App. A by using results from Khan and Lin (2017), along with an extension for
non-constant base-measures. The advantage of this expression is that we do not have to
think about the distributional forms of qi or any integrals. Rather, we can simply look up
the definition of (λi,µi); see Table 1 for a list.

We give an example below. For notational ease, we will write Eqλ [·] as Eq[·].

Ex 1 (A simple mixture model) We consider two components pa(y) and pb(y) for
an observation y where mixture indicator z ∈ {0, 1} is sampled from a Bernoulli prior,

p(y|z) = pa(y)zpb(y)1−z, where p(z) = πz0(1− π0)1−z.

The posterior over z can be obtained by using Bayes’ rule, p(z = 1|y) = π0pa(y)
π0pa(y)+(1−π0)pb(y) ,

but let us suppose that we do not know the posterior and we want to recover it from Eq. 2.
Denoting the posterior by q(z), we can figure out its form by expanding

Eq[log p(y, z)] = Eq[log p(y|z) + log p(z)]

= Eq [z log pa(y) + (1− z) log pb(y) + z log π0 + (1− z) log(1− π0)]

= Eq(z)︸ ︷︷ ︸
=µ

log
π0pa(y)

(1− π0)pb(y)︸ ︷︷ ︸
Coeff. in front of µ

+ log[(1− π0)pb(y)]︸ ︷︷ ︸
constant

.
(3)

The last line suggests to choose q(z) with expectation parameter µ = Eq(z). From Ta-
ble 1, we find Bernoulli distribution to have this expectation parameter, therefore we set
q(z) ∝ πz1(1− π1−z1 ) where π1 > 0 is the probability of z = 1 under q.

Having figured out the form of q, we can now use Eq. 2 to find its parameter. For this
we first look up from Table 1 the natural parameter: λ = log π1

1−π1 and set it according
to Eq. 2. It is clear from Eq. 3 that Eq [log p(y, z)] is linear in µ, therefore the gradient
∇µEq [log p(y, z)] is simply the coefficient in front of µ. This gives us

λ∗ = log
π0pa(y)

(1− π0)pb(y)
=⇒ π∗1 =

π0pa(y)

π0pa(y) + (1− π0)pb(y)
. (4)

where in the second equality we rewrite the update in terms of π1. This recovers the
posterior p(z = 1|y) obtained with the Bayes’ rule.

The procedure is an instance of our 3-step recipe shown below where we identify the posterior
form by explicitly looking for linearity with respect to µ and use it to update λ:

1. Identify all qi at once, by looking for linearity of Eq[log p(y, z)] w.r.t. some µi.

2. Compute ∇µiEq[log p(y, z)] (hint: for CE, just read-off the coefficient in front of µi).

3. Update λi ← (1− ρi)λi + ρi∇µiEq[log p(y, z)] with a learning rate ρi (often set to 1).

For most cases, there is no need to derive any integrals: we just expand Eq[log p(y, z)] as a
multi-linear function of all µi at once and look-up the rest from a table (similar to Table 1).
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We can then directly write the update by simply “reading-off” the coefficient in front of µi,
which is now a function of the µ\i and observation y.

The steps differ fundamentally from the standard way of deriving VB where each qi
is identified separately. Such derivations can be very long and tedious because we need
to investigate each node separately by looking for a known distributional form for each
of them (Blei et al., 2017, App. A)(Bishop, 2006, Sec. 10.2). The distributional form is
not used anyways because the updates are ultimately written and implemented using the
parameters of the distributions. Our recipe makes the direct use of the (λi,µi) pair, and
leads to an easier, faster, and shorter derivation where all nodes are handled altogether.

The recipe is also more general and covers a wide-variety of cases, including conjugate,
non-conjugate, and even deterministic factors. This is due to Step 3 which uses the Bayesian
learning rule (BLR) (Khan and Rue, 2021) that contains many algorithms as special cases.
Below, we give additional sub-steps for Step 3 to derive many variants:

(3a) Derive Bayes-rule by using ρi = 1; rewrite it in your parameter of choice (see Ex 1).

