
SELF-SUPERVISION THROUGH RANDOM SEGMENTS
WITH AUTOREGRESSIVE CODING (RANDSAC)

Tianyu Hua1,4,6 Yonglong Tian2 Sucheng Ren3 Michalis Raptis4 Hang Zhao5 Leonid Sigal1,6,7
1University of British Columbia 2Massachusetts Institute of Technology
3South China University of Technology 4Google Research
5Tsinghua University 6Vector Institute for AI 7Canada CIFAR AI Chair

ABSTRACT

Inspired by the success of self-supervised autoregressive representation learning
in natural language (GPT and its variants), and advances in recent visual architec-
ture design with Vision Transformers (ViTs), in this paper, we explore the effect
various design choices have on the success of applying such training strategies
for visual feature learning. Specifically, we introduce a novel strategy that we
call Random Segments with Autoregressive Coding (RandSAC). In RandSAC,
we group patch representations (image tokens) into hierarchically arranged seg-
ments; within each segment, tokens are predicted in parallel, similar to BERT,
while across segment predictions are sequential, similar to GPT. We illustrate
that randomized serialization of the segments significantly improves the perfor-
mance and results in distribution over spatially-long (across-segments) and -short
(within-segment) predictions which are effective for feature learning. We illus-
trate the pertinence of these design choices and explore alternatives on a number
of datasets (e.g., CIFAR10, CIFAR100, ImageNet). While our pre-training strat-
egy works with vanilla Transformer, we also propose a conceptually simple, but
highly effective, addition to the decoder that allows learnable skip-connections to
encoder’s feature layers, which further improves the performance.

1 INTRODUCTION

Deep learning has powered enormous successes in Computer Vision and NLP over the past 10, or so,
years. It has lead to significant improvements in object detection (Redmon et al., 2016), segmenta-
tion (He et al., 2017), as well as higher-level cognition tasks (e.g., Visual Question Answering (Antol
et al., 2015), Visual Navigation (Mayo et al., 2021), etc.). These successes have been enabled by
both advances in parallel hardware (GPUs) and, perhaps more importantly, large-scale task-specific
labeled datasets that allow supervised learning. This appetite for large data has, until very recently,
stagnated progress, particularly in building general-purpose visual architectures.

These types of considerations date back to the early days of machine learning, and deep learning in
particular, where it has long been postulated that unsupervised, or self-supervised, learning could
allow learning of robust and general feature representations that can then be readily used (or fine-
tuned) to target tasks. Self-supervised learning has been explored in computer vision in various
forms: denoising autoencoders (Pathak et al., 2016; Vincent et al., 2008), colorization (Zhang et al.,
2016) or jigsaw puzzle (Doersch et al., 2015; Noroozi & Favaro, 2016) proxy objectives. However,
the success of such self-supervised pre-training was somewhat limited. In contrast, the success of
similar self-supervised ideas in NLP has been much more dominant with GPT (Brown et al., 2020)
and BERT (Devlin et al., 2018) architectures, and their variants. These pre-training strategies now
enable state-of-the-art performance on a wide array of natural language tasks.

Recent advances in vision architectures, such as Vision Transformers (ViT) (Dosovitskiy et al.,
2021; Liu et al., 2021), which serialize visual 2d data, have opened an opportunity to apply similar
large scale pre-training techniques in vision, with increasing successes. Self-supervised pre-training
techniques with ViTs can be characterized into two broad categories: contrastive and predictive;
as well as their combinations. In contrastive learning, pre-training architectures are learned to be
invariant to certain perturbations in data (e.g., spatial shifts, color jitter) by forming positive and

1

Random Segments with
Autoregressive Coding

Figure 1: Randomized Autoregressive Segment Prediction. Illustration of our autoregressive seg-
ment prediction framework (RandSAC). RandSAC breaks the image into tokens which are arranged
into segments (here squares of size 2× 2). The autoregressive (GPT-style) transformer-based model
is then trained to predict segments in a randomly sampled serialization order. As a result, tokens
within segments are predicted in parallel, while segments themselves are predicted sequentially.

negative pairings of augmented data samples. This is a powerful technique, but requires design-
ers to make assumptions about invariances that the architecture should learn. In addition, purely
contrastive models tend to incorporate center bias (Chen et al., 2022; 2021a), which makes them
less transferable for tasks such as segmentation where non-object centric regions need to be mod-
eled. Alternatively, predictive models learn to predict elements of the scene, either in parallel by
reconstructing masked regions/tokens (Bao et al., 2022; He et al., 2021) (a.k.a., masked image mod-
eling or BERT-style pre-training) or to predict images in auto-regressive language-modeling manner
(Chen et al., 2020a) (a.k.a., GPT-style pre-training). It is interesting to observe that on the NLP
side, GPT models have shown to be powerful, while vision models have gravitated more towards
BERT-style pre-training both with visual (Chen et al., 2020a; Bao et al., 2022) and multi-modal data
(Lu et al., 2019; Su et al., 2020).

Motivated by this, we adopt an autoregressive pre-training strategy (see Figure 1) and ask a number
of important empirical questions about the use of such pre-training and what makes it effective.
Specifically, (1) we ask what granularity (scale) and shape of tokens (patches, blobs) is most effective
and how it affects the performance? (2) How best to serialize predictions? For example, previous
approaches, such as image GPT (Chen et al., 2020a), leveraged raster ordering. While such ordering
is perhaps “optimal” from correlation and predictive/generative (van den Oord et al., 2016) points
of view, we show that it is not optimal for general feature learning. We also explore (3) whether
deterministic vs. stochastic tokenization and serialization are helpful. Finally, (4) we explore the
effective interactions between the decoder and encoder layers; proposing a new ViT architecture that
uses learned skip connections between encoder and decoder layers to improve performance.

Contributions. We make two core contributions. First, we propose a new pre-training strategy that
leverages (randomly) sampled hierarchical segment cluster traversals to autoregresively train ViT
models. This allows both short- and long-term spatial predictions, allowing distribution over easy
and hard predictive tasks1. We note that the effectiveness of single random segment inpainting was
initially observed in (Pathak et al., 2016), but is notably missing from most recent self-supervised
strategies. Our pre-training strategy generalizes this observation and strategy to hierarchical and
serialized predictions. Second, we propose a flexible ViT decoder that at each decoding layer learns
to dynamically attend over different levels of features in the encoder. This in effect creates learned
skip-connections, as compared to UNet (Ronneberger et al., 2015) and others that require fixed
connections in a symmetric encoder-decoder design, which further improve the performance.

Discussion. The above pre-training strategy, while empirically motivated, is also loosely modeled
after human vision. Humans attend to the scene by a sequence of foveal observations, where an eye
shifts over a series of fixation points; such motions are called saccades. Some saccades are long-
range and voluntary, while others are local and involuntary (a.k.a., microsaccades (Rolfs, 2009)).
Our segments can be “viewed” as predictive foveal regions, and the hierarchical serialization of such
regions as the combination of micro and macro saccades. The significant difference from human
vision, is that in human vision saccades are purposeful and have been shown to be conditioned on the
task (Yarbus, 1967). In contrast, our pre-training such “saccadic” movements are randomly sampled.

1This is, in part, motivated by (He et al., 2021) which observe that in BERT-style pre-training high amount
of masking (as much as 75%), which corresponds to harder predictive tasks, leads to better feature learning.

2

Learning a purposeful policy for hierarchical serialization of segments, would be an interesting
future work. However, this is a difficult task that is beyond the scope of this paper.

