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ABSTRACT

Inspired by the success of self-supervised autoregressive representation learning
in natural language (GPT and its variants), and advances in recent visual architec-
ture design with Vision Transformers (ViTs), in this paper, we explore the effect
various design choices have on the success of applying such training strategies
for visual feature learning. Specifically, we introduce a novel strategy that we
call Random Segments with Autoregressive Coding (RandSAC). In RandSAC,
we group patch representations (image tokens) into hierarchically arranged seg-
ments; within each segment, tokens are predicted in parallel, similar to BERT,
while across segment predictions are sequential, similar to GPT. We illustrate
that randomized serialization of the segments significantly improves the perfor-
mance and results in distribution over spatially-long (across-segments) and -short
(within-segment) predictions which are effective for feature learning. We illus-
trate the pertinence of these design choices and explore alternatives on a number
of datasets (e.g., CIFAR10, CIFAR100, ImageNet). While our pre-training strat-
egy works with vanilla Transformer, we also propose a conceptually simple, but
highly effective, addition to the decoder that allows learnable skip-connections to
encoder’s feature layers, which further improves the performance.

1 INTRODUCTION

Deep learning has powered enormous successes in Computer Vision and NLP over the past 10, or so,
years. It has lead to significant improvements in object detection (Redmon et al., 2016), segmenta-
tion (He et al., 2017), as well as higher-level cognition tasks (e.g., Visual Question Answering (Antol
et al., 2015), Visual Navigation (Mayo et al., 2021), efc.). These successes have been enabled by
both advances in parallel hardware (GPUs) and, perhaps more importantly, large-scale task-specific
labeled datasets that allow supervised learning. This appetite for large data has, until very recently,
stagnated progress, particularly in building general-purpose visual architectures.

These types of considerations date back to the early days of machine learning, and deep learning in
particular, where it has long been postulated that unsupervised, or self-supervised, learning could
allow learning of robust and general feature representations that can then be readily used (or fine-
tuned) to target tasks. Self-supervised learning has been explored in computer vision in various
forms: denoising autoencoders (Pathak et al., 2016; Vincent et al., 2008), colorization (Zhang et al.,
2016) or jigsaw puzzle (Doersch et al., 2015; Noroozi & Favaro, 2016) proxy objectives. However,
the success of such self-supervised pre-training was somewhat limited. In contrast, the success of
similar self-supervised ideas in NLP has been much more dominant with GPT (Brown et al., 2020)
and BERT (Devlin et al., 2018) architectures, and their variants. These pre-training strategies now
enable state-of-the-art performance on a wide array of natural language tasks.

Recent advances in vision architectures, such as Vision Transformers (ViT) (Dosovitskiy et al.,
2021; Liu et al., 2021), which serialize visual 2d data, have opened an opportunity to apply similar
large scale pre-training techniques in vision, with increasing successes. Self-supervised pre-training
techniques with ViTs can be characterized into two broad categories: contrastive and predictive;
as well as their combinations. In contrastive learning, pre-training architectures are learned to be
invariant to certain perturbations in data (e.g., spatial shifts, color jitter) by forming positive and
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Figure 1: Randomized Autoregressive Segment Prediction. Illustration of our autoregressive seg-
ment prediction framework (RandSAC). RandSAC breaks the image into tokens which are arranged
into segments (here squares of size 2 x 2). The autoregressive (GPT-style) transformer-based model
is then trained to predict segments in a randomly sampled serialization order. As a result, tokens
within segments are predicted in parallel, while segments themselves are predicted sequentially.
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negative pairings of augmented data samples. This is a powerful technique, but requires design-
ers to make assumptions about invariances that the architecture should learn. In addition, purely
contrastive models tend to incorporate center bias (Chen et al., 2022; 2021a), which makes them
less transferable for tasks such as segmentation where non-object centric regions need to be mod-
eled. Alternatively, predictive models learn to predict elements of the scene, either in parallel by
reconstructing masked regions/tokens (Bao et al., 2022; He et al., 2021) (a.k.a., masked image mod-
eling or BERT-style pre-training) or to predict images in auto-regressive language-modeling manner
(Chen et al., 2020a) (a.k.a., GPT-style pre-training). It is interesting to observe that on the NLP
side, GPT models have shown to be powerful, while vision models have gravitated more towards
BERT-style pre-training both with visual (Chen et al., 2020a; Bao et al., 2022) and multi-modal data
(Lu et al., 2019; Su et al., 2020).

Motivated by this, we adopt an autoregressive pre-training strategy (see Figure 1) and ask a number
of important empirical questions about the use of such pre-training and what makes it effective.
Specifically, (1) we ask what granularity (scale) and shape of tokens (patches, blobs) is most effective
and how it affects the performance? (2) How best to serialize predictions? For example, previous
approaches, such as image GPT (Chen et al., 2020a), leveraged raster ordering. While such ordering
is perhaps “optimal” from correlation and predictive/generative (van den Oord et al., 2016) points
of view, we show that it is not optimal for general feature learning. We also explore (3) whether
deterministic vs. stochastic tokenization and serialization are helpful. Finally, (4) we explore the
effective interactions between the decoder and encoder layers; proposing a new ViT architecture that
uses learned skip connections between encoder and decoder layers to improve performance.

Contributions. We make two core contributions. First, we propose a new pre-training strategy that
leverages (randomly) sampled hierarchical segment cluster traversals to autoregresively train ViT
models. This allows both short- and long-term spatial predictions, allowing distribution over easy
and hard predictive tasks'. We note that the effectiveness of single random segment inpainting was
initially observed in (Pathak et al., 2016), but is notably missing from most recent self-supervised
strategies. Our pre-training strategy generalizes this observation and strategy to hierarchical and
serialized predictions. Second, we propose a flexible ViT decoder that at each decoding layer learns
to dynamically attend over different levels of features in the encoder. This in effect creates learned
skip-connections, as compared to UNet (Ronneberger et al., 2015) and others that require fixed
connections in a symmetric encoder-decoder design, which further improve the performance.

Discussion. The above pre-training strategy, while empirically motivated, is also loosely modeled
after human vision. Humans attend to the scene by a sequence of foveal observations, where an eye
shifts over a series of fixation points; such motions are called saccades. Some saccades are long-
range and voluntary, while others are local and involuntary (a.k.a., microsaccades (Rolfs, 2009)).
Our segments can be “viewed” as predictive foveal regions, and the hierarchical serialization of such
regions as the combination of micro and macro saccades. The significant difference from human
vision, is that in human vision saccades are purposeful and have been shown to be conditioned on the
task (Yarbus, 1967). In contrast, our pre-training such “saccadic” movements are randomly sampled.

I'This is, in part, motivated by (He et al., 2021) which observe that in BERT-style pre-training high amount
of masking (as much as 75%), which corresponds to harder predictive tasks, leads to better feature learning.