(3b) Derive Coordinate Ascent VI (CAVI) and variational message passing (VMP) by
setting ρi = 1 and doing a coordinate-wise update (see Ex 2 and Ex 3).

(3c) Derive Stochastic VI (SVI) by setting ρi = 1 for the local variables and updating the
global variable after a local update on any node i (see Ex 4).

(3d) Derive updates of deterministic nodes (and Laplace’s approximation) by invoking the
delta method to approximate the expectation (see Ex 5).

(3e) In presence of the non-conjugate terms, just use the gradient and simplify it using
reparameterization trick whenever feasible (Khan and Rue, 2021) (see Ex 6).

Another benefit is that, Steps 3a-3d do not only not require any integrals but we do not
even need any derivatives either; due to linearity we just need the coefficients in front. With
Step 3d, even MAP estimates can be derived without any derivatives. Moreover, there is
no need to use different optimizers for conjugate and non-conjugate parts, and the learning
rate and update schedule need not be set carefully because the update converges under
fairly general conditions (Khan et al., 2016). In contrast, coordinate-wise update may not
always converge and require the solution to be unique for each coordinate (Paquet, 2014).

2. Examples

Let us see another example with a slightly more complex model where a mean-field approx-
imation is required. We will see that, unlike standard derivation where each factor requires
a separate expansion of the log-joint, we can identify both distributions simultaneously.
Another advantage is that we do not have to start with a mean-field structure, rather we
can figure this out by simply looking for linearity.

Ex 2 (A mixture-model with two levels) We will add an additional latent variable:
π0 → zi → yi where we have multiple vector observations yi, and two sets of latent
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variables: zi and π0. We assume the following model with a beta prior over π0,

p(Y|z) =
N∏
i=1

pa(yi)
zipb(yi)

1−zi , p(zi|π0) = πzi0 (1− π0)1−zi , p(π0) ∝ πα0−1
0 (1− π0)β0−1

Our goal is to estimate p(z, π0|Y) but the model is not a conjugate one, therefore we
have to use a mean-field approximation for tractability.

In the 1st step we can figure out q for both zi and π0 at once by using linearity in the
expected log-joint; there is no need to decide the factorization yet. We show this below
where the second-line is obtained by using Eq. 3,

Eq[log p(Y|z)p(z)p(π0)] = Eq

[
N∑
i=1

(log p(yi|zi) + log p(zi)) + log p(π0)

]

= Eq

[
N∑
i=1

(
zi log

π0pa(yi)

(1− π0)pb(yi)
+ log[(1− π0)pb(yi)]

)
+ log

(
π
(α0−1)
0 (1− π0)(β0−1)

)]

=
N∑
i=1

Eq(zi)︸ ︷︷ ︸
=µi

(
Eq
[

log π0
log(1− π0)

]
︸ ︷︷ ︸

=µ0

+

[
log pa(yi)
log pb(yi)

])> [
+1
−1

]
+
∑
i

log pb(yi)

+ Eq
[

log π0
log(1− π0)

]
︸ ︷︷ ︸

=µ0

> [
α0 − 1

N + β0 − 1

]
, (5)

where in the last step we assumed that q(z, π0) =
∏
i q(zi)q(π0) to get linearity with

respect to both µ1 and µ0. Using Table 1, we have q(zi) as Bernoulli and q(π0) as Beta.
After this, the 2nd step is straightforward to simply read the coefficient in front of

µi and µ0 respectively, and use them in the 3rd step with ρi = 1. This is shown below
in both natural parameters and posterior parameters of Bernoulli (denoted by πi,1) and
Beta distributions (denoted by (α1, β1)) obtained by using Table 1:

λi ←

(
µ0 +

[
log pa(yi)
log pb(yi)

])> [
1
−1

]
=⇒ πi,1 ←

eEq [log π0]pa(y)

eEq [log π0]pa(y) + eEq [log(1−π0)]pb(y)