2 RELATED WORK
Transformer-based Natural Language Modeling. In the field of natural language processing
(NLP), two dominant self-supervised language modeling paradigms are Masked Language Mod-
eling, such as BERT (Devlin et al., 2018), and GPT-style autoregressive pre-training (Brown et al.,
2020; Radford & Narasimhan, 2018; Radford et al., 2019). Given a sentence, BERT and its variants
(Lan et al., 2020; Liu et al., 2019) pre-train transformer encoders by predicting randomly masked
out input words, referred to as tokens. Such frameworks model the bidirectional (contextual) de-
pendencies between the visible tokens and the corrupted/masked tokens. GPT, which can be viewed
as a special case of the transformer decoder, on the other hand, models the left-to-right natural
order of languages. Recent advances in large-scale generative language modeling show powerful
few-shot capabilities and are believed to be a promising path towards general machine intelligence.
Permutation-based autoregressive model (Yang et al., 2019) was proposed to bridge the gap be-
tween autoregressive language modeling and masked autoencoding by maximizing the likelihood
over all permutations of the factorization order. We take inspiration from GPT-style autoregressive
pre-training in formulating our model, and focus on important aspects of mapping such strategy onto
visual (ViT) models, where tokenization and serialization are not as well defined as in language.

Contrastive Image Learning. Contrastive methods (Chen et al., 2020b; He et al., 2020; van den
Oord et al., 2018; Tian et al., 2020) and their negative-sample-free variants (Chen & He, 2021; Grill
et al., 2020; Hua et al., 2021; Zbontar et al., 2021) have emerged as a dominant research direction
for unsupervised/self-supervised visual representation learning over the past 1–2 years. By building
agreement among augmented versions of the input data, image features that are invariant of those
perturbations can be learned. This method implicitly assumes a set of representational invariance
(e.g., color and spatial invariance). Once such representations are learned they are either used di-
rectly, or fine-tuned, to one or more downstream supervised tasks (e.g., classification, detection,
segmentation). When a downstream task violates the aforementioned invariance assumptions, they
display poor transferability (Xiao et al., 2021). For example, the center-bias (Chen et al., 2022) and
small-object feature suppression (Chen et al., 2021a) have been observed in prior works. Masked
image modeling & autoregressive image encoding, of which our method is an instance, tend to
perform better in such circumstances (Bao et al., 2022; He et al., 2021).

Masked Image Modeling. Early CNN-based masked image modeling, also known as image in-
painting (Doersch et al., 2015; Pathak et al., 2016; Yu et al., 2018), has shown promising results
but failed to become a predominant training paradigm, in part, due to its inferior performance with
respect to large-scale supervised pre-training (e.g., on ImageNet). The recent trend of incorporating
transformers into vision architectures (Carion et al., 2020), or replacing CNN completely (Doso-
vitskiy et al., 2021), by tokenizing images into a grid of non-overlapping patches, have enabled
application of large scale NLP pretraining techniques in vision, e.g., (Bao et al., 2022; He et al.,
2021; Wei et al., 2021; Xie et al., 2022). Directly applying them to image pixels, however, leads to
inferior performance (Chen et al., 2020a; Dosovitskiy et al., 2021). To this end, BEiT (Bao et al.,
2022) proposes to predict discrete masked image tokens. Masked Autoencoder (MAE) (He et al.,
2021) suggests a 75% random masking ratio for image modeling; and SimMIM (Xie et al., 2022)
studies different masking strategies for pretraining. MaskFeat (Wei et al., 2021) investigates five dif-
ferent reconstruction targets. TinyMIM (Ren et al., 2023) introduces distilling token relations from
MAE model, and SplitMask (El-Nouby et al., 2021) illustrates the ability of BEiT to train with small
scale pre-training datasets. Our proposed RandSAC strategy, is related to masked image modeling,
but is autoregressive in nature.

Autoregressive Image Encoding. Compared with BERT-style pre-training for vision transformers,
GPT-like autoregressive models have been overlooked due to their complexity introduced by dense
image pixels. In image GPT (Chen et al., 2020a), images are limited to 64× 64 = 4096 pixels. The
4096 pixels are tokenized and serialized in raster-order before feeding into a causal transformer. The
quadratic time/space complexity of self-attention prevents the scaling of such approaches.

3 RANDOM SEGMENT WITH AUTOREGRESSIVE CODING
RandSAC learns representations through autoregressive image segment prediction. It partitions a
tokenized image into random spatially coherent non-overlapping (hierarchical) segments, serializes
them, and then autoregressively predicts tokens within these ordered segments. As a result, the token

3

predictions between segments are sequential, while within a segment are parallel. This training
strategy has four important components that we will explore:

• Tokenization. To use a transformer-based architecture, images need to be tokenized, i.e.,
transformed into a set of basic image elements. For example, some approaches discretize
images (Chen et al., 2020a), while others patchify them (Cordonnier et al., 2020; Bao et al.,
2022; Dosovitskiy et al., 2021; He et al., 2021; Xie et al., 2022). Tokenization strategy
dictates the scale and number of tokens, which affects performance and computation cost.

• Segment Partitioning. After tokenizing the image, the tokens are grouped into spatially
coherent segments. Those segments are autoregressively predicted following some pre-
scribed serialization order. The size and shape of segments and the way they are traversed
can affect training and downstream performance.

• Serialization Strategy. Serialization strategy affects the traversal order of segments. In
prior autoregressive modeling (Chen et al., 2020a) raster-order is assumed. We show that
stochastic (i.e., randomized) serialization is much more effective.

• Transformer Architecture. In a GPT-style autoregressive model, the target sequence is
identical to the shifted input sequence throughout training. However, for random segment
prediction, the target sequence order varies for each sample. To enable this, we leverage a
transformer decoder which takes as input position of each token and outputs its predicted
representation conditioned on the transformer encoded context. In addition, we propose a
novel trainable skip-connection layer for efficient decoding.

In the following section, the default option for model architecture is the vanilla masked transformer
introduced in Section 4. We experiment with two different datasets, CIFAR10 (Krizhevsky, 2009)
and, where appropriate, ImageNet100 (Tian et al., 2020). Evaluation protocols are described in
Section 5, and implementation details are in the Supplemental. We use a simple mean square error
(MSE) as our pixel reconstruction objective.

3.1 FROM PIXELS TO TOKENS

Tokenization. We start from raster-order serialization and compare two different tokenization strate-
gies introduced by iGPT (Chen et al., 2020a) and ViT (Dosovitskiy et al., 2021). Assume a datasetD
of images X ∈ RH×W×C , where H,W,C are the height, width, and the number of channels of the
image. We reshape each image into N = HW/P 2 patches, where P is the resolution of each patch.
Tokens are obtained by linearly projecting the patches X = {xi}Ni=1 and serialized row-by-row.

For pixel prediction experiment, we set P = 1, letting image patch size be 1×1 pixels (see Figure 2
(b)). For ViT style patch prediction experiment, we split the 32× 32 CIFAR10 image into 8× 8 =
64 patches (see Figure 2 (c)), each patch consists of 4 × 4 pixels (P = 4). Note that for a fair
comparison, we didn’t strictly follow iGPT, where they minimize the negative log-likelihood of the
quantized RGB values. We simply adopt a mean squared error (MSE) between the predicted and
target pixel values for all our experiments following (He et al., 2021). Note that for visualizations in
Figure 2 we use a downsampled CIFAR10 image.

pixel-raster patch-raster
LIN(↑) 41.70 55.53
FT(↑) 59.35 78.67

Table 1: Tokenization on CIFAR10.

The results for these two tokenization options
are illustrated in Table 1 (additional scales
are in Supplemental) under pixel-raster
and patch-raster respectively in terms of
linear probing and fine-tuning accuracy (see
Sec. 5.1 for definition of metrics). From the
point of view of representation learning, patches are substantially better. Further, computationally,
the self-attention mechanism in a transformer uses O(n2) in both time and space with respect to the
sequence length. Hence for pixel tokenization, the complexity is O((HW)2). For patches, the com-
plexity is reduced to O((HW/P 2)2). In our CIFAR10 experiment, when P = 4, the complexity of
training is lowered by a factor of P 4 = 256. Hence, patches result in better tokenization.