Learning a purposeful policy for hierarchical serialization of segments, would be an interesting
future work. However, this is a difficult task that is beyond the scope of this paper.

2 RELATED WORK

Transformer-based Natural Language Modeling. In the field of natural language processing
(NLP), two dominant self-supervised language modeling paradigms are Masked Language Mod-
eling, such as BERT (Devlin et al., 2018), and GPT-style autoregressive pre-training (Brown et al.,
2020; Radford & Narasimhan, 2018; Radford et al., 2019). Given a sentence, BERT and its variants
(Lan et al., 2020; Liu et al., 2019) pre-train transformer encoders by predicting randomly masked
out input words, referred to as fokens. Such frameworks model the bidirectional (contextual) de-
pendencies between the visible tokens and the corrupted/masked tokens. GPT, which can be viewed
as a special case of the transformer decoder, on the other hand, models the left-to-right natural
order of languages. Recent advances in large-scale generative language modeling show powerful
few-shot capabilities and are believed to be a promising path towards general machine intelligence.
Permutation-based autoregressive model (Yang et al., 2019) was proposed to bridge the gap be-
tween autoregressive language modeling and masked autoencoding by maximizing the likelihood
over all permutations of the factorization order. We take inspiration from GPT-style autoregressive
pre-training in formulating our model, and focus on important aspects of mapping such strategy onto
visual (ViT) models, where tokenization and serialization are not as well defined as in language.

Contrastive Image Learning. Contrastive methods (Chen et al., 2020b; He et al., 2020; van den
Oord et al., 2018; Tian et al., 2020) and their negative-sample-free variants (Chen & He, 2021; Grill
et al., 2020; Hua et al., 2021; Zbontar et al., 2021) have emerged as a dominant research direction
for unsupervised/self-supervised visual representation learning over the past 1-2 years. By building
agreement among augmented versions of the input data, image features that are invariant of those
perturbations can be learned. This method implicitly assumes a set of representational invariance
(e.g., color and spatial invariance). Once such representations are learned they are either used di-
rectly, or fine-tuned, to one or more downstream supervised tasks (e.g., classification, detection,
segmentation). When a downstream task violates the aforementioned invariance assumptions, they
display poor transferability (Xiao et al., 2021). For example, the center-bias (Chen et al., 2022) and
small-object feature suppression (Chen et al., 2021a) have been observed in prior works. Masked
image modeling & autoregressive image encoding, of which our method is an instance, tend to
perform better in such circumstances (Bao et al., 2022; He et al., 2021).

Masked Image Modeling. Early CNN-based masked image modeling, also known as image in-
painting (Doersch et al., 2015; Pathak et al., 2016; Yu et al., 2018), has shown promising results
but failed to become a predominant training paradigm, in part, due to its inferior performance with
respect to large-scale supervised pre-training (e.g., on ImageNet). The recent trend of incorporating
transformers into vision architectures (Carion et al., 2020), or replacing CNN completely (Doso-
vitskiy et al., 2021), by tokenizing images into a grid of non-overlapping patches, have enabled
application of large scale NLP pretraining techniques in vision, e.g., (Bao et al., 2022; He et al.,
2021; Wei et al., 2021; Xie et al., 2022). Directly applying them to image pixels, however, leads to
inferior performance (Chen et al., 2020a; Dosovitskiy et al., 2021). To this end, BEiT (Bao et al.,
2022) proposes to predict discrete masked image tokens. Masked Autoencoder (MAE) (He et al.,
2021) suggests a 75% random masking ratio for image modeling; and SimMIM (Xie et al., 2022)
studies different masking strategies for pretraining. MaskFeat (Wei et al., 202 1) investigates five dif-
ferent reconstruction targets. TinyMIM (Ren et al., 2023) introduces distilling token relations from
MAE model, and SplitMask (El-Nouby et al., 2021) illustrates the ability of BEiT to train with small
scale pre-training datasets. Our proposed RandSAC strategy, is related to masked image modeling,
but is autoregressive in nature.

Autoregressive Image Encoding. Compared with BERT-style pre-training for vision transformers,
GPT-like autoregressive models have been overlooked due to their complexity introduced by dense
image pixels. In image GPT (Chen et al., 2020a), images are limited to 64 x 64 = 4096 pixels. The
4096 pixels are tokenized and serialized in raster-order before feeding into a causal transformer. The
quadratic time/space complexity of self-attention prevents the scaling of such approaches.

3  RANDOM SEGMENT WITH AUTOREGRESSIVE CODING

RandSAC learns representations through autoregressive image segment prediction. It partitions a
tokenized image into random spatially coherent non-overlapping (hierarchical) segments, serializes
them, and then autoregressively predicts tokens within these ordered segments. As a result, the token



predictions between segments are sequential, while within a segment are parallel. This training
strategy has four important components that we will explore:

o Tokenization. To use a transformer-based architecture, images need to be tokenized, i.e.,
transformed into a set of basic image elements. For example, some approaches discretize
images (Chen et al., 2020a), while others patchify them (Cordonnier et al., 2020; Bao et al.,
2022; Dosovitskiy et al., 2021; He et al., 2021; Xie et al., 2022). Tokenization strategy
dictates the scale and number of tokens, which affects performance and computation cost.

o Segment Partitioning. After tokenizing the image, the tokens are grouped into spatially
coherent segments. Those segments are autoregressively predicted following some pre-
scribed serialization order. The size and shape of segments and the way they are traversed
can affect training and downstream performance.

e Serialization Strategy. Serialization strategy affects the traversal order of segments. In
prior autoregressive modeling (Chen et al., 2020a) raster-order is assumed. We show that
stochastic (i.e., randomized) serialization is much more effective.

o Transformer Architecture. In a GPT-style autoregressive model, the target sequence is
identical to the shifted input sequence throughout training. However, for random segment
prediction, the target sequence order varies for each sample. To enable this, we leverage a
transformer decoder which takes as input position of each token and outputs its predicted
representation conditioned on the transformer encoded context. In addition, we propose a
novel trainable skip-connection layer for efficient decoding.

In the following section, the default option for model architecture is the vanilla masked transformer
introduced in Section 4. We experiment with two different datasets, CIFAR10 (Krizhevsky, 2009)
and, where appropriate, ImageNet100 (Tian et al., 2020). Evaluation protocols are described in
Section 5, and implementation details are in the Supplemental. We use a simple mean square error
(MSE) as our pixel reconstruction objective.

3.1 FrRoM PIXELS TO TOKENS

Tokenization. We start from raster-order serialization and compare two different tokenization strate-
gies introduced by iGPT (Chen et al., 2020a) and ViT (Dosovitskiy et al., 2021). Assume a dataset D
of images X € RF*WxC where H, W, C are the height, width, and the number of channels of the
image. We reshape each image into N = HW/P? patches, where P is the resolution of each patch.
Tokens are obtained by linearly projecting the patches X = {x;} , and serialized row-by-row.