λ0 ←
N∑
i=1

µi

[
+1
−1

]
+

[
α0 − 1

N + β0 − 1

]
=⇒

[
α1

β1

]
←
[

α0 +
∑

i Eq(zi)
β0 +

∑
i(1− Eq(zi))

]
(6)

The recipe identifies the distributions for all nodes at once by looking for linearity; see
the last line in Eq. 5. In addition, it reuses the already-known integrals by looking-up
the required expectations. For instance, in the example above, we need to find Eq(zi),
Eq(log π0), and Eq(log(1 − π0)), whose expressions can be found in Wikipedia pages for
Bernoulli and Beta distributions.

We are now ready to discuss the most-commonly used example for VB, which is the
Gaussian mixture model. Unlike the standard derivation covered in (Bishop, 2006), we can
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derive all the updates with just a single expansion of the expected log-joint. The example
clearly demonstrates the usefulness of the recipe in simplifying the derivation.

Ex 3 (Gaussian mixture model) The model uses a Gaussian likelihood for the two
components and a Gaussian-Wishart prior on their means and covariances,

pa(yi) = N (yi|ma,S
−1
a ), p(ma,Sa) = N

(
ma|0, (γ0Sa)−1

)
W(Sa|W0, ν0)

pb(yi) = N (yi|mb,S
−1
b ), p(mb,Sb) = N

(
mb|0, (γ0Sb)−1

)
W(Sb|W0, ν0)

for scalars γ0 > 0 and ν0 > D− 1, and positive-definite matrix W0. For this, we simply
need to make two changes in Eq. 5. First, we replace log pa(yi) and log pb(yi) by their
expected values. We show one of them below in terms of the required expectations,

Eq[log pa(yi)] = 1
2Eq[log |Sa|]− 1

2Eq
[
(yi −ma)

>Sa(yi −ma)
]

+ c

= 1
2 Eq[log |Sa|]︸ ︷︷ ︸

µpa,1

−1
2Tr
(
yiy

>
i Eq[Sa]︸ ︷︷ ︸

µpa,2

)
+ y>i Eq[Sama]︸ ︷︷ ︸

µpa,3

−1
2 Eq[m

>
a Sama]︸ ︷︷ ︸

µpa,4

+c.

The term is linear in terms of the expectation-parameter µpa,1:4 which corresponds to the
Gaussian-Wishart distribution (Table 1); see the Wikipedia pages for their expressions.
Second, we need to add the contribution of the prior, which is also linear in µpa,1:4,

Eq[log p(ma,Sa)] = 1
2(ν0 −D)Eq[log |Sa|]− 1

2Tr
(
W−1

0 Eq[Sa]
)
− 1

2Eq[m
>
a (γ0Sa)ma] + c

= 1
2(ν0 −D)µpa,1 −

1
2Tr
(
W−1

0 µpa,3
)
− 1

2γ0µpa,4 + c.

Then, we expand the expected log-joint by using model definition in the first line, then by
plugging Eq. 5 to get the second line, and do rearrangement afterward to get linearity,

Eq[log p(Y|z,ma:b,Sa:b)p(z)p(π0)p(ma:b,Sa:b)]

= Eq[log p(Y|z,ma:b,Sa:b)p(z)p(π0)] + Eq[log p(ma:b,Sa:b)]

=

N∑
i=1

µi

(
µ0 +

[
Eq(log pa(yi))
Eq(log pb(yi))

])> [
+1
−1

]
+
∑
i

Eq[log pb(yi)] + µ>0

[
α0 − 1

N + β0 − 1

]
+ Eq[log p(ma,Sa)] + Eq[log p(mb,Sb)]