Stochastic Serialization. Randomized pretext tasks play an important role in a range of self-
supervised learning algorithms. In NLP, for example, (Yang et al., 2019) improves fixed-order
autoregressive language models by allowing all possible permutations of the factorization order

4

(a) (b) (c) (d) (e) (f)
Figure 2: Autoregressive Prediction Schemes. Left-to-right: (a) original image from CIFAR 10;
(b) raster-order pixel prediction; (c) raster-order patch prediction; (d) stochastic patch prediction; (e)
stochastic square segment prediction (M = 2); (f) stochastic blob segment prediction (K = 5).

patch-raster patch-random
CF10-LIN(↑) 55.53 75.53
CF10-FT(↑) 78.67 87.52

IN100-LIN(↑) 49.35 53.02
IN100-FT(↑) 82.13 84.15

Table 2: Serialization on CIFAR10 and Ima-
geNet100.

during training. For autoregressive ViT train-
ing of stochastic token serialization, we adopt a
similar strategy by shuffling the token sequence
for each image sample. Note that this does
not mean that our prediction sequence is “or-
derless”. By moving from fixed raster-order
prediction to randomized sequence prediction,
keeping all else the same, we observe 20% im-
provement in linear evaluation and ∼10% in
fine-tuning (Table 2 CIFAR10). Improvements on ImageNet100 are more modest (3.67% and ∼2%
respectively), but still significant and overall stochastic serialization is clearly superior.

3.2 GROUPING TOKENS INTO SEGMENTS

In this section, we introduce a concept of segments, which we define as groups (or clusters) of
tokens. Effectively each segment forms an equivalency class within our serialized order, where
tokens are encoded and decoded in parallel. Across segments, however, predictions are still strictly
sequential. The motivation for introducing segments is two-fold. First, it allows us to reduce the
overall number of autoregressive prediction steps. Second, it allows our autoregressive strategy to
effectively leverage aspects of parallel, BERT-style, prediction locally. The autoregressive prediction
steps can also be changed without introducing parallel prediction, simply by changing the patch size
P . This is ineffective, however, as we show in Supplemental Section A.1. In what follows, we
experiment with two spatially coherent segment strategies (square and blob) and then look at the
importance of this spatial coherence in segment formation.

Square Segments. Once we have a grid of N patches of size H
P ×

W
P , we reshape the tokens into a

Square size M 1 2 4

LIN(↑) 75.53 81.38 79.38
FT(↑) 87.52 91.38 90.23

Table 3: Square-random serialization as a func-
tion of M on CIFAR10.

set of square segments M ×M , where the M
denotes the size of the square. The segment
count K of an image of H × W is thus de-
fined by: K = H×W

(P×M)2 . For example, in our
CIFAR10 experiment, an input image of size
32× 32 is tokenized into a grid of 8× 8 tokens,
each of which is a 4× 4 pixel patch. We set the
square size M = 2. The tokens are then split
into (8/2)2 = 16 segments, which are shuffled
randomly for autoregressive prediction as before. We list the representation quality with different
square segment size (M) in Table 3. Since the grid size is 8 × 8 for CIFAR10, we chose square
sizes M = [1, 2, 4]. Note that, when M = 8, there will be only one segment (e.g., K = 1) and no
prediction can be made; M = 1 is equivalent to no segments (i.e., patch-random in Table 2).

Blob Segments. We define blob segments as irregular elliptical segments defined by a sampled
Mixture of Gaussians. To obtain K random blobs for a given image, we first sample K Gaussians
with a range of means and standard deviations in the image space. Then we simply assign each
token xi which is at position (xi, yi) to the closest mixture component using Mahalanobis distance.
We illustrate the square and blob strategies in Figure 2 (e) and (f), respectively. Note that beyond the
shape, blob segments allow for variability in size squares do not. See details in Suppl. Section A.2.

Analysis. As can be seen from Table 4, both square segments and blob segments surpass segment-

5

patch-random square-random blob-random
CF10-LIN(↑) 75.53 81.38 82.52
CF10-FT(↑) 87.52 91.38 91.53

IN100-LIN(↑) 53.02 64.78 65.00
IN100-FT(↑) 84.15 86.22 85.16

Table 4: Segments on CIFAR10.

free patch-based autoregression
(see square-random and
blob-random compared with
patch-random). The blob
segments and square segments
behave similarly. In addition,
with blobs, we can easily mod-
ify the number of segments.
However, with squares, the
segment number is constrained by the token number. A grid of 8×8 tokens can either be segmented
into 4× 4 or 2× 2 squares. A grid size of 13× 13 can not be divided into any kind of squares. Blob
segments, on the other hand, are more flexible.

Table 5: Segment Coherence. Representation quality with
different number of segments. Below we randomly permute
the segments such that their spatial coherence is disrupted.

Segment K 3 5 7 9 11

LIN(↑) 80.87 81.82 82.52 81.88 82.02
FT(↑) 90.77 90.88 91.14 91.53 91.24

Shuffle 3 5 7 9 11

LIN(↑) 76.73 77.73 76.69 78.59 76.99
FT(↑) 89.63 89.75 89.22 90.00 89.15

Do segments need to be spatially
coherent? The idea of a “segment”
puts emphasis on the spatial coher-
ence of the tokens. The upper part
of Table 5 shows the performance of
feature representations with respect
to the number of blob segments K.
In the bottom, we randomly shuffle
all tokens so that tokens in any given
“segment” no longer spatially coher-
ent. We observe that feature learning
deteriorates when segments are not spatially coherent. Note that segments without spatial coherence
are still consistently better than patch-random from Table 4.

3.3 HIERARCHICAL SEGMENT SERIALIZATION

Images are hierarchical: a visual region of an image can often be interpreted as a component of a
greater whole (Hinton, 2021) (e.g., parts make up object, object scenes, and so on). Such composi-
tionality motivates hierarchical groupings. In our case of random segment serialization, we postulate
that similar hierarchical traversal order, which adds certain degree of locality, may be useful.

In Figure 3 we illustrate this concept that we operationalize. An image is first partitioned into 16
square segments, indicated by different colors and shades. We then group these 16 segments into
4 larger partitions following the same logic for segment generation. Different colors (e.g., blue,
orange, purple, and green) represent these partition groups; segments that share partition differ in
shade. Hierarchical serialization is obtained by randomly, and sequentially, predicting the segments
inside of each partition group (shown by the black arrows), and then jumping to another partition
group at random. Note that the segment-level (local) and partition-level (global) serializations are
both random. This idea can be extended to deeper hierarchies, with the depth of the hierarchy and
grouping chosen based on the resolution and nature of the dataset.

Experimental results that compare flat serialization to two-level hierarchy are illustrated in Table 6.
We perform these experiments on both CIFAR10 and ImageNet100 datasets. Our experiments show
that hierarchical serialization and prediction consistently outperform the flat counterparts.

Flat Serialization (Square) Hierarchical Serialization (Square) Flat Serialization (Blob) Hierarchical Serialization (Blob)

Figure 3: Hierarchical Segment Serialization. We partition an image into a hierarchy of segments
(segments are illustrated by color and tokens within segment by shade). Autoregressive prediction
is done by following a traversal of randomly generated hierarchical partitions.

6

Table 6: Hierarchical Segment Prediction. The number on top indicates the number of segments
K (e.g., 4, 16) – flat/no-hierarchy; the 16 → 4 indicates hierarchical variants with two levels – 16
segments grouped into 4 partitions. Left/square and middle/blob results correspond to Fig. 3.

Segments (square) 4 16 16→4 Segments (Blob) 3 7 7→3 4 16 16→4

CF10 Linear (↑) 79.38 81.38 82.46 CF10 Linear (↑) 80.87 82.52 82.71 81.09 80.97 82.61
CF10 Fine-tune (↑) 89.61 91.38 91.66 CF10 Fine-tune (↑) 90.77 91.14 91.20 90.63 90.57 91.15

IN100 Linear (↑) 55.88 64.90 65.81 IN100 Linear (↑) 56.26 63.36 64.64 60.62 64.50 64.92
IN100 Fine-tune (↑) 78.81 85.32 85.55 IN100 Fine-tune (↑) 81.34 84.36 84.48 83.07 86.06 86.18

4 ARCHITECTURE

Image GPT (Chen et al., 2020a) performs autoregressive prediction by shifting the source sequence
one pixel to the right. Since the raster ordering of iGPT is fixed for all samples, the position for
the next target token is implicitly modeled by the transformer. In contrast, in RandSAC, the next
token depends on the serialization strategy, thus can vary from sample to sample during training.
Moreover, when predicting the next segment, the tokens within each segment should be predicted
jointly (in parallel). This requires lateral pathways that allow communication within target segments.
To tackle the aforementioned problems, we propose to utilize the transformer decoder.