For pixel prediction experiment, we set P = 1, letting image patch size be 1 x 1 pixels (see Figure 2
(b)). For ViT style patch prediction experiment, we split the 32 x 32 CIFAR10 image into 8 X 8 =
64 patches (see Figure 2 (c)), each patch consists of 4 x 4 pixels (P = 4). Note that for a fair
comparison, we didn’t strictly follow iGPT, where they minimize the negative log-likelihood of the
quantized RGB values. We simply adopt a mean squared error (MSE) between the predicted and
target pixel values for all our experiments following (He et al., 2021). Note that for visualizations in
Figure 2 we use a downsampled CIFAR10 image.

The results for these two tokenization options pixel-raster patch-raster
are 'illustrated in Table 1 (anitional scales LIN(T) 41.70 55.53

are in Supplemental) under pixel-raster FT(}) 5935 78.67
and patch-raster respectively in terms of
linear probing and fine-tuning accuracy (see e .
Sec. S.Ii for (%eﬁnition of met%ics). Fro};n the Table 1: Tokenization on CIFARIO.

point of view of representation learning, patches are substantially better. Further, computationally,
the self-attention mechanism in a transformer uses O(n?) in both time and space with respect to the
sequence length. Hence for pixel tokenization, the complexity is O((H W )?). For patches, the com-
plexity is reduced to O((HW/P?)?). In our CIFAR10 experiment, when P = 4, the complexity of
training is lowered by a factor of P* = 256. Hence, patches result in better tokenization.

Stochastic Serialization. Randomized pretext tasks play an important role in a range of self-
supervised learning algorithms. In NLP, for example, (Yang et al., 2019) improves fixed-order
autoregressive language models by allowing all possible permutations of the factorization order
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Figure 2: Autoregressive Prediction Schemes. Left-to-right: (a) original image from CIFAR 10;
(b) raster-order pixel prediction; (c) raster-order patch prediction; (d) stochastic patch prediction; (e)
stochastic square segment prediction (M = 2); (f) stochastic blob segment prediction (K = 5).
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during training. For autoregressive ViT train-
ing of stochastic token serialization, we adopt a
similar strategy by shuffling the token sequence
for each image sample. Note that this does
not mean that our prediction sequence is “or- IN100-LIN(T) 49.35 53.02
derless”. By moving from fixed raster-order IN100-FT(H) 82.13 84.15
rediction to randomized sequence prediction, e e L.
Eeeping all else the same, Wg observg 20% im- Table 2: Serialization on CIFAR10 and Ima-
provement in linear evaluation and ~10% in geNet100.
fine-tuning (Table 2 CIFAR10). Improvements on ImageNet100 are more modest (3.67% and ~2%
respectively), but still significant and overall stochastic serialization is clearly superior.

patch-raster patch-random

CF10-LIN(}) 55.53 75.53
CF10-FT(}) 78.67 87.52

3.2 GROUPING TOKENS INTO SEGMENTS

In this section, we introduce a concept of segments, which we define as groups (or clusters) of
tokens. Effectively each segment forms an equivalency class within our serialized order, where
tokens are encoded and decoded in parallel. Across segments, however, predictions are still strictly
sequential. The motivation for introducing segments is two-fold. First, it allows us to reduce the
overall number of autoregressive prediction steps. Second, it allows our autoregressive strategy to
effectively leverage aspects of parallel, BERT-style, prediction locally. The autoregressive prediction
steps can also be changed without introducing parallel prediction, simply by changing the patch size
P. This is ineffective, however, as we show in Supplemental Section A.1. In what follows, we
experiment with two spatially coherent segment strategies (square and blob) and then look at the
importance of this spatial coherence in segment formation.

Square Segments. Once we have a grid of N patches of size % X %,
set of square segments M x M, where the M
denotes the size of the square. The segment

we reshape the tokens into a

count K of an image of H x W is thus de- Square size M 1 2 4
fined by: K = 0 EXX]\%Q. For example, in our LIN(T) 75.53 81.38 79.38
CIFAR10 experiment, an input image of size FT(T) 87.52 9138  90.23

32 x 32 is tokenized into a grid of 8 x 8 tokens,

each of which is a 4 x 4 pixel patch. We set the Table 3: Square-random serialization as a func-
square size M = 2. The tokens are then split tion of M on CIFARIO.

into (8/2)% = 16 segments, which are shuffled

randomly for autoregressive prediction as before. We list the representation quality with different
square segment size (M) in Table 3. Since the grid size is 8 x 8 for CIFAR10, we chose square
sizes M = [1,2,4]. Note that, when M = 8, there will be only one segment (e.g., K = 1) and no
prediction can be made; M = 1 is equivalent to no segments (i.e., pat ch-random in Table 2).

Blob Segments. We define blob segments as irregular elliptical segments defined by a sampled
Mixture of Gaussians. To obtain K random blobs for a given image, we first sample K Gaussians
with a range of means and standard deviations in the image space. Then we simply assign each
token x; which is at position (x;, y;) to the closest mixture component using Mahalanobis distance.
We illustrate the square and blob strategies in Figure 2 (e) and (f), respectively. Note that beyond the
shape, blob segments allow for variability in size squares do not. See details in Suppl. Section A.2.

Analysis. As can be seen from Table 4, both square segments and blob segments surpass segment-



free patch-based autoregression

(see square-random and patch-random square-random blob-random

blob-random compared with CF10-LIN(1) 75.53 81.38 82.52
patch-random). The blob CF10-FT(1) 87.52 91.38 91.53
segments and square segments IN100-LIN(T) 53.02 64.78 65.00
behave similarly. In addition, IN100-FT(1) 84.15 86.22 85.16
with blobs, we can easily mod-

ify the number of segments. Table 4: Segments on CIFAR10.

However, with squares, the

segment number is constrained by the token number. A grid of 8 x 8 tokens can either be segmented
into4 x 4 or 2 x 2 squares. A grid size of 13 x 13 can not be divided into any kind of squares. Blob
segments, on the other hand, are more flexible.

Do segm‘fnts need to be“spatiall?: Table 5: Segment Coherence. Representation quality with
coherent? The idea of a “segment”  jifferent number of segments. Below we randomly permute

puts emphasis on the spatial coher- he seoments such that their spatial coherence is disrupted.
ence of the tokens. The upper part

of Table 5 shows the performance of

feature representations with respect Segment K 3 5 ! ’ u
to the number of blob segments . LIN(T) 80.87 8182 8252 8188  82.02
In the bottom, we randomly shuffle FT(1) 90.77 9088 9114 9153  91.24
all tokens so that tokens in any given Shuffle 3 5 7 9 u
“segment” no longer spatially coher- LIN(T) 7673 7173 7669 7859 76.99
FT(1) 89.63 8975 8922 90.00  89.15

ent. We observe that feature learning
deteriorates when segments are not spatially coherent. Note that segments without spatial coherence
are still consistently better than pat ch—random from Table 4.

