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ABSTRACT

Evaluating large language models (LLMs) is increasingly confounded by variant
contamination: the training corpus contains semantically equivalent yet lexically
or syntactically altered versions of test items. Unlike verbatim leakage, these
paraphrased or structurally transformed variants evade existing detectors based on
sampling consistency or perplexity, thereby inflating benchmark scores via mem-
orization rather than genuine reasoning. We formalize this problem and intro-
duce DVD (Detection via Variance of generation Distribution), a single-sample
detector that models the local output distribution induced by temperature sam-
pling. Our key insight is that contaminated items trigger alternation between
a memory-adherence state and a perturbation-drift state, yielding abnormally
high variance in the synthetic difficulty of low-probability tokens; uncontami-
nated items remain in drift with comparatively smooth variance. We construct
the first benchmark for variant contamination across two domains—Omni-MATH
and SuperGPQA—by generating and filtering semantically equivalent variants,
and simulate contamination via fine-tuning models of different scales and archi-
tectures (Qwen2.5 and Llama3.1). Across datasets and models, DVD consis-
tently outperforms perplexity-based, Min-k% probability, edit-distance (CDD),
and embedding-similarity baselines, while exhibiting strong robustness to hyper-
parameters. Our results establish variance of the generation distribution as a prin-
cipled and practical fingerprint for detecting variant contamination in LLM evalu-
ation.

1 INTRODUCTION

In recent years, the capabilities of large language models (LLMs) have experienced explosive
growth, demonstrating transformative potential across a wide range of domains (Brown et al., 2020;
Team et al., 2024; Touvron et al., 2023; Chowdhery et al., 2023; Achiam et al., 2023). However, the
outstanding performance of these models relies heavily on large-scale web corpora, which brings a
long-standing challenge to the forefront: data contamination (Balloccu et al., 2024; Li et al., 2023;
Chang et al., 2024; Cheng et al., 2025; Deng et al., 2023; Xu et al., 2024). Data contamination refers
to the unintended overlap between training data and evaluation benchmarks, which severely under-
mines the validity of evaluation results (Cheng et al., 2025). Such overlap creates a false impression
of generalization capability and may mislead research directions. When contaminated models are
applied in serious scientific exploration or real-world applications, their underlying biases and flaws
can lead to erroneous scientific conclusions or even catastrophic decisions, ultimately hindering
technological progress (Sainz et al., 2023).

Existing detection methods—based on sampling consistency or perplexity—are useful for catching
verbatim memorization but fail against a more subtle and insidious form: variant contamination.
As illustrated in Figure 1, variant contamination arises when training data contains semantically
equivalent but lexically or structurally altered versions of benchmark questions. Unlike exact du-
plicates, these paraphrased or restructured variants evade current detection approaches while still
allowing models to “memorize” solutions. This phenomenon has become increasingly common as
large-scale data augmentation and synthetic data generation (e.g. via GPT-4o) are widely adopted
(Patel et al., 2021; Dumpala et al., 2024; Wei et al., 2025; Rabinovich et al., 2023). Consequently,
high benchmark scores may reflect contamination-driven recall rather than genuine reasoning.
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To investigate this challenge, we conduct a systematic study of variant contamination across multiple
domains. Using Omni-MATH (mathematical reasoning) (Gao et al., 2024) and SuperGPQA (gen-
eral reasoning) (Du et al., 2025), we construct a benchmark by generating semantically equivalent
variants with controlled transformations. Fine-tuning models of different scales and architectures on
these contaminated datasets reveals striking results: models achieve artificially high benchmark ac-
curacy even when only variants (and not exact duplicates) are present in training. More importantly,
widely used detection methods fail to flag such cases—perplexity (Li et al., 2023) and Min-K% (Shi
et al., 2023) methods degrade to near-random performance (AUC < 0.5 in some settings), and dis-
tributional edit-distance methods (CDD) (Dong et al., 2024) prove unstable across domains. These
findings demonstrate both the pervasiveness and the dangers of variant contamination in today’s
evaluation ecosystem.