4.1 MASKED TRANSFORMER FOR SEGMENT PREDICTION

A standard transformer has an encoder-decoder structure (Vaswani et al., 2017). The encoder of a
transformer maps a list of tokens X = (x1, ...,xn) to a sequence of hidden representations Z =
(z1, ..., zn), also known as the memory. Given X and source sequence Xsrc = (x1, ...,xn−1),
during training, the decoder masks the internal attention matrix with a causal mask and predicts the
target sequence Xtgt = (x2, ...,xn) autoregressively. Each layer of the transformer encoder has
two sub-layers: multi-head self-attention and a fully connected feed-forward network; both have
residual connections. The decoder layer has a third attention sub-layer, which performs multi-head
attention from the hidden representation Z to the target representation Xtgt. We leverage attention
masking to achieve autoregressive segment prediction using this framework; we discuss details next.

Autoregressive Segment Encoder. Figure 4 shows our transformer encoder block and a decoder
block. We leave out the fully connected layer and residual connections for simplicity and only show
the attentions. In this visualization, there are six patches. These six patches are then grouped into
three segments denoted by colors: green, blue, and red. The random segment serialization order
is green → blue → red. One layer of transformer encoder is illustrated on the left in light green.
Serialized six patches/tokens with added fixed sine-cosine positional encoding are the input to the
encoder. The encoder attention is masked following the serialized segment order: segments can
attend to themselves and preceding segments only. They are restricted from looking at future seg-
ments using the, illustrated, source mask. Lastly, since the last segment does not have a succeeding
segment, we only input the first four patches and leave out the two patches in the last segment.

Memory

Memory Mask

Target Mask

Autoregressive Segment Prediction

Input Patches Target Patches

Target Queries

En
co

de
r L

ay
er

D
ecoder Layer

Source Mask

Figure 4: Attention-masking for Autoregressive Segment Prediction. For an image converted
into a sequence of patches, we adopt a masked encoder-decoder transformer (Vaswani et al., 2017)
for autoregressive segment prediction. In the encoder, causal source mask enables a given segment
to only attend over preceding segments and the tokens within itself. The decoder, given the position
of tokens (i.e., target queries), predicts tokens within each segment conditioned on encoded previous
segments (enabled by the memory mask).

7

Autoregressive Segment Decoder. The input for the transformer decoder, illustrated on the right of
Figure 4 in pink, is a set of fixed positional encodings to guide the reconstruction of target segments
and tokens. Similar to the encoder input where we leave out the last segment patches, in the decoder,
we shift the target sequence one segment to the left and ignore the positional encodings of the first
segment because it does not have a preceding segment. The self-attention layer of the decoder
is masked the same way as the encoder for autoregressive segment decoding. This layer enables
co-attention over preceding and current segments for context.

Evaluation. During linear evaluation and fine-tuning, both the attention masks and decoder are
removed, and the encoder is used as feature extractor for the downstream supervised classification.

4.2 TRAINABLE SKIP CONNECTIONS

The original transformer decoder layer can only attend to the same encoder output, often from the
last layer of the encoder. In contrast, CNN encoder-decoder architectures are often symmetric with
skip connections between encoder and decoder layers, e.g., UNet (Ronneberger et al., 2015). We
hypothesize that in our design, skip-connections between transformer encoder and decoder can sim-
ilarly be beneficial. To enable such skip connections, we propose a trainable skip connection module
that learns how to assign encoder memory to the decoder layers. Specifically, for a transformer with
Lenc and Ldec number of layers, we learn a linear layer with parameters W ∈ RLenc×Ldec , such
that: Zl =

∑Lenc

k=1 Wl,kH
k
enc, where Hk

enc is an encoder representation from layer k and Zl is the
formed memory for decoder layer l. Note, the linearly formed memory cells are conditioned on, and
different, for each individual decoder layer. We refer the reader to the Supplemental Section A.3 for
details and experiments that validate the effectiveness of this design and discuss efficiency.

5 EXPERIMENTS

We test RandSAC in two drastically different settings: low-data and ImageNet-1K pre-training. We
evaluate the classification performance of our pretrained backbone with linear probing and fine-
tuning. We also test the transfer of our ImageNet pretrained model (Suppl. Sec. B.1 and B.2).

General Implementation Details. We adopt minimal data augmentation strategy and use the nor-
malized pixel value from (He et al., 2021) as our patch regression target. We obtain the reconstruc-
tion target by normalizing target pixels using the mean and standard deviation of the patch they
belong. Our loss function computes the mean squared error (MSE) between the predicted pixel
values and patch-normalized reconstruction target.

Low-data Pretraining. Vision transformers are known to be “data hungry” (Dosovitskiy et al.,
2021) and require a large dataset and a series of data augmentations to pretrain (Touvron et al.,
2021). To experiment in such a challenging setting, we evaluate our method on small-scale datasets.
We train a “square” and “blob” RandSAC models using 16→ 4 and 11→ 5 hierarchies respectively.

Pretraining on ImageNet-1K. ImageNet ILSVRC-2012 (Deng et al., 2009) is a popular large scale
image dataset with 1.28 million images and 1000 categories. We train “square” RandSAC (16→ 4).

Detailed implementation details for all three settings are given in Supplemental Appendix D.

5.1 EVALUATION PROTOCOLS

Linear Probing. This measure is widely used for quantifying the quality of representation learning.
It learns a linear classifier on top of the frozen feature of a pretrained encoder to classify the object-
level classification labels. Then performance is evaluated using the val/test set.

End-to-end Fine-tuning. A recent study (Chen et al., 2022) shows that linear evaluation favors
those methods with a center-bias such as contrastive learning. To complement linear probing, we
also include 100-epoch fine-tuning evaluation. In fine-tuning, all parameters are optimized for clas-
sification. The fine-tuning recipe follows the common practice of supervised ViT training.

5.2 RESULTS

8

Model Backbone Parameter Linear Fine-tune

Supervised DeiT (Touvron et al., 2021) ViT-B 86M N/A 81.2

Clustering DINO (Caron et al., 2021) ViT-B 86M 78.2 82.8

Contrastive Learning MoCo v3 (Chen et al., 2021b) ViT-B 86M 76.7 83.2

Masked Image BEIT (Bao et al., 2022) ViT-B 86M N/A 83.2
Modeling MAE (He et al., 2021) ViT-B 86M 68.0 83.6

iGPT (Chen et al., 2020a) iGPT-S 76M 41.9 N/A
Autoregressive iGPT (Chen et al., 2020a) iGPT-M 455M 54.5 N/A

Image Modeling iGPT (Chen et al., 2020a) iGPT-L 1362M 65.2 N/A
RandSAC-Square (K=9) ViT-B 86M 72.3 83.7
RandSAC-Square (K=16→4) ViT-B 86M 68.9 83.9

Table 8: Comparison on ImageNet-1K. Methods except for Autoregressive Image Modeling use
image size 224× 224. RandSAC uses image size 192 for pre-training and 224× 224 for evaluation.

Model CIFAR10 CIFAR100
LIN FT LIN FT

Supervised 91.3 64.13
DINO (Caron et al., 2021) 89.0 94.4 65.78 76.3
MAE (He et al., 2021) 87.3 95.9 54.0 81.1
RandSAC-Square 92.1 96.7 69.7 81.5
RandSAC-Blob 93.9 96.9 67.9 79.6

Table 7: Low-data pre-training on CIFAR 10 and 100.
RandSAC-Square uses 16 → 4 hierarchy while RandSAC-
Blob uses 11→ 5.