3.3 HIERARCHICAL SEGMENT SERIALIZATION

Images are hierarchical: a visual region of an image can often be interpreted as a component of a
greater whole (Hinton, 2021) (e.g., parts make up object, object scenes, and so on). Such composi-
tionality motivates hierarchical groupings. In our case of random segment serialization, we postulate
that similar hierarchical traversal order, which adds certain degree of locality, may be useful.

In Figure 3 we illustrate this concept that we operationalize. An image is first partitioned into 16
square segments, indicated by different colors and shades. We then group these 16 segments into
4 larger partitions following the same logic for segment generation. Different colors (e.g., blue,
orange, purple, and green) represent these partition groups; segments that share partition differ in
shade. Hierarchical serialization is obtained by randomly, and sequentially, predicting the segments
inside of each partition group (shown by the black arrows), and then jumping to another partition
group at random. Note that the segment-level (local) and partition-level (global) serializations are
both random. This idea can be extended to deeper hierarchies, with the depth of the hierarchy and
grouping chosen based on the resolution and nature of the dataset.

Experimental results that compare flat serialization to two-level hierarchy are illustrated in Table 6.
We perform these experiments on both CIFAR10 and ImageNet100 datasets. Our experiments show
that hierarchical serialization and prediction consistently outperform the flat counterparts.

oL

Flat Serialization (Square) Hierarchical Serialization (Square) Flat Serialization (Blob) Hierarchical Serialization (Blob)

Figure 3: Hierarchical Segment Serialization. We partition an image into a hierarchy of segments
(segments are illustrated by color and tokens within segment by shade). Autoregressive prediction
is done by following a traversal of randomly generated hierarchical partitions.



Table 6: Hierarchical Segment Prediction. The number on top indicates the number of segments
K (e.g., 4, 16) — flat/no-hierarchy; the 16 — 4 indicates hierarchical variants with two levels — 16
segments grouped into 4 partitions. Left/square and middle/blob results correspond to Fig. 3.

Segments (square) 4 16 16 —4 || Segments (Blob) 3 7 73| 4 16 16 —4

CF10 Linear (1) 79.38  81.38 82.46 CF10 Linear (1) 80.87 82.52 82.71 81.09  80.97 82.61
CF10 Fine-tune (1) 89.61 91.38 91.66 CF10 Fine-tune (1) 90.77 91.14 91.20 | 90.63  90.57 91.15

IN100 Linear (1) 55.88  64.90 65.81 IN100 Linear (1) 56.26 63.36 64.64 | 60.62  64.50 64.92
IN100 Fine-tune (1)  78.81 85.32 85.55 IN100 Fine-tune (1) 81.34 84.36 8448 | 83.07 86.06 86.18

4 ARCHITECTURE

Image GPT (Chen et al., 2020a) performs autoregressive prediction by shifting the source sequence
one pixel to the right. Since the raster ordering of iGPT is fixed for all samples, the position for
the next target token is implicitly modeled by the transformer. In contrast, in RandSAC, the next
token depends on the serialization strategy, thus can vary from sample to sample during training.
Moreover, when predicting the next segment, the tokens within each segment should be predicted
jointly (in parallel). This requires lateral pathways that allow communication within target segments.
To tackle the aforementioned problems, we propose to utilize the transformer decoder.

4.1 MASKED TRANSFORMER FOR SEGMENT PREDICTION

A standard transformer has an encoder-decoder structure (Vaswani et al., 2017). The encoder of a
transformer maps a list of tokens X = (x1, ..., X,) to a sequence of hidden representations Z =
(21, ..., Zn ), also known as the memory. Given X and source sequence Xg.. = (X1,...,Xpn—1),
during training, the decoder masks the internal attention matrix with a causal mask and predicts the
target sequence X5y = (x2, ..., X, ) autoregressively. Each layer of the transformer encoder has
two sub-layers: multi-head self-attention and a fully connected feed-forward network; both have
residual connections. The decoder layer has a third attention sub-layer, which performs multi-head
attention from the hidden representation Z to the target representation X;4;. We leverage attention
masking to achieve autoregressive segment prediction using this framework; we discuss details next.

Autoregressive Segment Encoder. Figure 4 shows our transformer encoder block and a decoder
block. We leave out the fully connected layer and residual connections for simplicity and only show
the attentions. In this visualization, there are six patches. These six patches are then grouped into
three segments denoted by colors: green, blue, and red. The random segment serialization order
is green — blue — red. One layer of transformer encoder is illustrated on the left in light green.
Serialized six patches/tokens with added fixed sine-cosine positional encoding are the input to the
encoder. The encoder attention is masked following the serialized segment order: segments can
attend to themselves and preceding segments only. They are restricted from looking at future seg-
ments using the, illustrated, source mask. Lastly, since the last segment does not have a succeeding
segment, we only input the first four patches and leave out the two patches in the last segment.

Autoregressive Segment Prediction I I I I Target Queries
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Figure 4: Attention-masking for Autoregressive Segment Prediction. For an image converted
into a sequence of patches, we adopt a masked encoder-decoder transformer (Vaswani et al., 2017)
for autoregressive segment prediction. In the encoder, causal source mask enables a given segment
to only attend over preceding segments and the tokens within itself. The decoder, given the position
of tokens (i.e., target queries), predicts tokens within each segment conditioned on encoded previous
segments (enabled by the memory mask).



Autoregressive Segment Decoder. The input for the transformer decoder, illustrated on the right of
Figure 4 in pink, is a set of fixed positional encodings to guide the reconstruction of target segments
and tokens. Similar to the encoder input where we leave out the last segment patches, in the decoder,
we shift the target sequence one segment to the left and ignore the positional encodings of the first
segment because it does not have a preceding segment. The self-attention layer of the decoder
is masked the same way as the encoder for autoregressive segment decoding. This layer enables
co-attention over preceding and current segments for context.

Evaluation. During linear evaluation and fine-tuning, both the attention masks and decoder are
removed, and the encoder is used as feature extractor for the downstream supervised classification.

4.2 TRAINABLE SKIP CONNECTIONS

The original transformer decoder layer can only attend to the same encoder output, often from the
last layer of the encoder. In contrast, CNN encoder-decoder architectures are often symmetric with
skip connections between encoder and decoder layers, e.g., UNet (Ronneberger et al., 2015). We
hypothesize that in our design, skip-connections between transformer encoder and decoder can sim-
ilarly be beneficial. To enable such skip connections, we propose a trainable skip connection module
that learns how to assign encoder memory to the decoder layers. Specifically, for a transformer with
Ley. and Lg.. number of layers, we learn a linear layer with parameters W € REenexLace guch

that: Z! = Zﬁ:f W, HF  where H® _ is an encoder representation from layer k and Z' is the
formed memory for decoder layer [. Note, the linearly formed memory cells are conditioned on, and
different, for each individual decoder layer. We refer the reader to the Supplemental Section A.3 for

details and experiments that validate the effectiveness of this design and discuss efficiency.