To address this gap, we propose Detection via Variance of generation Distribution (DVD), a novel
framework that detects contamination by analyzing the fluctuations in a model’s output distribution
at the single-sample level. Specifically, DVD repeatedly samples answers to the same test question
under controlled stochastic decoding and measures the variance of “synthetic difficulty,” defined
from the log-probabilities of low-likelihood tokens. The intuition is straightforward: For uncon-
taminated questions, the model must genuinely reason, leading to diverse but comparably uncertain
outputs. This yields a relatively smooth and stable variance profile. For contaminated questions,
the model alternates between recalling memorized answers (high confidence, low difficulty) and
drifting into non-memorized states (higher difficulty). This mixture produces an abnormally sharp
variance spike, serving as a fingerprint of contamination. Compared with existing methods, DVD
goes beyond surface-level similarity (e.g., edit distance in CDD) or global likelihood measures (e.g.,
perplexity, Min-K%). By directly modeling distributional variance rather than absolute probabili-
ties or token overlaps, DVD captures the hidden dynamics of memorization versus reasoning. This
design makes it robust to paraphrased or structurally altered variants that elude prior approaches.

Extensive experiments show that DVD consistently outperforms baselines across datasets, domains,
and model sizes. For example, on SuperGPQA, DVD improves AUC by up to +0.22 over the
strongest baseline (embedding similarity), while maintaining stable performance from 1.5B to 7B
parameter scales and across Qwen and Llama architectures. Sensitivity analyses further confirm that
DVD is robust to hyperparameter choices, with detection performance remaining stable across wide
ranges. Together, these results establish DVD as a principled and effective solution to the overlooked
but critical problem of variant contamination.

Our main contributions are summarized as follows:

Problem Identification and Formalization. We are the first to systematically articulate the prob-
lem of variant contamination, a subtle yet widespread form of data leakage where semantically
equivalent but lexically/syntactically diverse variants of benchmark items appear in training data.
We provide a formal definition of this phenomenon, reveal its prevalence through benchmark con-
struction, and demonstrate that existing detection methods fail to identify it.

Benchmark Construction for Systematic Evaluation. We construct the first dedicated bench-
mark for variant contamination detection, spanning two representative domains: Omni-MATH
(mathematical reasoning) and SuperGPQA (general reasoning). Using controlled variant genera-
tion and filtering, the benchmark enables rigorous and reproducible evaluation of contamination
detection methods across models, scales, and domains.

Novel Detection Framework (DVD). We introduce DVD (Detection via Variance of genera-
tion Distribution), a new method that leverages the variance of synthetic difficulty across multiple
stochastic generations. By capturing the alternation between memory adherence and perturbation
drift states, DVD provides a principled and training-data-independent indicator of contamination.
Through extensive experiments, we show that DVD consistently outperforms existing baselines.
Our analysis also highlights the robustness of DVD across domains and hyperparameters, ensuring
stable and practical applicability in real-world evaluation pipelines.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 1: Conceptual illustration of variant contamination in geometric problem-solving

2 RELATED WORK

Existing approaches for data contamination detection can be broadly divided into two categories.

Sampling and Output-Matching-Based Methods This line of research primarily relies on the
similarity between model generations and reference answers, or on detecting anomalous patterns
within the output distribution. Representative works include reference-instance matching based on
overlap measures Golchin & Surdeanu (2023); the CDD method, which conducts multiple random
samplings alongside one greedy decoding under the same prompt, and uses the edit distance be-
tween greedy and stochastic outputs to approximate the output distribution and detect sharp modes
caused by memorization Khandelwal et al. (2019); and the DCQ method, which compares model
preferences between original inputs and their perturbed variants to identify contamination Golchin &
Surdeanu (2025). Moreover, membership inference has also been applied in this context, where the
loss difference between a target sample and synthetic neighbors serves as an indicator of contamina-
tion Mattern et al. (2023). Overall, these methods are effective for detecting verbatim memorization,
yet remain fundamentally limited by their reliance on shallow surface-level measures. For instance,
CDD only leverages text edit distance without modeling the underlying generative probability space,
thus lacking robustness against semantic variations such as paraphrasing or translation.

