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Abstract

Extreme multi-label text classification
(XMTC) is a task for tagging each document
with the most relevant subset of labels from an
extremely large label set. The most challeng-
ing part for machine learning methods is the
skewed label distribution in which a majority
of labels receive very few training instances
(named as the tail labels). Benchmark evalua-
tions so far have focused on micro-averaging
metrics, where the performance on tail labels
can be easily overshadowed by high-frequency
labels (named as head labels), and hence they
are insufficient for evaluating the true success
of methods in XMTC. This paper presents a
re-evaluation of state-of-the-art (SOTA) meth-
ods based on the binned macro-averaging
F1I instead, which reveals new insights into
the strengths and weaknesses of representa-
tive methods. Based on the evaluation, we
conduct in-depth analysis and experiments
on Transformer models with various depths
and attention mechanisms to improve the tail
label performance. We show that a shallow
Transformer model with word-label attentions
can effectively leverage word-level features
and outperforms previous Transformers on
tails labels.

1 Introduction

Extreme multi-label text classification (XMTC) is
a task for tagging each document with the most
relevant subset of labels from an extremely large
label set, in which the number of labels can be
from a few thousands to more than a million. It
has a wide range of potential applications, such as
tagging keywords for advertising, recommendation
system, or product category classification.

In the enormous label space, the skewed dis-
tribution is the main challenge because the label
frequency follows the Zipf’s Law. As a result, a
majority of low-frequency labels (named as tail la-
bels) cover only a small subset of training instances,
while a minority of high-frequency labels (named
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Figure 1: The percentage of label vs. training instance
in Wikil0-31K dataset. 1% of head labels cover more
than 40% of training instances, while 88% of tail labels
cover less than 30% of training instances.

as head labels) cover a large subset of training in-
stances. In the Wiki-31K dataset shown in Figure
1, only 1% of labels has more than 100 training
instances, but they cover more than 40% of all the
training instances. On the other hand, 85% of la-
bels only cover less than 30% of training instances.
Other benchmark datasets show similar distribution
(Appendix A).

It is worth pointing out that the performance of
current SOTA models has been evaluated using the
micro-averaging precision scores as the dominating
metrics (Liu et al., 2017; You et al., 2018; Ye et al.,
2020; Chang et al., 2020; Jiang et al., 2021). Those
metrics assign an equal weight to the score of each
instance and hence are dominated by the head la-
bels that appear more frequently. In other words, if
a model performs well on a few head labels, it will
be scored highly in micro-based metrics but that
cannot be counted as the evidence for the model to
perform well on tail labels.

In order to measure the true success of exist-
ing methods on massive tail labels in XMTC, a
re-examination based on macro-based metrics is
necessary, where the performance score on each la-
bel is given equal weight in calculating the average.



This paper presents such a re-examination. Specif-
ically, by comparing the relative improvement of
SOTA neural models with respect to the binary
Support Vector Machines (SVM) in binned macro-
averaging F1 scores, where each bin is a group of
labels with similar frequencies, our experiments
reveal new insights into the methods.

In our evaluation, we found that the deep pre-
trained Transformer-based XMTC models (Ye
et al., 2020; Jiang et al., 2021; Chang et al., 2020)
perform worse than the simple SVM baseline on
the tail labels, while a shallow word-label attention-
based RNN model (You et al., 2018) can outper-
form the SVM baseline on two of the benchmark
datasets. We speculate that the deep-layered ar-
chitectures in those Transformer models may not
be optimal for modeling low-frequency word-level
features which are informative for tail label predic-
tion. We found that a simple shallow Transformer
with label-word attention that can better leverage
word embedding with a more desirable inductive
bias towards the low-frequency cases. Our experi-
mental results demonstrate the effectiveness of the
shallow Transformer model in tail label prediction.

2 Background

‘We will introduce the notation and formulation in
Section 2.1, the SOTA methods in Section 2.2 and
the commonly used evaluation metrics in Section
2.3.

2.1 Task Introduction

We denote a training dataset with /V instances and
L labels as D = {(x,,yY 1)} such that x; is
the input text and y; € {0, 1} is the ground truth
label list.

The goal of the XMTC task is to learn a scoring
function s; = f(x,[) € R which maps an input x
and a candidate label [ to a score s;, such that for a
relevant label, s; = 1, otherwise s; = 0.

The simplest approach to optimize f(x,!) is the
one-vs-all classifiers, which trains an independent
binary classifier for each label:
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where L(+,-) is a point-wise loss function, such as
a hinge loss for Linear SVM or a logistic regression

as the final layer of a neural network:

- yilf(xi7 l))
= log(1 + exp(—a f(xi,1)))

Ehinge = Imax (O, 1

Elogistic

where 9, = 2y; — 1 € {—1,1}.

In the evaluation, since multi-labels can be rel-
evant for an input document x, a typical way is to
measure the quality of a top-k ranked list of the
predicted label, denoted as p*

p* = Top-k([f(x,1),..., f(x, L))

2.2 Methods under Investigation

Based on the design of the classification scoring
function f, we discuss three types of methods: the
linear SVM, the document-vector representation-
based method and the word-label attention-based
method. Specifically, the SVM is a non-neural
baseline and the other two methods are used the
SOTA deep learning models.

2.2.1 Linear SVM Model
The one-vs-all linear SVM model is a simple real-

ization of f(x,1):

f(x,1;w)

= W} ¢rtiar(X)

where ¢rigr(X) converts each text input into d di-
mensional tf-idf feature, and W = [w} ] € RL*d
is the parameter for linear classifier. The tf-idf fea-
ture uses the human defined heuristics to reflect the
distributed importance of each word in the training
corpus.

