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ABSTRACT

Predicting cross-image semantic correspondence among various instances within
the same category is a fundamental but challenging task in computer vision. Mod-
els are supposed to characterize both high-level semantic features and low-level
texture information to accurately finds the correspondence between pixels. The
quality of features directly affects the matching results. Recently, pre-trained
models with self-supervised training methods have demonstrated promising per-
formance in representation learning and can serve as a strong backbone to provide
robust visual features. However, existing methods have been found to poorly adapt
to such features. Their complex designs of the matching module do not yield sig-
nificant performance boost due to the disruption of the original representation and
the absence of high-resolution low-level information. In this work, we introduce
a simple yet effective framework named ViTSC to unlock the substantial potential
of self-supervised vision transformers for semantic correspondence. We intro-
duce three key components: a cross-perception module to align semantic features
of the same part from different images while preserving the original representation
as much as possible, an auxiliary loss to eliminate ambiguity from semantically
similar objects, and a low-level correlation-guided upsampler to generate high-
resolution flow maps for precise localization. ViTSC shows reliable semantic
correspondence performance, surpassing previous state-of-the-art methods on all
three standard benchmarks SPair-71k, PF-PASCAL and PF-WILLOW.

1 INTRODUCTION

Semantic correspondence prediction is a fundamental task in computer vision, holding significant
implications for tasks such as image classification (Zhang et al., 2020; Afrasiyabi et al., 2022), few-
shot segmentation (Min et al., 2021; Liu et al., 2023), video object segmentation (Hu et al., 2018;
Seong et al., 2021), object tracking (Zhu et al., 2016; Nebehay & Pflugfelder, 2014), and beyond.
The objective of semantic correspondence is to establish correspondences between two images. Par-
ticularly, semantic correspondence emphasizes the matching of distinct objects belonging to the
same category. In contrast, other matching tasks, such as optical flow, typically focus on matching
the same object across different frames. Therefore, except for low-level features, semantic corre-
spondence is a task that demands high-level semantic information, such as category information.
Historically, due to the absence of a universally robust visual backbone providing holistic high-level
semantic information, semantic correspondence remains an unresolved challenge.

A typical model for semantic correspondence usually consists of a backbone and a matching module.
The backbone extracts features from the images. Then the matching module computes a correlation
matrix using these features. Through a series of operations, the features and correlation matrix are
enhanced, ultimately uncovering the matching results. Previous works (Seung Wook Kim, 2022;
Cho et al., 2021; 2022; Sun et al., 2023; Min et al., 2020; Min & Cho, 2021) primarily focus on the
design of the matching module, while neglecting the fact that the quality of the extracted features
directly impacts the matching results. Most existing matching networks rely on convolutional neural
networks (CNN) (He et al., 2016; Simonyan & Zisserman, 2014) pre-trained on the image classifi-
cation task using the ImageNet dataset as the backbone, and the quality of the extracted features is
insufficient for generating satisfactory matching results directly. Therefore, the matching modules
in previous works are designed to be complex, resulting in high computational overhead. In recent
times, with the emergence of Vision Transformer (Dosovitskiy et al., 2021) (ViT) and various self-
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supervised pre-training methods (He et al., 2022; Radford et al., 2021; Zhou et al., 2021; Caron et al.,
2021; Oquab et al., 2023; Bao et al., 2022; Xie et al., 2022; Fang et al., 2023), more robust features
can be obtained. Different pre-trained models possess distinct characteristics, e.g., MAE (He et al.,
2022) has strong inpainting ability, while CLIP (Radford et al., 2021) shows significant zero-shot
classification performance. These capabilities emerging from self-supervised pre-training make it
feasible to replace the previously widely adopted CNN with a more powerful pre-trained backbone.

In this work, we conduct comprehensive experiments to explore the impact of different visual pre-
trained models and matching modules. We find that the pre-trained models utilizing masked mod-
eling perform better on semantic correspondence than the models pre-trained via text-image con-
trastive learning. We believe that masked image modeling forces the model to learn distinguishable
local representations. Subsequently, using the pre-trained model with the best initial features as the
backbone, we test whether various matching modules can adapt to the new robust features in a man-
ner similar to adapting to CNN features. However, we observe that the complex matching modules
proposed in previous works are no longer applicable due to their excessive disruption of the original
representation and the lack of high-resolution low-level features. In comparison to a very simple
matching module, the performance improvement from more complex matching modules is limited,
or even negative in some cases, despite the increased computational complexity.

In order to design a matching module that is more suitable for the more powerful features, we aim
for the matching module to address the following issues: 1) aligning features of the same parts
across different objects, 2) distinguishing features between highly similar parts, and 3) accurately
localizing parts with specific semantics. To achieve this, we 1) design a cross-perception module
to enable two images to have mutual perception, thereby making the features of the same parts in
different objects more similar, 2) introduce an auxiliary loss to differentiate highly similar parts, 3)
design a high-resolution low-level correlation-guided upsampling module to achieve more precise
localization.

The core contributions of our work can be summarized as follows:

• To adapt to the recently emerged robust visual representation, we design a cross-perception
module for feature enhancement, introduce an auxiliary loss to discriminate similar objects,
and design a high-resolution low-level correlation-guided upsampling module for precise
localization. They form a matching model utilizing the power of the backbones effectively.