Perplexity-Based Methods In contrast to sampling- and matching-based approaches, another
class of methods focuses on detecting contamination through the abnormally high confidence that
models assign to seen samples. For example, the MIN-K% PROB method examines the average
log-likelihood of low-probability tokens to determine whether a sample appears in the training set
Shi et al. (2023). Similarly, Oren et al. (2023) demonstrates that a model’s ability to recall the
order of training samples itself constitutes strong evidence of data leakage. Compared to the for-
mer category, perplexity-based methods provide a more direct quantification of model bias toward
training data. However, their effectiveness is likewise constrained to verbatim memorization; once
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samples undergo semantic rewriting or structural perturbation, perplexity-level differences are often
obscured, leading to a significant drop in detection performance.

Our Approach Motivated by the limitations of the above methods, we propose the DVD approach,
which overcomes the dependence on shallow similarity measures or overall perplexity levels. Al-
though CDD also relies on multiple samplings to construct an output distribution, its core remains
restricted to edit-distance-based comparisons, failing to capture the true probabilistic dynamics un-
derlying text generation. In contrast, DVD employs temperature sampling to generate multiple re-
sponses and systematically analyzes the variance of low-probability tokens, defined as synthetic dif-
ficulty. The key insight is that contaminated samples alternate between a “memorization-dependent
state” and a “perturbation-drift state,” resulting in substantially higher variance across generations.
Uncontaminated samples, by contrast, remain consistently in the drift state, with variance reflecting
only natural noise. By incorporating variance decomposition into a mixture-distribution framework,
DVD fundamentally captures these deep probabilistic dynamics, thereby achieving superior perfor-
mance in detecting semantic-variant contamination compared to existing methods.

Figure 2: Semantic Equivalence Variant Generation Pipeline

3 VARIANT CONTAMINATION

This section introduces the formal definition of the Variant Contamination Detection (VCD) task
(3.1) and describes the construction of a benchmark dataset tailored for variant contamination de-
tection (3.2).

3.1 TASK DEFINITION

We define variant contamination as the scenario in which, during training, a model is exposed to
samples that are logically equivalent to those in the test set but differ in surface form. Such variants
may diverge in semantics, syntax, or narrative style, yet preserve the same underlying solution space,
thereby allowing the model to perform as if it had previously observed the test instance.
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Formally, let x denote a test instance and let f be a semantic abstraction function that extracts the
core informational content of x. A variant of x is then defined as:

v = τ(x), such that f(v) = f(x), (1)

where τ is a transformation preserving the core semantics of x. If such a variant v appears in
the training corpus of model M , we say that M is contaminated on test instance x. Importantly,
unlike exact duplicates, variants may differ substantially from x in vocabulary, phrasing, or narrative
structure, while remaining equivalent in required knowledge, logical dependencies, and reasoning
trajectory.

The goal of the VCD task is thus to identify, within a model’s test set, which instances x have been
subject to contamination by variants present in training.

3.2 BENCHMARK CONSTRUCTION

Variant contamination commonly arises in the context of data augmentation. To systematically eval-
uate the extent of variant contamination in large language models (LLMs), we construct a dedicated
benchmark dataset. The construction leverages mainstream data augmentation techniques Shorten
& Khoshgoftaar (2019); Shorten et al. (2021); Maharana et al. (2022) and incorporates two widely
used benchmarks: Omni-Math Gao et al. (2024) and SuperGPQA Du et al. (2025). As illustrated in
Figure 2, we employ GPT-4o Hurst et al. (2024) as the generation engine to produce semantically
equivalent variants from the original problem.

Initial Question and Solution Verification In the initial stage, we first verify the original prob-
lem–solution pair (x, y). If the problem already comes with a standardized solution, it directly
proceeds to the next step; otherwise (e.g., in the SuperGPQA dataset), GPT-4o Hurst et al. (2024)
is employed to generate gold-standard answers. This ensures that each problem is paired with a
reference solution, providing the foundation for subsequent variant generation. Formally, given the
training set:

D = {(xi, yi)}Ni=1, (2)
we take (xi, yi) as input in preparation for generating corresponding variants.

Variant Generation In this stage, we adopt mainstream data augmentation techniques Shorten &
Khoshgoftaar (2019); Shorten et al. (2021); Maharana et al. (2022) to generate a set of semantically
equivalent variants (xv, yv) for each original problem (see Table 1 and Figure 7). Specifically, we
define a transformation set:

T = {Tent, Tscn, Tnum, Tnar}, (3)
covering four categories: entity substitution, scenario conversion, numerical rewriting, and narrative
restructuring. Through these surface-level transformations, we construct the variant set:

V (xi) = {v(1)i , . . . , v
(m)
i }, where f(v

(j)
i ) = f(xi). (4)

To guarantee semantic equivalence and correctness, rejection sampling is applied during generation
(see Figure 4), with GPT-4o providing candidate variant answers.