Although more complicated kernels such as the
RBF kernel are introduced in the SVM model for
the classification tasks, (Chang and Lin, 2011)
shows that a Linear SVM achieves the same perfor-
mance with a RBF kernel SVM when the feature
space is large (refer to Table 1 for the number of
features in the benchmark datasets). Therefore, we
use the Linear SVM to lower computational cost
without affecting the performance.

2.2.2 Document-vector Representation

The document-vector representation-based meth-
ods (doc-vec) use neural networks as ¢(x) to re-
place the human defined ¢s.igr(x), shown in Fig 2
left. Specifically, Liu et al. (2017) are the first to
apply CNN model (Kim, 2014) to encode the in-
put text x into a single bottleneck vector as the
document-level representation in the XMTC task.
Recently, the deep Transformer-based (Vaswani
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Figure 2: Document-vector representation (doc-vec) vs.
word-label attention (word-label). The doc-vec method
encodes the input text into a fixed vector representation
to calculate score s;, while the word-label attention ex-
tracts local word features to form label specific docu-
ment embeddings ¢;.

et al.,, 2017) models quickly exceed the perfor-
mance of CNN and achieve the state-of-the-art. We
choose the deep Transformer-based models and
write score function as follows:

f(Xa l) = WlT(btransformer (X) (D

where diransformer (X) 18 the deep transformer fea-
ture extractor such as BERT (Devlin et al., 2018)
or XLNet (Yang et al., 2019). Again, w represents
a binary classifier applied on top of the document
vector to compute the score for each label, which
is optimized by the logistic regression objective
ﬁlogistic-

The most representative deep Transformer-
based models tailored for the XMTC task are X-
transformer (Chang et al., 2020), APLC-XLNet (Ye
et al., 2020) and LightXML (Jiang et al., 2021),
which are discussed in Appendix C.

2.2.3 Word-label Attention

The word-label attention-based method (word-
label) extracts local word features to form label
specific embeddings, which avoids using a fixed
doc-vec representation, as shown in Fig 2 right.

Specifically, the word-label attention allows each
label to interact with each word by the attention
mechanism. Let 7" denote the length of input x,
h”_ , € R? denote the contextualized word embed-
ding and W]L:1 € R? denote the label embedding.
The label-word attention is calculated by
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The attention score is then used to calculate the

label specific feature vector

T
Swordtaber (X, 1) = > _ avijh,; 3)
i=1

Finally, the score function is calculated by:

f(X, l) = MLP(¢word—label(X7 l)) (4)

where MLP : R? — R is the multi-layer percep-
tron function that summarizes the label specific
feature into a real-valued score. Although in this
method there is no explicit classifier, the parameter
w; serves a similar role of the classifier as in the
previous methods.

This method can be related to a word-level re-
trieval, where a label measures the word impor-
tance via the interaction term h;w;, and then
the word-level information is combined by the a
weighted sum Zszl a;jh;.

Although this method was originally proposed
in AttentionXML (You et al., 2018), we rename
it to the word-label attention-based method as a
counterpart to the document vector-based method
to signify the distinction between the two types
of methods. Also, the contextualized word em-
bedding h is obtained from a one layer shallow
LSTM in the original paper, but in our paper, we
will also generalize this method to the shallow or
deep Transformer-based models.

2.3 Evaluation Metrics

In XMTC, there are multiple relevant labels for
each document, so a typical way for evaluation
is to measure the quality of the label ranked list
produced by the model.

The micro-based metrics for a ranked list are
the most commonly used in previous works, where
the performance score is averaged over all the test
instances. Since the test instances are weighted
equally, the instance level metrics are usually dom-
inated by the head labels which have more training
instances. These metrics can be formulated as:

N
. 1 ok
Micro@k = N E Metric(p;,yi)  (5)

i=1

where NN is the number of test instances and pf, Yi
are the predicted top k ranked list and the ground
truth labels respectively. Metric is a function to
score the quality of the ranked list such as P@k
(Precision at k) (Liu et al., 2017; You et al., 2018;



Dataset | Nirain  Niest F [Lal L] |Lu|  |Lwe|  |Ls|  [Lua| (W]
EURLex-4K 15,539 3,809 186,104  5.30 3,956 2,413 1,205 182 1 1,248
Wikil0-31K 14,146 6,616 101,938 18.64 30,938 26,545 3,084 300 16 2,484
AmazonCat-13K | 1,186,239 306,782 203,882 5.04 13,330 3936 5813 2862 719 246

Table 1: Data statistics. Nyqi, and Nycs; denote the number of training and testing instances respectively. F is
the tf-idf feature size. | Ly is the average number of labels per document. |L| is the number of labels. Ly, refers
to the number of labels in bin k, in which the labels in bin [1, 2, 3, 4] have [1 ~ 9,10 ~ 99,100 ~ 999, 1000 ~]
instances respectively. This bin partition is used in our binned macro-based F1. |W| refers to the average word

number per training document.

Prabhu et al., 2018; Khandagale et al., 2019; Ye
et al., 2020; Chang et al., 2020; Jiang et al., 2021),
R@k (Recall at k), N@k (Normalized Discounted
Cumulative Gain at k) (Prabhu and Varma, 2014)
, or PSP@k (Propensity-scored Performance at
k) (Jain et al., 2016), which are discussed in Section
B.1.

