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Abstract
Extreme multi-label text classification001
(XMTC) is a task for tagging each document002
with the most relevant subset of labels from an003
extremely large label set. The most challeng-004
ing part for machine learning methods is the005
skewed label distribution in which a majority006
of labels receive very few training instances007
(named as the tail labels). Benchmark evalua-008
tions so far have focused on micro-averaging009
metrics, where the performance on tail labels010
can be easily overshadowed by high-frequency011
labels (named as head labels), and hence they012
are insufficient for evaluating the true success013
of methods in XMTC. This paper presents a014
re-evaluation of state-of-the-art (SOTA) meth-015
ods based on the binned macro-averaging016
F1 instead, which reveals new insights into017
the strengths and weaknesses of representa-018
tive methods. Based on the evaluation, we019
conduct in-depth analysis and experiments020
on Transformer models with various depths021
and attention mechanisms to improve the tail022
label performance. We show that a shallow023
Transformer model with word-label attentions024
can effectively leverage word-level features025
and outperforms previous Transformers on026
tails labels.027

1 Introduction028

Extreme multi-label text classification (XMTC) is029

a task for tagging each document with the most030

relevant subset of labels from an extremely large031

label set, in which the number of labels can be032

from a few thousands to more than a million. It033

has a wide range of potential applications, such as034

tagging keywords for advertising, recommendation035

system, or product category classification.036

In the enormous label space, the skewed dis-037

tribution is the main challenge because the label038

frequency follows the Zipf’s Law. As a result, a039

majority of low-frequency labels (named as tail la-040

bels) cover only a small subset of training instances,041

while a minority of high-frequency labels (named042

Figure 1: The percentage of label vs. training instance
in Wiki10-31K dataset. 1% of head labels cover more
than 40% of training instances, while 88% of tail labels
cover less than 30% of training instances.

as head labels) cover a large subset of training in- 043

stances. In the Wiki-31K dataset shown in Figure 044

1, only 1% of labels has more than 100 training 045

instances, but they cover more than 40% of all the 046

training instances. On the other hand, 85% of la- 047

bels only cover less than 30% of training instances. 048

Other benchmark datasets show similar distribution 049

(Appendix A). 050

It is worth pointing out that the performance of 051

current SOTA models has been evaluated using the 052

micro-averaging precision scores as the dominating 053

metrics (Liu et al., 2017; You et al., 2018; Ye et al., 054

2020; Chang et al., 2020; Jiang et al., 2021). Those 055

metrics assign an equal weight to the score of each 056

instance and hence are dominated by the head la- 057

bels that appear more frequently. In other words, if 058

a model performs well on a few head labels, it will 059

be scored highly in micro-based metrics but that 060

cannot be counted as the evidence for the model to 061

perform well on tail labels. 062

In order to measure the true success of exist- 063

ing methods on massive tail labels in XMTC, a 064

re-examination based on macro-based metrics is 065

necessary, where the performance score on each la- 066

bel is given equal weight in calculating the average. 067
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This paper presents such a re-examination. Specif-068