Variant Filter Finally, GPT-4o is employed as a filter to conduct quality control over the generated
variants Liu et al. (2025). The filtering procedure consists of two steps: first, checking whether the
information remains unchanged; second, performing a quality evaluation of the solution. Only when
both conditions are satisfied is the variant pair (xv, yv) accepted. Ultimately, these high-quality
variant samples are injected into the training set to simulate test contamination, enabling systematic
evaluation of whether existing detection methods can accurately identify variant-contaminated test
instances.

4 METHOD

This paper proposes a method named DVD (Detection via Variance of generation Distribution)
grounded in modeling the distribution of model outputs. The core idea is to generate multiple re-
sponses under a fixed prompt using temperature sampling, thereby capturing fluctuations in low-
probability regions of the model’s output distribution. These fluctuations serve as key signals for
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Table 1: Variant generation strategies used to simulate contamination.
Method Description

Entity substitution Replace referents, variable names, and object categories while maintaining
consistency in type and context.

Scenario transformation Alter the background setting and narrative context, while preserving logical
dependencies and constraint structures.

Numerical rewriting Resample parameters under solvability constraints and update derivations and
intermediate values for consistency.

Narrative structure trans-
formation

Rearrange syntax or rewrite step-by-step analysis into a paragraph-style nar-
rative while preserving semantic meaning.

detecting contamination. More specifically, when a test sample appears in the training set, the
model may operate in two distinct generative states. The first is memory adherence, where gener-
ation is guided by memorized templates or fragments internalized during training. The second is
perturbation drift, where generation is primarily driven by stochastic perturbations introduced by
temperature sampling, leading to free-form exploratory outputs. Memory adherence reflects the
model’s reliance on training-based recall, while perturbation drift captures the natural randomness
of unconstrained generation. If a test sample is contaminated, the model alternates between these
two states, producing substantial variability in the conditional likelihoods of low-probability tokens.
In contrast, for uncontaminated samples, the absence of reliable memory templates constrains the
model to remain in a perturbation drift state, where tail-token probabilities mainly reflect inherent
noise and thus exhibit only minor fluctuations. Based on this observation, we design the variance of
synthetic difficulty as the contamination detection criterion.

4.1 TEMPERATURE SAMPLING

For each test sample xi, we apply temperature sampling under a fixed prompt p to generate N

candidate responses {a(1)i , a
(2)
i , . . . , a

(N)
i }. Each response is concatenated with the prompt to form

the complete input:

s
(k)
i = (p, a

(k)
i ). (5)

Temperature sampling introduces controlled stochastic perturbations, enabling the collection of di-
verse outputs for the same test sample. In uncontaminated cases, generation consistently remains
in a perturbation drift state, and temperature perturbations do not substantially alter the statistics
of low-probability tokens. In contaminated cases, however, generation alternates between memory
adherence and perturbation drift. Here, temperature perturbations amplify the disparity between
template-based and non-template-based responses, causing tail tokens to exhibit more pronounced
fluctuations.

4.2 SYNTHETIC DIFFICULTY MODELING

To quantify such fluctuations, we define the notion of synthetic difficulty. For each generated
sequence s

(k)
i , we select the k least probable tokens in the response, compute the sum of their log-

likelihoods, and normalize by sequence length T
(k)
i :

D
(k)
i =

1

T
(k)
i

k∑
j=1

logPθ

(
t(j) | s(k)i

)
. (6)

This statistic captures local uncertainty in the tail region of the distribution. Unlike global perplexity,
tail-token probabilities are more sensitive to the presence of training-set memorization. If a test
sample is contaminated, D(k)

i varies markedly across generations due to the alternation between
memory adherence and perturbation drift. If uncontaminated, tail probabilities primarily reflect
noise, yielding relatively stable values of D(k)

i across multiple generations.
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Given the synthetic difficulty set {D(1)
i , D

(2)
i , . . . , D

(N)
i }, we define the DVD indicator as their

sample variance:

DVDi =
1

N

N∑
k=1

(
D

(k)
i −Di

)2

, Di =
1

N

N∑
j=1

D
(j)
i . (7)

This indicator effectively characterizes the fluctuation of synthetic difficulty. According to the vari-
ance decomposition principle for mixture distributions, if a test sample is contaminated, the distri-
bution of synthetic difficulty can be regarded as a mixture of memory states and drift states, which
differ in expectation, thereby inflating the overall variance. If uncontaminated, synthetic difficulty
arises from a single state, and variance remains low.