In this paper, we report the micro F1 @k (refer
to Sec 3 for details) as the evaluation metric, which
is calculated by:

PQk - RQk
Flok = 2P@k + RQk ©

3 Issues in Existing Evaluation

Recently, various deep learning models are pro-
posed to solve the data sparse issue in the skewed
distribution in the XMTC task. However, we found
that due to the issues of the evaluation metrics, the
significance on the improvement is not evident, es-
pecially on the tail labels. We list the 3 main issues
of the evaluation in the previous work as follows:

Missing Macro-averaging Metrics The current
evaluation only focuses on the micro-averaging
metrics such as P@5, which only measure how
well a model performs on the instance level, but
not on the label level. Instead, the macro-averaging
metrics measure the model performance on the
label level, but they are ignored in recent works.

Missing Label Recall Evaluation The widely
used precision metric only focuses on the accu-
racy of prediction, but not on how many labels
are predicted. Especially in tail label evaluation,
measuring the precision of a model which hardly
predicts any tail label is not meaningful. Actually,
the recall metric is important to measure how likely
the tail labels are predicted. We propose to use F1
as our metric since it can balance the precision and
recall.

Missing Simple SVM Baseline The recent work
only has in depth comparison with other deep learn-
ing models, but the simple one-vs-all linear SVM
is missing. We acknowledge that several previous
works include tree-based models in which part of
the modules are built upon SVM (Prabhu et al.,
2018; Khandagale et al., 2019), but they don’t di-
rectly compare with the simple one-vs-all SVM
because they may assume it as just a weaker base-
line. In our paper, we conducted in-depth compar-
isons with other deep learning models to show that
one-vs-all SVM is not without advantages.

4 Re-evaluation of SOTA Models

4.1 Datasets

In this paper, we use three benchmark datasets:
EURLex-4K (Loza Mencia and Fiirnkranz, 2008),
Wikil0-31K (Zubiaga, 2012) and AmazonCat-
13K (McAuley and Leskovec, 2013). The statistics
of the datasets are shown in Table 1. For EURLex-
4K and Wikil0-31K, the bin with 1 ~ 9 training
instances covers 63.48% and 88.65% of the labels
respectively. The AmazonCat-13K dataset contains
more instances, where the bin with 1 ~ 9 instances
covers 30% of the labels and the first two bins to-
gether with 1 ~ 99 instances cover more than 70%
of labels. If the model cannot perform well on
those bins, it means that the predictions of most
labels are inaccurate. The data statistics shed light
on the importance of tail label prediction in this
task.

The details of the experiment settings, descrip-
tions of SOTA models and the training hyperparam-
eters are discussed in Appendix C.

4.2 Macro-averaging Metrics

For label level evaluation, we proposed to apply the
macro-averaging F1 metric (refer to Sec B.2 for
more details), where the performance score on each
label is given an equal weight when calculating



the average. Moreover, the macro-averaging F1
metric can be applied to groups of labels according
to their training frequency to clearly reflect the
performance on head labels and tail labels. We call
this metric the binned macro-averaging F1 metric.
Let Ly be a group of labels, then the macro-based
F1 on Ly is calculated by:

Macro@k = FllC (7
!Lb\ Z

where L is the label set for bin b and F17 is the F1
metric for label [ evaluated on top & ranked list p.

Specifically, the F1 @k for label / over predicted
ranked list p* is calculated according to the confu-
sion matrix at Table 2

pF = TP - TP
TP} + FP}’ TP} + FNy
P} - RY
Fiy =21
Pr+ R

where Pf, Rf, Fl;C are the precision, recall, F1 at
k for label I. As a designed choice, we set F1F =
if a label [ is never predicted.

‘ liny Inotiny
lin p” True Positive(TPF)  False Positive(FPT)
I notin p* | False Negative(FNF)  True Negative(TNF)

Table 2: Confusion Matrix for label [ and top k ranked
list p*.

4.3 Performance in Micro-averaging Metrics
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Figure 3: The result of micro and macro-averaging
F1@5 metrics. The two metrics gives different conclu-
sion on the best performing model.

In Figure 3, we report the micro-averaging F1 @5
for the SOTA models on the benchmark datasets.
More evaluation results on micro P@k, micro
F1@k and macro F1@k (k=1, 3,5) are reported
in Table 3 in Appendix. The other micro-averaging
metrics such as N@k and PSP @k are reported and
discussed in Appendix C.

In the micro-based evaluation, all the SOTA neu-
ral models outperform the SVM baseline on the 3
benchmark datasets. We found that the deep Trans-
former model achieves the best performs across the
datasets. Specifically, APLC-XLNet is the best on
the EUR-Lex and Wikil0-31K datasets, and the
X-Transformer is the best on the AmazonCat-13K
dataset.
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Figure 4: The relative improvement of SOTA deep
learning models over one-vs-all SVM baseline on the
binned macro-averaging F1@5 metrics. The labels are
partitioned to bins whose labels have [1 ~ 9,10 ~
99,100 ~ 999, 1000 ~ 999, . . .] instances respectively.
The corresponding label number of each bin can be
found in Table 1.

4.4 Performance in Macro-averaging Metrics

At the bottom of Figure 3, we report the macro-
averaging F1@5 for the same models under in-
vestigation. The results of the macro-averaging
metrics give different conclusions from the micro-
averaging evaluation. Specifically, the SVM base-



lines performs the best in the Wiki1l0-31K, where
the label space is both large and skewed. It
also achieves competitive results on the other
two datasets. Especially on the AmazonCat-13K
dataset, the SVM beats all the deep Transformer-
based models which perform better on the micro-
averaging metric.

We also observe that the AttentionXML model is
the best on both the EUR-Lex and the AmazonCat-
13K datasets, though it is not the best in any
datasets when evaluated with the micro-averaging
metric.