5 EXPERIMENTS

We test RandSAC in two drastically different settings: low-data and ImageNet-1K pre-training. We
evaluate the classification performance of our pretrained backbone with linear probing and fine-
tuning. We also test the transfer of our ImageNet pretrained model (Suppl. Sec. B.1 and B.2).

General Implementation Details. We adopt minimal data augmentation strategy and use the nor-
malized pixel value from (He et al., 2021) as our patch regression target. We obtain the reconstruc-
tion target by normalizing target pixels using the mean and standard deviation of the patch they
belong. Our loss function computes the mean squared error (MSE) between the predicted pixel
values and patch-normalized reconstruction target.

Low-data Pretraining. Vision transformers are known to be “data hungry” (Dosovitskiy et al.,
2021) and require a large dataset and a series of data augmentations to pretrain (Touvron et al.,
2021). To experiment in such a challenging setting, we evaluate our method on small-scale datasets.
We train a “square” and “blob” RandSAC models using 16 — 4 and 11 — 5 hierarchies respectively.

Pretraining on ImageNet-1K. ImageNet ILSVRC-2012 (Deng et al., 2009) is a popular large scale
image dataset with 1.28 million images and 1000 categories. We train “square” RandSAC (16 — 4).

Detailed implementation details for all three settings are given in Supplemental Appendix D.

5.1 EVALUATION PROTOCOLS

Linear Probing. This measure is widely used for quantifying the quality of representation learning.
It learns a linear classifier on top of the frozen feature of a pretrained encoder to classify the object-
level classification labels. Then performance is evaluated using the val/test set.

End-to-end Fine-tuning. A recent study (Chen et al., 2022) shows that linear evaluation favors
those methods with a center-bias such as contrastive learning. To complement linear probing, we
also include 100-epoch fine-tuning evaluation. In fine-tuning, all parameters are optimized for clas-
sification. The fine-tuning recipe follows the common practice of supervised ViT training.

5.2 RESULTS



Model Backbone Parameter Linear Fine-tune

Supervised DeiT (Touvron et al., 2021) ViT-B 86M N/A 81.2
Clustering DINO (Caron et al., 2021) ViT-B 86M 78.2 82.8
Contrastive Learning  MoCo v3 (Chen et al., 2021b) ViT-B 86M 76.7 83.2
Masked Image BEIT (Bao et al., 2022) ViT-B 86M N/A 83.2
Modeling MAE (He et al., 2021) ViT-B 86M 68.0 83.6
iGPT (Chen et al., 2020a) iGPT-S 76M 41.9 N/A

Autoregressive iGPT (Chen et al., 2020a) iGPT-M 455M 54.5 N/A
Image Modeling iGPT (Chen et al., 2020a) iGPT-L 1362M 65.2 N/A
RandSAC-Square (K=9) ViT-B 86M 72.3 83.7

RandSAC-Square (K=16—4) ViT-B 86M 68.9 83.9

Table 8: Comparison on ImageNet-1K. Methods except for Autoregressive Image Modeling use
image size 224 x 224. RandSAC uses image size 192 for pre-training and 224 x 224 for evaluation.

Table 7 shows low-data classifica-

tion performance for clustering pre- Model CIFAR10 CIFAR100

training (DINO (Caron et al., 2021)), LIN FT LIN FI

masked image encoding (MAE (He Supervised 91.3 64.13
et al., 2021)) and our segment au- DINO (Caron et al., 2021) 89.0 944 65.78 76.3
toregressive coding (RandSAC). The MAE (He et al., 2021) 873 959 540 81.1
MAE and DINO are pretrained using RandSAC-Square 92.1 96.7 69.7 815
their official implementations. For ~ RandSAC-Blob 939 969 679 79.6

MAE we use a 75% masking ratio as
suggested in their paper. All models- Table 7: Low-data pre-training on CIFAR 10 and 100.
are pretrained for 1600 epochs and RandSAC-Square uses 16 — 4 hierarchy while RandSAC-
evaluated with both 90-epoch linear Blob uses 11 — 5.

probing (LIN) and 100-epoch fine-

tuning (FT). Under the low data benchmark, RandSAC outperforms other non-autoregressive al-
gorithms and direct supervised training, by a large margin. Both the square and the blob hierarchical
versions work well. We postulate that the superior performance of RandSAC comes from random-
ized segment prediction pretext task. The autoregressive coding objective that we propose, which
is to traverse a hierarchy of randomly serialized visual segments, diversifies the small dataset, and
serves as a sort of data augmentation.

Table 8 shows ImageNet pretraining result. We compare RandSAC with clustering (DINO (Caron
etal., 2021)) and contrastive (MoCo v3 (Chen et al., 2021b)) transformer approaches, masked image
encoding (BEIT (Bao et al., 2022) & MAE (He et al., 2021)), and our autoregressive counterpart
iGPT (Chen et al., 2020a). We note, that due to limited access to computation, we were only able to
run RandSAC once, without any parameter tuning. Nevertheless, RandSAC outperforms all predic-
tive (non-contrastive methods) in linear probing, despite using a smaller image size for pretraining
(192 vs 224). It is also among the best in fine-tuning (on par with MAE and better than the rest).

Contrastive models do tend to perform better in linear probing, but also differ in pre-training. For
example, contrastive methods require two global crops of the input image while other methods
only process one crop; DINO uses 10 local crops. In addition, linear probing for DINO and iGPT
is evaluated using the last 4 and 5 transformer blocks, respectively, while MoCo v3, MAE, and
RandSAC only evaluate the last block output. A longer feature vector tends to result in better
linear probing accuracy (Caron et al., 2021; Chen et al., 2020a). Lastly, it is worth mentioning that
RandSAC can be easily combined with contrastive objectives in the future.

6 CONCLUSION

We present a new self-supervised pre-training strategy we call RandSAC. In doing so, we also study
and provide general insights into ViT pre-training (e.g., tokenization, segmentation, and serializa-
tion). We found randomized serialization of hierarchical image segments significantly improves
autoregressive pre-training of ViTs. In addition, we propose a new design for the transformer de-
coder, which facilitates improved performance. We show evidence that the proposed task and model
could be the key to developing a powerful GPT-like model for visual representation learning.
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A APPENDIX

A.1 EFFECT OF PATCH SI1ZE

As we discuss in the main paper (Sec-
tion 3.2), the control (mainly reduc-
tion) over the number of autoregres- Ixl 2x2 4x4 8x8 16x16
sive steps can be achieved by sim- LIN(T) 5979  69.63 7553 7534 60.77
ply varying the patch size P in the FT(1) 7970  87.18  87.52  83.10 69.23
patch-random model. The result

of this on CIFARI10 are illustrated in Table 9: Patch-random tokenization as a function of P on
Table 9. It can clearly be seen that a CIFARIO.

different patch size P does not lead to improved representation for a segment-free pat ch—-random
prediction task. The segment formation, on the other hand, as we show in the paper, does substan-
tially improve the performance.