More specifically, contaminated samples can be modeled as a mixture of two latent generation states:
the memory-adhering state (Z = M ) dominated by training memorization, and the unconstrained
perturbation-drift state (Z = U ). Let πM = Pr(Z = M), πU = Pr(Z = U), with πM + πU = 1.
Then,

µ = πMµM + πUµU , (8)

Var(X) = πM

(
σ2
M + (µM − µ)2

)
+ πU

(
σ2
U + (µU − µ)2

)
. (9)

Here, µM and µU denote the expectations under the memory and drift states, respectively. Since
the memory state relies on templates encountered during training, its synthetic difficulty is generally
lower than that of the drift state, i.e., µM > µU empirically. By the decomposition of within-group
and between-group variance, if the two states differ substantially in expectation, the overall vari-
ance of the mixture will necessarily exceed that of a single distribution. This theoretical grounding
demonstrates the effectiveness of our method in distinguishing contaminated from uncontaminated
samples.

Figure 3: Comparison of Synthetic Difficulty
Variance in Normal vs. Abnormal (Contami-
nated) Samples

Figure 4: The prompt we use to do rejection sam-
pling from GPT-4o

5 EXPERIMENTS

In this section, we simulate a variant contamination environment based on the constructed variant
dataset 3.2 and conduct comparative experiments between the proposed method and several baseline
approaches under this setting. The detailed experimental setup is provided in 5.1, and the experi-
mental results are presented in 5.2.

5.1 EXPERIMENTAL SETUP

Model Selection: To comprehensively evaluate the robustness of the proposed variant con-
tamination detection method, we compare models in the dimension of different parameter
scales (Qwen2.5-1.5B-InstructTeam (2024) vs Qwen2.5-3B-InstructTeam (2024) vs Qwen2.5-7B-
InstructTeam (2024)) as well as of different architectures (Qwen2.5-7B-Instruct vs Llama3.1-8B-
InstructDubey et al. (2024)).

7
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Table 2: Performance comparison of different detection methods on the Omni-MATH and SuperG-
PQA datasets

Omni-MATH SuperGPQA

Method Qwen1.5B Qwen3B Qwen7B Llama8B Qwen1.5B Qwen3B Qwen7B Llama8B

Min-K% 0.635 0.654 0.533 0.560 0.435 0.431 0.447 0.495
Perplexity 0.597 0.620 0.582 0.591 0.464 0.462 0.473 0.498
CDD 0.509 0.495 0.550 0.495 0.585 0.586 0.663 0.686
Embedding-
similarity 0.521 0.554 0.569 0.557 0.613 0.593 0.649 0.683

DVD (Ours) 0.649 0.677 0.617 0.662 0.668 0.709 0.697 0.710
Note: The full names of the columns are as follows. Qwen1.5B: Qwen2.5-1.5B-Instruct, Qwen3B:

Qwen2.5-3B-Instruct, Qwen7B: Qwen2.5-7B-Instruct, Llama8B: Llama3.1-8B-Instruct. The values in the
table represent performance metrics (e.g., AUC), where higher values are better. Background colors are used

to highlight the best-performing (pink) and second-best (orange) values in each column.

Fine-tuning Details: To simulate the scenario of variant contamination, we fine-tune the aforemen-
tioned models on the constructed variant contamination dataset. All models are fine-tuned using
the LoRA approach for parameter-efficient adaptation, with training conducted on a single NVIDIA
A800 GPU. The specific configuration is as follows: the LoRA rank is set to 8, the optimizer is
Adam, the total number of training epochs is 10, and the initial learning rate is 1e-4. A cosine learn-
ing rate scheduler with a warm-up ratio of 0.1 is employed. The batch size per GPU is 2, with a
gradient accumulation step of 1. Training is conducted with bfloat16 precision.