4.5 Binned Macro-averaging F1 Metric

In order to evaluate the performance of the tail
labels, we show the binned macro-averaging F1
in Figure 4. We report the improvement of the
macro-averaging F1 metric on each bin relative to
the SVM baseline. We have two main observations:
1) all the deep Transformer-based models under-
perform the SVM baseline on the tail labels. 2)
The AttentionXML model tends to outperform the
SVM baseline on the tail labels.

Deep Transformers vs. SVM  On all the dataset,
the deep Transformer-based model inevitably un-
derperform the SVM baseline on the tail bin with
1 ~ 9 training instances. Note that although the
tail bin contains relatively few instances, it actually
covers most of the label set. For instance, the tail
bin of EUR-Lex and Wikil0-31K covers 63% and
89% of the labels respectively. On the other hand,
the deep Transformer-based model tends to have an
advantage over the SVM baseline when the number
of training instance is greater than 100. This shows
that the source of improvement of the SOTA deep
Transformer model comes from the improvement
on the few head labels which covers a large number
of instances.

AttentionXML vs. SVM For EUR-Lex and
AmazonCat-13K datasets, the AttentionXML out-
performs the SVM baseline on the tail bin where
the labels have 1 ~ 9 training instances, while
all the other deep learning models underperform
the SVM baseline. The AttentionXML model also
shows an advantage over the SVM baseline on the
head labels, but it tends to underperform the deep
neural models on the head bins. This shows that the
AttentionXML with the word-label attention can be
beneficial for tail label prediction, but potentially
at the price of sacrificing the head label prediction.

4.6 Micro vs. Macro-averaging Metric

Compared with the micro-averaging metric in eval-
uation, the macro-averaging metric focuses on the
label level prediction. We find that by shifting
our attention from the quality of instance-level pre-
diction to the label-level prediction especially on
the tail labels, the conclusion on the best perform-
ing model is reversed. Our conclusions are two
folds: 1) the SVM baseline outperforms the deep
Transformer models on the tail label prediction. 2)
the AttentionXML, which uses shallow one layer
LSTM with word-label attention, achieves better
tail label performance on two datasets.

Explanation We speculate the reason account-
able for the our observation lies in the nature of
the model architecture . The SOTA transformer
models use document-vector representation-based
method, gradually encodes global information into
a contextualized embedding ([CLS] token) via self-
attention. With abundant training instances, the
powerful Transformer feature extractors can learn
abstract semantic representations of documents,
and thus enhancing the performance on head labels.
However, without sufficient training instances, the
deep Transformers overfit on the tail labels during
training, failing to learn informative representations
generalized on testing data.

Different from the representation-based methods,
the AttentionXML uses the word-label attention-
based method, which avoids encoding all the tex-
tual information into a single vector. Rather, the
shallow RNN keeps the local word level informa-
tion and the word-label attention allows the clas-
sifier to better aggregate them for different label
predictions. For tail-label prediction, as there are
not enough training instances to provide high-level
meaningful semantic information for neural mod-
els, it is critical to rely on the word level feature for
better prediction.

S Improving Tail Label Prediction

From the evaluations in the previous sections, we
observe that the deep Transformer-based models
achieves the best on the micro-based metrics, while
the AttentionXML model achieves the best results
on the tail label prediction on the two benchmark
datasets. Our hypothesis is that the deep Trans-
former models are powerful at exploiting the global
semantic meaning because they are initialized with
the general language knowledge from large text
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Figure 5: Comparison of the word-label attention-based method and the document vector-based method with
different layers of BERT model on the benchmark datasets. The relative improvement to SVM on macro-averaging

F1 is plotted.

corpus via unsupervised pretraining. On the other
hand, the word-label attention method in the Atten-
tionXML exploits the less abstract semantics such
as the word embedding features that may benefit
tail label prediction when training instances are
scarce. A natural question is that whether we can
combine the two to use the word-label attention
to leverage the word knowledge in the pretrained
model, and thus achieving consistent improvement
on tail label prediction over all the benchmark
datasets.

To this end, we propose to apply the word-label
attention on the BERT model to integrate the word
knowledge into the word-label matching process.
We show that this method can achieve consistent
improvement on tail label predictions.

5.1 Transformers with Word-label Attention

In the word-label attention, each label attends to
the contextualized word embedding to select the
most relevant information from each word, which
more efficiently utilizes the local word features.
Specifically, the contextualized word embeddings
h in Eq.(2) are the outputs from a neural model and
each label integrates the most relevant h to form
the feature embedding in Eq.(3). The final score
function is calculated by Eq.(4).

To obtain the contextualized word embedding,
the AttentionXML uses a 1 layer bi-directional

RNN model. In a pretrained Transformer model,
there are 12 layers for BERT-Base and 24 layers for
BERT-Large, and different layers may encode dif-
ferent level syntactic or semantic features (Jawahar
et al., 2019). Therefore, we explore the effect of
using different layers of Transformer models with
either word-label attention or typical the document-
vector representation-based methods in the next
section.

5.2 Experiments with Shallow and Deep
BERT Models

In this section, we show the performance of tail la-
bel prediction by controlling the number of layers
for BERT by [1, 2,4, 6, 12] for both the word-label
attention method (word-label) and the document-
vector representation-based method (doc-vec). For
"k layer(s) BERT", we simply use the first k
layer(s) of BERT, discarding the remaining top
layers. The models are trained on the full training
data, and the relative improvement over the SVM
baseline is reported on the tail labels ([1 ~ 9] for
EURLex-4K and Wikil0-31K, [1 ~ 9], [10 ~ 99]
for AmazonCat-13K). The results of model perfor-
mance are shown in Figure 5 and more evaluations
are shown in Appendix 5.