ically, by comparing the relative improvement of069

SOTA neural models with respect to the binary070

Support Vector Machines (SVM) in binned macro-071

averaging F1 scores, where each bin is a group of072

labels with similar frequencies, our experiments073

reveal new insights into the methods.074

In our evaluation, we found that the deep pre-075

trained Transformer-based XMTC models (Ye076

et al., 2020; Jiang et al., 2021; Chang et al., 2020)077

perform worse than the simple SVM baseline on078

the tail labels, while a shallow word-label attention-079

based RNN model (You et al., 2018) can outper-080

form the SVM baseline on two of the benchmark081

datasets. We speculate that the deep-layered ar-082

chitectures in those Transformer models may not083

be optimal for modeling low-frequency word-level084

features which are informative for tail label predic-085

tion. We found that a simple shallow Transformer086

with label-word attention that can better leverage087

word embedding with a more desirable inductive088

bias towards the low-frequency cases. Our experi-089

mental results demonstrate the effectiveness of the090

shallow Transformer model in tail label prediction.091

2 Background092

We will introduce the notation and formulation in093

Section 2.1, the SOTA methods in Section 2.2 and094

the commonly used evaluation metrics in Section095

2.3.096

2.1 Task Introduction097

We denote a training dataset with N instances and098

L labels as D = {
(
xN
i=1,y

N
i=1

)
} such that xi is099

the input text and yi ∈ {0, 1}L is the ground truth100

label list.101

The goal of the XMTC task is to learn a scoring102

function sl = f(x, l) ∈ R which maps an input x103

and a candidate label l to a score sl, such that for a104

relevant label, sl = 1, otherwise sl = 0.105

The simplest approach to optimize f(x, l) is the106

one-vs-all classifiers, which trains an independent107

binary classifier for each label:108

min
f

1

NL

N∑
i=1

L∑
l=1

L(yil, f(xi, l))109

where L(·, ·) is a point-wise loss function, such as110

a hinge loss for Linear SVM or a logistic regression111

as the final layer of a neural network: 112

Lhinge = max (0, 1− ẏilf(xi, l)) 113

Llogistic = log(1 + exp(−ẏilf(xi, l))) 114

where ẏil = 2yil − 1 ∈ {−1, 1}. 115

In the evaluation, since multi-labels can be rel- 116

evant for an input document x, a typical way is to 117

measure the quality of a top-k ranked list of the 118

predicted label, denoted as pk: 119

pk = Top-k([f(x, 1), . . . , f(x, L)]) 120

2.2 Methods under Investigation 121

Based on the design of the classification scoring 122

function f , we discuss three types of methods: the 123

linear SVM, the document-vector representation- 124

based method and the word-label attention-based 125

method. Specifically, the SVM is a non-neural 126

baseline and the other two methods are used the 127

SOTA deep learning models. 128

2.2.1 Linear SVM Model 129

The one-vs-all linear SVM model is a simple real- 130

ization of f(x, l): 131

f(x, l;w) = wT
l φtf-idf(x) 132

where φtf-idf(x) converts each text input into d di- 133

mensional tf-idf feature, and W = [wL
l=1] ∈ RL×d 134

is the parameter for linear classifier. The tf-idf fea- 135

ture uses the human defined heuristics to reflect the 136

distributed importance of each word in the training 137

corpus. 138

Although more complicated kernels such as the 139

RBF kernel are introduced in the SVM model for 140

the classification tasks, (Chang and Lin, 2011) 141

shows that a Linear SVM achieves the same perfor- 142

mance with a RBF kernel SVM when the feature 143

space is large (refer to Table 1 for the number of 144

features in the benchmark datasets). Therefore, we 145

use the Linear SVM to lower computational cost 146

without affecting the performance. 147

2.2.2 Document-vector Representation 148

The document-vector representation-based meth- 149

ods (doc-vec) use neural networks as φ(x) to re- 150

place the human defined φtf-idf(x), shown in Fig 2 151

left. Specifically, Liu et al. (2017) are the first to 152

apply CNN model (Kim, 2014) to encode the in- 153

put text x into a single bottleneck vector as the 154

document-level representation in the XMTC task. 155

Recently, the deep Transformer-based (Vaswani 156
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Figure 2: Document-vector representation (doc-vec) vs.
word-label attention (word-label). The doc-vec method
encodes the input text into a fixed vector representation
to calculate score si, while the word-label attention ex-
tracts local word features to form label specific docu-
ment embeddings φl.

et al., 2017) models quickly exceed the perfor-157

mance of CNN and achieve the state-of-the-art. We158

choose the deep Transformer-based models and159

write score function as follows:160

f(x, l) = wT
l φtransformer(x) (1)161

where φtransformer(x) is the deep transformer fea-162

ture extractor such as BERT (Devlin et al., 2018)163

or XLNet (Yang et al., 2019). Again, w represents164

a binary classifier applied on top of the document165

vector to compute the score for each label, which166

is optimized by the logistic regression objective167

Llogistic.168

The most representative deep Transformer-169

based models tailored for the XMTC task are X-170

transformer (Chang et al., 2020), APLC-XLNet (Ye171

et al., 2020) and LightXML (Jiang et al., 2021),172

which are discussed in Appendix C.173

2.2.3 Word-label Attention174

The word-label attention-based method (word-175

label) extracts local word features to form label176

specific embeddings, which avoids using a fixed177

doc-vec representation, as shown in Fig 2 right.178

Specifically, the word-label attention allows each179

label to interact with each word by the attention180

mechanism. Let T denote the length of input x,181

hT
i=1 ∈ Rd denote the contextualized word embed-182

ding and wL
j=1 ∈ Rd denote the label embedding.183

The label-word attention is calculated by184

αij =
ehiwj∑T
i=1 e

htwj
(2)185

The attention score is then used to calculate the186

label specific feature vector 187

φword-label(x, l) =

T∑
i=1

αijhi (3) 188

Finally, the score function is calculated by: 189

f(x, l) = MLP(φword-label(x, l)) (4) 190

where MLP : Rd → R is the multi-layer percep- 191

tron function that summarizes the label specific 192

feature into a real-valued score. Although in this 193

method there is no explicit classifier, the parameter 194

wl serves a similar role of the classifier as in the 195

previous methods. 196

This method can be related to a word-level re- 197

trieval, where a label measures the word impor- 198

tance via the interaction term hiwj , and then 199

the word-level information is combined by the a 200

weighted sum
∑T

i=1 αijhi. 201

Although this method was originally proposed 202

in AttentionXML (You et al., 2018), we rename 203

it to the word-label attention-based method as a 204

counterpart to the document vector-based method 205

to signify the distinction between the two types 206

of methods. Also, the contextualized word em- 207

bedding h is obtained from a one layer shallow 208

LSTM in the original paper, but in our paper, we 209

will also generalize this method to the shallow or 210

deep Transformer-based models. 211

2.3 Evaluation Metrics 212

In XMTC, there are multiple relevant labels for 213

each document, so a typical way for evaluation 214

is to measure the quality of the label ranked list 215

produced by the model. 216

The micro-based metrics for a ranked list are 217

the most commonly used in previous works, where 218

the performance score is averaged over all the test 219

instances. Since the test instances are weighted 220

equally, the instance level metrics are usually dom- 221

inated by the head labels which have more training 222

instances. These metrics can be formulated as: 223

Micro@k =
1

N

N∑
i=1

Metric(pk
i ,yi) (5) 224

where N is the number of test instances and pk
i ,yi 225

are the predicted top k ranked list and the ground 226

truth labels respectively. Metric is a function to 227

score the quality of the ranked list such as P@k 228

(Precision at k) (Liu et al., 2017; You et al., 2018; 229
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Dataset Ntrain Ntest F ¯|Ld| |L| |Lb1| |Lb2| |L3| |Lb4| ¯|W |

EURLex-4K 15,539 3,809 186,104 5.30 3,956 2,413 1,205 182 1 1,248
Wiki10-31K 14,146 6,616 101,938 18.64 30,938 26,545 3,084 300 16 2,484
AmazonCat-13K 1,186,239 306,782 203,882 5.04 13,330 3,936 5,813 2,862 719 246

Table 1: Data statistics. Ntrain and Ntest denote the number of training and testing instances respectively. F is
the tf-idf feature size. ¯|Ld| is the average number of labels per document. |L| is the number of labels. Lbk refers
to the number of labels in bin k, in which the labels in bin [1, 2, 3, 4] have [1 ∼ 9, 10 ∼ 99, 100 ∼ 999, 1000 ∼]
instances respectively. This bin partition is used in our binned macro-based F1. ¯|W | refers to the average word
number per training document.