• We construct a simple baseline to evaluate the transferability of pre-trained backbones.
By conducting systematic experiments on various backbones and matching modules, we
reveal that the quality of the features from pre-trained models has a significant impact on
the matching results and the complex matching modules proposed in previous works are no
longer applicable to the powerful features available today.

• Experimental results demonstrate that our model surpasses the state-of-the-art methods in
all three popular semantic correspondence benchmarks SPair-71k, PF-PASCAL and PF-
WILLOW. Specifically, our method gains 3.5 PCK@0.10 improvement on SPair-71k.

2 RELATED WORK

Semantic Correspondence. Existing methods typically begin by utilizing a backbone network to
extract features from the images, followed by a matching module that predicts the correspondence
between the images based on backbone features. Recently, numerous matching methods have been
proposed, which can be categorized into two classes: CNN-based methods and Transformer-based
methods. CNN-based often utilize convolution to extract. Some of these methods (Rocco et al.,
2018; Li et al., 2020; Salehi & Balasubramanian, 2023; Hong et al., 2022b;c) utilize 4D convolu-
tion to promote neighbourhood consensus within the correlation matrix. CHMNet (Min & Cho,
2021) employs a learnable geometric matching algorithm in combination with 6D convolution to
establish visual correspondence. DHPF (Min et al., 2020) employs an adaptive architecture to dy-
namically exploit multi-scale features during inference. NeMF (Hong et al., 2022c) represents the
correlation matrix in an arbitrary resolution with an implicit neural field. In contrast, Transformer-
based methods typically employ attention-based approaches to establish correspondences between
images. Some of these approaches concentrate on using Transformer to enhance the features (Sun
et al., 2023; Hong et al., 2022a) or refine the correlation matrix (Cho et al., 2021; 2022; Hong et al.,
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2022a). TransforMatcher (Seung Wook Kim, 2022) proposes match-to-match attention to refine the
initial matches. ACTR (Sun et al., 2023) uses Transformer for matching flow super-resolution. Re-
cent studies (Sun et al., 2023; Li et al., 2023) have leveraged ViTs as their backbone due to their
powerful expressive ability, resulting in significant performance boosts. The use of Transformers
enables these models to comprehend global semantics more robustly by capturing long-range rela-
tions.

Self-supervised Pre-training. Self-supervised learning techniques, such as contrastive learning (He
et al., 2020; Chen et al., 2020; Caron et al., 2020; Grill et al., 2020; Caron et al., 2021; Oquab et al.,
2023) and masked image modeling (Bao et al., 2022; Zhou et al., 2021; He et al., 2022; Xie et al.,
2022; Fang et al., 2023), have become common approaches for pre-training both CNNs and ViTs in
recent years. Self-supervised pre-trained models can achieve impressive performance with or with-
out fine-tuning on various downstream tasks. Furthermore, certain studies (Amir et al., 2021) have
discovered the emergence of semantic correspondence capabilities in pre-trained models. Some re-
cent work is investigating the utilization of self-supervised trained generative models for perception
tasks. In semantic matching tasks, DIFT (Tang et al., 2023) utilizes the U-Net in a Stable Diffu-
sion (Rombach et al., 2022) model as a feature extractor without fine-tuning. SD-DINO (Zhang
et al., 2023) combines the features of Stable Diffusion and DINOv2 to complement each other.
GeoAware-SC (Zhang et al., 2024) further improved the performance of SD+DINO through train-
ing. Diffusion Hyperfeatures (Luo et al., 2023) aim to simultaneously leverage multi-scale and
multi-timestep Stable Diffusion features and train a aggregation network to obtain enhanced se-
mantic features. These methods employ pretrained models directly for predictions, demonstrating
remarkable zero-shot transferability capabilities.

3 AN EMPIRICAL STUDY ON BACKBONES AND MATCHING MODULES

In this section, we initially establish a simple baseline to compare the performance of various pre-
trained backbones (Zhou et al., 2021; He et al., 2022; Radford et al., 2021; Oquab et al., 2023)
on semantic correspondence, then assess the compatibility between the recently emerged powerful
backbones and various matching modules proposed in previous works.

3.1 A SIMPLE MATCHING BASELINE

A network can perform the following typical steps to accomplish matching tasks. Given a source
image IA ∈ RH×W×3 annotated with the location of source keypoints KA and a target image
IB ∈ RH×W×3, the network is designed to predict the target keypoint location K̂B corresponding
to the source keypoints KA for the target image IB. KA can be dense or sparse as the task requires.

Specifically, a vision backbone network first extracts feature maps FA,FB ∈ R(H
S ×W

S )×C from two
input images IA and IB, respectively; C denotes the output dimension of the vision backbone; S
denotes the stride of the feature map. Here, we uniformly upsample all feature maps FA,FB to a
stride of S = 8. Next, the 2D correlation matrix C ∈ R(h×w)×(h×w), where (h,w) = (H8 ,

W
8 ), can

be calculated by cosine similarity as follows:

C = CosineSim(FA,FB) =
FA · FBT

||FA|| · ||FB||
, (1)

C contains the correlation scores between all pixels in the source feature map FA and all pixels in
the target feature map FB.