In the results, we have two key conclusions 1)
the word-label methods perform the better with
shallower BERT models and the doc-vec methods



perform better with deeper BERT models, and 2)
the shallow BERT model with 1 or 2 layers show
consistently improvement over the SVM baseline
on tail label predictions.

The results also align with our hypothesis. For
deeper Transformer models, the input tokens inter-
act with each others via self-attention, gradually
forming more complex and abstract semantic rep-
resentations from layer to layer. Hence, the repre-
sentations of the top layer encode the global doc-
ument semantic. On the other hand, the shallower
Transformer models reflect more of the token level
meaning with only a little context information. The
stronger word-level feature can help the word-label
attention better leverage the local information for
enhanced tail label prediction.

Our findings raise an interesting point that most
of the pretrained models use the [CLS] embedding
as a default and the local feature of Transformer
models in bottom layers are often ignored, but they
can be potentially beneficial for different tasks.

In addition to the improvement in tail label pre-
diction, the shallower Transformer model has fewer
number of parameters, which makes the training
and inference much faster.

5.3 Comparison with SOTA Baselines

We compare our shallow word-label BERT models
(1 and 2 layers) with the other SOTA neural mod-
els. We report the relative improvement of macro-
averaging F1 metric relative to the SVM baseline
shown in Figure 6. Specifically, we focus on the
performance of tail bins (bin with 1 ~ 9 instances
for EURLex-4K and Wikil0-31K, and bins with
1 ~ 9,10 ~ 99 instances for AmazonCat-13K),
where the deep Transformer models underperform
the SVM baseline.

Our word-label BERT models outperform the
SOTA deep Transformer models consitently. Com-
pared to AttentionXML, our proposed method has
better performance on Wikil0-31K dataset and the
performance is on par on EUR-Lex dataset. The
results confirm that the word-label attention on a
shallow Transformer can improve the tail-label per-
formance.

Similar to the AttentionXML, our word-label
BERT has relatively weaker performance on the
head bins with training instance greater than 100
on the Wikil0-31K and AmazonCat-13K datasets.
This is also reflected in the micro-averaging met-
rics in Table 3 in Appendix D. This is proba-
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Figure 6: A comparison of our shallow word-label
BERT with 1 and 2 layers vs. other baseline models
on the relative improvement to SVM. Our models show
consistent improvement on the tail bins.

bly because the two datasets have much skewer
label distribution where in Wikil0-31K, 1.05%
head labels covers 33.71% of training instances
and in AmazonCat-13K, 0.68% head labels covers
51.86% of training instances, as shown in Fig 7.
This demonstrates that the success on micro-based
metrics is not equivalent to the success on tail label
predictions.

6 Conclusion

In this paper, we show that the widely used micro-
averaging evaluation metrics on XMTC are not
sufficient to reflect the true performance of the tail
label prediction. By a re-evaluation with macro-
averaging metrics, we draw different conclusions
on the best model for tail label prediction, and
find that the word-label attention-based methods
are potentially more suitable. Finally, we propose
to combine word-label attention with shallow pre-
trained BERT to obtain consistent improvement on
label prediction.
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A Data Distribution

In Figure 7, we show the percentage of label
vs. training instance in each bin in the bench-
mark datasets: EURLex-4K, Wikil0-31K and
AmazonCat-13K dataset. In all the datasets, a small
percentage of head labels cover most of the of train-
ing instances, while a large percentage of tail labels
only cover a few training instances.

B Evaluation Metrics

We include more discussion and reference for the
micro-averaging metrics and our proposed macro-
averaging binned F1 metric.

B.1 Micro-averaging Metrics

In XMTC, there are multiple true labels for each
instance, so it is important to present a ranked
list of predicted labels for evaluation. The micro-
averaging metrics calculate a score for each of the
ranked list and then take an average over all the test
instances.

N
. 1 .
MicroOk = — E 1 Metric(pF,y;)  (8)
1=

where IV is the number of test instances and pf, Yi
are the predicted top k ranked list and ground truth
labels list. Metric is a function to score the quality
of the ranked list based on the ground truth labels
list. In the following, we omit the index of instance
1 for clarity.

In most of the previous work, the Metric func-
tion is chosen to be the micro-averaging Precision
at k (P@k) (Liu et al., 2017; You et al., 2018; Ye
et al., 2020; Chang et al., 2020; Jiang et al., 2021).
Specifically, this metric evaluates the quality of the
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Figure 7: The percentage of label vs. training in-
stance in EURLex-4K, Wikil0-31K and AmazonCat-
13K dataset. A small percentage of head labels cover
most of the of training instances, while a large percent-
age of tail labels only cover a few training instances.

top k of the prediction ranked list for a given test
instance:

k
Pak =23 1y(pi) ©)
=1

where p; is the [-th label in the predicted ranked
list p and 1y is the indicator function.

Other choices of the Metric function include
N @k (normalized Discounted Cumulative Gain at
k) or PSP@K (Propensity-scored Performance at
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k) (Jain et al., 2016). The N@k is defined as:

DCG@Qk = }:1g)

0+ 1
minblyl)
DCGak = _
ipea g} log(l + 1)
DCGak
NOk=Tbecar

Although N@k and P@k are calculated differently,
You et al. shows that they are the same metrics
when measuring the quality of ranked lists.