Prabhu et al., 2018; Khandagale et al., 2019; Ye230

et al., 2020; Chang et al., 2020; Jiang et al., 2021),231

R@k (Recall at k), N@k (Normalized Discounted232

Cumulative Gain at k) (Prabhu and Varma, 2014)233

, or PSP@k (Propensity-scored Performance at234

k) (Jain et al., 2016), which are discussed in Section235

B.1.236

In this paper, we report the micro F1@k (refer237

to Sec 3 for details) as the evaluation metric, which238

is calculated by:239

F1@k = 2
P@k ·R@k

P@k +R@k
(6)240

3 Issues in Existing Evaluation241

Recently, various deep learning models are pro-242

posed to solve the data sparse issue in the skewed243

distribution in the XMTC task. However, we found244

that due to the issues of the evaluation metrics, the245

significance on the improvement is not evident, es-246

pecially on the tail labels. We list the 3 main issues247

of the evaluation in the previous work as follows:248

Missing Macro-averaging Metrics The current249

evaluation only focuses on the micro-averaging250

metrics such as P@5, which only measure how251

well a model performs on the instance level, but252

not on the label level. Instead, the macro-averaging253

metrics measure the model performance on the254

label level, but they are ignored in recent works.255

Missing Label Recall Evaluation The widely256

used precision metric only focuses on the accu-257

racy of prediction, but not on how many labels258

are predicted. Especially in tail label evaluation,259

measuring the precision of a model which hardly260

predicts any tail label is not meaningful. Actually,261

the recall metric is important to measure how likely262

the tail labels are predicted. We propose to use F1263

as our metric since it can balance the precision and264

recall.265

Missing Simple SVM Baseline The recent work 266

only has in depth comparison with other deep learn- 267

ing models, but the simple one-vs-all linear SVM 268

is missing. We acknowledge that several previous 269

works include tree-based models in which part of 270

the modules are built upon SVM (Prabhu et al., 271

2018; Khandagale et al., 2019), but they don’t di- 272

rectly compare with the simple one-vs-all SVM 273

because they may assume it as just a weaker base- 274

line. In our paper, we conducted in-depth compar- 275

isons with other deep learning models to show that 276

one-vs-all SVM is not without advantages. 277

4 Re-evaluation of SOTA Models 278

4.1 Datasets 279

In this paper, we use three benchmark datasets: 280

EURLex-4K (Loza Mencía and Fürnkranz, 2008), 281

Wiki10-31K (Zubiaga, 2012) and AmazonCat- 282

13K (McAuley and Leskovec, 2013). The statistics 283

of the datasets are shown in Table 1. For EURLex- 284

4K and Wiki10-31K, the bin with 1 ∼ 9 training 285

instances covers 63.48% and 88.65% of the labels 286

respectively. The AmazonCat-13K dataset contains 287

more instances, where the bin with 1 ∼ 9 instances 288

covers 30% of the labels and the first two bins to- 289

gether with 1 ∼ 99 instances cover more than 70% 290

of labels. If the model cannot perform well on 291

those bins, it means that the predictions of most 292

labels are inaccurate. The data statistics shed light 293

on the importance of tail label prediction in this 294

task. 295

The details of the experiment settings, descrip- 296

tions of SOTA models and the training hyperparam- 297

eters are discussed in Appendix C. 298

4.2 Macro-averaging Metrics 299

For label level evaluation, we proposed to apply the 300

macro-averaging F1 metric (refer to Sec B.2 for 301

more details), where the performance score on each 302

label is given an equal weight when calculating 303
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the average. Moreover, the macro-averaging F1304

metric can be applied to groups of labels according305

to their training frequency to clearly reflect the306

performance on head labels and tail labels. We call307

this metric the binned macro-averaging F1 metric.308

Let Lb be a group of labels, then the macro-based309

F1 on Lb is calculated by:310

Macro@k =
1

|Lb|
∑
l∈Lb

F1kl (7)311

where Lb is the label set for bin b and F1kl is the F1312

metric for label l evaluated on top k ranked list pk.313

Specifically, the F1@k for label l over predicted314

ranked list pk is calculated according to the confu-315

sion matrix at Table 2:316

Pk
l =

TPk
l

TPk
l + FPk

l

, Rk
l =

TPk
l

TPk
l + FNk

l

317

F1kl =2
Pk
l · Rk

l

Pk
l + Rk

l

318

where Pk
l ,R

k
l ,F1kl are the precision, recall, F1 at319

k for label l. As a designed choice, we set F1kl = 0320

if a label l is never predicted.321

l in y l not in y

l in pk True Positive(TPk
l ) False Positive(FPk

l )
l not in pk False Negative(FNk

l ) True Negative(TNk
l )

Table 2: Confusion Matrix for label l and top k ranked
list pk.

4.3 Performance in Micro-averaging Metrics322

Figure 3: The result of micro and macro-averaging
F1@5 metrics. The two metrics gives different conclu-
sion on the best performing model.

In Figure 3, we report the micro-averaging F1@5 323

for the SOTA models on the benchmark datasets. 324

More evaluation results on micro P@k, micro 325

F1@k and macro F1@k (k=1, 3, 5) are reported 326

in Table 3 in Appendix. The other micro-averaging 327

metrics such as N@k and PSP@k are reported and 328

discussed in Appendix C. 329

In the micro-based evaluation, all the SOTA neu- 330

ral models outperform the SVM baseline on the 3 331

benchmark datasets. We found that the deep Trans- 332

former model achieves the best performs across the 333

datasets. Specifically, APLC-XLNet is the best on 334

the EUR-Lex and Wiki10-31K datasets, and the 335

X-Transformer is the best on the AmazonCat-13K 336

dataset. 337

Figure 4: The relative improvement of SOTA deep
learning models over one-vs-all SVM baseline on the
binned macro-averaging F1@5 metrics. The labels are
partitioned to bins whose labels have [1 ∼ 9, 10 ∼
99, 100 ∼ 999, 1000 ∼ 999, . . .] instances respectively.
The corresponding label number of each bin can be
found in Table 1.