=
N∑
i=1

µi

(
µ0 +

[
1
2µpa,1 −

1
2Tr

(
yiy

>
i µpa,2

)
+ y>i µpa,3 −

1
2µpa,4

1
2µpb,1 −

1
2Tr

(
yiy

>
i µpb,2

)
+ y>i µpb,3 −

1
2µpa,4

])> [
+1
−1

]
+
∑
i

(
1
2µpb,1 −

1
2Tr
[
yiy

>
i µpb,2

]
+ y>i µpb,3 −

1
2µpb,4

)
+ µ>0

[
α0 − 1

N + β0 − 1

]
+ 1

2(ν0 −D)µpa,1 −
1
2Tr

(
W−1

0 µpa,2
)
− 1

2γ0µpa,4

+ 1
2(ν0 −D)µpb,1 −

1
2Tr

(
W−1

0 µpb,2
)
− 1

2γ0µpb,4 + const.
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The last equation looks complicated but it is linear with respect to each µi,µ0,µpa ,µpb,
therefore we can simply look up the coefficient in front to write the update. The updates
of q(π0) remain same as before because the coefficient is unchanged. For q(zi), the
coefficient takes an expectation over log pa and log pb, giving us the following,

πi,1 ←
eEq [log π0]+Eq [log pa(y)]

eEq [log π0]+Eq [log pa(y)] + eEq [log(1−π0)]+Eq [log pb(y)]
(7)

The update for the mean and covariance of the component is also obtained in a straight-
forward manner. For q(ma,Sa), for instance, we set its 4 natural parameters (given in
Table 1) to the coefficients in front of µpa,1 to µpa,4 respectively, and rearrange to get

1
2(νa −D)
−1

2(W−1
a + γamam

>
a )

γama

−1
2γa

 =


1
2

∑
i µi + 1

2(ν0 −D)
−1

2

∑
i µiyiy

>
i − 1

2W
−1
o∑

i µiyi
−1

2

∑
i µi −

1
2γ0

 (8)

=⇒


νa
W−1

a

ma

γa

 =


∑

i µi + ν0∑
i µiyiy

>
i −

(
∑
i µiyi)(

∑
i µiyi)

>∑
i µi+γ0

+ W−1
0

1
γa

∑
i µiyi∑

i µi + γ0


We encourage the reader to verify that these updates are same as ones derived in (Bishop,
2006, Eqs 10.49, 10.58, 10.60-10.63), but unlike that derivation, all updates here are
derived by using just one expansion of expected log-joint, which leads to a shorter and
much faster derivation.

A few additional examples are given in App. B.

3. Future Work

One drawback of the recipe is that it depends heavily on the (λ,µ) parameterization.
There are several works that extend beyond this, for example, to mixture distributions (Lin
et al., 2019), structured Gaussian distributions (Lin et al., 2021), and also to transformation
families (Kıral et al., 2023). Such approaches have shown to be useful in deriving existing
algorithms, as well as designing new ones (Khan and Rue, 2021). We believe that such
extensions exist for generic distributions and that it is possible to derive all sorts of updates
in the same fashion as described in this paper.
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A. VB Stationary Point, The Linearity Property and Equivalence of
Eqs. 1 and 2

VB stationary point: We first give a short proof of the stationarity condition Eq. 1,
which essentially follows by rewriting the ELBO as a function of qi alone and expressing it
as a Kullback-Leibler divergence (KLD) term,

L(q) = Eq[log p(y, z)] +
∑
i

Eq[− log qi(zi)]

= Eqi
[
Eq/i [log p(y, z)]− log qi(zi)

]
+ const.

= DKL[qi(zi) ‖ p̃i(zi)] + const.

(9)

where p̃i(zi) ∝ exp[Eq\i [log p(y, z)]] is a distribution where the rest z\i is marginalized out.
The minimum occurs when the two arguments in the divergence are equal, which gives us
the condition in Eq. 1.

The linearity property: This is due to the fact that the CE terms in log-joint are
multi-linear in sufficient statistics (Winn and Bishop, 2005, p. 668). Below, we give a formal
statement which is the basis of Step 1.