Table 7 shows low-data classifica-
tion performance for clustering pre-
training (DINO (Caron et al., 2021)),
masked image encoding (MAE (He
et al., 2021)) and our segment au-
toregressive coding (RandSAC). The
MAE and DINO are pretrained using
their official implementations. For
MAE we use a 75% masking ratio as
suggested in their paper. All models·
are pretrained for 1600 epochs and
evaluated with both 90-epoch linear
probing (LIN) and 100-epoch fine-
tuning (FT). Under the low data benchmark, RandSAC outperforms other non-autoregressive al-
gorithms and direct supervised training, by a large margin. Both the square and the blob hierarchical
versions work well. We postulate that the superior performance of RandSAC comes from random-
ized segment prediction pretext task. The autoregressive coding objective that we propose, which
is to traverse a hierarchy of randomly serialized visual segments, diversifies the small dataset, and
serves as a sort of data augmentation.

Table 8 shows ImageNet pretraining result. We compare RandSAC with clustering (DINO (Caron
et al., 2021)) and contrastive (MoCo v3 (Chen et al., 2021b)) transformer approaches, masked image
encoding (BEIT (Bao et al., 2022) & MAE (He et al., 2021)), and our autoregressive counterpart
iGPT (Chen et al., 2020a). We note, that due to limited access to computation, we were only able to
run RandSAC once, without any parameter tuning. Nevertheless, RandSAC outperforms all predic-
tive (non-contrastive methods) in linear probing, despite using a smaller image size for pretraining
(192 vs 224). It is also among the best in fine-tuning (on par with MAE and better than the rest).

Contrastive models do tend to perform better in linear probing, but also differ in pre-training. For
example, contrastive methods require two global crops of the input image while other methods
only process one crop; DINO uses 10 local crops. In addition, linear probing for DINO and iGPT
is evaluated using the last 4 and 5 transformer blocks, respectively, while MoCo v3, MAE, and
RandSAC only evaluate the last block output. A longer feature vector tends to result in better
linear probing accuracy (Caron et al., 2021; Chen et al., 2020a). Lastly, it is worth mentioning that
RandSAC can be easily combined with contrastive objectives in the future.

6 CONCLUSION

We present a new self-supervised pre-training strategy we call RandSAC. In doing so, we also study
and provide general insights into ViT pre-training (e.g., tokenization, segmentation, and serializa-
tion). We found randomized serialization of hierarchical image segments significantly improves
autoregressive pre-training of ViTs. In addition, we propose a new design for the transformer de-
coder, which facilitates improved performance. We show evidence that the proposed task and model
could be the key to developing a powerful GPT-like model for visual representation learning.

9

ACKNOWLEDGMENTS

This work was funded, in part, by the Vector Institute for AI, Canada CIFAR AI Chair, NSERC CRC,
and an NSERC DG and Discovery Accelerator Grants. Resources used in preparing this research
were provided, in part, by the Province of Ontario, the Government of Canada through CIFAR, and
companies sponsoring the Vector Institute https://vectorinstitute.ai/partners/.
Additional hardware support was provided by John R. Evans Leaders Fund CFI grant and Com-
pute Canada under the Resource Allocation Competition award. Finally, we would like to sincerely
thank Muchen Li for valuable feedback and discussions.

REFERENCES

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C Lawrence Zit-
nick, and Devi Parikh. Vqa: Visual question answering. In IEEE International Conference on
Computer Vision (ICCV), pp. 2425–2433, 2015.

Hangbo Bao, Li Dong, and Furu Wei. BEiT: Bert pre-training of image transformers. International
Conference on Learning Representations (ICLR), 2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in Neural Information Processing Systems (NeurIPS), 33:1877–1901,
2020.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers. European Conference on
Computer Vision (ECCV), 2020.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In IEEE/CVF Inter-
national Conference on Computer Vision (ICCV), pp. 9650–9660, 2021.

Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, and Ilya Sutskever.
Generative pretraining from pixels. In International Conference on Machine Learning (ICML),
pp. 1691–1703, 2020a.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. A simple framework
for contrastive learning of visual representations. ArXiv, abs/2002.05709, 2020b.

Ting Chen, Calvin Luo, and Lala Li. Intriguing properties of contrastive losses. Advances in Neural
Information Processing Systems (NeurIPS), 34, 2021a.

Xiaokang Chen, Mingyu Ding, Xiaodi Wang, Ying Xin, Shentong Mo, Yunhao Wang, Shumin Han,
Ping Luo, Gang Zeng, and Jingdong Wang. Context autoencoder for self-supervised representa-
tion learning. arXiv preprint arXiv:2202.03026, 2022.

Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. 2021 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 15745–15753, 2021.

Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training self-supervised vision
transformers. IEEE/CVF International Conference on Computer Vision (ICCV), 2021b.

Jean-Baptiste Cordonnier, Andreas Loukas, and Martin Jaggi. On the relationship between self-
attention and convolutional layers. International Conference on Learning Representations
(ICLR), 2020.

Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical automated
data augmentation with a reduced search space. In IEEE Conference on Computer Vision and
Pattern Recognition Workshops, 2020.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 248–255. Ieee, 2009.

10

https://vectorinstitute.ai/partners/

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

C. Doersch, A. Gupta, and A. A. Efros. Unsupervised visual representation learning by context
prediction. In IEEE/CVF International Conference on Computer Vision (ICCV), 2015.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. International Conference on Learning Representations (ICLR), 2021.

Alaaeldin El-Nouby, Gautier Izacard, Hugo Touvron, Ivan Laptev, Hervé Jégou, and Edouard Grave.
Are large-scale datasets necessary for self-supervised pre-training? ArXiv, abs/2112.10740, 2021.

Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training ima-
genet in 1 hour. ArXiv, abs/1706.02677, 2017.

Jean-Bastien Grill, Florian Strub, Florent Altch’e, Corentin Tallec, Pierre H. Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Ávila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi
Azar, Bilal Piot, Koray Kavukcuoglu, Rémi Munos, and Michal Valko. Bootstrap your own
latent: A new approach to self-supervised learning. Conference on Neural Information Processing
Systems (NeurIPS), 2020.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In IEEE International
Conference on Computer Vision (ICCV), pp. 2961–2969, 2017.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross B. Girshick. Momentum contrast for
unsupervised visual representation learning. 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 9726–9735, 2020.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. arXiv preprint arXiv:2111.06377, 2021.

Geoffrey E. Hinton. How to represent part-whole hierarchies in a neural network. ArXiv,
abs/2102.12627, 2021.

Tianyu Hua, Wenxiao Wang, Zihui Xue, Yue Wang, Sucheng Ren, and Hang Zhao. On feature
decorrelation in self-supervised learning. ArXiv, abs/2105.00470, 2021.

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. Deep networks with
stochastic depth. 2016.

Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu
Soricut. Albert: A lite bert for self-supervised learning of language representations. ArXiv,
abs/1909.11942, 2020.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. ArXiv, abs/1907.11692, 2019.

Ze Liu, Yutong Lin, Yue Cao1, Han Hu1, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In IEEE/CVF
International Conference on Computer Vision (ICCV), 2021.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. International Conference
on Learning Representations (ICLR), 2019.

11

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. VilBERT: Pretraining task-agnostic visi-
olinguistic representations for vision-and-language tasks. In Conference on Neural Information
Processing Systems (NeurIPS), 2019.

Bar Mayo, Tamir Hazan, and Ayellet Tal. Visual navigation with spatial attention. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 16898–16907, 2021.

Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual representations by solving jigsaw
puzzles. In European Conference on Computer Vision (ECCV), pp. 69–84, 2016.

Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A. Efros. Context
encoders: Feature learning by inpainting. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2016.

Alec Radford and Karthik Narasimhan. Improving language understanding by generative pre-
training. 2018.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified,
real-time object detection. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 779–788, 2016.

Sucheng Ren, Fangyun Wei, Zheng Zhang, and Han Hu. Tinymim: An empirical study of distilling
mim pre-trained models. arXiv preprint arXiv:2301.01296, 2023.

Martin Rolfs. Microsaccades: small steps on a long way. Vision research, 49(20):2415–2441, 2009.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional networks for biomedi-
cal image segmentation. In Medical Image Computing and Computer-Assisted Intervention (MIC-
CAI), pp. 234–241, 2015.

Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, Furu Wei, and Jifeng Dai. VL-BERT: Pre-
training of generic visual-linguistic representations. In International Conference on Learning
Representations (ICLR), 2020.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking
the inception architecture for computer vision. In IEEE Conference on Computer Vision and
Pattern Recognition(CVPR), 2016.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. In European
Conference on Computer Vision (ECCV), 2020.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
International Conference on Machine Learning (ICML), pp. 10347–10357, 2021.

Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks.
In International Conference on Machine Learning (ICML), 2016.

Aäron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. ArXiv, abs/1807.03748, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Informa-
tion Processing Systems (NeurIPS), 30, 2017.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and
composing robust features with denoising autoencoders. In International Conference on Machine
Learning (ICML), pp. 1096–1103, 2008.

Chen Wei, Haoqi Fan, Saining Xie, Chaoxia Wu, Alan Loddon Yuille, and Christoph Feichtenhofer.
Masked feature prediction for self-supervised visual pre-training. ArXiv, abs/2112.09133, 2021.

12

Tete Xiao, Xiaolong Wang, Alexei A. Efros, and Trevor Darrell. What should not be contrastive in
contrastive learning. International Conference on Learning Representations (ICLR), 2021.

Zhenda Xie, Zheng Zhang, Yue Cao, Yutong Lin, Jianmin Bao, Zhuliang Yao, Qi Dai, and Han Hu.
SimMIM: A simple framework for masked image modeling. IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2022.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Carbonell, Ruslan Salakhutdinov, and Quoc V.
Le. Xlnet: Generalized autoregressive pretraining for language understanding. In Conference on
Neural Information Processing Systems (NeurIPS), 2019.

Alfred L. Yarbus. Eye Movements and Vision. Springer, 1967.

Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks. arXiv:
Computer Vision and Pattern Recognition, 2017.

Jiahui Yu, Zhe L. Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and Thomas S. Huang. Generative image
inpainting with contextual attention. IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 5505–5514, 2018.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Young Joon Yoo.
Cutmix: Regularization strategy to train strong classifiers with localizable features. IEEE/CVF
International Conference on Computer Vision (ICCV), 2019.

Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-supervised
learning via redundancy reduction. In International Conference on Machine Learning (ICML),
2021.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. International Conference on Learning Representations (ICLR), 2017.

Richard Zhang, Phillip Isola, and Alexei A. Efros. Colorful image colorization. In European Con-
ference on Computer Vision (ECCV), 2016.

13

A APPENDIX

A.1 EFFECT OF PATCH SIZE

1× 1 2× 2 4× 4 8× 8 16× 16

LIN(↑) 59.79 69.63 75.53 75.34 60.77
FT(↑) 79.70 87.18 87.52 83.10 69.23

Table 9: Patch-random tokenization as a function of P on
CIFAR10.

As we discuss in the main paper (Sec-
tion 3.2), the control (mainly reduc-
tion) over the number of autoregres-
sive steps can be achieved by sim-
ply varying the patch size P in the
patch-random model. The result
of this on CIFAR10 are illustrated in
Table 9. It can clearly be seen that a
different patch size P does not lead to improved representation for a segment-free patch-random
prediction task. The segment formation, on the other hand, as we show in the paper, does substan-
tially improve the performance.

A.2 BLOB SEGMENTS.

We define blob segments as irregular elliptical segments defined by a sampled Mixture of Gaussians.
To obtainK random blobs for a given image, we first sampleK Gaussians with means sampled from
[µ

(x)
k , µ

(y)
k] ∼ U(−1.75, 1.75) and standard deviations from [σ

(x)
k , σ

(y)
k] ∼ U(0.5, 1), where U is a

uniform distribution. Then we simply assign each token xi which is at a normalized position (xi, yi)
in the range of [−2, 2] (i.e., leftmost top token is at (-2,-2), rightmost bottom token is at (2,2)). The
assignment is done as follows:

S(xi) = argmax
k

N

([
xi
yi

]
|

[
µ
(x)
k

µ
(y)
k

]
,

[
σ
(x)
k 0

0 σ
(y)
k

]2)
. (1)

S is a function that maps tokens to segments. The sampling for both square and blob is only used
during segment predictive training and is disabled during evaluation. The computation cost for sam-
pling is, comparatively, negligible. Note that beyond the shape, blob segments allow for variability
in size squares do not.

A.3 TRAINABLE SKIP CONNECTIONS

We define a transformer design, with learnable skip connections, that we leverage for our main
experiments in Section 4.2 of the main paper. Here we provide additional details and evaluation of
that design which is illustrated in Figure 5 (right).

A transformer with Lenc encoder layers and Ldec decoder layers processes input X into Lenc hidden
representations Hl

enc = (hl
1, ...,h

l
n). In traditional masked transformer, decoder memory is set to

Zl = HLenc
enc for each layer l of the decoder. Instead, we introduce a linear attention layer that allows

each decoder layer to attend over encoding hidden representations. In other words, we learn a linear
layer with parameters W ∈ RLenc×Ldec , such that: Zl =

∑Lenc

k=1 Wl,kH
k
enc. Note, the linearly

combined memory cells are conditioned on, and different, for each individual decoder layer.

ENCODER

ENCODER

ENCODER

ENCODER

ENCODER

ENCODER

DECODER

DECODER

ENCODER

ENCODER

ENCODER

DECODER

DECODER

W

Figure 5: Candidate architectures for autoregressive segment prediction: Left: Two-stream
Transformer (Yang et al., 2019). Middle: Masked Transformer. Right: proposed Masked Trans-
former with Trainable Skip Connections.

14

CIFAR10 ImageNet100
Enc Dec LIN (↑) FT (↑) Enc Dec LIN (↑) FT (↑)

Two-stream 7M 0M 84.4 91.5 30M 0M 62.4 84.6
Transformer 5M 2M 88.0 93.6 21M 9M 65.8 85.9
Transformer-skip 5M 2M 89.5 94.4 21M 9M 70.7 87.3

Table 10: Performance of Architectures for RandSAC. See text for details.

To evaluate the effectiveness of the proposed Masked Transformer and trainable skip connection
layer for segment prediction, we compare three architectures:

Two-stream Transformer. This design was proposed in (Yang et al., 2019) for permutation-based
language modeling. It enables randomized target predictions by leveraging a two-stream attention
layer: the content stream encodes the full contextual information, and the query stream, which
only has access to the previous content, is designed to make current predictions. We apply this
architecture for our segment prediction by setting the content mask with our “source mask” and
query mask with our “memory mask”. Model weights for both content stream and query stream are
shared (see Figure 5 (left) for illustration of design).

Masked Transformer. For masked transformer we utilize architecture described in Section 4.1
and illustrated in Figure 4; also in Figure 5 (middle). Compared with the Two-stream Transformer
above, this design enables communication among jointly predicted tokens within a segment. Also,
compared with Two-stream Transformer, weights for encoding and decoding the segment content
are decoupled in the Masked Transformer.

Masked Transformer with Trainable Skip Connections. A Masked Transformer only decodes
based on the (last layer) encoder output. A trainable skip connection layer we introduce dynam-
ically allocates memory assignments between intermediate layers of transformer-encoder-decoder
(see Figure 5 (right)). As can be seen from the results in Table 10, this variant does outperform the
two competitors on both CIFAR10 and ImageNet100 datasets. Compared with Masked Transformer,
the additional computation cost introduced by trainable linear layer is almost negligible (Table 11).

Two-stream Transformer Transformer-skip

ViT-T 499.60 M 483.82 M 484.26 M
ViT-S 10.94 G 6.73 G 6.77 G
ViT-B 35.74 G 21.25 G 21.49 G

Table 11: FLOPs of Three Candidate Architectures.

B EXPERIMENTS

B.1 SEMANTIC SEGMENTATION ON ADE20K.

We take our pretrained backbone as initialization and end-to-end fine-tune with UpperNet frame-
work on ADE20k to evaluate the performance of our pretrained model on downstream task, semantic
segmentation. We follow the same setting of BeiT (Bao et al., 2022). We compare our pre-training
with DeiT (Touvron et al., 2021), MoCo (Chen et al., 2021b), DINO (Caron et al., 2021), BeiT (Bao
et al., 2022), MAE (He et al., 2021) in Table 12. Our pre-training outperform DeiT, MoCo, DINO,
BeiT, MAE by 1.5, 1.3, 1.3, 2.0 and 0.4, respectively.