Baseline Methods: To assess the effectiveness of the proposed method, we compare it against
the following baselines: 1) Embedding Similarity Dong et al. (2024): Computing the similarity
between answers using embeddings generated by the base model; 2) Perplexity Li et al. (2023):
Calculating the perplexity of the original answer under the given prompt; 3) Min-k% Probability
Shi et al. (2023): Calculating the minimum k% probability of the original answer under the given
prompt; 4) CDD Dong et al. (2024): Measuring the sharpness of the output distribution based on
edit distance. All hyperparameters of the baseline methods are consistent with those reported in
their original papers. The hyperparameters specific to our method were set as follows: the number
of minimum-probability tokens k was fixed at 20, and the number of samples N was set to 50.

5.2 EXPERIMENTAL RESULTS

We construct variant data on two datasets from different domains, Omni-Math and SuperGPQA,
to simulate the scenario of variant contamination. The specific construction method is detailed
in 3.2. The experimental results are presented in Table 2, where our proposed method consistently
and significantly outperforms all baseline approaches across various evaluation metrics, while also
demonstrating strong cross-domain generalization capability.

Outperforms Log-Probability Approaches The Min-k% Probability and Perplexity methods can
partially identify variant contamination on the Omni-Math dataset. However, their performance
degrades substantially on the SuperGPQA dataset, with AUC values dropping below 0.5 and some-
times even showing opposite trends compared to Omni-Math. This indicates that such methods
lack cross-domain robustness, as they rely on the model’s log-probabilities of standard answers—a
mechanism that proves unstable under variant contamination. In contrast, our method avoids this
reliance and thus maintains stable performance across domains.

Surpasses Shallow Distributional Measures The CDD method relies solely on text edit distance
to measure distributional differences, which is overly superficial. On the inherently diverse Omni-
Math dataset, its performance is close to or even worse than random guessing (e.g., AUC = 0.495 on
Llama3.1-8B-Instruct). On SuperGPQA, it shows some improvement (0.663–0.686), but remains
clearly inferior. The newly introduced Embedding-similarity baseline leverages vector similarity
to capture semantic-level distributional shifts. It outperforms CDD (0.521–0.569 on Omni-Math,
0.613–0.683 on SuperGPQA) and becomes the strongest baseline besides ours. Nevertheless, com-
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pared to such shallow or surface-level distributional modeling, our method consistently achieves
more stable and universal detection performance.

Maintains Robustness Across Model Scales As shown in Table 2, we further examine the perfor-
mance of different model sizes within the Qwen2.5 family (1.5B, 3B, and 7B). Results demonstrate
that our method consistently outperforms all baselines with minimal fluctuations, highlighting its
robustness. For example, on the SuperGPQA dataset, our method achieves AUC scores of 0.668,
0.709, and 0.697 on Qwen2.5-1.5B, 3B, and 7B, respectively—all substantially higher than baseline
methods. In contrast, Min-k and Perplexity remain in the 0.43–0.47 range, CDD improves slightly
but remains insufficient, while Embedding-similarity performs relatively stronger but still falls sig-
nificantly behind our method.

Overcomes the Limitations of Small-Scale Models We also observe an interesting phenomenon:
the CDD method consistently underperforms when model parameter scales are small, while
Embedding-similarity is relatively more stable but still insufficient on Omni-Math. This confirms
our argument that relying solely on surface-level measures (whether edit distance or vector simi-
larity) is inadequate for capturing deeper distributional shifts in contaminated models. In contrast,
our method, inspired by perplexity-based modeling, effectively characterizes output distributional
features and achieves stable performance across both different scales and architectures (Qwen and
Llama). For instance, on Omni-Math, CDD yields an AUC of only 0.495 on Llama3.1-8B-Instruct,
while Embedding-similarity slightly improves it to 0.557, but our method significantly increases it
to 0.662.