Theorem 1 If the conditional p(zi|z\i,y) is conjugate to qi(zi), that is, if there exists ηi(·)
such that the log-conditional can be expressed in terms of Ti(zi) as follows,

log p(zi|z\i,y) = 〈Ti(zi) , ηi(z\i,yi)〉+ const., (10)

then Eq[log p(y, z)] = 〈µi , Eq\i
[
ηi(z\i,yi)

]
〉+ const., which is linear with respect to µi.

This also justifies Step 2 because the gradient with respect to µi becomes

∇µiEq[log p(y, z)] = Eq\i
[
ηi(z\i,yi)

]
(11)

which is simply the term in front of µi.

Equivalence: Due to Eq. 2, we can show that, at a fixed point, the optimal natural
parameter is equal to the coefficient in front of µi,

λ∗i = ∇µi Eq [log p(y, z)]|µi=µ∗i
= Eq∗\i

[
ηi(z\i,yi)

]
, (12)

Using this, we can show that Eq. 2 leads to Eq. 1 by using the definition of q∗i (zi),

log q∗i (zi) = 〈T(zi),λ
∗
i 〉+ c,

= 〈T(zi),Eq∗\i
[
ηi(z/i,yi)

]
〉+ c

= Eq∗\i [log p(y, z)] + c′,

(13)

where the second and third line follow by using Eq. 12 and Eq. 10 respectively (c and
c′ are constants that do not depend on zi). The derivation is reversible and we can also
derive Eq. 2 from Eq. 1, making the two statements equivalent whenever the posterior is a
conjugate-exponential family.
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Extension for non-constant base-measures: If the exponential-family includes a
base-measure hi(zi) as shown below,

qi(zi) ∝ hi(zi) exp (〈Ti(zi),λi〉) ,

then the condition in Eq. 2 is modified to the following,

λ∗i = ∇µi Eq [log p(y, z)− log hi(zi)]|µi=µ∗i
, (14)

The proof is exactly the same so we omit it.

B. Additional Examples

We now discuss Sub-steps (3b)-(3f) and show that, by using the BLR in Step 3, we can
derive many other types of algorithms from the VB updates. It makes sense to start from
a more Bayesian approach and make approximation when required, rather than doing it
the other way. Using the BLR in Step 3 does exactly this. For example, as we saw in the
previous examples, we can write a CAVI or VMP style update as special cases by choosing
ρi = 1, and doing coordinate-wise updates. But the same approach can be used to derive
SVI (Hoffman et al., 2013), described below for completeness.

Ex 4 (SVI updates for the mixture model with two levels) Instead of a coordinate-
wise update that goes through all zi, we can pick randomly just one zi, do the update
with ρi = 1 using Eq. 4, and after this we update the global variable π0 with ρ0 < 1,

λ0 ← (1− ρ0)λ0 + ρ0

N∑
i=1

µi

[
+1
−1

]
+

[
α0 − 1

N + β0 − 1

]
=⇒

[
α1

β1

]
← (1− ρ0)

[
α1

β1

]
+ ρ0

[
α0 +

∑
i Eq(zi)

β0 +N −
∑

i Eq(zi)

]
(15)

Updating π0 after every zi update can speed up convergence (Hoffman et al., 2013).

Now, we give another example on matrix factorization where we show how to derive updates
for deterministic nodes and also for expectation maximization. We derive the well-known
alternating least-squares and probabilistic PCA (Tipping and Bishop, 1999). Both of these
are obtained by using the delta method where the expectation parameter is approximated
by using its mean: Eq(zz>) ≈mm>, where m is the mean of q. More details on such delta
method is given in Khan and Rue (2021).

Ex 5 Matrix factorization and latent factor models aim to fit data matrix Y of size
N × D by using two sets of factors U and V respectively of sizes N × K and D × K
where K is the number of factors. The likelihood and the prior are given by,

p(Y|U,V) =

N∏
i=1

D∏
j=1

N (yij |u>i vj , I), p(ui) = N (ui|0, I/δu), p(vj) = N (vj |0, I/δv)
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where yij is the ij’th entry, ui is the i’th row of U, and vj is the j’th row of V. The
most popular procedure is to use the alternating least-squares (ALS) procedure, but there
is also expectation maximization (Tipping and Bishop, 1999) and VMP Paquet (2014).
These can all be derived by using our recipe for VB, as we show now.