4.4 Performance in Macro-averaging Metrics 338

At the bottom of Figure 3, we report the macro- 339

averaging F1@5 for the same models under in- 340

vestigation. The results of the macro-averaging 341

metrics give different conclusions from the micro- 342

averaging evaluation. Specifically, the SVM base- 343
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lines performs the best in the Wiki10-31K, where344

the label space is both large and skewed. It345

also achieves competitive results on the other346

two datasets. Especially on the AmazonCat-13K347

dataset, the SVM beats all the deep Transformer-348

based models which perform better on the micro-349

averaging metric.350

We also observe that the AttentionXML model is351

the best on both the EUR-Lex and the AmazonCat-352

13K datasets, though it is not the best in any353

datasets when evaluated with the micro-averaging354

metric.355

4.5 Binned Macro-averaging F1 Metric356

In order to evaluate the performance of the tail357

labels, we show the binned macro-averaging F1358

in Figure 4. We report the improvement of the359

macro-averaging F1 metric on each bin relative to360

the SVM baseline. We have two main observations:361

1) all the deep Transformer-based models under-362

perform the SVM baseline on the tail labels. 2)363

The AttentionXML model tends to outperform the364

SVM baseline on the tail labels.365

Deep Transformers vs. SVM On all the dataset,366

the deep Transformer-based model inevitably un-367

derperform the SVM baseline on the tail bin with368

1 ∼ 9 training instances. Note that although the369

tail bin contains relatively few instances, it actually370

covers most of the label set. For instance, the tail371

bin of EUR-Lex and Wiki10-31K covers 63% and372

89% of the labels respectively. On the other hand,373

the deep Transformer-based model tends to have an374

advantage over the SVM baseline when the number375

of training instance is greater than 100. This shows376

that the source of improvement of the SOTA deep377

Transformer model comes from the improvement378

on the few head labels which covers a large number379

of instances.380

AttentionXML vs. SVM For EUR-Lex and381

AmazonCat-13K datasets, the AttentionXML out-382

performs the SVM baseline on the tail bin where383

the labels have 1 ∼ 9 training instances, while384

all the other deep learning models underperform385

the SVM baseline. The AttentionXML model also386

shows an advantage over the SVM baseline on the387

head labels, but it tends to underperform the deep388

neural models on the head bins. This shows that the389

AttentionXML with the word-label attention can be390

beneficial for tail label prediction, but potentially391

at the price of sacrificing the head label prediction.392

4.6 Micro vs. Macro-averaging Metric 393

Compared with the micro-averaging metric in eval- 394

uation, the macro-averaging metric focuses on the 395

label level prediction. We find that by shifting 396

our attention from the quality of instance-level pre- 397

diction to the label-level prediction especially on 398

the tail labels, the conclusion on the best perform- 399

ing model is reversed. Our conclusions are two 400

folds: 1) the SVM baseline outperforms the deep 401

Transformer models on the tail label prediction. 2) 402

the AttentionXML, which uses shallow one layer 403

LSTM with word-label attention, achieves better 404

tail label performance on two datasets. 405

Explanation We speculate the reason account- 406

able for the our observation lies in the nature of 407

the model architecture . The SOTA transformer 408

models use document-vector representation-based 409

method, gradually encodes global information into 410

a contextualized embedding ([CLS] token) via self- 411

attention. With abundant training instances, the 412

powerful Transformer feature extractors can learn 413

abstract semantic representations of documents, 414

and thus enhancing the performance on head labels. 415

However, without sufficient training instances, the 416

deep Transformers overfit on the tail labels during 417

training, failing to learn informative representations 418

generalized on testing data. 419

Different from the representation-based methods, 420

the AttentionXML uses the word-label attention- 421

based method, which avoids encoding all the tex- 422

tual information into a single vector. Rather, the 423

shallow RNN keeps the local word level informa- 424

tion and the word-label attention allows the clas- 425

sifier to better aggregate them for different label 426

predictions. For tail-label prediction, as there are 427

not enough training instances to provide high-level 428

meaningful semantic information for neural mod- 429

els, it is critical to rely on the word level feature for 430

better prediction. 431

5 Improving Tail Label Prediction 432

From the evaluations in the previous sections, we 433

observe that the deep Transformer-based models 434

achieves the best on the micro-based metrics, while 435

the AttentionXML model achieves the best results 436

on the tail label prediction on the two benchmark 437

datasets. Our hypothesis is that the deep Trans- 438

former models are powerful at exploiting the global 439

semantic meaning because they are initialized with 440

the general language knowledge from large text 441
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Figure 5: Comparison of the word-label attention-based method and the document vector-based method with
different layers of BERT model on the benchmark datasets. The relative improvement to SVM on macro-averaging
F1 is plotted.

corpus via unsupervised pretraining. On the other442

hand, the word-label attention method in the Atten-443

tionXML exploits the less abstract semantics such444

as the word embedding features that may benefit445

tail label prediction when training instances are446

scarce. A natural question is that whether we can447

combine the two to use the word-label attention448

to leverage the word knowledge in the pretrained449

model, and thus achieving consistent improvement450

on tail label prediction over all the benchmark451

datasets.452

To this end, we propose to apply the word-label453

attention on the BERT model to integrate the word454

knowledge into the word-label matching process.455

We show that this method can achieve consistent456

improvement on tail label predictions.457

5.1 Transformers with Word-label Attention458

In the word-label attention, each label attends to459

the contextualized word embedding to select the460

most relevant information from each word, which461

more efficiently utilizes the local word features.462

Specifically, the contextualized word embeddings463

h in Eq.(2) are the outputs from a neural model and464

each label integrates the most relevant h to form465

the feature embedding in Eq.(3). The final score466

function is calculated by Eq.(4).467

To obtain the contextualized word embedding,468

the AttentionXML uses a 1 layer bi-directional469

RNN model. In a pretrained Transformer model, 470

there are 12 layers for BERT-Base and 24 layers for 471

BERT-Large, and different layers may encode dif- 472

ferent level syntactic or semantic features (Jawahar 473

et al., 2019). Therefore, we explore the effect of 474

using different layers of Transformer models with 475

either word-label attention or typical the document- 476

vector representation-based methods in the next 477

section. 478

5.2 Experiments with Shallow and Deep 479

BERT Models 480

In this section, we show the performance of tail la- 481

bel prediction by controlling the number of layers 482

for BERT by [1, 2, 4, 6, 12] for both the word-label 483

attention method (word-label) and the document- 484

vector representation-based method (doc-vec). For 485

"k layer(s) BERT", we simply use the first k 486

layer(s) of BERT, discarding the remaining top 487

layers. The models are trained on the full training 488

data, and the relative improvement over the SVM 489

baseline is reported on the tail labels ([1 ∼ 9] for 490

EURLex-4K and Wiki10-31K, [1 ∼ 9], [10 ∼ 99] 491

for AmazonCat-13K). The results of model perfor- 492

mance are shown in Figure 5 and more evaluations 493

are shown in Appendix 5. 494

In the results, we have two key conclusions 1) 495

the word-label methods perform the better with 496

shallower BERT models and the doc-vec methods 497
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perform better with deeper BERT models, and 2)498