The PSP @ k is defined as:

P!
PSPQk = E —
k prop(pl)

where prop(p;) is the propensity score (Jain et al.,
2016) of label p;, which gives higher weight for tail
labels. Although PSP@k were used as evaluation
metric for the long tail problem, it is still not infor-
mative enough to compare the performance of head
labels vs. tail labels due to following: 1) It is still a
micro-averaging metric that can be influenced by
label with more instances. 2) Since it summarizes
the performance into one number, we are not sure
if the gain comes from the improvement of head
labels or tail labels. Actually, an improvement in
either type of labels will give an increment in the
final score.

B.2 Macro-averaging Metrics

As we discussed above, the micro-averaging met-
rics are not informative enough to measure the per-
formance of different types of labels, because they
assign equal weights to each instance when taking
the averaging. As a remedy, a label level evaluation
should assign equal weights to each label when
taking the average. Therefore, macro-averaging
metrics should be applied for evaluating the label
level performance, especially for the tail labels.

In computer vision, such metrics have been used
in object recognition in manually sampled long-
tail datasets. (Yang and Xu, 2020; Wang et al.,
2021) evaluates the accuracy on each label and
(Kang et al., 2020; Menon et al., 2021) linearly
partition the labels into groups. However, the label
size of datasets in object recognition is relatively
small compared to the XMTC datasets. To create
groups for large label size, we split the labels in the
scale of exponential of 10 as a design choice, e.g.
{1~9,10 ~ 99,100 ~ 999, ... }.
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We used the F1 metric to balance the precision
and recall. As observe in (Tan et al., 2020), the tail
labels tend to be under predicted due to the more
frequent negative gradient penalty. As a result,
tail labels tend to be predicted less often than the
head labels, and thus the recall is low. If a model
hardly predicts any tail labels, it should receive a
low score for the corresponding bin. Therefore, we
apply the F1 metric to balance the number of pre-
dictions (recall) and the accuracy of the predictions
(prediction).

C Experiment Settings

C.1 Re-evaluation Experiment Settings

We choose the non-neural SVM as our baseline
and investigate 4 SOTA deep learning models
for XMTC: AttentionXML (You et al., 2018), X-
Transformer (Chang et al., 2020), APLC (Ye et al.,
2020) and LightXML (Jiang et al., 2021).

In the original papers, the experiments are con-
ducted in different settings, e.g. (Chang et al., 2020;
Jiang et al., 2021) reports the ensemble of multiple
models and different works have their own data pro-
cessing method. For fair comparison, we run our
experiments with single model with the following
training and testing data. We obtain the datasets
from the Extreme classification Repository!. How-
ever, the repository only contains the stemmed ver-
sion of EURLex-4K, which hurts the performance
of pretrained Transformer models whose tokenizers
are applied to unstem natural text. Therefore, we
obtain the unstemmed version of the EURLex-4K
from the APLC-XLNet github?.

C.2 Descriptions of SOTA models

SVM The one-vs-all SVM (Cortes and Vapnik,
1995) is a simple baseline for XMTC. The features
are tf-idf word importance features.

AttentionXML The AttentionXML model uses
the word-label attention mechanism on top of a bi-
directional LSTM to create label specific document
embedding. The word-label attention allows each
label to select the most relevant information among
the words in the input document. The extracted
features are passed to a MLP to obtain the relevance
score of the labels.

"http://manikvarma.org/downloads/XC/
XMLRepository.html

https://github.com/huiyegit/APLC_
XLNet .git
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X-Transformer The X-Transformer (Chang
et al., 2020) was proposed to tame large Trans-
former models to the XMTC task. Specifically,
(Chang et al., 2020) designs a two stage train-
ing procedure including a cluster-level classifica-
tion and a within cluster ranking. The cluster-
level classification is implement with large Trans-
former models such as BERT-large (Devlin et al.,
2018), Roberta-large (Liu et al., 2019) and XLNet-
large (Yang et al., 2019). The ranker is imple-
mented with one-vs-all SVM with both tf-idf and
Transformer features as input.

APLC Instead of a two stage training, the APLC
model (Ye et al., 2020) achieves an end-to-end
training by using the XL Net-base model (12 lay-
ers transformer) with decreasing sizes of document
embedding to avoid the scalability issue. The de-
creasing size is achieved by a pooler function on
top of the XLNet special [CLS] token, and the scale
of decrements is determined by the frequency for
training instance of each label.

LightXML (Jiang et al., 2021) learns the docu-
ment vector to as feature for both the cluster-level
classifier and the within cluster label ranking. The
document vector is generated by concatenating
multiple Transformers cls token embedding to col-
lect more semantic information.

C.3 Training Settings and Hyperparameters

For the AttentionXML model, we use the same
hyperparameter as in their code 3. For the X-
Transformer mode, the reuse the released pre-
trained model * for evaluation.

For the end-to-end Transformer-based models
including APLC-XLNet and LightXML, we train
the model using the same framework as APLC,
including discriminative fine-tuning and slanted
triangular learning rates (Ye et al., 2020). The
discriminative fine-tuning decouples the learning
rate of model into 3 parts: The base Transformer
module, the pooler module and the linear classifier
module, such that the Transformer module receives
smallest learning rate and the linear module re-
ceives largest learning rate. The slanted triangular
learning rates allows the model to warm up with a
slowly increasing learning rate first, and then de-
crease the learning rate to let the model converge
stably.