Following the 1st step, we expand the expected log-joint and look for linearity,

Eq[log p(Y,U,V)] = Eq

 N∑
i=1

 D∑
j=1

−1

2
(yij − u>i vj)

2 − δv
2
v>j vj

− δu
2
u>i ui

+ const

=
N∑
i=1

(
D∑
j=1

−1

2

(
Tr

(
Eq(uiu>i )︸ ︷︷ ︸

=µ
(2)
ui

Eq(vjv>j )︸ ︷︷ ︸
=µ

(2)
vj

)
− 2yijEq(ui)︸ ︷︷ ︸

=µ
(1)
ui

> Eq(vj)︸ ︷︷ ︸
µ

(1)
vj

)

− δv
2

TrEq
(
vjv

>
j

)
︸ ︷︷ ︸

=µ
(2)
vj

)
− δu

2
TrEq

(
uiu

>
i

)
︸ ︷︷ ︸

=µ
(2)
ui

+const

Here, we use mean-field approximation for all ui and vj because we want linearity with
respect to all. The sufficient statistics correspond to Gaussian (third row in Table 1).

The 2nd step is to simply read off as the coefficients in the front, and, by using the
natural parameters given in Table 1, we can directly write the update from the 3rd step.
The first two updates below use the natural parameters denoted by (Suimui ,−Sui/2)

corresponding to (µ
(1)
ui ,µ

(2)
ui ), while the next two updates do the same for the variable vj,

Suimui ← (1− ρi)Suimui + ρi

D∑
j=1

µ(1)
vj yij

Sui ← (1− ρi)Sui + ρi

(
D∑
j=1

µ(2)
vj + δuIK

)

Svjmvj ← (1− ρj)Svjmvj + ρj

N∑
i=1

µ(1)
ui yij

Svj ← (1− ρj)Svj + ρj

(
N∑
i=1

µ(2)
ui + δvIK

)
.

We can then specialize these updates to derive ALS, EM, VB etc.
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VB Made Easy

1. Setting ρi = ρj = 1 and updating posteriors of U and V in alternate iterations
(that is coordinate wise updates), we get the VMP update.

Suimui ←
D∑
j=1

µ(1)
vj yij , Sui ←

D∑
j=1

µ(2)
vj + δuIK

Svjmvj ←
N∑
i=1

µ(1)
ui yij , Svj ←

N∑
i=1

µ(2)
ui + δvIK .

(16)

2. We can get the probabilistic PCA updates (Tipping and Bishop, 1999), where we
only compute the posterior wrt U and assume V to be deterministic. We can do
this by making two more additional approximations,

(a) denote mvj by v̂j, and

(b) use the delta approximation for µ
(2)
vj = Eq[vjv>j ] ≈ Eq[vj ]Eq[vj ]> = v̂jv̂

>
j .

With these, the update in Eq. 16 reduces to

Suimui ←
D∑
j=1

v̂jyij , Sui ←
D∑
j=1

v̂jv̂
>
j + δuIK

v̂j ←

(
N∑
i=1

µ(2)
ui + δvIK

)−1 N∑
i=1

µ(1)
ui yij .

(17)

These are equivalent to those derived in Bishop (2006, Eqs. 25-17).

3. Similarly, we get the ALS updates by further

(a) denoting mui by ûi, and

(b) adding the delta approximation: µ
(2)
ui = Eq[uiu>i ] ≈ Eq[ui]Eq[ui]> = ûiû

>
i .

With these, Eq. 17 reduces to the following ALS scheme,

ûi ←

(
D∑
j=1

v̂jv̂
>
j + δuIK

)−1 D∑
j=1

v̂jyij ,

v̂j ←

(
N∑
i=1

ûiû
>
i + δvIK

)−1 N∑
i=1

û>i yij ,

(18)

No derivatives are used to derive ALS (a MAP estimation procedure). It is also possible
to update all quantities in parallel by using all learning rates < 1, and convergence is
less of an issue unlike VMP (Paquet, 2014).