the shallow BERT model with 1 or 2 layers show499

consistently improvement over the SVM baseline500

on tail label predictions.501

The results also align with our hypothesis. For502

deeper Transformer models, the input tokens inter-503

act with each others via self-attention, gradually504

forming more complex and abstract semantic rep-505

resentations from layer to layer. Hence, the repre-506

sentations of the top layer encode the global doc-507

ument semantic. On the other hand, the shallower508

Transformer models reflect more of the token level509

meaning with only a little context information. The510

stronger word-level feature can help the word-label511

attention better leverage the local information for512

enhanced tail label prediction.513

Our findings raise an interesting point that most514

of the pretrained models use the [CLS] embedding515

as a default and the local feature of Transformer516

models in bottom layers are often ignored, but they517

can be potentially beneficial for different tasks.518

In addition to the improvement in tail label pre-519

diction, the shallower Transformer model has fewer520

number of parameters, which makes the training521

and inference much faster.522

5.3 Comparison with SOTA Baselines523

We compare our shallow word-label BERT models524

(1 and 2 layers) with the other SOTA neural mod-525

els. We report the relative improvement of macro-526

averaging F1 metric relative to the SVM baseline527

shown in Figure 6. Specifically, we focus on the528

performance of tail bins (bin with 1 ∼ 9 instances529

for EURLex-4K and Wiki10-31K, and bins with530

1 ∼ 9, 10 ∼ 99 instances for AmazonCat-13K),531

where the deep Transformer models underperform532

the SVM baseline.533

Our word-label BERT models outperform the534

SOTA deep Transformer models consitently. Com-535

pared to AttentionXML, our proposed method has536

better performance on Wiki10-31K dataset and the537

performance is on par on EUR-Lex dataset. The538

results confirm that the word-label attention on a539

shallow Transformer can improve the tail-label per-540

formance.541

Similar to the AttentionXML, our word-label542

BERT has relatively weaker performance on the543

head bins with training instance greater than 100544

on the Wiki10-31K and AmazonCat-13K datasets.545

This is also reflected in the micro-averaging met-546

rics in Table 3 in Appendix D. This is proba-547

Figure 6: A comparison of our shallow word-label
BERT with 1 and 2 layers vs. other baseline models
on the relative improvement to SVM. Our models show
consistent improvement on the tail bins.

bly because the two datasets have much skewer 548

label distribution where in Wiki10-31K, 1.05% 549

head labels covers 33.71% of training instances 550

and in AmazonCat-13K, 0.68% head labels covers 551

51.86% of training instances, as shown in Fig 7. 552

This demonstrates that the success on micro-based 553

metrics is not equivalent to the success on tail label 554

predictions. 555

6 Conclusion 556

In this paper, we show that the widely used micro- 557

averaging evaluation metrics on XMTC are not 558

sufficient to reflect the true performance of the tail 559

label prediction. By a re-evaluation with macro- 560

averaging metrics, we draw different conclusions 561

on the best model for tail label prediction, and 562

find that the word-label attention-based methods 563

are potentially more suitable. Finally, we propose 564

to combine word-label attention with shallow pre- 565

trained BERT to obtain consistent improvement on 566

label prediction. 567
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A Data Distribution690

In Figure 7, we show the percentage of label691

vs. training instance in each bin in the bench-692

mark datasets: EURLex-4K, Wiki10-31K and693

AmazonCat-13K dataset. In all the datasets, a small694

percentage of head labels cover most of the of train-695

ing instances, while a large percentage of tail labels696

only cover a few training instances.697

B Evaluation Metrics698

We include more discussion and reference for the699

micro-averaging metrics and our proposed macro-700

averaging binned F1 metric.701

B.1 Micro-averaging Metrics702

In XMTC, there are multiple true labels for each703

instance, so it is important to present a ranked704

list of predicted labels for evaluation. The micro-705

averaging metrics calculate a score for each of the706

ranked list and then take an average over all the test707

instances.708

Micro@k =
1

N

N∑
i=1

Metric(pk
i ,yi) (8)709

where N is the number of test instances and pk
i ,yi710

are the predicted top k ranked list and ground truth711

labels list. Metric is a function to score the quality712

of the ranked list based on the ground truth labels713

list. In the following, we omit the index of instance714

i for clarity.715

In most of the previous work, the Metric func-716

tion is chosen to be the micro-averaging Precision717

at k (P@k) (Liu et al., 2017; You et al., 2018; Ye718

et al., 2020; Chang et al., 2020; Jiang et al., 2021).719

Specifically, this metric evaluates the quality of the720

Figure 7: The percentage of label vs. training in-
stance in EURLex-4K, Wiki10-31K and AmazonCat-
13K dataset. A small percentage of head labels cover
most of the of training instances, while a large percent-
age of tail labels only cover a few training instances.

top k of the prediction ranked list for a given test 721

instance: 722

P@k =
1

k

k∑
l=1

1y(pl) (9) 723

where pl is the l-th label in the predicted ranked 724

list p and 1y is the indicator function. 725

Other choices of the Metric function include 726

N@k (normalized Discounted Cumulative Gain at 727

k) or PSP@K (Propensity-scored Performance at 728
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k) (Jain et al., 2016). The N@k is defined as:729