B.2 OBJECT DETECTION ON COCO

We take our pretrained model as initialization and finetune with Mask RCNN on COCO. To adapt
the the four stages designs with strides of 4, 8, 16, 32 of FPN backbone in Mask RCNN, we evenly
divide all 12 Transformer blocks into 4 subsets and apply convolutions to upsample or downsam-
ple the intermediate feature maps for producing same scales as the requirement of FPN backbone.
The results are reported in Table 13. Our pre-training outperform DeiT (Touvron et al., 2021),
MoCo (Chen et al., 2021b), DINO (Caron et al., 2021), BeiT (Bao et al., 2022), and MAE (He et al.,
2021) by 3.0, 3.0, 4.1, 1.1, 0.6 on APbbox and 2.1, 2.3, 3.5, 0.6, 0.1 on APmask.

15

Method Crops Super. Self-super. mIoU

DeiT (Touvron et al., 2021) 1 3 7 47.0
MoCo v3 (Chen et al., 2021b) 2 7 3 47.2
DINO (Caron et al., 2021) 2+10 7 3 47.2
BEiT (Bao et al., 2022) 1 7 3 46.5
MAE 1 7 3 48.1
RandSAC-Square (K=9) 1 7 3 48.3
RandSAC-Square (K=16→4) 1 7 3 48.5

Table 12: Semantic Segmentation on ADE20K

Method Pre-Epochs APbbox APmask

DeiT (Touvron et al., 2021) 300 47.9 42.9
MoCo-v3 (Chen et al., 2021b) 300 47.9 42.7
DINO (Caron et al., 2021) 300 46.8 41.5
BEiT (Bao et al., 2022) 800 49.8 44.4
MAE (He et al., 2021) 1600 50.3 44.9
RandSAC-Square (K=16→4) 1600 50.9 45.0

Table 13: Object Detection on COCO

B.3 VISUALIZATION OF RECONSTRUCTION ON IMAGENET-1K VALIDATION SET

We visualize for both RandSAC-Blob and RandSAC-Square reconstruction results below.

B.4 IMPLEMENTATION DETAILS

We describe implementation details omitted from the main paper due to space limitations here.

Implementation Details. We adopt minimal data augmentation strategy following (He et al., 2021):
resize cropping with scale range of [0.2, 1.0] and aspect ratio is sampled within range [34 ,

4
3], followed

by a 50% chance random horizontal flipping. We do not use color jittering, path dropping, or
gradient clip in pretraining. We use AdamW as optimizer and pretrain RandSAC for 1600 epochs.
We use a linear lr scaling rule (Goyal et al., 2017) that scales the base lr by batchsize/256. The lr
is scheduled to warm-up from 0 to base lr, then decayed following a cosine-decay rule (Loshchilov
& Hutter, 2016). For both benchmarks, we use the normalized pixel loss introduced from (He et al.,
2021) as our patch regression target. Our loss function computes the mean squared error (MSE)
between the patch-normalized reconstruction and original image pixels.

B.5 EVALUATION PROTOCOLS

Linear Probing. Note that the dimension of the feature that the classifier is trained on, may influence
the eventual accuracy readout (Caron et al., 2021). A longer feature vector is likely to produce a
better linear result. Prior works such as (Caron et al., 2021) concatenate the feature vectors from the
last 4 ViT blocks and (Chen et al., 2020a) use feature vectors up to 15360 dimensions for evaluation.
We, however, use only the last encoder averaged feature output following (He et al., 2021; Chen
et al., 2021b) (i.e., 384 dimensions for ViT-S and 768 dimensions for ViT-B). The linear classifier is
trained for 90 epochs.

C DETAILS FOR SECTION 3

C.1 PRE-TRAINING SETTINGS FOR CIFAR10 AND IMAGENET100

The following is the experiment configurations for CIFAR10 and ImageNet100 from Section 3 of
the main paper, including Table 9 and 10 in Appendix. Details for end-to-end fine-tuning and linear

16

probing are the same with ImageNet-1K. For Table 10, both CIFAR10 and ImageNet100 experi-
ments are trained using a “Blob” RandSAC model using hierarchy 11→5.

C.1.1 CIFAR10 EXPERIMENTS.

The default setting is illustrated in Table 14. We pre-train ViT-Tiny encoder on CIFAR10. The ViT-
Tiny has 12 layers. Each layer has 192 dimensions and 3 self-attention heads. We chose patch size
4 × 4 and split the 32 × 32 images into 8 × 8 tokens. For segment decoding, we use 3 transformer
decoder layers following the same configuration for the encoder.

config value
optimizer AdamW (Loshchilov & Hutter, 2019)

base lr 0.001
weight decay 0.05

β1,β2 0.9, 0.999 (Carion et al., 2020)
batch size 512

learning rate schedule cosine decay (Loshchilov & Hutter, 2016)
warmup epochs 10
training epochs 800 (Table 1-6, 9) 1600 (Table 10)
augmentation RandomResizedCrop

norm pixel loss False (Table 1-6, 9) True (He et al., 2021) (Table 10)

Table 14: CIFAR10 Pre-training setting.

C.1.2 IMAGENET100 EXPERIMENTS.

Experiments that involve ImageNet100 are Table 2, 4, 6 and 10. We pre-train ViT-Small encoder
on ImageNet100 (Tian et al., 2020). The ViT-Small backbone has 12 layers. Each layer has 384
dimensions and 6 self-attention heads. We chose patch size 16 × 16 following (Dosovitskiy et al.,
2021) and split the 224× 224 images into 14× 14 tokens. For segment decoding, we use a 4 layer
transformer decoder and double the attention heads while keeping all other configurations the same
as the ViT-Small encoder.

config value
optimizer AdamW (Loshchilov & Hutter, 2019)

base lr 1.5e-4 (He et al., 2021)
weight decay 0.05

β1,β2 0.9, 0.95 (Chen et al., 2020a)
batch size 4096

learning rate schedule cosine decay (Loshchilov & Hutter, 2016)
warmup epochs 40
training epochs 800
augmentation RandomResizedCrop

norm pixel loss True

Table 15: ImageNet100 Pre-training setting.

D DETAILS FOR SECTION 4

D.1 LOW-DATA PRE-TRAINING SETTING

We pre-train ViT-Small on CIFAR10 and CIFAR100 (Krizhevsky, 2009). Both datasets are small-
scale image datasets containing 60000 32× 32 images that belong to 10 and 100 categories, respec-
tively. The ViT-Small has 12 layers. Each layer has 384 dimensions and 6 self-attention heads. We
chose patch size 4 × 4 and split the 32 × 32 images into 8 × 8 tokens. For segment decoding, we
use a 6 transformer decoder layer. The attention-head and feature dimensions of the decoder are the

17

same as the encoder. We also set the decoder for MAE (He et al., 2021) to have the same depth,
attention head, and dimension as ours.

config value
optimizer AdamW (Loshchilov & Hutter, 2019)

base lr 0.001
weight decay 0.05

β1,β2 0.9, 0.999 (Carion et al., 2020)
batch size 512

learning rate schedule cosine decay (Loshchilov & Hutter, 2016)
warmup epochs 10
training epochs 1600
augmentation RandomResizedCrop

norm pixel loss True (He et al., 2021)

Table 16: Low Data Pre-training setting.

D.2 IMAGENET-1K PRE-TRAINING SETTING

We resize the images to 192 × 192 during pretraining and set patch size P to be 16. We pretrain
square-RandSAC with hierarchy 16 →4 using ViT-Base (Dosovitskiy et al., 2021) on ImageNet-
1K following (Bao et al., 2022; He et al., 2021). ViT-Base model has 12 blocks, with each block
having dimension 768 and 12 heads. We chose an 8 layer decoder. The attention-head and feature
dimensions of the decoder are the same as the encoder.

config value
optimizer AdamW (Loshchilov & Hutter, 2019)

base lr 1.5e-4 (He et al., 2021)
weight decay 0.05

β1,β2 0.9, 0.95 (Chen et al., 2020a)
batch size 4096

learning rate schedule cosine decay (Loshchilov & Hutter, 2016)
warmup epochs 40
training epochs 1600
augmentation RandomResizedCrop

norm pixel loss True

Table 17: ImageNet-1K pre-training setting.