A.2 BLOB SEGMENTS.

We define blob segments as irregular elliptical segments defined by a sampled Mixture of Gaussians.
To obtain K random blobs for a given image, we first sample K Gaussians with means sampled from
[u,(f)7 pfcy)] ~ U(—1.75,1.75) and standard deviations from [a,(f), o,(gy)] ~ U(0.5,1), where U is a
uniform distribution. Then we simply assign each token x; which is at a normalized position (z;, ;)
in the range of [—2, 2] (i.e., leftmost top token is at (-2,-2), rightmost bottom token is at (2,2)). The
assignment is done as follows:

(@) () 2
v 0
S(xi) = N x} P || Ok . 1
(x:) arg max q i || i 0 oW )

S is a function that maps tokens to segments. The sampling for both square and blob is only used
during segment predictive training and is disabled during evaluation. The computation cost for sam-
pling is, comparatively, negligible. Note that beyond the shape, blob segments allow for variability
in size squares do not.

A.3 TRAINABLE SKIP CONNECTIONS

We define a transformer design, with learnable skip connections, that we leverage for our main
experiments in Section 4.2 of the main paper. Here we provide additional details and evaluation of
that design which is illustrated in Figure 5 (right).

A transformer with L., encoder layers and L 4. decoder layers processes input X into L., hidden
representations H', . = (h!, ..., h!)). In traditional masked transformer, decoder memory is set to
Z! = HZL:n< for each layer [ of the decoder. Instead, we introduce a linear attention layer that allows
each decoder layer to attend over encoding hidden representations. In other words, we learn a linear
layer with parameters W € RLencXLace guch that: Z! = é;”f W, HE .. Note, the linearly
combined memory cells are conditioned on, and different, for each individual decoder layer.
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Figure 5: Candidate architectures for autoregressive segment prediction: Left: Two-stream
Transformer (Yang et al., 2019). Middle: Masked Transformer. Right: proposed Masked Trans-
former with Trainable Skip Connections.
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CIFAR10 ImageNet100

Enc  Dec LIN (1) FT (1) { Enc Dec LIN (1) FT (1)

Two-stream ™ OM 84.4 91.5 oM OM 62.4 84.6
Transformer SM  2M 88.0 93.6 2IM 9M 65.8 85.9
Transformer-skip 5M  2M 89.5 94.4 2IM 9M 70.7 87.3

Table 10: Performance of Architectures for RandSAC. See text for details.

To evaluate the effectiveness of the proposed Masked Transformer and trainable skip connection
layer for segment prediction, we compare three architectures:

Two-stream Transformer. This design was proposed in (Yang et al., 2019) for permutation-based
language modeling. It enables randomized target predictions by leveraging a two-stream attention
layer: the content stream encodes the full contextual information, and the query stream, which
only has access to the previous content, is designed to make current predictions. We apply this
architecture for our segment prediction by setting the content mask with our “source mask™ and
query mask with our “memory mask”. Model weights for both content stream and query stream are
shared (see Figure 5 (left) for illustration of design).

Masked Transformer. For masked transformer we utilize architecture described in Section 4.1
and illustrated in Figure 4; also in Figure 5 (middle). Compared with the Two-stream Transformer
above, this design enables communication among jointly predicted tokens within a segment. Also,
compared with Two-stream Transformer, weights for encoding and decoding the segment content
are decoupled in the Masked Transformer.

Masked Transformer with Trainable Skip Connections. A Masked Transformer only decodes
based on the (last layer) encoder output. A trainable skip connection layer we introduce dynam-
ically allocates memory assignments between intermediate layers of transformer-encoder-decoder
(see Figure 5 (right)). As can be seen from the results in Table 10, this variant does outperform the
two competitors on both CIFAR10 and ImageNet100 datasets. Compared with Masked Transformer,
the additional computation cost introduced by trainable linear layer is almost negligible (Table 11).

Two-stream  Transformer Transformer-skip

VIT-T  499.60 M 483.82 M 484.26 M
ViT-S 1094 G 6.73G 6.77G
ViT-B 3574 G 21.25G 2149G

Table 11: FLOPs of Three Candidate Architectures.

B EXPERIMENTS

B.1 SEMANTIC SEGMENTATION ON ADE20K.

We take our pretrained backbone as initialization and end-to-end fine-tune with UpperNet frame-
work on ADE20k to evaluate the performance of our pretrained model on downstream task, semantic
segmentation. We follow the same setting of BeiT (Bao et al., 2022). We compare our pre-training
with DeiT (Touvron et al., 2021), MoCo (Chen et al., 2021b), DINO (Caron et al., 2021), BeiT (Bao
et al., 2022), MAE (He et al., 2021) in Table 12. Our pre-training outperform DeiT, MoCo, DINO,
BeiT, MAE by 1.5, 1.3, 1.3, 2.0 and 0.4, respectively.

B.2 OBIJECT DETECTION ON COCO

We take our pretrained model as initialization and finetune with Mask RCNN on COCO. To adapt
the the four stages designs with strides of 4, 8, 16, 32 of FPN backbone in Mask RCNN, we evenly
divide all 12 Transformer blocks into 4 subsets and apply convolutions to upsample or downsam-
ple the intermediate feature maps for producing same scales as the requirement of FPN backbone.
The results are reported in Table 13. Our pre-training outperform DeiT (Touvron et al., 2021),
MoCo (Chen et al., 2021b), DINO (Caron et al., 2021), BeiT (Bao et al., 2022), and MAE (He et al.,
2021) by 3.0, 3.0, 4.1, 1.1, 0.6 on AP**°® and 2.1, 2.3, 3.5, 0.6, 0.1 on AP™ask,
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Method Crops Super. Self-super. mloU

DeiT (Touvron et al., 2021) 1 v X 47.0
MoCo v3 (Chen et al., 2021b) 2 X v 47.2
DINO (Caron et al., 2021) 2+10 X v 47.2
BEIiT (Bao et al., 2022) 1 X Ve 46.5
MAE 1 X v 48.1
RandSAC-Square (K=9) 1 X v 48.3
RandSAC-Square (K=16—4) 1 X v 48.5
Table 12: Semantic Segmentation on ADE20K
Method Pre-Epochs ~ APP°r  Apmask
DeiT (Touvron et al., 2021) 300 479 42.9
MoCo-v3 (Chen et al., 2021b) 300 479 42.7
DINO (Caron et al., 2021) 300 46.8 41.5
BEIT (Bao et al., 2022) 800 49.8 44 .4
MAE (He et al., 2021) 1600 50.3 44.9
RandSAC-Square (K=16—4) 1600 50.9 45.0

Table 13: Object Detection on COCO

B.3 VISUALIZATION OF RECONSTRUCTION ON IMAGENET-1K VALIDATION SET

We visualize for both RandSAC-Blob and RandSAC-Square reconstruction results below.