DCG@k =
k∑

l=1

1y(pl)

log(l + 1)
730

iDCG@k =

min(k,‖y‖)∑
l=1

1

log(l + 1)
731

N@k =
DCG@k

iDCG@k
732

Although N@k and P@k are calculated differently,733

You et al. shows that they are the same metrics734

when measuring the quality of ranked lists.735

The PSP @ k is defined as:736

PSP@k =
1

k

k∑
l=1

1y(pl)

prop(pl)
737

where prop(pl) is the propensity score (Jain et al.,738

2016) of label pl, which gives higher weight for tail739

labels. Although PSP@k were used as evaluation740

metric for the long tail problem, it is still not infor-741

mative enough to compare the performance of head742

labels vs. tail labels due to following: 1) It is still a743

micro-averaging metric that can be influenced by744

label with more instances. 2) Since it summarizes745

the performance into one number, we are not sure746

if the gain comes from the improvement of head747

labels or tail labels. Actually, an improvement in748

either type of labels will give an increment in the749

final score.750

B.2 Macro-averaging Metrics751

As we discussed above, the micro-averaging met-752

rics are not informative enough to measure the per-753

formance of different types of labels, because they754

assign equal weights to each instance when taking755

the averaging. As a remedy, a label level evaluation756

should assign equal weights to each label when757

taking the average. Therefore, macro-averaging758

metrics should be applied for evaluating the label759

level performance, especially for the tail labels.760

In computer vision, such metrics have been used761

in object recognition in manually sampled long-762

tail datasets. (Yang and Xu, 2020; Wang et al.,763

2021) evaluates the accuracy on each label and764

(Kang et al., 2020; Menon et al., 2021) linearly765

partition the labels into groups. However, the label766

size of datasets in object recognition is relatively767

small compared to the XMTC datasets. To create768

groups for large label size, we split the labels in the769

scale of exponential of 10 as a design choice, e.g.770

{1 ∼ 9, 10 ∼ 99, 100 ∼ 999, . . . }.771

We used the F1 metric to balance the precision 772

and recall. As observe in (Tan et al., 2020), the tail 773

labels tend to be under predicted due to the more 774

frequent negative gradient penalty. As a result, 775

tail labels tend to be predicted less often than the 776

head labels, and thus the recall is low. If a model 777

hardly predicts any tail labels, it should receive a 778

low score for the corresponding bin. Therefore, we 779

apply the F1 metric to balance the number of pre- 780

dictions (recall) and the accuracy of the predictions 781

(prediction). 782

C Experiment Settings 783

C.1 Re-evaluation Experiment Settings 784

We choose the non-neural SVM as our baseline 785

and investigate 4 SOTA deep learning models 786

for XMTC: AttentionXML (You et al., 2018), X- 787

Transformer (Chang et al., 2020), APLC (Ye et al., 788

2020) and LightXML (Jiang et al., 2021). 789

In the original papers, the experiments are con- 790

ducted in different settings, e.g. (Chang et al., 2020; 791

Jiang et al., 2021) reports the ensemble of multiple 792

models and different works have their own data pro- 793

cessing method. For fair comparison, we run our 794

experiments with single model with the following 795

training and testing data. We obtain the datasets 796

from the Extreme classification Repository1. How- 797

ever, the repository only contains the stemmed ver- 798

sion of EURLex-4K, which hurts the performance 799

of pretrained Transformer models whose tokenizers 800

are applied to unstem natural text. Therefore, we 801

obtain the unstemmed version of the EURLex-4K 802

from the APLC-XLNet github2. 803

C.2 Descriptions of SOTA models 804

SVM The one-vs-all SVM (Cortes and Vapnik, 805

1995) is a simple baseline for XMTC. The features 806

are tf-idf word importance features. 807

AttentionXML The AttentionXML model uses 808

the word-label attention mechanism on top of a bi- 809

directional LSTM to create label specific document 810

embedding. The word-label attention allows each 811

label to select the most relevant information among 812

the words in the input document. The extracted 813

features are passed to a MLP to obtain the relevance 814

score of the labels. 815

1http://manikvarma.org/downloads/XC/
XMLRepository.html

2https://github.com/huiyegit/APLC_
XLNet.git
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X-Transformer The X-Transformer (Chang816