The prediction keypoints can be extracted from the correlation matrix C using the following soft-
argmax procedure. A two-dimensional Gaussian kernel is firstly applied to the C to suppress non-
maximum local maxima like in (Lee et al., 2019). Then C is normalized by softmax operation
along the second dimension to get the correlation distribution P ∈ R(h×w)×(h×w):

P = Softmax(
C

T
), (2)

where T is a temperature coefficient introduced to prevent excessive smoothing of the correlation
matrix. Inspired by (Li et al., 2023), the temperature is configured as a learnable parameter which is

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Backbone PCK@αbbox* PCK@αbbox

0.01 0.05 0.10 0.01 0.05 0.10

iBOT 0.7 14.3 32.5 4.3 40.2 59.9
MAE 0.1 2.6 8.1 4.8 43.2 63.4
CLIP 0.2 4.9 13.4 3.9 39.8 58.9
DINOv2 1.3 20.2 40.6 7.0 58.6 78.2

Table 1: Evaluation results of the simple base-
line with different backbones on SPair-71k. *
indicates all parameters of the model have not
been fine-tuned on the dataset.

Matching Backbone PCK@αbbox

Module 0.01 0.05 0.10

Baseline DINOv2 7.0 58.6 78.2
TransforM. DINOv2 6.1 56.1 78.3
CATs++ DINOv2 4.1 49.3 74.9
ACTR DINOv2 4.2 55.6 74.9

Table 2: Evaluation results of various
methods using DINOv2-B as the back-
bone. All models are fine-tuned on SPair-
71k.

initialized as 0.03 and can be optimized during the training procedure. Then dense correspondence
keypoint predictions Ĝ ∈ R(h×w)×2 are calculated by employing matrix multiplication on P and
the 2D coordinate grid G ∈ R(h×w)×2:

Ĝ = P ·G, (3)

and we can obtain the matching flow map M ∈ R(h×w)×2 by:

M = Ĝ−G (4)

After M′ is generated by upsampling the flow map to the full resolution, the dense correspondence
from each pixel in the source image to the target image is obtained. Sparse prediction keypoints
K̂B can be extracted from Ĝ with index selecting. Similarly, sparse matching flow can be extracted
from M′ with index selecting.

The simplest and most intuitive approach to train this model is to supervise with L2 loss between
the source keypoints and target keypoints. However, to enhance local consistency in the matching
results, we employ a training strategy that involves pseudo optical flow generated from keypoint
annotations as (Cho et al., 2021) does. The model is supervised using matching flow information
between the source keypoints and their neighboring keypoints within a rectangular range surround-
ing them. We generate pseudo flow by:

FN (p) = N (p) + q− p, (5)

where p,q ∈ R1×K×2 are coordinates of the source keypoints and the target keypoints, and N (p) ∈
Rl2×K×2 represents coordinates of the points in the rectangular neighborhood of p. During training,
we optimize the network by minimizing the end point error (EPE) loss between the ground-truth flow
and the predicted flow, defined as

LEPE =
1

N

∑
||F̂ − F||, (6)

where F and F̂ are the ground-truth and predicted flow, and N is the number of supervised pixels.

3.2 PRELIMINARY EXPERIMENTS AND ANALYSES

We use the above model and training process as a simple baseline. In this simple baseline, we
do not conduct any feature aggregation or correlation matrix aggregation methods in the matching
module, thus the crucial factor for achieving good performance lies in feature quality of the features.
When the backbone is initialized with a strong pre-trained model capable of generating high-quality
features, the model is more inclined to learn accurate visual correspondence.

In our preliminary experiment, we train and evaluate this simple baseline initialized with four pop-
ular self-supervised pre-trained ViTs: iBOT (Zhou et al., 2021), MAE (He et al., 2022), CLIP (Rad-
ford et al., 2021) and DINOv2 (Oquab et al., 2023) on a standard semantic correspondence bench-
mark SPair-71k. The results in Tab. 1 reveal significant variations in the performance of different
backbones. When pre-trained models are applied directly to semantic correspondence tasks, DI-
NOv2 and iBOT exhibit some level of matching ability. However, MAE and CLIP do not demon-
strate the same level of proficiency in these tasks initially. After fine-tuning the models on SPair-71k,
all pre-trained models experience a notable performance boost. Among the four options, DINOv2
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Figure 1: The framework of ViTSC. (a) ViTSC extracts features with a high-level semantic encoder,
enhances the features with an cross-perception module, and upsamples the initial matching flow
with local correlation generated from a low-level texture encoder. (b) The cross-perception module
enables the source features and the target features have a mutual perception.

features stand out when frozen and have a higher performance upper bound when fine-tuned because
DINOv2 learns all-purposed features at the patch-level and image-level using large-scale curated
data. This allows DINOv2 to perform effective feature matching between image patches. Although
the other three backbones may not perform as well as DINOv2 initially, they still get objective per-
formance gains after fine-tuning. Particularly intriguing is the experiment involving MAE, wherein
the model using original MAE pre-trained weights exhibits notably poor matching accuracy (low-
est among the four). However, after fine-tuning, the MAE model surpasses both the models with
iBOT and CLIP in terms of accuracy. The above observations provide us with two key insights: 1)
It is important and necessary to fine-tune the models to bridge the gap due to different optimiza-
tion objectives between pre-training and semantic correspondence. 2) Masked image modeling is
more suitable for semantic correspondence than text-image contrastive learning because it forces the
model to learn distinguishable local representations.