B.4 IMPLEMENTATION DETAILS

We describe implementation details omitted from the main paper due to space limitations here.

Implementation Details. We adopt minimal data augmentation strategy following (He et al., 2021):
resize cropping with scale range of [0.2, 1.0] and aspect ratio is sampled within range [3, %] , followed
by a 50% chance random horizontal flipping. We do not use color jittering, path dropping, or
gradient clip in pretraining. We use AdamW as optimizer and pretrain RandSAC for 1600 epochs.
We use a linear /r scaling rule (Goyal et al., 2017) that scales the base_Ir by batchsize/256. The Ir
is scheduled to warm-up from O to base_Ir, then decayed following a cosine-decay rule (Loshchilov
& Hutter, 2016). For both benchmarks, we use the normalized pixel loss introduced from (He et al.,
2021) as our patch regression target. Our loss function computes the mean squared error (MSE)
between the patch-normalized reconstruction and original image pixels.

B.5 EVALUATION PROTOCOLS

Linear Probing. Note that the dimension of the feature that the classifier is trained on, may influence
the eventual accuracy readout (Caron et al., 2021). A longer feature vector is likely to produce a
better linear result. Prior works such as (Caron et al., 2021) concatenate the feature vectors from the
last 4 ViT blocks and (Chen et al., 2020a) use feature vectors up to 15360 dimensions for evaluation.
We, however, use only the last encoder averaged feature output following (He et al., 2021; Chen
et al., 2021b) (i.e., 384 dimensions for ViT-S and 768 dimensions for ViT-B). The linear classifier is
trained for 90 epochs.

C DETAILS FOR SECTION 3

C.1 PRE-TRAINING SETTINGS FOR CIFAR10 AND IMAGENET100

The following is the experiment configurations for CIFAR10 and ImageNet100 from Section 3 of
the main paper, including Table 9 and 10 in Appendix. Details for end-to-end fine-tuning and linear
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probing are the same with ImageNet-1K. For Table 10, both CIFAR10 and ImageNet100 experi-
ments are trained using a “Blob” RandSAC model using hierarchy 11 —5.

C.1.1 CIFAR10 EXPERIMENTS.

The default setting is illustrated in Table 14. We pre-train ViT-Tiny encoder on CIFAR10. The ViT-
Tiny has 12 layers. Each layer has 192 dimensions and 3 self-attention heads. We chose patch size
4 x 4 and split the 32 x 32 images into 8 x 8 tokens. For segment decoding, we use 3 transformer
decoder layers following the same configuration for the encoder.

config value
optimizer AdamW (Loshchilov & Hutter, 2019)
base_Ir 0.001
weight decay 0.05
51,82 0.9, 0.999 (Carion et al., 2020)
batch size 512
learning rate schedule cosine decay (Loshchilov & Hutter, 2016)
warmup epochs 10
training epochs 800 (Table 1-6, 9) 1600 (Table 10)
augmentation RandomResizedCrop
norm_pixel_loss False (Table 1-6, 9) True (He et al., 2021) (Table 10)

Table 14: CIFAR10 Pre-training setting.

C.1.2 IMAGENET100 EXPERIMENTS.

Experiments that involve ImageNet100 are Table 2, 4, 6 and 10. We pre-train ViT-Small encoder
on ImageNet100 (Tian et al., 2020). The ViT-Small backbone has 12 layers. Each layer has 384
dimensions and 6 self-attention heads. We chose patch size 16 x 16 following (Dosovitskiy et al.,
2021) and split the 224 x 224 images into 14 x 14 tokens. For segment decoding, we use a 4 layer
transformer decoder and double the attention heads while keeping all other configurations the same
as the ViT-Small encoder.

config value
optimizer AdamW (Loshchilov & Hutter, 2019)
base_Ir 1.5e-4 (He et al., 2021)
weight decay 0.05
B1,52 0.9, 0.95 (Chen et al., 2020a)
batch size 4096
learning rate schedule | cosine decay (Loshchilov & Hutter, 2016)
warmup epochs 40
training epochs 800
augmentation RandomResizedCrop
norm_pixel_loss True

Table 15: ImageNet100 Pre-training setting.

D DETAILS FOR SECTION 4

D.1 LOW-DATA PRE-TRAINING SETTING

We pre-train ViT-Small on CIFAR10 and CIFAR100 (Krizhevsky, 2009). Both datasets are small-
scale image datasets containing 60000 32 x 32 images that belong to 10 and 100 categories, respec-
tively. The ViT-Small has 12 layers. Each layer has 384 dimensions and 6 self-attention heads. We
chose patch size 4 x 4 and split the 32 x 32 images into 8 x 8 tokens. For segment decoding, we
use a 6 transformer decoder layer. The attention-head and feature dimensions of the decoder are the
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same as the encoder. We also set the decoder for MAE (He et al., 2021) to have the same depth,
attention head, and dimension as ours.

config value
optimizer AdamW (Loshchilov & Hutter, 2019)
base_Ir 0.001
weight decay 0.05
B1.52 0.9, 0.999 (Carion et al., 2020)
batch size 512
learning rate schedule | cosine decay (Loshchilov & Hutter, 2016)
warmup epochs 10
training epochs 1600
augmentation RandomResizedCrop
norm_pixel_loss True (He et al., 2021)

Table 16: Low Data Pre-training setting.

D.2 IMAGENET-1K PRE-TRAINING SETTING

We resize the images to 192 x 192 during pretraining and set patch size P to be 16. We pretrain
square-RandSAC with hierarchy 16 —4 using ViT-Base (Dosovitskiy et al., 2021) on ImageNet-
IK following (Bao et al., 2022; He et al., 2021). ViT-Base model has 12 blocks, with each block
having dimension 768 and 12 heads. We chose an 8 layer decoder. The attention-head and feature
dimensions of the decoder are the same as the encoder.

config value
optimizer AdamW (Loshchilov & Hutter, 2019)
base_Ir 1.5e-4 (He et al., 2021)
weight decay 0.05
B1.52 0.9, 0.95 (Chen et al., 2020a)
batch size 4096
learning rate schedule | cosine decay (Loshchilov & Hutter, 2016)
warmup epochs 40
training epochs 1600
augmentation RandomResizedCrop
norm_pixel_loss True

Table 17: ImageNet-1K pre-training setting.