Stable and Effective Cross-Domain Detection by Our Method In summary, our method not
only demonstrates strong generalization across tasks (mathematical reasoning and general reason-
ing) but also maintains robust advantages across model scales (1.5B to 7B) and architectures (Qwen
and Llama). This highlights its capability to achieve stable and effective contamination detection
in multi-dimensional scenarios, thereby validating its robustness and practical value. Quantitative
comparisons further reveal that, depending on dataset–model combinations, our method achieves
AUC improvements of more than 0.2 over the best baseline in some cases, while always maintain-
ing positive gains in all settings. These results strongly support the effectiveness and universality of
the proposed approach in variant contamination detection.

6 CONCLUSION

This paper systematically revealed the overlooked problem of variant contamination in large lan-
guage models and proposed DVD as a principled solution. By modeling the fluctuation of synthetic
difficulty across multiple generations, our method effectively distinguishes contaminated from un-
contaminated samples, overcoming the limitations of perplexity- and similarity-based approaches.

Experiments on Omni-MATH and SuperGPQA demonstrate that DVD consistently outperforms ex-
isting baselines across domains, model scales, and architectures, while exhibiting strong robustness
to hyperparameter choices. These findings establish DVD as a reliable tool for mitigating contami-
nation risks and ensuring fairer, more trustworthy evaluation of LLM capabilities.

7 ETHICS STATEMENT

This work investigates the problem of variant contamination in large language models (LLMs) and
proposes a novel detection framework (DVD). All experiments are conducted on publicly avail-
able benchmarks (Omni-MATH and SuperGPQA) and synthetic variant data generated through con-
trolled transformations with automated verification; no human subjects, private data, or personally
identifiable information were involved. The proposed approach aims to improve the reliability and
fairness of LLM evaluation by mitigating risks of data leakage and inflated benchmark performance.
While our method enhances the trustworthiness of evaluation, it does not eliminate all forms of bias
or contamination inherent in training data. We affirm that our research complies with the ICLR Code
of Ethics and does not pose foreseeable harm to individuals or groups.
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8 REPRODUCIBILITY STATEMENT

To ensure reproducibility and transparency of our results, we have submitted all necessary code and
evaluation scripts as supplementary materials, together with detailed instructions to reproduce the
experiments reported in this paper.

9 THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs were used to support the writing process of this paper. Specifically, they assisted in grammar
correction, wording refinement, and formatting adjustments. In addition, LLM agents were lever-
aged to facilitate literature search and provide coding suggestions for implementation. The use of
AI tools does not affect the originality of the work or the authors’ responsibility for its content.
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A APPENDIX

A.1 HYPERPARAMETER SENSITIVITY ANALYSIS

Figure 5: The DVD method demonstrates remarkable robustness across a wide range of hyperpa-
rameters.

To evaluate the sensitivity of the proposed DVD method to the key hyperparameter M (i.e., the
minimum number of low-probability tokens considered when calculating the synthetic difficulty),
we conducted extensive experiments on the Qwen2.5-3B-Instruct model and the Omni-MATH vari-
ant dataset. The experimental results (figure5) clearly reveal the robustness characteristics of the
method.

Superior Stability of Performance The experimental results indicate that the detection perfor-
mance of the DVD method (measured by AUC) exhibits high stability across an extremely broad
range of hyperparameters. As the figure5 show, when M increases from 9 to 28, the AUC values
remain within the range of 0.672 to 0.678, with a very small fluctuation range (< 0.006). Even when
the parameter range is extended from M=5 to M=35, the difference between the global maximum
and minimum AUC values is only 0.011 (0.667 to 0.678). This phenomenon of performance flat-
tening across 24 consecutive parameter points indicates that the DVD method is insensitive to the
specific value of the hyperparameter M.

Presence of a Robust Plateau Interval The performance curve reveals a significant robust plateau
interval M ∈ [9, 28]. Within this interval, the AUC values fluctuate slightly around the mean of
0.676, without any noticeable performance peaks or sharp declines. It implies that users do not need
to conduct fine-tuning of the hyperparameter, which is time-consuming, but can simply select any
value of M within the broad plateau interval to ensure consistent and superior detection performance.

Comparative Advantage Over Baseline Methods It is worth noting that even the “stable perfor-
mance” (AUC ≈ 0.676) achieved within this broad parameter range is significantly and consistently
better than all baseline methods (Min-K% Prob: 0.635, Perplexity: 0.597, CDD: 0.509). This
strongly demonstrates that the superiority of the DVD method does not rely on the accidental dis-
covery of a specific lucky parameter, but is an inherent and reproducible characteristic of its intrinsic
mechanism.