Furthermore, we employed DINOv2 as the backbone since it achieves the best performance, and
tested various matching modules proposed in previous works (Seung Wook Kim, 2022; Sun et al.,
2023; Cho et al., 2022) to assess their compatibility with it (see Tab. 2). All models were trained
on SPair-71k under the same settings, describeb in the appendix. Results show that very limited
performance improvement is obtained by replacing the simple matching module with previous state-
of-the-art matching modules. Some of them even perform worse than the simple baseline although
they bring more computational complexity. These methods often incorporate complicated feature or
correlation matrix aggregation modules, which may adversely affect the original robust representa-
tion initially generated by the backbone. With this intuition in mind, we aim to design a simple yet
effective matching module that can adapt to stronger features, preserving their powerful semantic
properties while making them more suitable for the semantic correspondence task.

4 METHOD

4.1 CROSS-PERCEPTION MODULE

Given the vital importance of feature quality in visual correspondence, feature enhancement is a
common approach (Sun et al., 2023; Xu et al., 2022) used to obtain features with increased semantic
information. In GMFlow (Xu et al., 2022), the symmetric method treats the features of the source
image and the target image in a completely equivalent manner, allowing for mutual information
exchange. Conversely, in ACTR (Sun et al., 2023), the asymmetric method updates the features
in the source image using the features from the target image. In our work, we propose a simple
but effective interleaved attention module that significantly enhances the expression capability of
features with just one single layer.

The interleaved attention module is designed to integrate the features FA and FB. As shown in Fig.
1(b), the inputs to the interleaved attention module are the feature maps FA and FB. These feature

5
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CATs++ ACTR Ours GT

Figure 2: The qualitative comparison. Correct matches are marked as green lines while incorrect
matches are marked as red lines. Our method show better results compared with previous methods
in difficult scenes.

maps sequentially pass through two attention blocks, each composed of a cross-attention layer, a
self-attention layer, and a feed-forward network in sequential order. The cross-attention layer is
employed to fuse features across frames, while the self-attention layer is utilized to update features
within each frame. In contrast to previous methods, we find that alternately updating FA and FB

leads to improved performance. Specifically, in the first attention block of the interleaved attention
module, FA serves as the query, while FB acts as the key and value. Consequently, features from FB

are initially integrated into FA. Conversely, in the subsequent second attention block, FB functions
as the query, and FA serves as the key and value. This results in the features from FA being initially
fused into FB. This process can be described as follows:

FA′
= FFN(Self-Attn(Cross-Attn(FA,FB))),

FB′
= FFN(Self-Attn(Cross-Attn(FB,FA′

))).
(7)

Positional encoding and layer normalization are omitted in Eq. 7 for simplicity. Standard multi-
head attention is used to implement this module. By feeding FA′ and FB′ back as inputs to another
instance of this module, this module can be stacked to form multiple layers.

4.2 CORRELATION-GUIDED UPSAMPLER

Different from previous methods that supervise the flow map at a low resolution, we supervise the
flow map at the full resolution, allowing the model to capture precise information. However, directly
interpolating the flow map bilinearly presents two problems: 1) the upsampled flow map tends to
be oversmoothing, potentially losing important details, and 2) the interpolated flow may not be
reasonable at the edge of objects. To address these challenges, we propose a low-level correlation
guided correlation-guided upsampler that upsamples the flow map with fine-grained correlations.

This module utilizes two sets of features: high-level semantic features Fhigh = [FA,FB] extracted
by H-Encoder and low-level texture features Flow extracted by L-Encoder. In this context, the H-
Encoder refers to the pretrained backbone utilized for extracting feature maps FA,FB, with typically
lower output resolutions. L-Encoder, on the other hand, is a shallow network that generates features
at a high resolution (e.g1/4 of the original size).

In this module, we firstly pool the low-level source features FA
low to a resolution of 1/8 and perform

a matrix product with the target features FB
low to generate the low-level correlation matrix Clow with

shape (H8 ,
W
8 , H

4 ,
H
4 ). Next, we utilize correlation lookup operation proposed in (Teed & Deng,

2020) to crop a local correlations Clocal ∈ RH
8 ×W

8 ×(2r+1)2 from the Clow according to the initial
flow map M, whereas r is the radius of neighbourhood. This process can be formulated as follows:

Cp
local = CosineSim(Fp,FN (p+∆p,r)), (8)

where p ∈ R1×K×2 is the coordinates of the source keypoint pixels, ∆p ∈ M is the initial predicted
flow of the pixel, and N (·) indicates the local neighborhood of a pixel.

6
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In this process, we specifically utilize local correlations instead of global correlations. This choice
is made because long-range correlations are unnecessary for upsampling and can potentially have
a negative impact on the results since Clow is generated from a shallow network and only contains
local information. The local correlations contain information about the relationship between the
source pixel and the surrounding pixels that could potentially correspond to it. The flow map and the
local correlation are then upsampled to the full resolution by bilinear interpolation, and seperately
encoded by a CNN head. Finally, they are concatenated and fed into a flow head to derive the
final full-resolution flow map. The flow head is a small CNN and its architecture is shown in the
appendix.