et al., 2020) was proposed to tame large Trans-817

former models to the XMTC task. Specifically,818

(Chang et al., 2020) designs a two stage train-819

ing procedure including a cluster-level classifica-820

tion and a within cluster ranking. The cluster-821

level classification is implement with large Trans-822

former models such as BERT-large (Devlin et al.,823

2018), Roberta-large (Liu et al., 2019) and XLNet-824

large (Yang et al., 2019). The ranker is imple-825

mented with one-vs-all SVM with both tf-idf and826

Transformer features as input.827

APLC Instead of a two stage training, the APLC828

model (Ye et al., 2020) achieves an end-to-end829

training by using the XLNet-base model (12 lay-830

ers transformer) with decreasing sizes of document831

embedding to avoid the scalability issue. The de-832

creasing size is achieved by a pooler function on833

top of the XLNet special [CLS] token, and the scale834

of decrements is determined by the frequency for835

training instance of each label.836

LightXML (Jiang et al., 2021) learns the docu-837

ment vector to as feature for both the cluster-level838

classifier and the within cluster label ranking. The839

document vector is generated by concatenating840

multiple Transformers cls token embedding to col-841

lect more semantic information.842

C.3 Training Settings and Hyperparameters843

For the AttentionXML model, we use the same844

hyperparameter as in their code 3. For the X-845

Transformer mode, the reuse the released pre-846

trained model 4 for evaluation.847

For the end-to-end Transformer-based models848

including APLC-XLNet and LightXML, we train849

the model using the same framework as APLC,850

including discriminative fine-tuning and slanted851

triangular learning rates (Ye et al., 2020). The852

discriminative fine-tuning decouples the learning853

rate of model into 3 parts: The base Transformer854

module, the pooler module and the linear classifier855

module, such that the Transformer module receives856

smallest learning rate and the linear module re-857

ceives largest learning rate. The slanted triangular858

learning rates allows the model to warm up with a859

slowly increasing learning rate first, and then de-860

crease the learning rate to let the model converge861

stably.862

3https://github.com/yourh/AttentionXML
4https://github.com/OctoberChang/

X-Transformer

For our experiment on shallow vs. deep Trans- 863

formers, we follow the same setting as the APLC- 864

XLnet and the LightXML. Specifically, we exper- 865

iment with [1, 2, 4, 6, 12] layers; the learning rate 866

for the Transformer, the pooler and the linear clas- 867

sifier are 5e − 5, 1e − 4, 2e − 3 for EURLex-4K 868

and AmazonCat-13K and 1e − 5, 1e − 4, 1e − 3 869

for Wiki10-31K; the batch sizes are 12, 12, 48 for 870

EURLex-4k, Wiki10-31K and AmazonCat-13K re- 871

spectively. For the doc-vec experiment, we use 872

the BERT-Base model which gives the best perfor- 873

mance. For the word-label BERT experiment, we 874

found that BERT-Large gives better performance 875

for shallow models with layer 1, 2, 4 and the results 876

are similar for layer 6, 12. Therefore, we report the 877

results of the BERT-Large model for the word-label 878

BERT experiments. 879

D More Experimental Results 880

In Table 3, we report the micro P@k, micro F1@k 881

and the macro F1@k (k=1, 3, 5) for the SOTA mod- 882

els on the benchmark datasets. We observe that 883

the micro P@5 and the F1@5 shows similar con- 884

clusions on which models perform the best, but 885

the macro F1@5 gives different conclusions, as 886

discussed in the Sec. 4.4. 887

In Table 4, we report the N@k and PSP@k 888

(k=1, 3, 5) for the SOTA models on the benchmark 889

datasets. For N@k, it shows the same conclusions 890

with P@k on which model performs the best (they 891

are mathematically equivalent). Although the PSP 892

metric were used to measure the performance of 893

tail label prediction, we found that it gives higher 894

score for the some of deep Transformer-base mod- 895

els than the SVM baseline, e.g. X-Transformer, 896

XLNet-APLC on EURLex-4K, XLNet-APLC on 897

Wiki10-31K and X-Transformer on AmazonCat- 898

13K. However, those models actually underper- 899

form the SVM baseline on tail labels in our binned 900

macro-averaging F1 metric designed for tail label 901

evaluation. This shows that the PSP metric still 902

scarifies from the micro-averaging when applied to 903

evaluate the tail label performance. 904

The complete results of the shallow vs. 905

deep Transformer model with document-vector 906

representation-based model and the word-label 907

attention-based model are shown in Table 5. For 908

each dataset, we show performance of model with 909

layer [1, 2, 4, 6, 12]. The general observation is that 910

for deeper layers, the doc-vec BERT tends to per- 911

form better, while for shallow layers, the word- 912

12
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label BERT tends to perform better. The reason is913

that the word-label attention mechanism exploits914

the local word feature from shallow Transformer,915

but the doc-vec method relies on the global infor-916

mation in the contextualized embedding learned917

from deeper models.918

Although the shallow word-label BERT and919

the deep doc-vec BERT tend to perform similarly920

on the micro-averaging metrics, only the shallow921

word-label BERT outperform the SVM baseline922

on the tail labels (from our binned macro F1 eval-923

uation). This shows that the widely used micro-924

averaging metrics are not informative to measure925

the performance of tail label prediction.926

13



EURLex-4K

Methods
Micro Micro Macro

P@1 P@3 P@5 F1@1 F1@3 F1@5 F1@1 F1@3 F1@5

SVM 83.44 70.62 59.08 26.50 51.06 57.37 5.64 13.28 17.89
X-Transformer 85.46 72.87 60.79 27.14 52.69 59.03 5.12 12.86 17.56
XLNet-APLC 86.83 74.34 61.94 27.43 53.55 59.96 6.66 14.51 18.19

LightXML 86.98 73.38 61.07 27.48 52.86 59.12 5.68 12.85 16.31
AttentionXML 85.12 72.80 61.01 27.03 52.64 59.25 7.69 15.80 19.41

Word-label BERT L1 86.59 73.21 60.90 27.36 52.74 58.96 7.47 15.58 19.03
Word-label BERT L2 86.06 72.97 60.84 27.19 52.56 58.90 7.45 15.70 19.28

Wiki10-31K

Methods
Micro Micro Macro

P@1 P@3 P@5 F1@1 F1@3 F1@5 F1@1 F1@3 F1@5

SVM 84.61 74.64 65.89 8.45 20.33 27.42 0.18 0.97 1.99
X-Transformer 87.12 76.51 66.69 8.70 20.84 27.76 0.14 0.51 1.02
XLNet-APLC 88.59 78.30 68.87 8.85 21.33 28.67 0.31 0.93 1.59

LightXML 88.59 78.51 68.84 8.85 21.39 28.65 0.25 0.69 1.10
AttentionXML 86.46 77.22 67.98 8.63 21.03 28.30 0.39 1.05 1.67

Word-label BERT L1 84.18 73.67 64.37 8.41 20.07 26.80 0.86 1.95 2.77
Word-label BERT L2 82.46 72.07 63.61 8.24 19.64 26.48 0.90 2.03 2.84

AmazonCat-13K

Methods
Micro Micro Macro

P@1 P@3 P@5 F1@1 F1@3 F1@5 F1@1 F1@3 F1@5

SVM 93.20 78.89 64.14 30.54 58.42 63.49 3.86 16.29 28.36
X-Transformer 95.75 82.46 67.22 31.38 61.06 66.54 1.90 12.50 27.55
XLNet-APLC 94.56 79.78 64.59 30.99 59.07 63.93 3.95 13.32 21.38

LightXML 94.61 79.83 64.45 31.00 59.11 63.79 1.60 8.38 18.36
AttentionXML 95.53 82.03 67.00 31.31 60.74 66.31 7.12 21.94 31.98

Word-label BERT L1 93.00 77.85 62.94 30.48 57.65 62.30 8.78 21.74 29.06
Word-label BERT L2 93.32 78.29 63.33 30.58 57.97 62.68 8.51 21.91 29.30