D.3 EVALUATION CONFIGURATIONS

Different from ViT (Dosovitskiy et al., 2021), where an additional class token is required for classifi-
cation, we directly use the averaged pooled feature out of the encoder for both fine-tuning and linear
probing. The hyper-parameters for both end-to-end finetuning and linear probing from Table 18 and
Table 19 are used for all experiments of this paper.

E IMPLEMENTATION DETAILS OF SEMANTIC SEGMENTATION

We end-to-end fine-tune our pre-trained ViT encoder with UpperNet framework on ADE20k to
evaluate the performance on downstream task, semantic segmentation. We follow the same setting
of BeiT (Bao et al., 2022). We take AdamW as the optimizer and set the batch size to 16, the layer-
wise decay rate to 0.65, the input resolution to 512 × 512, fine-tuning iterations are set to 160K
steps. During evaluation, we do not take multi-scale testing strategy in our experiment.

18

config value
optimizer AdamW

base lr 5e-4
weight decay 0.05

β1,β2 0.9, 0.999 (Chen et al., 2020a)
layer-wise lr decay 0.65

batch size 1024
learning rate schedule cosine decay (Loshchilov & Hutter, 2016)

warmup epochs 5
training epochs 100
augmentation RandAug (9, 0.5) (Cubuk et al., 2020)

label smoothing (Szegedy et al., 2016) 0.1
mixup (Zhang et al., 2017) 0.8
cutmix (Yun et al., 2019) 1.0

drop path (Huang et al., 2016) 0.1

Table 18: End-to-end fine-tuning setting.

config value
optimizer LARS (You et al., 2017)

base lr 0.1
weight decay 0
momentum 0.9
batch size 16384

learning rate schedule cosine decay
warmup epochs 10
training epochs 90
augmentation RandomResizedCrop

Table 19: Linear probing setting.

F CODE AND REPRODUCIBILITY

We include an implementation of RandSAC-Square model using PyTorch. We will release the com-
plete training/evaluation code and all pre-trained models upon acceptance of the paper.

1 import torch
2 import torch.nn as nn
3 import torch.nn.functional as F
4 from einops.layers.torch import Rearrange
5 from einops import rearrange
6 from torch import Tensor
7 from typing import Optional
8

9 class Transformer_skip(nn.Transformer):
10 def __init__(self, num_encoder_layers: int = 6, num_decoder_layers:

int = 4, **kwargs):
11 """Transformer with learnable skip connects between encoder and

decoder."""
12 super().__init__(num_encoder_layers=num_encoder_layers,
13 num_decoder_layers=num_decoder_layers,
14 norm_first=True, **kwargs)
15 self.skip_connection = nn.Linear(
16 num_encoder_layers, num_decoder_layers)
17

18 def forward(self, src: Tensor, tgt: Tensor, src_mask: Optional[Tensor
] = None, tgt_mask: Optional[Tensor] = None,

19 memory_mask: Optional[Tensor] = None) -> Tensor:
20

21 # Forward encoder layers

19

22 memory = []
23 for layer in self.encoder.layers:
24 src = layer(src, src_mask=src_mask)
25 memory.append(src)
26

27 memory = self.encoder.norm(torch.stack(memory))
28

29 # Dynamic memory assignment
30 memory = self.skip_connection(
31 memory.flatten(1).transpose(0, 1)
32).transpose(0, 1).view((-1, *memory[0].shape))
33

34 # Forward decoder layers
35 for i, layer in enumerate(self.decoder.layers):
36 tgt = layer(tgt, memory[i],
37 tgt_mask=tgt_mask, memory_mask=memory_mask)
38

39 return self.decoder.norm(tgt)
40

41 class RandSAC(nn.Module):
42 def __init__(self, d_model, image_channel=3, image_size=192,

patch_size=16, M=4, **transformer_kwargs):
43 super().__init__()
44 """
45 RandSAC implementation with square segments and flat

serialization (no hierarchy).
46 """
47 grid_size = image_size // patch_size
48 patch_dim = patch_size * patch_size * image_channel
49

50 self.M = M
51 self.patchify = Rearrange(
52 ’n c (h p1) (w p2) -> n h w (p1 p2 c)’, p1=patch_size, p2=

patch_size)
53 self.in_proj = nn.Linear(patch_dim, d_model)
54

55 self.transformer = Transformer_skip(
56 d_model=d_model, **transformer_kwargs)
57

58 self.out_proj = nn.Linear(d_model, patch_dim)
59 self.pos = nn.Parameter(torch.zeros(1, grid_size, grid_size,

d_model))
60 torch.nn.init.normal_(self.pos, std=.02)
61

62 self.register_buffer(
63 ’mask’, torch.repeat_interleave(
64 torch.repeat_interleave(
65 nn.Transformer.generate_square_subsequent_mask(
66 sz=grid_size**2 // M**2 - 1
67),
68 repeats=M**2, dim=0
69),
70 repeats=M**2, dim=1
71)
72)
73

74 def serialize(self, patches):
75 """Flat serialization"""
76 d1, d2 = patches.shape[-1], self.pos.shape[-1]
77 tokens = torch.cat(
78 [patches, self.pos.repeat(patches.shape[0], 1, 1, 1)], dim

=-1)
79 seq = rearrange(
80 tokens, ’n (h m1) (w m2) d -> n (h w) m1 m2 d’, m1=self.M, m2

=self.M)

20

81 noise = torch.rand(*seq.shape[:2], device=seq.device)
82 ids_shuffle = torch.argsort(noise, dim=1)
83 seq = torch.gather(seq, dim=1, index=ids_shuffle.view(
84 *seq.shape[:2], 1, 1, 1).expand_as(seq))
85

86 return seq.flatten(1, 3).transpose(0, 1).split([d1, d2], dim=-1)
87

88 def forward(self, img, label=None):
89 """Forward RandSAC"""
90 patches = self.patchify(img)
91 patches, pos = self.serialize(patches)
92

93 seg_size = self.M**2
94 embedings = self.in_proj(patches)
95

96 dec_out = self.transformer(src=(embedings + pos)[:-seg_size], tgt
=pos[seg_size:],

97 src_mask=self.mask, tgt_mask=self.mask
, memory_mask=self.mask)

98

99 pixel_recon = self.out_proj(dec_out)
100

101 loss = F.mse_loss(pixel_recon, patches[seg_size:])
102

103 return loss

G VISUALIZATION OF TOKENIZATION AND SERIALIZATION

We visualize different tokenization and serialization schemes, discussed in Section 3 of the main
paper, in the video file included as part of the supplemental materials.

21

G
ro

un
d

Tr
ut

h
B

lo
b

Sq
ua

re
G

ro
un

d
Tr

ut
h

B
lo

b
Sq

ua
re

G
ro

un
d

Tr
ut

h
B

lo
b

Sq
ua

re

Figure 6: Visualization of image reconstruction from “Blob” and “Square” RandSAC.

22

	Introduction
	Related Work
	Random Segment with Autoregressive Coding
	From Pixels to Tokens
	Grouping Tokens into Segments
	Hierarchical Segment Serialization

	Architecture
	Masked Transformer for Segment Prediction
	Trainable Skip Connections

	Experiments
	Evaluation protocols
	Results

	Conclusion
	Appendix
	Effect of Patch Size
	Blob Segments.
	Trainable Skip Connections

	Experiments
	Semantic segmentation on ADE20K.
	Object Detection on COCO
	Visualization of Reconstruction on ImageNet-1k Validation Set
	Implementation Details
	Evaluation protocols

	Details for Section 3
	Pre-training settings for CIFAR10 and ImageNet100
	CIFAR10 Experiments.
	ImageNet100 Experiments.

	Details for Section 4
	Low-data Pre-training Setting
	ImageNet-1K Pre-training Setting
	Evaluation Configurations

	Implementation details of Semantic Segmentation
	Code and Reproducibility
	Visualization of Tokenization and Serialization