4.3 TRAINING OBJECTIVE

In Sec. 3.1 the simple baseline is trained with EPE loss. The model learns the pixel-level match-
ing relationship between two images, aligning features of the same parts across different objects.
However, in some cases, multiple parts within a single object may have similar semantics, such as
multiple wheels of a car or multiple legs of an animal. This similarity can often confuse the model
and lead to incorrect matching results. To address this challenge, we introduce triplet loss (Schroff
et al., 2015) as an auxiliary loss to distinguish highly similar parts. Triplet loss is defined as

L(a, p, n) = max(d(a, p)− d(a, n) +m, 0), (9)

where a, p, n is the anchor, positive sample, negtive sample of a triplet, d is the distance function
(e.gL2 distance) and m is the margin. Triplet loss and its variant have been widely adopted in
face recognition (Schroff et al., 2015; Boutros et al., 2022), classification (Sohn, 2016) and re-
identification (Cheng et al., 2016; Luo et al., 2020; Hermans et al., 2017). When constructing triplets,
these methods typically use the overall embedding of the entire object as a sample. In contrast, we
employ the features at the locations of the keypoints as samples. Let p = {p1, p2, ..., pN} and
q = {q1, q2, ..., qN} denote coordinates of the source keypoints and target keypoints, the auxiliary
loss can be defined as

LAux =
1

N(N − 1)

N∑
i

N∑
j ̸=i

L(Fpi ,Fqi ,Fqj ). (10)

During training, we use loss weights λ1 and λ2 to balance two losses, fomulated as

L = λ1LEPE + λ2LAux. (11)

5 EXPERIMENTS

5.1 DATASETS AND EVALUATION METRIC

Datasets. We conducted experiments on three standard benchmarks for semantic correspondence:
PF-PASCAL, PF-WILLOW (Ham et al., 2016) and SPair-71k (Min et al., 2019). The PF-PASCAL
dataset contains 2,941 / 308 / 299 image pairs for train / val/ test set respectively. The PF-
WILLOW dataset exclusively consists of 900 image pairs for test split. Image pairs in both
the PF-PASCAL and PF-WILLOW datasets exhibit minor viewpoint and scale variations, making
them relatively straightforward for analysis. The SPair-71k dataset is a dataset with larger scale,
constructed from 1,800 images spanning 18 categories from PASCAL VOC. It comprises totally
70,958 image pairs with visual annotations, including keypoints and their correspondence, bounding
boxes, segmentation masks, and more. The train / val / test set contains 53,340 / 5,384 /
12,234 image pairs respectively. Due to its complex scenes, the SPair-71k dataset presents a greater
challenge compared to the previous two datasets.

Evaluation Metric. Percentage of correct keypoints (PCK) is used to evaluate the models. Given
a source image IA and a target image IB with their keypoint annotations KA and KB. The model
takes {IA, IB,KA} as input and output prediction keypoints K̂B. Then PCK is calculated by

PCK(IA, IB)@ατ =
1

M

M∑
m=1

[||KB − K̂B|| ≤ α · θτ ], (12)
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SPair-71k PF-PASCAL PF-WILLOW
Sup. Method Backbone Res. PCK@αbbox PCK@αimg PCK@αbbox−kp

0.01 0.05 0.10 0.05 0.10 0.15 0.05 0.10 0.15

U
DINOv2 (Oquab et al., 2023) DINOv2 224 1.3 20.2 40.6 47.6 76.5 85.9 28.8 61.2 79.6
DIFT (Tang et al., 2023) SD - - - 52.9 - - - - - -
SD-DINO (Zhang et al., 2023) SD&DINOv2 960 - - 62.9 72.1 86.0 90.6 - - -

W SFNet (Lee et al., 2019) ResNet-101 ori. - 26.2 50.0 78.6 91.7 95.3 43.0 70.9 83.9
NCNet (Rocco et al., 2018) ResNet-101 ori. - 29.1 50.7 78.7 92.9 96.0 43.2 72.5 85.9

S

DHPF (Min et al., 2020) ResNet-101 240 1.7 20.7 37.3 75.7 90.7 95.0 - 71.0 -
CHM (Min & Cho, 2021) ResNet-101 240 2.3 - 46.3 80.1 91.6 - - 69.6 -
CATs (Cho et al., 2021) ResNet-101 256 1.9 27.9 49.9 75.4 92.6 96.4 40.7 69.0 -
CATs++ (Cho et al., 2022) ResNet-101 512 4.3 40.7 59.8 84.9 93.8 96.8 47.0 72.6 -
TransforM. (Seung Wook Kim, 2022) ResNet-101 240 - - 53.7 80.8 91.8 - - 65.3 -
D.Hyperfeat. (Luo et al., 2023) SD 512 - - 64.6 - - - - - -
ACTR (Sun et al., 2023) iBOT 256 4.3 42.0 62.1 81.2 94.0 97.0 42.7 69.9 84.1
ACTRh (Sun et al., 2023) iBOT 512 - - 65.4 82.0 93.5 96.7 - - -
GeoAware-SC (Zhang et al., 2024) SD&DINOv2 960 21.7 72.8 83.2 85.3 95.0 97.4 - - -
GeoAware-SC* (Zhang et al., 2024) SD&DINOv2 960 22.0 75.3 85.6 85.9 95.7 98.0 - - -
Baseline DINOv2 224 7.0 58.6 78.2 85.6 95.6 97.5 46.1 74.0 86.8
ViTSC DINOv2 224 9.3 63.3 81.8 87.4 96.3 97.8 49.7 76.7 88.4
ViTSC DINOv2 448 19.6 76.0 86.6 86.0 95.3 97.6 47.2 72.6 84.9