*https://github.com/yourh/AttentionXML

*nttps://github.com/OctoberChang/
X-Transformer
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For our experiment on shallow vs. deep Trans-
formers, we follow the same setting as the APLC-
XLnet and the LightXML. Specifically, we exper-
iment with [1, 2,4, 6, 12] layers; the learning rate
for the Transformer, the pooler and the linear clas-
sifier are 5e — 5, le — 4,2e — 3 for EURLex-4K
and AmazonCat-13K and 1le — 5,1e — 4,1e — 3
for Wiki10-31K; the batch sizes are 12,12, 48 for
EURLex-4k, Wikil10-31K and AmazonCat-13K re-
spectively. For the doc-vec experiment, we use
the BERT-Base model which gives the best perfor-
mance. For the word-label BERT experiment, we
found that BERT-Large gives better performance
for shallow models with layer 1, 2, 4 and the results
are similar for layer 6, 12. Therefore, we report the
results of the BERT-Large model for the word-label
BERT experiments.

D More Experimental Results

In Table 3, we report the micro P@k, micro F1 @k
and the macro F1@k (k=1, 3, 5) for the SOTA mod-
els on the benchmark datasets. We observe that
the micro P@5 and the F1 @5 shows similar con-
clusions on which models perform the best, but
the macro F1@5 gives different conclusions, as
discussed in the Sec. 4.4.

In Table 4, we report the N@k and PSP@k
(k=1, 3, 5) for the SOTA models on the benchmark
datasets. For N@Xk, it shows the same conclusions
with P@k on which model performs the best (they
are mathematically equivalent). Although the PSP
metric were used to measure the performance of
tail label prediction, we found that it gives higher
score for the some of deep Transformer-base mod-
els than the SVM baseline, e.g. X-Transformer,
XLNet-APLC on EURLex-4K, XLLNet-APLC on
Wikil0-31K and X-Transformer on AmazonCat-
13K. However, those models actually underper-
form the SVM baseline on tail labels in our binned
macro-averaging F1 metric designed for tail label
evaluation. This shows that the PSP metric still
scarifies from the micro-averaging when applied to
evaluate the tail label performance.

The complete results of the shallow wvs.
deep Transformer model with document-vector
representation-based model and the word-label
attention-based model are shown in Table 5. For
each dataset, we show performance of model with
layer [1,2, 4,6, 12]. The general observation is that
for deeper layers, the doc-vec BERT tends to per-
form better, while for shallow layers, the word-
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label BERT tends to perform better. The reason is
that the word-label attention mechanism exploits
the local word feature from shallow Transformer,
but the doc-vec method relies on the global infor-
mation in the contextualized embedding learned
from deeper models.

Although the shallow word-label BERT and
the deep doc-vec BERT tend to perform similarly
on the micro-averaging metrics, only the shallow
word-label BERT outperform the SVM baseline
on the tail labels (from our binned macro F1 eval-
uation). This shows that the widely used micro-
averaging metrics are not informative to measure
the performance of tail label prediction.
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EURLex-4K

Method Micro Micro Macro
cthods P@l P@3 P@5 Fl@l Fl@3 Fl@5 Fl@l F1@3 Fl@5
SVM 8344 7062 59.08 2650 51.06 5737 564 1328 17.89

X-Transformer 85.46 7287 60.79 27.14 52.69 59.03 5.12 1286 17.56
XLNet-APLC 86.83 7434 6194 2743 5355 5996 6.66 1451 18.19
LightXML 86.98 7338 61.07 2748 5286 59.12 5.68 12.85 16.31
AttentionXML 85.12 7280 61.01 27.03 5264 5925 7.69 1580 19.41
Word-label BERT L1  86.59 73.21 6090 27.36 5274 5896 747 1558 19.03
Word-label BERT L2 86.06 7297 60.84 27.19 5256 5890 7.45 1570 19.28

Wiki10-31K
Method Micro Micro Macro
cthods P@l P@3 P@5 Fl@l Fl@3 Fl@5 Fl@l F1@3 Fl@5
SVM 84.61 7464 6589 845 2033 2742 018 097  1.99

X-Transformer 87.12 7651 66.69 870 20.84 27.76 0.14 0.51 1.02
XLNet-APLC 88.59 7830 6887 885 2133 28.67 0.31 0.93 1.59
LightXML 88.59 7851 68.84 885 21.39 28.65 0.25 0.69 1.10
AttentionXML 86.46 7722 6798 8.63 21.03 2830 0.39 1.05 1.67
Word-label BERT L1  84.18 73.67 6437 8.41 20.07 26.80 0.86 1.95 277
Word-label BERT L2 82.46 72.07 63.61 824 1964 2648 0.90 2.03 2.84

AmazonCat-13K

Method Micro Micro Macro
cthods P@l P@3 P@5 Fl@l Fl@3 Fl@5 Fl@l F1@3 Fl@5
SVM 9320 78.89 64.14 3054 5842 6349 386 1629 2836

X-Transformer 95.75 8246 6722 3138 61.06 6654 190 12.50 27.55
XLNet-APLC 94.56 79.78 64.59 3099 59.07 6393 395 1332 21.38
LightXML 94.61 79.83 64.45 31.00 59.11 63.79 1.60 8.38  18.36
AttentionXML 95.53 82.03 67.00 3131 6074 6631 7.12 2194 3198
Word-label BERT L1  93.00 77.85 6294 3048 57.65 6230 878 21.74 29.06
Word-label BERT L2 93.32 7829 6333 3058 5797 6268 851 2191 2930

Table 3: SVM and SOTA Deep Transformer Models evaluated on benchmark datasets: EURLex-4K, Wikil0-31K
and AmazonCat-13K. The metrics are micro P@k, micro F1@k and macro F1 @k for k=1, 3, 5. We include our
Word-label BERT with layer 1, 2 for comparison.
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EURLex-4K
Methods N@l N@3 N@5 PSP@l PSP@3 PSP@5