Theoretical Implications This robustness feature is consistent with the core idea of the DVD
method. The method detects memory effects by evaluating the variance of “synthetic difficulty”
when the model generates answers. The robustness of the hyperparameter M indicates that as long
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as a sufficient number (M ≥ 9) of low-probability tokens are captured to form a representative “dif-
ficulty” estimate, its variance is sufficient to effectively distinguish whether the data is contaminated.
Over-increasing M (M > 28) introduces too many medium-probability tokens, slightly diluting the
core signal, leading to a slow decline in performance. However, the performance decay remains
very limited even up to M = 35, further confirming the stability of the method.

A.2 CASE STUDY

The three representative cases examined above provide a mechanistic explanation for the macro-
scopic performance trends observed in Table 2. They demonstrate that the effectiveness of a de-
tection method is not arbitrary but is determined by the intrinsic alignment between its underlying
mechanism and the nature of the contamination. The superior performance of our DVD method
stems from its unique capacity to probe the model’s internal ”cognitive state,” enabling it to pene-
trate surface-level textual variations and identify the essential signal of memorization.

Figure 6: Compare the effectiveness of different detection methods on different variants

A.2.1 DEEPLY TRANSFORMED VARIANTS

Cases 1 and 2 represent deeply transformed variants where all four transformation methods (en-
tity substitution, scenario conversion, etc.) are applied. While the surface narratives are entirely
different (”student competition” to ”factory robots”, ”grid coloring” to ”cinema seating”), the core
mathematical structures are isomorphic.

CDD fails because and it is trapped at the surface symbolic level of the text and cannot reach the
deep logical equivalence relationships. When the model generates based on these ”completely dif-
ferent prompts” at different temperatures, the resulting ”inference process text” will inevitably be
completely different. For example, the description of the steps for proving the existence of ”grid
coloring” is almost without overlap in terms of vocabulary and syntax compared to the description
of the steps for arranging ”cinema seats” with safe distances. The CDD mechanism interprets this
as ”output inconsistency”, and thus it is judged as ”unremembered”.

Min-k% and Perplexity fail as the models’ token-level probabilities are sensitive to the unfamiliar
surface text, obscuring any signal from the underlying memorized logic.

Embedding Similarity fails because standard text embeddings cannot reliably capture the abstract,
structural isomorphism of the mathematical problems. It difficult to comprehend that the structure
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where ”any two student answers can be the same at most on one question” and ”any two robot task
patterns can be the same at most once” is completely equivalent in combinatorial mathematics.

The DVD method is successful by probing the internal cognitive state of the model during genera-
tion, rather than analyzing the output text. Despite the surface differences, the model has memorized
the core logical template for solving these problem types. When generating answers, it exhibits high
confidence at the key reasoning steps and final answer. This results in low and stable ”constitutive
difficulty” values across samples, leading to a high variance score. Thus, DVD effectively detects
contamination by identifying the model’s familiarity with the underlying mathematical structure,
bypassing surface-level noise.

A.2.2 SIMPLY TRANSFORMED VARIANTS

Case 3 is a simple variant that involves only entity substitution and numerical rewriting. The math-
ematical problem (an application of the Cauchy-Schwarz inequality) remains identical, with only
variable names and constants changed.

CDD and Embedding Similarity succeed in Case 3, due to the high degree of textual and semantic
similarity between the original and variant prompts.

DVD also succeeds, as the model confidently applies the memorized solution template, resulting in
high variance in generation confidence.

Min-k% / Perplexity fail, highlighting their fragility. Changes in specific tokens (variables, num-
bers) are sufficient to alter the probability distributions. Change a, b, c, d, e to p, q, r, s, t, and
change 8 and 16 to 10 and 20. These specific token changes are sufficient to significantly alter the
distribution of the model’s calculation of the probability of the entire sequence. The model has seen
a + b + c + d + e = 8, but has not seen p + q + r + s + t = 10, so it believes that the probability of the
latter sequence is slightly lower.

A.3 PROMPT

Figure 7: The prompt we use to generate variants fromr asking GPT-4o.
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