Table 3: Comparison with state-of-the-art methods on SPair-71k, PF-PASCAL and PF-WILLOW.
The best results are in bold. The main results of our method are marked in purple . U, W and S in the
first column mean unsupervised, weakly supervised and strongly supervised methods respectively. *
means extra training data is used. Results on SPair-71k are trained on SPair-71k itself, while results
on PF-PASCAL and PF-WILLOW are trained on PF-PASCAL.

where M represents the number of keypoints, α is the ratio ranging from 0 to 1, θτ is the base
threshold and [·] indicates the Iverson bracket. θτ is defined as θτ = max(wτ , hτ ) where τ ∈
{img, bbox, bbox-kp}, indicating image, bounding box and minimum bounding box of keypoints
respectively. Following previous convention, we use αbbox for SPair-71k, αimg for PF-PASCAL
and αbbox−kp for PF-WILLOW. All the reported results are evaluated on the test set of the respective
dataset.

5.2 IMPLEMENTATION DETAILS

We adopt pre-trained DINOv2-B/14 as the H-Encoder and pre-trained ResNet-18 (He et al., 2016)
as the L-Encoder. DINOv2 generates high-level features at 1/14 size of the original image. Layer4
in ResNet-18 is removed and stride of the convolution layers in layer2 and layer3 is set to be
1, so ResNet-18 generates low-level features at 1/4 size of the original image. We finetune the last 4
layers of DINOv2 and MAE, and the last 8 layers for iBOT and CLIP. We train all our models with
at a resolution of 224×224 and evaluate them at a resolution of 224×224 and 448×448. We set loss
weights λ1 = 1.0 and λ2 = 10.0 and the margin of triplet loss m = 0.3 We use Adam optimizer and
the learning rate is set to 3e-6 for the backbones and 3e-5 for other modules. Our models are trained
for 10 epochs when fine-tuned on SPair-71k and 50 epochs on PF-PASCAL. For ablation studies,
all our models are trained for 10 epochs on SPair-71k and evaluated with a resolution of 224×224.
All experiments are performed with a batch size of 16 on 4 RTX 4090 GPUs.

5.3 RESULTS

We present the quantitative results of our model in comparison with other methods on three standard
benchmarks: SPair-71k, PF-PASCAL and PF-WILLOW in Tab. 3 and some qualitative results in
the Fig. 2. To provide a more transparent comparison, we present details about the backbone of the
model and the image resolution used during inference for each method. Our method achieves state-
of-the-art performance on most metrics of SPair-71k, PF-PASCAL and PF-WILLOW. Our method
surpasses previous methods in most metrics. Compared to the baseline, our method further gains a
improvement of 2.3 / 4.7 / 3.6 PCK at threshold α = 0.01/0.05/0.10. By considering Tab. 2, when
we replace the backbone of previous methods with DINOv2 for a fair comparison, our model still
achieves the best performance on SPair-71k. On PF-PASCAL, our method surpasses other methods
with 87.4 / 96.3 / 97.8 PCK at threshold α = 0.05/0.10/0.15.
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Enhancement PCK@αbbox

Method 0.01 0.05 0.10

None 7.7 59.7 79.9
SymmetricXu et al. (2022) 8.0 61.4 80.6
AsymmetricSun et al. (2023) 8.4 61.8 80.9
Interleaved 9.3 63.3 81.8

Table 4: Ablation on different feature
enhancement methods.

#Layers PCK@αbbox

0.01 0.05 0.10

0 7.7 59.7 79.9
1 9.3 63.3 81.8
2 9.2 63.4 81.7
3 8.9 62.8 80.7

Table 5: Ablation on the number
of feature enhancement layers.

Upsampling PCK@αbbox

0.01 0.05 0.10

Bilinear 7.5 60.9 80.5
No guidance 8.6 62.5 80.8
Chigh guided 8.3 62.8 81.1
Clow guided 9.3 63.3 81.8

Table 6: Ablation on the design of
flow upsampling module.

LEPE LAux
PCK@αbbox

0.01 0.05 0.10

✓ 9.0 63.0 81.0
✓ ✓ 9.3 63.3 81.8

Table 7: Ablation on the auxiliary loss.

Method Backbones Res. PCK@αbbox

0.01 0.05 0.10

ACTR iBOT 256 4.3 42.0 62.1
ViTSC iBOT 224 5.1 44.0 63.2
ViTSC MAE 224 6.1 47.8 66.7
ViTSC CLIP 224 5.3 44.0 62.6
ViTSC DINOv2 224 9.0 63.0 81.0

Table 8: Impact of different backbones on our method.

To assess the generalization capabilities of the models, we evaluate their performance on PF-
WILLOW using the model pre-trained on PF-PASCAL. The results demonstrate that our method
not only achieves high performance on the dataset it was trained on, but also exhibits excellent gen-
eralization capabilities. Our model achieves 49.7 / 76.7 / 88.4 PCK at threshold α = 0.05/0.10/0.15
respectively.