SVM 83.44 73.58 65.70 38.76 46.71 51.17
X-Transformer 85.46 7584 67.62 37.85 47.05 51.81
XLNet-APLC 86.83 77.29 68.79 4221 49.83 52.88

LightXML 86.98 76.53 68.05 40.54 47.56 50.50
AttentionXML 85.12 75.74 67.71 44.20 50.85 53.87

Wikil0-31K
Methods N@l N@3 N@5 PSP@l PSP@3 PSP@5
SVM 84.61 7699 7034 11.89 14.23 15.96

X-Transformer 87.12 79.00 71.56 12.52 13.62 14.63
XLNet-APLC 88.59 80.72 73.58 1443 15.38 16.47

LightXML 88.59 80.87 73.58 14.09 14.87 15.52
AttentionXML 86.46 79.41 7247 14.49 15.65 16.54

AmazonCat-13K
Methods N@l N@3 N@5 PSP@l PSP@3 PSP@5

SVM 93.20 82.87 7647 51.26 64.69 72.34
X-Transformer 95.75 86.26 79.80 51.42 66.14 75.57
XLNet-APLC 94.56 83.89 77.29 52.55 65.11 71.36

LightXML 94.61 8395 7721 50.70 63.14 70.13
AttentionXML 95.53 85.87 79.54 54.94 69.48 76.45

Table 4: SVM and SOTA Deep Transformer Models evaluated on benchmark datasets: EUR-Lex (4K), Wikil0-
31K and AmazonCat-13K. The metrics are N@k and PSP@k for k=1, 3, 5.
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EUR-Lex

Micro Micro Macro
P@l P@3 P@5 Fl@l Fl@3 Fl@5 Fl@l Fl@3 Fl1@5

Doc-vec BERT L1 8343 69.26 57.08 2636 4989 5526 574 1279 16.19
Doc-vec BERT L2 8491 7045 5830 2683 50.75 5644 620 1381 17.35
Doc-vec BERT L4 8499 7121 5876 2685 5129 56.88 599 1343 17.13
Doc-vec BERT L6 84.72 71.66 59.12 26777 51.62 5723 620 1395 17.37
Doc-vec BERT L12  85.64 73.57 6120 27.06 53.00 59.25 632 1490 18.85
Word-label BERT L1  86.59 73.21 60.90 27.36 5274 5896 747 1558 19.03
Word-label BERT L2 86.06 72.97 60.84 27.19 5256 5890 745 1570 19.28
Word-label BERT L4 8554 72.82 60.34 27.03 5245 5842 7.51 1581 18.96
Word-label BERT L6 82.15 68.67 56.82 2596 4946 5501 6.52 1370 16.60
Word-label BERT L12  81.65 69.19 5747 2580 49.84 55.63 459 1135 1522

Wikil0-31K

Methods

Micro Micro Macro
P@l P@3 P@5 Fl@l Fl@3 Fl@5 Fl@l Fl@3 Fl1@5

Doc-vec BERT L1 84.48 70.82 5991 844 1930 2494 0.05 0.20 0.36
Doc-vec BERT L2 85.66 72.89 6195 856 1986 2579 0.08 0.31 0.54
Doc-vec BERT L4 87.02 75.07 64.68 8.69 2046 2693 0.11 0.42 0.78
Doc-vec BERT L6 87.13 7546 6542 870 2056 2724 0.13 0.47 0.87
Doc-vec BERT L12  88.42 77.04 66.88 8.83 2099 27.84 0.17 0.59 1.07
Word-label BERT L1 84.18 73.67 6437 841 2007 2680 0.86 1.95 2.77
Word-label BERT L2 82.46 72.07 63.61 824 19.64 2648 0.90 2.03 2.84
Word-label BERT L4 8341 73.86 6527 833 20.13 27.17 0.85 1.89 2.67
Word-label BERT L6  83.02 71.80 62.03 829 1956 2583 0.50 1.27 1.90
Word-label BERT L12  84.89 74.26 64.00 848 20.24 26.65 0.29 0.83 1.37

AmazonCat-13K

Methods

Micro Micro Macro
P@l P@3 P@5 Fl@l Fl@3 Fl@5 Fl@l Fl@3 Fl1@5

Doc-vec BERT L1 91.85 76.18 6132 30.10 5641 60.69 648 17.38 2440
Doc-vec BERT L2 93.22 77.83 62.80 30.55 57.63 62.16 464 1629 25.11
Doc-vec BERT L4 93.86 78.75 63.64 30.76 5831 6299 431 16.01 2582
Doc-vec BERT L6 94.01 7897 63.83 30.81 5847 63.18 396 1533 2546
Doc-vec BERT L12 9449 79.72 64.59 3097 59.03 6393 394 15.69 26.38
Word-label BERT L1 93.00 77.85 6294 3048 57.65 6230 8.78 21.74 29.06
Word-label BERT L2 93.32 7829 63.33 3058 5797 6268 851 2191 29.30
Word-label BERT L4 9355 77.61 6234 30.66 5747 61.70 254 15.15 2543
Word-label BERT L6 9344 77770 6259 3062 5753 6195 481 17.11 26.19
Word-label BERT L12  94.26 78.87 63.60 30.89 5840 6295 180 1295 2547

Methods

Table 5: The performance of various layers configuration and attention mechanism for BERT model evaluated on
micro P@5, micro F1 @5 and macro F1 @5.
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