Table 3: SVM and SOTA Deep Transformer Models evaluated on benchmark datasets: EURLex-4K, Wiki10-31K
and AmazonCat-13K. The metrics are micro P@k, micro F1@k and macro F1@k for k=1, 3, 5. We include our
Word-label BERT with layer 1, 2 for comparison.
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EURLex-4K

Methods N@1 N@3 N@5 PSP@1 PSP@3 PSP@5

SVM 83.44 73.58 65.70 38.76 46.71 51.17
X-Transformer 85.46 75.84 67.62 37.85 47.05 51.81
XLNet-APLC 86.83 77.29 68.79 42.21 49.83 52.88

LightXML 86.98 76.53 68.05 40.54 47.56 50.50
AttentionXML 85.12 75.74 67.71 44.20 50.85 53.87

Wiki10-31K

Methods N@1 N@3 N@5 PSP@1 PSP@3 PSP@5

SVM 84.61 76.99 70.34 11.89 14.23 15.96
X-Transformer 87.12 79.00 71.56 12.52 13.62 14.63
XLNet-APLC 88.59 80.72 73.58 14.43 15.38 16.47

LightXML 88.59 80.87 73.58 14.09 14.87 15.52
AttentionXML 86.46 79.41 72.47 14.49 15.65 16.54

AmazonCat-13K

Methods N@1 N@3 N@5 PSP@1 PSP@3 PSP@5

SVM 93.20 82.87 76.47 51.26 64.69 72.34
X-Transformer 95.75 86.26 79.80 51.42 66.14 75.57
XLNet-APLC 94.56 83.89 77.29 52.55 65.11 71.36

LightXML 94.61 83.95 77.21 50.70 63.14 70.13
AttentionXML 95.53 85.87 79.54 54.94 69.48 76.45

Table 4: SVM and SOTA Deep Transformer Models evaluated on benchmark datasets: EUR-Lex (4K), Wiki10-
31K and AmazonCat-13K. The metrics are N@k and PSP@k for k=1, 3, 5.
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EUR-Lex

Methods
Micro Micro Macro

P@1 P@3 P@5 F1@1 F1@3 F1@5 F1@1 F1@3 F1@5

Doc-vec BERT L1 83.43 69.26 57.08 26.36 49.89 55.26 5.74 12.79 16.19
Doc-vec BERT L2 84.91 70.45 58.30 26.83 50.75 56.44 6.20 13.81 17.35
Doc-vec BERT L4 84.99 71.21 58.76 26.85 51.29 56.88 5.99 13.43 17.13
Doc-vec BERT L6 84.72 71.66 59.12 26.77 51.62 57.23 6.20 13.95 17.37
Doc-vec BERT L12 85.64 73.57 61.20 27.06 53.00 59.25 6.32 14.90 18.85

Word-label BERT L1 86.59 73.21 60.90 27.36 52.74 58.96 7.47 15.58 19.03
Word-label BERT L2 86.06 72.97 60.84 27.19 52.56 58.90 7.45 15.70 19.28
Word-label BERT L4 85.54 72.82 60.34 27.03 52.45 58.42 7.51 15.81 18.96
Word-label BERT L6 82.15 68.67 56.82 25.96 49.46 55.01 6.52 13.70 16.60
Word-label BERT L12 81.65 69.19 57.47 25.80 49.84 55.63 4.59 11.35 15.22

Wiki10-31K

Methods
Micro Micro Macro

P@1 P@3 P@5 F1@1 F1@3 F1@5 F1@1 F1@3 F1@5

Doc-vec BERT L1 84.48 70.82 59.91 8.44 19.30 24.94 0.05 0.20 0.36
Doc-vec BERT L2 85.66 72.89 61.95 8.56 19.86 25.79 0.08 0.31 0.54
Doc-vec BERT L4 87.02 75.07 64.68 8.69 20.46 26.93 0.11 0.42 0.78
Doc-vec BERT L6 87.13 75.46 65.42 8.70 20.56 27.24 0.13 0.47 0.87
Doc-vec BERT L12 88.42 77.04 66.88 8.83 20.99 27.84 0.17 0.59 1.07

Word-label BERT L1 84.18 73.67 64.37 8.41 20.07 26.80 0.86 1.95 2.77
Word-label BERT L2 82.46 72.07 63.61 8.24 19.64 26.48 0.90 2.03 2.84
Word-label BERT L4 83.41 73.86 65.27 8.33 20.13 27.17 0.85 1.89 2.67
Word-label BERT L6 83.02 71.80 62.03 8.29 19.56 25.83 0.50 1.27 1.90
Word-label BERT L12 84.89 74.26 64.00 8.48 20.24 26.65 0.29 0.83 1.37

AmazonCat-13K

Methods
Micro Micro Macro

P@1 P@3 P@5 F1@1 F1@3 F1@5 F1@1 F1@3 F1@5

Doc-vec BERT L1 91.85 76.18 61.32 30.10 56.41 60.69 6.48 17.38 24.40
Doc-vec BERT L2 93.22 77.83 62.80 30.55 57.63 62.16 4.64 16.29 25.11
Doc-vec BERT L4 93.86 78.75 63.64 30.76 58.31 62.99 4.31 16.01 25.82
Doc-vec BERT L6 94.01 78.97 63.83 30.81 58.47 63.18 3.96 15.33 25.46
Doc-vec BERT L12 94.49 79.72 64.59 30.97 59.03 63.93 3.94 15.69 26.38

Word-label BERT L1 93.00 77.85 62.94 30.48 57.65 62.30 8.78 21.74 29.06
Word-label BERT L2 93.32 78.29 63.33 30.58 57.97 62.68 8.51 21.91 29.30
Word-label BERT L4 93.55 77.61 62.34 30.66 57.47 61.70 2.54 15.15 25.43
Word-label BERT L6 93.44 77.70 62.59 30.62 57.53 61.95 4.81 17.11 26.19
Word-label BERT L12 94.26 78.87 63.60 30.89 58.40 62.95 1.80 12.95 25.47

Table 5: The performance of various layers configuration and attention mechanism for BERT model evaluated on
micro P@5, micro F1@5 and macro F1@5.
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