The resolution of the input images has a significant impact on the accuracy on SPair-71k, espe-
cially when α is very small, e.g0.05 or even 0.01. On SPair-71k, increasing the resolution from
224 to 448 leads to notable improvements on PCK, with increases of 10.3 / 12.7 / 4.8 at threshold
α = 0.01/0.05/0.10 respectively. However, evaluating at a higher resolution does not yield im-
provements on PF-PASCAL and PF-WILLOW. In fact it slightly downgrades the performance. We
speculate that this discrepancy could be attributed to the relatively small size of the PF-PASCAL
dataset. When fine-tuning the model with a small resolution on this dataset, it becomes more prone
to overfitting due to the limited amount of available training data.

Compared to the previous state-of-the-art method GeoAware-SC, we surpass it on the vast majority
of metrics. Notably, we only use a single pre-trained visual foundation model, a smaller resolution,
and no additional training data.

5.4 ABLATION STUDIES AND ANALYSES

We conducted ablation experiments on various feature enhancement methods for the cross-
perception module, the number of layers of the cross-perception module and the upsampling method
to verify the effectiveness of our design. In ablations, all models are trained for 10 epochs and eval-
uated on SPair-71k at a resolution of 224, using a ViT-B as their backbone.

Feature Enhancement Method. The evaluation results for different features enhancement modules
are presented in Tab. 4. The symmetric module, asymmetric module and interleaved module exhibit
improvements of 0.7, 1.0 and 1.9 PCK@0.10 respectively. Additionally, we investigated the impact
of stacking feature enhancement layers. The results in Tab. 5 indicate that one layer is the most
suitable choice. Since the features extracted by the fine-tuned backbone are already of high quality,
adding a single interleaved feature enhancement layer allows the source features and the target fea-
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Source Target Baseline Symmetric Asymmetric Interleaved (ours)

Figure 3: The heatmap shows the correlation between the pixel in the source image and all pixels
in the target image. The visualization proves that our interleaved feature enhancement module can
eliminate ambiguity to a certain extent.

tures to gain awareness of each other’s characteristics. However, incorporating more stacked layers
may lead to the destruction of the original features from the backbone. We present visualizations
of correlations in Figure 3, showcasing the effectiveness of our approach. Specifically, in scenarios
where two objects or two parts of a single object exhibit high similarity within an image (e.gtwo
wheels on a car), our interleaved attention module successfully learns the appropriate correlations.

Flow Upsampling Method. Tab. 6 presents the impact of different upsampling methods. No guid-
ance refers to employing a CNN directly on the bilinearly upsampled flow map to obtain the flow
map at the full resolution. Chigh guided utilizes the high-level features to calculate the correlation
map used in the correlation lookup operation (as described in Sec. 4.2). Clow guided refers to our
method, which employs low-level features correlation map to guide upsampling. The results indi-
cate that no guidance already yields a slight increase in accuracy (+0.3 PCK@0.10), and our method
further improves upon it (+1.3 PCK@0.10). However, Chigh guided does not bring significant im-
provement compared with no guidance due to the lack of high-resolution information.

Auxiliary Loss. We test the impact of incorporating the auxiliary loss on the model’s performance.
The results show that introducing the auxiliary loss leads to an improvement of 0.8 PCK@0.10.

Pre-trained Backbones. To validate the compatibility of our matching module with other back-
bones, we train our model using various pre-trained ViTs as presented in Tab. 8. It is evident
that different pre-trained backbones have a significant impact on the fine-tuning results on SPair-
71k. Using iBOT as the backbone (same with ACTR), our model surpasses ACTR (63.2 vs 62.1
PCK@0.10) with a lighter matching module (1 layer vs 6 layers) and a lower resolution (224 vs
256).

6 CONCLUSION

In this work, we extensively investigate the utilization of pre-trained ViTs for semantic correspon-
dence tasks. We construct a straightforward yet robust baseline that serves as an intuitive way to
evaluate the performance of different pre-trained models on semantic matching tasks. Additionally,
we introduce a novel model named ViTSC to further unleash the strength of pre-trained models.
Through comprehensive experiments and visualization, we provide substantial evidence to demon-
strate the effectiveness of our designs.

Limitations. Our method has a limitation in handling query pairs with very large pose or view
discrepancies . To mitigate this, we will look into self-supervised and data augmentation methods,
which can help enhance the robustness in these cases.
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A ADDITIONAL RESULTS AND ANALYSES

Category-wise evaluation results. We show the category-wise evaluation results of different meth-
ods on SPair-71kMin et al. (2019) at α = 0.10 in Tab. 9. Our ViTSC achieves the best performance
in most of the categories and outperforms the baseline in all categories. ViTSC demonstrates su-
perior performance compared to previous state-of-the-art methods, particularly in categories like
horse, motorbike, person, pottedplant, etc.