D.3 EVALUATION CONFIGURATIONS

Different from ViT (Dosovitskiy et al., 2021), where an additional class token is required for classifi-
cation, we directly use the averaged pooled feature out of the encoder for both fine-tuning and linear
probing. The hyper-parameters for both end-to-end finetuning and linear probing from Table 18 and
Table 19 are used for all experiments of this paper.

E IMPLEMENTATION DETAILS OF SEMANTIC SEGMENTATION

We end-to-end fine-tune our pre-trained ViT encoder with UpperNet framework on ADE20k to
evaluate the performance on downstream task, semantic segmentation. We follow the same setting
of BeiT (Bao et al., 2022). We take AdamW as the optimizer and set the batch size to 16, the layer-
wise decay rate to 0.65, the input resolution to 512 x 512, fine-tuning iterations are set to 160K
steps. During evaluation, we do not take multi-scale testing strategy in our experiment.
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config value
optimizer AdamW
base_Ir Se-4
weight decay 0.05
B1,52 0.9, 0.999 (Chen et al., 2020a)
layer-wise Ir decay 0.65
batch size 1024
learning rate schedule cosine decay (Loshchilov & Hutter, 2016)
warmup epochs 5
training epochs 100
augmentation RandAug (9, 0.5) (Cubuk et al., 2020)
label smoothing (Szegedy et al., 2016) 0.1
mixup (Zhang et al., 2017) 0.8
cutmix (Yun et al., 2019) 1.0
drop path (Huang et al., 2016) 0.1

Table 18: End-to-end fine-tuning setting.

config value
optimizer LARS (You et al., 2017)
base_Ir 0.1
weight decay 0
momentum 0.9
batch size 16384
learning rate schedule cosine decay
warmup epochs 10
training epochs 90
augmentation RandomResizedCrop

Table 19: Linear probing setting.

F CODE AND REPRODUCIBILITY

We include an implementation of RandSAC-Square model using PyTorch. We will release the com-
plete training/evaluation code and all pre-trained models upon acceptance of the paper.

import torch

import torch.nn as nn

import torch.nn.functional as F

4 from einops.layers.torch import Rearrange
5 from einops import rearrange

6 from torch import Tensor

7 from typing import Optional

)

9 class Transformer_skip (nn.Transformer) :

10 def __init__ (self, num_encoder_layers: int = 6, num_decoder_layers:
int = 4, xxkwargs):

1 """Transformer with learnable skip connects between encoder and
decoder."""

2 super () .__init__ (num_encoder_layers=num_encoder_layers,

3 num_decoder_layers=num_decoder_layers,

4 norm_first=True, =*xkwargs)

num_encoder_layers, num_decoder_layers)

1
1
1
15 self.skip_connection = nn.Linear (
1
1
1

def forward(self, src: Tensor, tgt: Tensor, src_mask: Optional[Tensor

] = None, tgt_mask: Optional[Tensor] = None,
19 memory_mask: Optional [Tensor] = None) —-> Tensor:
20
21 # Forward encoder layers
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22 memory = []

23 for layer in self.encoder.layers:

24 src = layer (src, src_mask=src_mask)

25 memory.append(src)

26

27 memory = self.encoder.norm(torch.stack (memory))
28

29 # Dynamic memory assignment

30 memory = self.skip_connection (

31 memory.flatten(l) .transpose (0, 1)

32 ) .transpose (0, 1).view( (-1, xmemory[0].shape))
33

34 # Forward decoder layers

35 for i, layer in enumerate (self.decoder.layers):
36 tgt = layer (tgt, memoryl[i],

37 tgt_mask=tgt_mask, memory_mask=memory_mask)
38

39 return self.decoder.norm(tgt)

41 class RandSAC (nn.Module) :

42 def __init__ (self, d_model, image_channel=3, image_size=192,
patch_size=16, M=4, xxtransformer_kwargs) :

43 super () .__init__ ()

44 mwn

45 RandSAC implementation with square segments and flat

serialization (no hierarchy) .

46 nnn

47 grid_size = image_size // patch_size

48 patch_dim = patch_size x patch_size » image_channel

49

50 self.M = M

51 self.patchify = Rearrange (

52 'n ¢ (h pl) (wp2) -> n h w (pl p2 c)’, pl=patch_size, p2=
patch_size)

53 self.in_proj = nn.Linear (patch_dim, d_model)

54

55 self.transformer = Transformer_skip (

56 d_model=d_model, =*x*transformer_kwargs)

57

58 self.out_proj = nn.Linear (d_model, patch_dim)

59 self.pos = nn.Parameter (torch.zeros(l, grid_size, grid_size,
d_model))

60 torch.nn.init.normal_(self.pos, std=.02)
61

62 self.register_buffer(

63 "mask’, torch.repeat_interleave (

64 torch.repeat_interleave (

65 nn.Transformer.generate_square_subsequent_mask (

66 sz=grid_sizex*2 // M*x2 - 1
67 ) o

68 repeats=Mx*2, dim=0

69 ) 14

70 repeats=M+*2, dim=1

72 )

74 def serialize(self, patches):

75 """Flat serialization"""

76 dl, d2 = patches.shape[-1], self.pos.shape[-1]

77 tokens = torch.cat (

78 [patches, self.pos.repeat (patches.shape[0], 1, 1, 1)], dim
=1)

79 seqg = rearrange (

80 tokens, 'n (h ml) (w m2) d -> n (h w) ml m2 d’, ml=self.M, m2
=self.M)
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90
91
92
93
94
95

96

97

98
99
100
101
102
103

noise = torch.rand(*seqg.shape[:2], device=seq.device)

ids_shuffle = torch.argsort (noise, dim=1)

seq = torch.gather (seq, dim=1, index=ids_shuffle.view (
*seq.shape([:2], 1, 1, 1) .expand_as (seq))

return seq.flatten(l, 3).transpose (0, 1).split([dl, d2], dim=-1)
def forward(self, img, label=None) :

"""Forward RandSAC"""
patches = self.patchify (img)

patches, pos = self.serialize (patches)

seg_size = self .Mx*2

embedings = self.in_proj(patches)

dec_out = self.transformer (src=(embedings + pos) [:—-seg_size], tgt

=pos[seg_size:],
src_mask=self.mask, tgt_mask=self.mask
, memory_mask=self.mask)
pixel_recon = self.out_proj(dec_out)

loss = F.mse_loss (pixel_recon, patches[seg_size:])

return loss

G VISUALIZATION OF TOKENIZATION AND SERIALIZATION

We visualize different tokenization and serialization schemes, discussed in Section 3 of the main
paper, in the video file included as part of the supplemental materials.
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Figure 6: Visualization of image reconstruction from “Blob” and “Square” RandSAC.
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