Finally, we briefly discuss the inclusion of non-conjugate terms.
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Khan

Ex 6 Suppose that, in Ex 1, we decided to use a non-conjugate prior, say, a logit-normal

distribution with mean m, p(π0) ∝ 1
π0(1−π0) exp

[
− (logit(π0)−m)2

2

]
. Still, the derivation

proceeds in the same way by expanding Eq[log p(Y|z)p(z)p(π0)] =(
N∑
i=1

Eq(zi)︸ ︷︷ ︸
=µi

Eq
[

log π0
log(1− π0)

]>
︸ ︷︷ ︸

=µ>0

[
pa(yi)
pb(yi)

]
︸ ︷︷ ︸
Coeff. in front

)
+N Eq[log(1− π0)]︸ ︷︷ ︸

µ
(2)
0

+ Eq[log p(π0)]︸ ︷︷ ︸
non-conjugate term

.

and combine the last two terms by collecting the linear terms together,

Eq
[

log π0
log(1− π0)

]>
︸ ︷︷ ︸

=µ>0

[
−1

N − 1

]
︸ ︷︷ ︸
Coeff. in front

+Eq
[
−(logit(π0)−m)2

2

]
︸ ︷︷ ︸

non-conjugate term

.

We will now just have to add the last term to the derivative of ∇µ0
, and rewrite the

update. The form of the update does not change much, rather the non-conjugate prior
can simply be written as a “pseudo” conjugate Beta prior,

λ0 ← (1− ρ0)λ0 + ρ0

([
α̂0 − 1

N + β̂0 − 1

]
+

N∑
i=1

µi

[
pa(yi)
pb(yi)

])
.

where α̂0 = ∇
µ
(1)
0

Eq
[
−1

2(logit(π0)−m)2
]

and β̂0 = ∇
µ
(2)
0

Eq
[
−1

2(logit(π0)−m)2
]

are

the parameters of the pseudo beta prior. The gradients automatically convert the non-
conjugate prior form into a conjugate one, which is due to Khan and Lin (2017).

The elegance of the update above is not a coincidence, rather it is by design. Khan
and Lin (2017) linearize the whole VB objective with respect to all µ. This linearizes the
non-conjugate terms while preserving the linearity of the conjugate terms; see (Khan and
Lin, 2017, Lemma 1). This is a remarkable property of such linearizations. The BLR builds
on this but it is the linearization which enables generalization to all sorts of algorithms.
This insight is under-appreciated so far, but we do hope that the examples shown in this
paper motivates many readers to exploit such (Bayesian) linearization procedure.
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Table 1: Exponential-family used in this paper. For Gaussian-Wishart, we use two sets of
variables: z1 is a real vector and Z2 is a positive-definite matrix. We do not give
the expressions for the expectation parameters explicitly but these can be found
in Wikipedia, with a more exhaustive list covering many other distributions.

Name Distribution q(z) Expectation Param µ Natural param λ

Bernoulli ∝ πz(1− π1−z) Eq(z) log π
1−π

Beta ∝ zα−1e−βz Eq

[
log z

log(1− z)

] [
α− 1

β − 1

]

Gaussian ∝ e−
1
2
(z−m)>S(z−m) Eq

[
z

zz>

] [
Sm

−1
2S

]

Gaussian-
Wishart

∝
|Z2|

1
2 e−

1
2
(z1−m)>γZ2(z1−m)

|Z2|
ν−D−1

2 e−
1
2
Tr(W−1Z2)

Eq


log |Z2|
Z2

Z2z1

z>1 Z2z1




1
2(ν −D)

−1
2(W−1 + γmm>)

γm

−1
2γ
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https://en.wikipedia.org/wiki/Exponential_family#Table_of_distributions
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