Method aero bike bird boat bottle bus car cat chair cow dog horse mbike person plant sheep train tv all

TransforM.Seung Wook Kim (2022) 59.2 39.3 73.0 41.2 52.5 66.3 55.4 67.1 26.1 67.1 56.6 53.2 45.0 39.9 42.1 35.3 75.2 68.6 53.7
CATs++Cho et al. (2022) 60.6 46.9 82.5 41.6 56.8 65.1 50.4 72.8 29.2 75.8 65.4 62.5 50.9 56.1 54.8 48.3 80.8 74.9 59.8
ACTRSun et al. (2023) 65.0 48.5 82.3 50.4 55.9 65.3 63.1 72.8 35.8 74.1 70.3 68.9 58.6 57.1 46.8 49.5 84.4 73.3 62.1

TransforM.‡ 83.1 67.9 87.4 66.1 71.1 86.8 85.1 88.1 67.5 85.0 83.1 77.8 72.6 75.2 71.0 67.8 88.9 89.9 78.3
CATs++‡ 77.9 60.6 84.5 61.0 67.5 83.8 76.5 87.2 69.8 83.7 78.3 75.2 66.8 75.1 65.5 67.8 87.4 85.5 74.9
ACTR‡ 82.7 60.2 87.4 71.4 63.0 87.2 82.5 88.0 68.3 83.7 81.6 75.6 68.9 62.1 58.4 64.8 89.5 81.9 74.9
Baseline 82.6 67.3 87.9 65.1 71.1 87.8 83.0 87.7 67.9 84.7 83.5 77.2 71.1 76.0 72.2 68.7 91.4 90.2 78.2
ViTSC 86.1 69.7 89.9 70.3 75.7 87.4 87.6 89.5 74.8 88.4 86.6 82.0 75.9 80.4 74.2 73.2 93.6 92.2 81.8

ViTSCh 91.4 74.2 96.5 75.2 77.8 92.0 87.8 93.3 80.0 94.0 92.9 88.8 84.0 88.7 80.1 76.8 95.4 94.9 86.6

Table 9: Category-wise evaluation results on SPair-71k at α = 0.10. The best results and the second
best results are emphasized with bold and underline formatting respectively. All models in the
second group are evaluated at a resolution of 224. ViTSC and ViTSCh share the pretrained weights
and the only difference between them is the evaluation resolution (224 vs 448). ‡ indicates models
reproduced by us with DINOv2-B as the backbone (same with ViTSC).

Efficiency. We present the number of parameters, inference resolutions, respective inference time
and PCK in Tab. 10. The table demonstrates that the baseline model, consisting only of a backbone,
achieves both fast inference time and good PCK. On the other hand, a heavy matching module like
ACTR’s is not necessary. Our ViTSC model achieves a significant performance increase with an ac-
ceptable time overhead. Additionally, increasing the inference resolution can introduce a substantial
time overhead, although it leads to performance improvement.

The scale of the backbone is also a key factor affecting the inference time and PCK. We test models
using DINOv2-S and DINOv2-L as the backbone, denoted as ViTSCs and ViTSCl. They achieve
72.0 and 85.4 PCK, respectively, at α = 0.10. ViTSCl demonstrates comparable performance to
ViTSCh while requiring significantly less time. Therefore, scaling the backbone is a more efficient
approach compared to increasing the resolution when aiming to improve performance.

Visualization. We provide qualitative results in Fig. 5 and Fig. 6, which Visually demonstrates the
performance of our model.

B ADDITIONAL DETAILS

Settings for the preliminary experiments. In the preliminary experiments in Sec.3, all models
employ DINOv2-B as their backbone. The baseline and ACTR only utilize the last layer features
outputted by DINOv2. The original versions of TransforMatcher and CATs++ enhance features with
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Method #Params (M) Resolution Inference time (ms) PCK@αbbox

Backbone Matching module Total 0.10

TransforM.Seung Wook Kim (2022) 87.0 0.9 87.9 240 13.3 53.7
CATs++Cho et al. (2022) 44.5 5.5 50.0 512 52.7 59.8
ACTRSun et al. (2023) 85.8 86.5 172.3 256 15.2 62.1
TransforM.‡ 86.6 0.8 87.4 224 7.9 78.3
CATs++‡ 86.6 9.0 95.5 224 40.5 59.8
ACTR‡ 86.6 86.5 173.1 224 15.2 74.9
Baseline 86.6 0 86.6 224 5.4 78.2
ViTSC 89.4 3.9 93.3 224 8.7 81.8
ViTSCh 89.4 3.9 93.3 448 43.9 86.6
ViTSCs 24.9 3.9 28.8 224 6.2 72.0
ViTSCl 305.9 4.0 309.9 224 16.6 85.4

Table 10: Comparison of efficiency between ViTSC and other methods. Inference time is tested
on a single NVIDIA RTX 4090 GPU. ‡ indicates models reproduced by us with DINOv2-B as the
backbone (same with ViTSC).

the multi-layer features of ResNet-101, which we have adapted to the ViT architecture. Transfor-
Matcher and CATs++ make use of all features outputted by DINOv2, from the 1st to the 12th layer.
Due to the patch size of 14 in DINOv2, we opted not to use an image resolution of 256, instead, all
models operate at an image resolution of 224. All models are trained on the SPair-71k dataset for
10 epochs.

Flow head. The flow head in Sec. 4.2 is a small CNN and its architecture is shown in Fig. 4.
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Figure 4: The architecture of the flow head.
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CATs++ ACTR Ours GT

Figure 5: More visualization results on SPair-71k.
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CATs++ ACTR Ours GT

Figure 6: More visualization results on SPair-71k.
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